
Coding for interactive communication beyond threshold

adversaries

Slava Radune∗and Anat Paskin-Cherniavsky†

July 5, 2017

Abstract

We revisit the setting of coding for interactive communication, CIC, (initiated by Schulman
96') for non-threshold tampering functions. In a nutshell, in the (special case of) the com-
munication complexity setting, Alice and Bob holding inputs x, y wish to compute a function
g(x, y) on their inputs over the identity channel using an interactive protocol. The goal here is
to minimize the total communication complexity (CC). A "code" for interactive communica-
tion is a compiler transforming any π0 working in the communication complexity setting into
a protocol π evaluating the same function over any channel f picked from a family F . Here
f is a function modifying the entire communication transcript. The goal here is to minimize
the code's rate, which is the CC overhead CC(π)/CC(π0) incurred by the compiler.

All previous work in coding for interactive communication considered error correction (that
is, g(x, y) must be recovered correctly with high probability), which puts a limit of corrupting
up to a 1/4 of the symbols (Braverman and Rao 11'). In this work, we initiate the study of
CIC for non-threshold families. We �rst come up with a robustness notion both meaningful
and achievable by CIC for interesting non-threshold families. As a test case, we consider
Fbit, where each bit of the codeword is modi�ed independently of the other bits (and all bits
can be modi�ed). Our robustness notion is an enhanced form of error-detection, where the
output of the protocol is distributed over {⊥, f(x, y)}, and the distribution does not depend
on x, y. This de�nition can be viewed as enhancing error detection by non malleability (as in
the setting of non-malleable codes introduced by Dzembowski et. al. 10'). We devise CIC for
several interesting tampering families (including Fbit). As a building block, we introduce the
notion of MNMC (non malleable codes for multiple messages), which may be of independent
interest.

Keywords: Error correcting codes, coding for interactive communication, non malleable
codes.

1 Introduction

Classical coding theory studies error correcting codes (ECC) C ⊆ Σm for some �nite alphabet,
such that any pair x 6= y ∈ C di�ers in at least a d(C) fraction of the symbols. In the most useful
and hardest case, Σ = {0, 1}. Such codes are useful for transmitting data from Alice to Bob over a
noisy channel. In this scenario, C is viewed as injective mapping EncC : Σn → Σm, where to send
a message m, C(m) is sent, and decoded at the other end (as C−1(c)).

ECC's were �rst studied in the foundational work of Shannon [Sha48] for random noise, and for
adversarial noise by Hamming [Ham50]. Explicit constructions with constant rate log |C|/m (ar-
guably, the most important complexity measure of codes) have been subsequently devised [Ree60,
AGM92], to name a few out a vast body of work on ECC's.

The goal of (always) correctly decoding m in the above scenario is met i�. less than d(C)/2 <
m/2 bits are modi�ed by the channel.

For many applications, the relaxed notion of error detection su�ces, so we can go beyond this
bound. That is, the message is either decoded correctly, or an error symbol ⊥ is returned. In this
relaxed setting, up to d(C) − 1 < m − 1 errors can be tolerated (there exist codes with large Σ
where d(C)/m is arbitrarily close to 1).

∗The Open University and Ariel University.
†Ariel University.

1

Restating, even for the weaker notion of "usefulness for communication" (of error correction),
ECC's only work against the family FTHR of adversaries consisting of functions f : Σm → Σm

that �ip some α < 1 fraction of the bits. It is interesting to ask whether some meaningful notion
of "usefulness" can be achieved against families not contained in FTHR. The line of work on non
malleable codes (NMC), starting with the seminal work of [DPW09] puts forward an interesting
notion with this property. Loosely speaking, a code is NMC against a family F , if f ∈ F can
modify the message to be decoded, but one "unrelated" to the encoded value m. Slightly more
precisely, the distribution of the decoded massage when m is encoded and tampered via some
f ∈ F is h(m), where h is sampled from a distribution Df over {x, 0, . . . , 2n − 1,⊥} (that is, the
identity function, ⊥ or the various messages in {0, 1}n). Furthermore, the code is now speci�ed as
a pair of encoding and decoding algorithms Enc : {0, 1}n → {0, 1}m,Dec where Enc is randomized
(Dec is deterministic), rather then by a set C that uniquely determines the encoding and decoding
algorithms (up to the particular embedding of {0, 1}n into {0, 1}m).

NMC's may seem too weak for the 2-party communication problem described above, as a
message may be modi�ed into an arbitrary constant message.1 However, NMC's have found other
important applications, such as protecting sensitive data stored in memory against adversarial
tampering. For instance, consider data consisting of a secret key of an encryption scheme stored
on a tamper-prone hardware (assuming only the memory, rather than logic can be tampered by
the adversary).

Later, values encrypted by k are sent in the open over the adversarially corrupted channel. If
k could be modi�ed by the adversary into some related k′, and it could see values encrypted under
k′, some information about k could leak. This type of attack is referred as a related key attack
(see [Bih94], for instance).

Indeed, NMC's can be designed against tampering families not contained in FTHR. A simple
example is that of bit tampering functions, Fbit, where each f ∈ Fbit modi�es each bit ci based only
on ci, rather than the rest of the codeword. It is easy to see that even this simple type of tampering
does not allow even error detection (and even if a small error is allowed). For instance, the constant
function fv that modi�es each codeword into v, which is some �xed valid codeword is implementable
in this family. NMC's against Fbit with constant rate have been devised in [AGM+15]. In fact,
already [DPW09] puts forward a (non-constructive) proof of existence of NMC form any F which
is not too large (of size 22

αn

), and several explicit constructions, notably for the family F2−split,
where f modi�es each half of the input separately [ADKO15, NMC], achieving constant rate for
this challenging setting.

The communication complexity setting Alice and Bob have inputs x, y respectively, and they
wish to compute f(x, y) : {0, 1}n × {0, 1}n → {0, 1}t, by sending messages back and forth in
rounds over the identity channel (not tampering with the messages). Their goal is to do so while
minimizing the communication complexity (CC) between them. Clearly, a solution where one
party sends a message and the other party always results in CC of n + t bits, but sometimes one
can do a lot better. As a simple example, if we wish to compute the XOR or the parities of x and
y, only 2 bits need to be exchanged. As another simple example, if allowing for a small (engligible
in n) error, the equality function can be evaluated with polylog(n) communication, where Bob
picks a hash function h from a family of quasi-poly size, and Bob sends back h, h(y). Then Alice
compares h(y) and h(x), and outputs 1 i�. they are equal. See [KN97] for a great overview of the
communication complexity (CC) model.

Generalizing the CC model, it is natural to ask whether protocols with "low" CC exist, when
running over a corrupted channel f taken from some family F (and not apriori known to the
protocol's designer).

What do we mean by "low" CC? A good direction is to require that the overhead relatively
to π0 running over the identity channel for the same function is not too large. In other words,
we would like to devise a "compiler" transforming protocols π0 over plain channels into π robust
against F .2 We want to minimize the compiler's rate supπ,g CC(π)/CC(π′) as much as possible.

Precisely this question has already been studied in [Sch96], which initiated the �eld, coining the
term CIC (coding for interactive communication) as the name of the task. Schulman considered the
family F1/240 of functions modifying up to a 1/240 fraction of the entire communication. Schulman

1If the parties can a�ord pre-sharing a random string of length O(n) not known to the adversary, this would
reduce the problem to the error detection scenario, while introducing a small error probability.

2We stress that f acts on the entire protocol transcript. F is naturally restricted by the setting so that tampering
of a particular message sent by the protocol can be based on all previously sent messages in the transcript, but not
following ones.

2

devised a compiler as above with only constant rate (with no increase in the error of computing
f).

Note that if rate is not important, the problem is easily solvable by letting Alice send x encoded
by an ECC with a good rate, and Bob sending back a reply f(x, y) also encoded and padded, so
that both messages are of the same size.3. Indeed, as there is an exponential gap even between
k-round and k+ 1-round protocols for certain functions [NW93] the above approach would lead to
very bad rates.

Schulman's compiler has constant rate. Recently, interest in the setting of CIC (coding of
interactive communication) was rekindled in [BR11] which improved Schulman's result to handle
F1/4 (with constant rate). Several additional works have followed since (see the survey [Gel15] for
details).

However, all work so far on CIC focused on families of channels modifying up to a constant
fraction α of the communication. In these works, error correction was the required notion, which
is the main source of technical di�culty in these works. In particular, the compiler of a Π0,
attempting to emulate Π0 with a high round complexity should somehow tackle the issue that
entire messages may be arbitrarily modi�ed.

The main question we study in the proposed research is whether we can go beyond threshold
families. More precisely:

Q1. Are there useful non-threshold families F for which there exist compilers from protocols π0
for evaluating some function g(x, y) in the communication complexity setting, into π′ evaluating
the same g over F with a "useful" notion of robustness? The goal is to achieve a meaningful notion
of "usefulness", and as good a rate as possible.

As a simple test case, at least the family Fbit should have a compiler according to our de�nition.
However, it is known that protocols with such a strict correctness requirement can not be

correct even against weak non-threshold families. In particular, no protocol π as above (where the
party who speaks in round i and the message length are independent of the communication so far)
is ε-correct against a set of (actually threshold, for α = 1/4) functions contained in Fbit∩T HR0.25

with ε < 0.5 (see [Gel15]). Thus, we need to relax the robustness requirement so that Fbit can be
handled, while obtaining a meaningful notion of correctness.

One simple de�nition that comes to mind is something along the lines of NMC. For simplicity,
we only require that Alice gets the output. More speci�cally, we allow the adversary to modify
Alice's output so that g(x, y), ⊥ is output. The distribution over these two values depends only
on the channel f , rather then on the inputs x, y.

A solution to the sub-problem of evaluating the message transmission function (g(x, y) = y)
can be obtained by NMC. That is, we can view the setting as interactive protocols for F with error
detection, where additionally, the error probability can not be correlated with the inputs.

As an application of the proposed notion, think of a scenario where Bob holds a key k to
some encryption algorithm (Enck,Deck) and Alice holds as an input a value x, and they interact
to allow Alice to learn Enck(x) or Deck(x) (where x was previously encrypted by Enck). The
attacker controls the channel in some limited way (can tamper via some f ∈ F), and can also
break into Alice's computer and learn the outputs. To make life easier for the attacker, it is
conceivable that the attacker can also in�uence the choice of the input x (say, the server is an
internet store, and the attacker sends emails to clients advertising products to buy).

Assume also that interaction allows to minimize the communication complexity of the encryp-
tion (decryption) protocol, which is crucial for the system to work fast enough. As in the original
non-interactive scenario, the attacker's goal is to learn something about k, and his strategy is
modify k into some related value k′.

If an interactive protocol satisfying our de�nition is used, the attack does not allow the adversary
to learn anything about k, assuming the encryption scheme is secure against standard chosen
plaintext and chosen ciphertext attacks.

On the non-triviality of meeting our de�nition. Standard NMC's do not seem to directly
solve the problem for general g(x, y) (against Fbit) since even if we don't care about rate, and
have a good NMC for the tampering family, just letting Bob send an encoding of y, allows the

3Padding is crucial, since if one of the messages is too short, it may be completely altered, as its length is smaller
than the adversary's tampering "budget" 1/240 of the entire communication.

3

adversary to make Alice output f(x, y′), where y′ distributed over {y} ∪ {0, 1}n ∪ {⊥} according
to some �xed Df . This is not exactly what we want (even if we did allow constants as outputs).

At a more high-level look, one reason why standard NMC's for the family F can not be trivially
ported to the interactive setting, is that the encoder is limited to work block-by-block. This is
imposed by the nature of the interaction - the message is the entire interaction transcript, and the
encoding is done one message at the time, by a "distributed" encoder, implemented by the two
parties. The encoding of a block is based only on part of the encoded message so far (the messages
the encoding party had sent in the past), and tampered versions of (encoded) blocks the other
party had sent. As the parties do not share randomness either, the encoder does not even know
the entire randomness string.

Although the adversary is also restricted to tamper each block based on that and previous
blocks, this does not restrict its power too dramatically [CGM+15].

On the other hand, interaction allows us to cross-check the sent values, so there is hope to
get rid of the constants in Df 's support that are unavoidable without communication. Indeed,
this is the de�nition we pick - we require that for any f ∈ F , there exists a distribution Df over
g(x, y) ∈ {f(x, y),⊥}, so that Alice outputs g(x, y) according chosen from a distribution D′f which
is ε-close to Df (where x, y are the parties original corresponding inputs).

Our results. We devise CIC constructions for several non-threshold families. Observe that the
tampering families are always restricted to modify message mi based on messages mi or lower,
since the "future" part of the communication is not known yet, but the channel needs to send
some response replacing mi without being able to wait for future communication. Implicitly, when
we de�ne a family F in our context, it is assumed to be restricted in this way.

One family which is easy to handle is one modifying each message of Π0 independently of any
other messages, according to some family Floc for which an NMC code (Enc,Dec) exists (a code
family in fact, for in�nitely many message lengths, as we will need to adjust the message length).

As a warm-up, let us consider the simple special case for of Fbit. Fix some 2-message Π0 where
Alice sends the �rst message and outputs f(x, y). Indeed, bitwise tampering of the entire commu-
nication can be viewed as applying bitwise tampering to each of the sent messages (independently
of the other messages). We compile Π0 into Π′ by encoding each message with a good NMC, and
letting Alice add redundancy to her messages, which she can later verify. This allows to catch the
"constant" tampering of messages that NMC allows. For simplicity, we describe the construction
for a 2-message Π0, where Alice sends the �rst message. The general transformation for this case
appears in Section 4.2.1.

1. Let (Enc,Dec) denote the NMC that protects individual messages (of length as in Π′ below)
from being tampered using function from Fbit.

2. Alice picks a random value v1 ∈ {0, 1}k (where k is a security parameter). Let m1 denote
Alice's �rst message in Π0 (sampled as in Π0). She encodes (m1, v1) via Enc, obtaining
c1 = Enc(m1, v1). She sends c1 to Bob.

3. Bob decodes c′1 it received as (m′1, v
′
1), and produces a response message m2, as in Π0 (based

on y, r2,m1). It computes and sends an encoding c2 = Enc(m2, v1).

4. Alice decodes c′2, recovering (m′2, v
′
1), and checks whether v1 = v′1. If so, she outputs what

Π0 would output on m′2, x, r1. Otherwise, she outputs ⊥.

On a high level, error detection is achieved as follows. To modify m1, the channel needs to
tamper with the �rst message. By robustness of NMC, this leads to modi�cation of v1 as well.
Both into some constant values. Thus, the probability of guessing v1 is at most O(2−k). To modify
m2, as the adversary may not read the �rst message to tamper with the second, it again needs to
guess the right value of v1. This is regardless of whether it modi�ed v1 in the �rst round or not.
In any case, the adversary will successfully modify m1 or m2 with probability at most 21−k (of
guessing v1).

A more challenging setting is one where each message can be tampered based on itself, and all
previous messages in some restricted way. To handle such families, we de�ne the primitive of multi
message NMC (MNMC), and put forward constructions of MNMC for certain non-trivial families.
In a nutshell, here we require that the adversary can not change a sequence of some t messages
"too much", based on the entire message sequence.

4

We show a generic construction for CIC against a family F , given MNMC for a related family
G. This construction does not work for all F , since the related G may be too hard even for standard
NMC. For instance, for split-state tampering F , G is the set of all functions, so this approach is not
useful for constructing CIC for the interesting case of split-state tampering. However, we are able to
devise such CIC given MNMC for an augmented family G (deviating from our main construction).
More concretely, the family G is simply split-state tampering for messages of suitable size. See 4.1
for a construction.

The MNMC primitive may be interesting of its own right, as a formalization of NMC secure
for multiple messages. In particular, additionally to encoding constant messages, it is clear that
copying any mi in place of mj is not avoidable for multiple messages. We devise MNMC for some
non-trivial families where these are the only kinds of tampering allowed � supporting the fact that
this is a useful de�nition.

One interesting family for which we obtain a positive result is that of multi-variate linear
functions. That is, the entire communication is split into �eld elements, and each element mj is
modi�ed into

∑
i αj,imi + bj , where bj , αj,i are constants.4 It is a major open question to �nd

MNMC for more interesting families, such as split-state as required to obtain CIC for split-state
tampering (of the entire communication).

2 Preliminaries

Notation. For a distribution D, we denote by x← D the process of sampling a random variable
x according to D. For a set S, x ← S denotes sampling S uniformly at random. For a pair
D1, D2 of distributions over a domain X, we denote their statistical distance by SD(D1, D2) =
Σv∈X |Prx←D1

(x = v)− Prx←D2
(x = v)|. If SD(D1, D2) ≤ ε, we say that D1, D2 are ε-close.

Here we spell out standard de�nitions of coding schemes, and non malleable codes.

De�nition 2.1 (Coding scheme) A coding scheme is a pair of algorithms (Enc,Dec), where
Dec is deterministic. Enc : {0, 1}n → {0, 1}m, and Dec : {0, 1}m → {0, 1}n ∪ {⊥}. We have
Pr[Dec(Enc(x)) = x] = 1, where the probability is taken over the randomness of Enc.5

The following de�nition of NMC is the standard one, phrased in the �avor of non malleable
reductions.

De�nition 2.2 (Non Malleable Code - NMC) Let F be a family of functions from {0, 1}m →
{0, 1}m. We say that coding scheme (Enc,Dec) with parameters n,m respectively is ε-non-malleable
for this family, if for every f ∈ F , there exists a distribution Df supported on the set of functions
B1 = {g(x) = x, g(x) = ⊥} ∪ {g(x) = v|v ∈ {0, 1}n}. such that for every x ∈ {0, 1}n, we have
Dec(f(Enc(x))) ≈ε G(x), where G(x) is (freshly!) sampled by picking a function g at random
according to Df , and returning g(x). Here '≈ε' means that the statistical distance between two
distributions is at most ε.

We in fact (usually implicitly) consider ensembles of coding schemes {(Encn,Decn)}n∈N. The
reason to construct an in�nite ensemble is that in NMC, encoding a message by breaking it into
smaller blocks and encoding each separately does not trivially work. 6.

The coding scheme ensemble has parameters m(n) (length of encoding) and error ε(n) Corre-
spondingly, we consider suitable ensembles of tampering functions F = {Fm(n)}n.7 We will strive

for ε(n) = 2−θ(n), and rate m(n)/n as small as possible - constant at best, but at most poly(n).
As a secondary goal, we strive for Enc,Dec which are polynomial-time in n.8 We say G is a sub-
ensemble of F if each Gm ∈ G satis�es Gm ⊆ Fm. Also, given a pair of ensembles F1,F2, we let
F1 ∪ F2 denote {Um|Um = F1

m ∪ F2
m}m.

4As usual, each message can depend only on the preceeding messages, although the MNMC does not rely on this
restriction.

5Traditionally, the decoding algorithm was deterministic. However, some works, such as [MB16] rely on a more
relaxed de�nition where decoding is allowed to be randomized and a small decoding error is allowed. To keep the
notation simple, we stick with perfect correctness here, but it can be readily generalized to capture schemes as
in [MB16].

6See, e.g. [DPW09] for more discussion.
7By sayubg Fm is empty for some m ∈ N, this means that m is not a valid length of codewords.
8That said, proof-of-concept constructions with super polynomial rate are also interesting as a preliminary result.

See Section 4.1, for instance.

5

3 New notions of NMC

Here we develop several (still non-interactive) extensions of NMC, that will be useful for our
purposes, and possibly interesting on their own right.

De�nition 3.1 (Multi-message Non Malleable Code - MNMC) Consider a coding scheme
(ensemble) (Enc,Dec) with rate m(n)/n. Let F denote an ensemble of tampering functions.9 Given
c1, . . . , ct ∈ {0, 1}m we denote Dec(c1, . . . , ct) = Dec(c1), . . . ,Dec(ct).

We say (Enc,Dec) is t-message ε-non-malleable against a tampering family F , if for every
t′ ∈ [1, t], n, f : {0, 1}m(n)t′ × {0, 1}m(n)t′ ∈ F , there exists a distribution Df over (Bt′)

t′ where
Bt′ = {g(x1, . . . , xt′) = xi|i ∈ [t′]} ∪ {g(x1, . . . , xt′) = v|v ∈ {⊥} ∪ {0, 1}n} such that for ev-
ery (x1, . . . , xt) ∈ ({0, 1}n)t, we have Dec(f(Enc(x1)), . . . , f(Enc(xt))) ≈ε G(x), where G(x) is
(freshly) sampled by picking a function g = (g1, . . . , gt′) according to Df , and outputting g1(x), . . . , gt′(x).

The above generalization of NMC to multiple messages will prove instrumental in our construc-
tions, and may be of independent interest. For the purpose of constructing MNMC, the following
de�nition of closure will be useful.

De�nition 3.2 Let F denote an ensemble of tampering functions. The t-closure of F , denoted
Clt(F), is the of ensemble of all functions {F ′m}m so that each F ′m is of the form {f ′ : {0, 1}m →
{0, 1}m|∃v ∈ ({0, 1}m)t−1, f ∈ Fmt′ such that f ′(y) = f(x−i = v, xi = y)}. 10

De�nition 3.3 Let F ,G denote a pair of function ensembles. Let us denote by Cl≤t(F) =
∪t′≤tClt

′
(F). We say that F is (G, t)-closed, if Cl≤t(F ′) is a sub-ensemble of G. Furthermore,

for each F ′m ∈ Cl≤t(F) then for all t′ ≤ t Fmt′ exists in F , and furthermore, there are no other
pairs (m1, t1 ≤ t) for which m1t1 = mt′. If G is an (in�nite) sub-ensemble of F , we say that F is
t-closed. If F is t-closed for all t, we say that F is closed.

Note that all function ensembles F are trivially Fall-closed (which is not very useful).
A very simple example of a closed function family is the class F = Fbit of functions that modify

each bit as a function of itself.
Another interesting example is that of the class F = Local

lo(m)
li(m) , as considered in [MB16],

where f ∈ Fm is such that each output bit is in�uenced by up to lo(m) input bits, and each
input bit in�uences up to li(m) output bits. For a given t, consider the function f ′ resulting from
f : {0, 1}mt → {0, 1}mt, v, i. In f Some of the input (output) bits in i-the block may in�uence only

(be in�uenced) bits (only by bits) in the same block. Thus, in the worst case f ′ is only Local
lo(tm)
li(tm)

local. Thus, F = Local
lo(m)
li(m) is (G = Local

lo(mt)
li(mt)

, t(m))-local, so it preserves locality with a certain

degradation of parameters. For constant t, this degradation is tolerable, for su�ciently large m.
Some (parametrized) function classes do not even tolerate constant t. For instance, for F which

are 4-split-state for instance, choosing t = 2 deteriorates F into G of 2-split state functions, and
G = Fall for t ≥ 4. The same holds for the (well studied) threshold families, modifying up to some
constant fraction α of the symbols, T HRα. The class T HRα results in G = Fall for t ≥ α−1.

Clearly, if a coding scheme (ensemble) (Enc,Dec) is t-message ε-NMC against a family F of
messages for some t ≥ 1, then it is ε-NMC against the same family. In the other direction, the
implication is not clear. We manage to prove the other direction holds for a stronger de�nition of
non-malleability.

De�nition 3.4 (Simultaneously non-malleable code - SNMC) For a coding scheme (Enc,Dec)
and function f ∈ F , for any random input r to Enc, let gf,r : {0, 1}n → {0, 1}n denote the function
Dec(f(Enc(·; r))). We say (Enc,Dec) is ε simultaneously non-malleable against a tampering family
F (refer as ε-SNMC), if for any f ∈ F , Prr(gf,r ∈ B) ≥ 1 − ε, where B = {g(x) = x, g(x) =
⊥} ∪ {g(x) = v|v ∈ {0, 1}n}.

It is not hard to see that ε-simultaneous non malleability implies ε-non-malleability, by picking
Df to be the distribution of Dec(f · Enc)(·) conditioned on gf,r ∈ B.

However, NMC does not imply SNMC. Not even with a (meaningful) loss in parameters. To
see why, consider a simple example with n = 1, where the combined e�ect of f · Enc is as follows.

9Here and in De�nition 3.2 the fact that F is a function ensemble is made explicit, as the de�nition considers
tampering functions for several di�erent code length values.

10For our purposes, it su�ces to think of t as constant, rather than a function of m.

6

The output of f · Enc decodes to g0(x) = x with probability 0.5, and to g1(x) = 1 − x with
probability 0.5. This requirement can be implemented by the (somewhat contrived) scheme where
Enc(b) = (b, r), where r is a random bit; Dec(b, g) = b, and F consists, for instance, of a single
function f(b, r) = (gr(b), r).

The scheme clearly does not satisfy the stronger de�nition for arbitrarily small ε, but does
satisfy the standard de�nition with Df which is uniform over {g0(x) = 0, g1(x) = 1} with ε = 0.

Next, we prove that the stronger notion of simultaneous non-malleability implies the notion of
nonmalleablity for multiple messages.

Theorem 3.1 Let F ,G denote a pair of function ensembles. Let (Enc,Dec) denote a scheme
which is ε-SNMC against G, and let F be a (G, t)-closed family of tampering functions F . Then
the same scheme (Enc,Dec) is also t-message O(t2(t−1)nε1/t)-MNMC against F (where {0, 1}n is
the message domain).

The requirement in De�ntion 3.3 that for each Fm, there is a unique decomposition m = m′t′

into m′, t′ is crucial for our construction to work. In a nutshell, we show that encoding each of
t′ messages with an SNMC tailored to handle attacks by a function in Gm, results in an MNMC
against Gm. Now, assume the uniqueness requirement does not hold. Then, for some Fm, there
exist two di�erent pairs (m1, t1), (m2, t2) such that m1t1 = m2t2 = m. Then, by de�nition of
(G, t)-closure, there may exist some f1, f2 ∈ Fm that protect against tampering the message as
a sequence of t1 messages according to Gm1 each or t2 messages according to Gm2 . However,
(Enc,Dec) only encodes messages of length n into messages of a speci�c length m(n). Thus, if it
chooses to encode into length m1, it may not withstand an attack on t1 instances by f2, which
treats it as a block of t2 messages of length m2 each (as the code not tailored to it). Similarly, a
choice m2 of encoding length will not withstand attacks by f1.

Corollary 3.2 Let (Enc,Dec) denote a scheme which is o(1)-SNMC against G, and let F be a
(G, t)-closed family of tampering functions F . Then there exists a t-message o(1)-MNMC against
F .

The scheme as in the corollary can be achieved by embedding {0, 1}n into a larger {0, 1}n′
, so

that Encn′ ,Decn′ allow for an error of at most ε(n′), such that ε(n′) ≤ (ε(n)2−nt)t.

Proof sketch (of Theorem 3.1) We prove the claim for t = 2, which includes the main ideas,
and is easy to generalize for other values of t. For t′ = 1, the claim is trivial by the fact that
(Enc,Dec) is an NMC. Now consider t′ = t.

We look for pairs r1, r2, so that g
1
r1,r2(x1, x2) = Dec(f(Enc(x1; r1),Enc(x2; r2))[1] and g2r1,r2(x1, x2) =

Dec(f(Enc(x1; r1),Enc(x2; r2))[2] each equal some functions g1, g2 ∈ B respectively.
We will show that the fraction of such pairs, (r1, r2) is very high. To see this, construct an

undirected bi-partite inconsistency graph G = (V = (R1, R2), E), such that {r1, r2} ∈ E i�. there
either exists m1 ∈ {0, 1}n, so that gr1,m1,r2(x2) = g2r1,r2(m1, x2) is not in B1, or m2 ∈ {0, 1}n, so
that gr1,m2,r2(x1) = g1r1,r2(x1,m2) is not in B1.

We will then prove that local consistency implies global consistency. Namely:

Claim 3.3 If {r1, r2} /∈ E, then the (global) condition that g1r1,r2(m1,m2), g2r1,r2(m1,m2) ∈ B2
holds.

The theorem then immediately follows by combining Claim 3.3, with the observation that the
graph above is appropriately sparse. Namely

Claim 3.4 The graph G above has density ≤ 2n+2ε|R|2 edges.

Proof of Claim 3.4 By closure of t−F , for allm1, r1, the tampering function f(Enc(m1, r1), c2)[2]
applied to Enc(m2, r2) is in G. Thus, as (Enc,Dec) is an ε-SNMC, for each (m1, r1), for a ≥ 1− 2ε
fraction of r2's g

2
r1,m1,r2(x2), g1r1,m1,r2(x2) is in B1. The case with f(c1,Enc(m2, r2))[1] is symmet-

ric. Let us restate E as a union of some E1, E2, where E1 consists of all edges (r1, r2) where either
g1r1,m1,r2(x2) or g2r1,m1,r2(x2) is not in B1 for some m1, and E2 is de�ned analogously. Thus, by
union bound, we learn that the degree of each v ∈ R1 in G1 = (R1, E) is bounded by 2 · 2nε|R|
(the situation for E2 is analogous). Thus, |E| ≤ 2n+2ε|R|2. �

7

Proof of Claim 3.3 We prove a cleaner fact, where only a single function g is involved. The
claim follows immediately, by applying the claim to each function simultaneously.

Claim 3.5 Let g : {0, 1}n×{0, 1}n → {0, 1}n ∪{⊥} be a function, such that for every v ∈ {0, 1}∗,
g(v, ·), g(·, v) is in B (either constant, or equals the identity function). Then, necessarily g(x1, x2)
is also in B.

If n = 1, the claim is trivial, so from now we assume that n > 1. First assume that there exist
some v1 6=v2 and m1,1 6= m1,2,m2,for which g|x1=m1,1

≡ v1 and g(m1,2,m2) = v2. That is, one of
the row functions is constant, and some other row's function does not equal that constant. In this
case, g|x2=m2

is non constant. Thus, it must equal x1 (by the structure of B). In particular, we
must have v2 = m1,2. Now, there are two cases. If g|x1=m1,2

is a constant function, it must equal
v2, In that case, g|x2=m′

2
is x1 for all m′2. By similar reasoning to the m2-column, g(x1, x2) = x1,

which is a function in B, and we are done. Otherwise, g|x1=m1,2
must equal x2. In this case,

all columns g|x2=m′
2
for m′2 6= m2 are non-constant, but also are inconsistent with x1, which is a

contradiction.
It remains to consider the compliment of the above case. One possibility is that all rows equal

the same constant function v. Clearly, that means that g(x1, x2) ≡ v. Otherwise, it must be the
case that all rows are the function x2. This means that g(x1, x2) ≡ x2. That proves that g(x1, x2)
is (globally) x1 or x2 or some constant (belongs to B2).�

Fortunately, it turns out that some known NMC schemes in fact satisfy the stronger SNMC
de�nition, possibly with some loss in parameters. An interesting example for an SNMC family is
that of A�ne functions. More concretely, for each codeword length m we pick a suitable prime pm
(with log p ≥ m) and Fm consists of functions of the form f(c) = ac + b (operations are over the
�eld Fpm).11

More precisely, we have.

Lemma 3.6 Let Fa� be a class of a�ne functions as de�ned above. This class has an 2−θ(n)-
SNMC with rate O(log(n)).

Proof Sketch. To see why this holds, consider the construction for Fa� from [NMC]. Let us
denote it by A�13.

It is not hard to see that A�13 is also an SNMC with slightly degraded parameters.

Theorem 3.7 (Imported, [NMC]) A�13 with ε(n) is an ε(n)-NMC for Fa� with rate O(log 1/ε+
log n).

The construction above has the following property.

Claim 3.8 For any choice of ε(n) A modi�ed variant of A�13, A�13' (only the mapping m(n) is
modi�ed) is a ε(n)-SNMC against Fa�, with rate O(log n+ log 1/ε(n)).

Proof of claim. We slightly modify A�13 into A�13', which embeds {0, 1}n into {0, 1}n′
for

n′ = n− log ε, and applies A�13 to the result.
To see why we get an SNMC, we observe (by construction) that for any f ∈ Fa�, A�13's

construction allows for one of the following situations. (1) If f = const, there exists v, and
a ∈ {v,⊥} so that ∀xPr(Dec(f(Enc(x)) = a)) = 1. (2) If f(c) = c, then ∀xPr(Dec(f(Enc(x))) =
x) = 1. (3) Otherwise, for all x, Pr(Dec(f(Enc(x))) = ⊥) ≤ 2−n

′
.

We conclude that with probability at least 2n−n
′

= ε(n) gr,f (x) is one of the functions in B, as
required. This follows by taking union bound on all messages in {0, 1}n for the third case (in the
other two cases all pairs (r1, r2) lead to gr,f (x) in B). Finally, it is easy to see that the rate of the
resulting SNMC is (almost) the same as that of the original scheme, up to linear factors.�

For a given t, and Fa� as above, assume further that for all t1, t2 ≤ t and all possible codeword
lengths for Fa� m1,m2, we have m1t1 6= m2t2.

12

Then the corresponding family Fmulti-a�,t consists of functions of the form f(c1, . . . , ct′) =
(c′1, . . . , c

′
t′) where t

′ ≤ t, and each c′i is of the form Σj≤t′αjmj + b where the computation is done
over p|c1|. (2)

By simple arithmetic (over Fp|c1|), we observe that:

11There are, of course many such function families F , corresponding to di�erent sequences of primes
12This is a technical requirement that is easy to meet without serious loss in parameters. For instance, use prime

values m > t in Faff .

8

Claim 3.9 For a given t ≥ 1, and Fmulti-a�t
,Fa� (related) ensembles of tampering functions as

above, Fmulti-a�t
above is (t,Fa�)-closed.

As an immediate corollary of Lemma 3.6, Claim 3.9, and Theorem 3.1 we conclude that
Fmulti-a�t has an NMNC.

Corollary 3.10 Let t ≥ 1, then there exists a coding scheme (ensemble) (Encn,Decn)n of rate
O(t2 log(n)) and error 2−nr, which is t-message MNMC against a family Fmulti-a�,t as above.

The corollary follows by using the scheme from 3.8, further embedding the message space {0, 1}n
into {0, 1}n′

where n′ = Ω(nt2), to compensate for the loss in parameters in the transformation
from SNMC into t-message MNMC.

4 Coding for interactive communication over general channel

families

Protocol. We consider protocols Π0 between a pair of parties, Alice and Bob for evaluating
functions of the form f : X×Y → Z, where X,Y, Z are �nite domain. Alice holds an input x ∈ X,
and Bob holds y ∈ Y , and the goal of the protocol is to interactively compute f(x, y), which should
be output at the end of the computation by Alice.13 The interactive protocol consists of r rounds,
where the parties take turns sending a message to the other party (the �rst party to speak is also
�xed by Π). The protocol runs over a channel corrupted according to a function f ∈ F , where
F is a family of tampering functions. Formally, an interactive protocol Π between two parties
consists of a pair of �next message� functions πA, πB . The next message function πA (πB) takes
the input x, round number i and message seqeunce received by Alice (Bob) so far, and outputs
the next message to be send by Alice (Bob). For simplicity of notation, we assume πA, πB always
output binary strings. Furthermore, we assume that each message output by πA is always of the
same length `.14. Note that the protocol statement does not rely on the channel over which it is
executed. We denote the sequence of messages sent or received by Alice throughout the protocol
by transA = mA

1 , . . . ,m
A
r and the same sequence from Bob's perspective by transB = mB

1 , . . . ,m
B
r

(mA
i does not necessarily equal mB

i due to tampering by the channel). We denote the output
functions of Alice and Bob respectively by outA(x, transA, rA), outB(y, transB , rB).

Channels. A channel is a (deterministic) mapping taking the round number i, messages sent so
far by both parties (transB , transA), and message m sent in the current round, and modi�es it into
a message m′ of the same length (that will be the one received at the other end). As mentioned
above, our channels will always be deterministic functions f of the transcript, picked from some
family F . In particular, all functions in such a family are limited so that the tampering of a
message does not depend on following messages in the transcript.

Protocols running over adversarial channels

De�nition 4.1 For a given protocol π (with parameters r0, n), we say that it is ε-robust protocol
for evaluating a function g(x, y) over a family F of channels if it is:

1. ε(n)-correct: Over the identity channel, for all x, y Alice outputs f(x, y) with probability
≥ 1− ε.

2. ε(n)-nonmalleably-detectable (NMCD): For each c ∈ C, there exists a distribution Dc over
{⊥, f(x, y)} such that for and all x, y, Alice's output distribution D′c is ε-close to a distribution
Dc.

Our main goal in this work, is to study the feasibility and, if possible, the rate of compiling
general protocols Π0 which are correct over the identity channel, into protocols Π for a family F
of channels (evaluating the same function as Π0) according to De�nition 4.1. We refer to such
compilers as interactive coding schemes.15

13For simplicity, we require that only one party learns the output.
14This setting generalizes the common practice in the CIC literature, where each message is of length exactly 1.
15Π0 is speci�ed in some convenient model. In particular, π has access to π0's code if needed, rather than just

oracle access to its next-message functions.

9

The main parameter of interest of such a scheme is its rate,
rate(m) = supπ0,g:{0,1}n×{0,1}n→{0,1} CC(π)/m, where π0 is a protocol for evaluating the function g
in the communication complexity model (over plain channels), m is its communication complexity,
and π is the resulting protocol.

4.1 Protocols against 2-split state

In this section, we devise a coding scheme for the family F2-split of split state tampering functions,
assuming an MNMC for a related family. This is merely a reduction, as it remains open whether
an MNMC as required exists. Consider a t-round protocol Π0 for a function g(x, y). Our compiler
assumes the existence of t-MNMC for a family related to F2-split, we denote by F t2−alt-split. In

this family, each f ∈ F tmt splits c into t length-m blocks, and each block ci is divided into two
halves (cLi , c

R
i). It tampers c by replacing the left-half vector via fL(cL1 , . . . , c

L
t) and the right-half

message by fR(cR1 , . . . , c
R
t).16

Formally, the reduction is summarized in the following theorem.

Theorem 4.1 Let Π0 denote an ε(n)-correct, r-round protocol, with length-n messages for eval-
uating g(x, y) over the identity channel. Assume there exists an r-round ε-MNMC (Enc,Dec)
against F2−alt-split. Then there exists a protocol Π for g with error ε+ 2−nr against F2−split. For
the typical parameter choice of ε(n) = 2−n, the rate of the resulting Π is m(2nr + log r)/n.

Proof sketch. We will need the following simple lemma saying that any NMC against split-state
tampering is a (statistical) secret sharing of the encoded message. More precisely

Lemma 4.2 Let (Enc,Dec) denote an ε-NMC against Fm(n). For a given x ∈ {0, 1}n, consider
the random variable (Lx, Rx) ← Enc(x). Then for any x, x′ ∈ {0, 1}n Lx, Lx′ are O(ε)-close and
Rx, Rx′ are O(ε)-close.

In a nutshell, the lemma holds since otherwise assume SD(Lx, Ly) > 10ε (same holds for R).
Then the adversary could tamper with L (R), leading to a decoding of ⊥ if m = x′ and leave
it as is for x (R is not tampered in any case). This will result in decoded message distributions
with SD higher then ε between the output distributions for x and x′ � a contradiction to the
non-malleability property.

We are now ready to present our coding scheme.
We prove that Π above is an ε + 2−n-robust protocol for evaluating g(x, y). We �rst argue

correctness. The key observation here is that the probability that a party can not complement
R2
i into a value that it intends to for a given round i is O(ε(n′)) , when the protocol runs over

the identity channel (for R1
i , this probability is 0). The reason is that L0n′ is ε(n′)-close to the

distribution of Lv for any �xed v ∈ {0, 1}n′
. In particular, when sampling L0n′ (in the �rst half),

the probability of getting a value that can not in the support of Lv is O(ε) (bounded by half the
statistical distance between Lv and L0n′). Taking union bound, we get a bound of O(rε(n′)) on the
added bound on the correctness error (if this type of error does not occur for any of the messages,
we emulate Π0 exactly).

We conclude, by construction, that the protocol is ε(n) + 2−nr correct for a suitable choice of
n′(n).

The NMCD property follows from the fact that tampering by the channel is according to the
F2−alt-split family. This is the case, because in the �rst half of the communication, only L-parts
are present, and in the second only R-parts are present. Also, the channel can modify each block
based on the other blocks in that half (so we indeed need an MNMC). By properties of the MNMC,
the j'th (out of 2r) message mj (of the form ri or (ci, r

′
i)) sent by Alice in the protocol emulation,

is replaced by some distribution over {m1, . . . ,mj}∪ {⊥}∪{0, 1}n
′
. By properties of MNMC, this

distribution is ε(n′)-close to Df , which depends only on the channel f (rather then the passing
messages). We analyze Alice's output distribution when the tampering of the 2r-tuples is according
to Df (which is O(ε(n′))-close to the protocol's output distribution). Similarly to the correctness
argument, sampling a suitable R2

i or L
2
i succeeds with probability ≥ 1−O(rε(n′)) for all messages,

in case each message is mapped to itself by the tampering function. In this case, f(x, y) is output
with probability 1− ε(n)−O(rε(n′)).

16this is as opposed to modifying the �rst t/2 blocks and last t/2 blocks independently.

10

Algorithm 1: Resulting Π

We compile Π0 into Π below.

• Let (Enc,Dec), and Π0 be as in the theorem.
We embed {0, 1}n into {0, 1}n′

for n′ to be chosen later. Denote m = m(n′).

• The communication proceeds in two halfs. In the �rst half, the L-part of the encodings
(via Encm)of 2r messages are sent by the parties. In the second half, the 2r corresponding
right halves are sent. If Encm is such that |L|, |R| di�er, then the next party to speak adds
an 2r + 1'th message of (say) all-zero's for padding.

• (�rst half - Left side of the transcript):

1. For every message ci in Π0 to be sent by Bob

(a) Alice picks a random ri ∈ {0, 1}n
′−n.

(b) Alice samples (Lri , Rri)← Encn′(ri), and sends L1
i = Lri to Bob, and saves

R1
i = Rri for future use.

(c) Bob samples (L0, R0)← Encn′(0n
′
), and sends L2

i = L0 to Alice (R0 is discarded).

2. For every message ci in Π0 to be sent by Alice an analogous procedure is applied.
Namely:

(a) Bob picks a random ri ∈ {0, 1}n.
(b) Bob samples (L1

i , R
1
i)← Encn′(ri), and sends L1

i = Lri to Alice.

(c) Alice samples (L0, R0)← Encn′(0n
′
), and sends L2

i = L0 to Bob (R0 is discarded).

• (second half - Right side generation):

1. Bob (Alice) initializes his emulated Π0-transcript transB ← φ (transA ← φ) and
samples rB
(rA).

2. For every message ci in Π0 to be sent by Bob
(the protocol for Alice is analogous):

(a) Alice sends R1
i to Bob.

(b) Bob applies Decn′(L1
i , R

1
i) to decode the received value r′i.

(c) Bob checks whether he had decided to abort during the emulation of a previous
message.
If not, he computes the next message ci ← π0,B(i, y, transB , rB) to send, and sets
(v1, v2) = (ci, r

′
i). Otherwise, he sets (v1, v2) to be a random pair. He

complements L2
i by sampling R2

i at random conditioned on (L2
i , R

2
i) being in the

support of Encn′(v1, v2).
Here and elsewhere, if there is no such R2

i , he samples a value R2
i at random as

the right part of Encn′(0n
′
). He sends Alice R2

i .

(d) Alice receives R2
i and decodes (c′i, r

′′
i) = Dec(L2

i , R
2
i).

If r′′i = ri which she sent in the �rst half, she updates the transcript
transA by appending ci. Otherwise, she decides to abort.

• Output: If Alice had decided to abort, she outputs ⊥. Otherwise, she outputs
outπ0

A (x, transA, rA)
(in fact, the (emulated) messages sent by her are not required, as they are determined by
x, rA).

11

Now, consider an event where at least one of the messages is not mapped to itself, and let mj

denote the �rst such message. mj is either of the form ri or (ri, ci) for some i. We show that the
Alice's output is then ⊥ with probability at least 1 − O(ε(n′)). Consider, for instance, the case
when mj = ri sent to Bob. Then, tampering by any of the options in F other then the identity,

leads to a change in the value of ri with probability at most 2−(n
′−n). This is the case since if

ri is replaced by some ri′ for i
′ < i this is the probability of a collision, because each of the ri′ 's

is selected at random. Similarly, for a constant v, this is also the probability that v happens to
equal ri (for messages of the form (ri′ , ci′), the tampering is detected with probability 1). Thus,
Bob will recieve r′i 6= ri with overwhelming probability, and send (ci, r

′
i) to Alice. For any kind

of tampering of (ci, r
′
i), Alice will decide to abort. The reason is that either the message has the

wrong format (when copying a previous message by Alice containing ri), or will not contain the
right ri value with overwhelming probability 1− 2−(n

′−n). As she had set the abort �ag, she will
output ⊥ at the end of the protocol.

If Alice was the receiver of the tampered message ri, then Bob will detect the tampering for
the following message sent with overwhelming probability. He will subsequently replace r′i in the
next message (ci, r

′
i) he sends with a random value, and Alice will detect an inequality of r′′i and ri

or wrong syntax with high probability. Namely, the former occurs with probability 1 − 2−(n
′−n).

in case (ci, ri) is mapped to itself or some other (previous) message or a constant with this syntax.
Otherwise (incorrect syntax of a constant or a previous message), Alice aborts with probability 1.

The case where some mj = (ci, ri) is tampered is similar. 17 By the analysis above, it su�ces
to pick n′ so that n′ − n ≥ n, and ε(n′) ≤ 2−nr/r. For ε(n) = 2−n, we can set n′ = 2nr + log r.
This results in rate m(2nr + log r)/n.

4.2 Families tampering each message �easily�

4.2.1 Each message is tampered independently of others.

Here we show that for any family of tampering functions where each message is tampered separately
by a function for which a good NMC exists, a CIC compiling protocols Π0 over the honest channel
exists. As opposed to the previous section, this is an unconditional construction.

Theorem 4.3 Let Π0 be a protocol with message length n and r rounds evaluating g(x, y) over
the identity channel with ε′-robustness.

Let F denote a family of channel functions, which splits its message into blocks of size m(n),
and tampers each according to G (independently of other blocks). Let (Enc,Dec) be an (ε(n))-NMC
(ensemble) against G where ε = o(1). Then there exists a protocol Π for computing g over F
with robustness ε′ + 2−nr. For the typical parameter choice of ε(n) ≤ 2−n, the protocol's rate is
m(2nr + log r)/n.

Proof sketch. The high level idea is to encode each message separately via an NMC, authenti-
cated with a random string sent by the party one round earlier. The authentication procedure is
similar to the one used in the reduction of CIC for F2−split to MNMC. The key di�erence here is
that because each message is tampered separately, there is no need for an MNMC.

Correctness Sketch. As mentioned above, the analysis here is similar to that of Section 4.1's
constrction. By the guarantee of ε-NMC, we have that the 2r messages are tampered according
to a distribution Df over (f1, . . . , f2r), where the fj 's are independent and each belongs to a set

{mj} ∪ {0, 1}n
′ ∪ {⊥}.

Thus, in case all functions are identity functions, f(x, y) is output with probability ≥ 1 −
O(rε(n′)). Otherwise, the parties output ⊥ with probability O(2n−n

′
) by arguments similar to

those in Section 4.1. Correctness follows trivially from the fact that an NMC is a coding scheme
(with 0-error).

Corollaries of Theorem 4.3. A nice and simple corollary of Theorem 4.3, is the family Fbit of
bitwise tampering, serving as a good proof of concept to the feasibility of out CIC de�nition.

17Note that we do not even use Lemma 4.2 to prove NMCD.

12

Algorithm 2: Resulting Π

• Let (Enc,Dec) denote the NMC that protects individual message from being tampered
using function from G as in Theorem 4.3.

• The parties emulate the protocol, by embedding the messages into {0, 1}n′
for n′(n) to be

picked later. To emulate the i'th message of Π0, if Bob sends it:

1. Alice picks a random value ri ∈ {0, 1}n
′−n. She computes and sends Bob

c0 = (⊥, v0).

2. Let r′i denote the value received by Bob (after decoding). If he hadn't decided to
abort, he sets ci to be the next message π0

B(i, y, rB , transB) according to π0, where
transB is the transcript recorded so far, and sets (v1, v2) = (ci, r

′
i). Otherwise, if

Bob had decided to abort, he picks a random pair as (v1, v2) and sends Encn′(v1, v2).

3. Alice decodes the message, and gets a pair (ci, r
′′
i). If r′′i = ri which she sent, she

updates the transcript transA by appending ci. Otherwise, she decides to abort
(sets a �ag).

If Alice sends the message, they perform the symmetric protocol.

• Output: If Alice had set the abort �ag, she outputs ⊥. Otehrwise, she computes and
outputs the value out0A(x, transA, rA).

4.2.2 Each message is tampered depending on previous messages.

Here we consider tampering by a G-closed family F . We show that if G is r-message non-malleable,
then there exists a coding scheme for compiling any protocol Π0 over the identity channel into a
protocol Π against F .

More precisely, we have the following theorem.

Theorem 4.4 Let Π0 denote an r0-message protocol for evaluating a function g(x, y) with message
length n with ε′-correctness.

Let F be (G, r)-closed, and assume there exists an r-message ε(n)-MNMC for G, where ε = o(1).
Then there exists a protocol Π for computing g over F with a robutness parameter ε′ + 2−nr.18

Proof sketch. The same construction as in the previous section works, with the sole di�erence
that an MNMC instead of an NMC is used.

Concrete corollaries of Theorem 4.4. One interesting example of an MNMC as we need
follows from Corollary 3.10, resulting in CIC for the family Fmulti-a�ne of tampering by a�ne
functions. When working over F2, Fbit is a special case of Fmulti-a�ne.

5 Future work

In this work, we have initiated a study of CIC for non-threshold functions. We have obtained
several preliminary results, but many questions remain open.

MNMC and SNMC. As demonstrated by our applications to CIC, MNMC is arguably a useful
generalization of NMC.

One interesting open question regarding MNMCs is whether SNMC is necessary for MNMC.
That is, let F ,G be a pair of function ensembles, such that F is (G, t)-closed.

Q1 Does the existence of a (t-message) MNMC for a (t,G)-closed family F , imply the existence
of a SNMC for G (or for some sub-ensemble thereof).19

18The reason we can not apply this theorem to F = F2−split, since even Cl
≤2(F2−split) is already Fall.

19There may also be some loss in ε.

13

As an interesting special case, consider the families F2−alt-split as in Section 4.1, which by
Theorem 4.1 would yield a CIC against split state tampering.20

We were not yet been able to prove any of the known NMC constructions of NMC for F2−split
to be MNCM. It appears non trivial, and we have not managed construct SNMC (anad thus
MNMC) from existing F2−split constructions. Perhaps a di�erent technique rather than going
through SNMC may be required.

For starters, we ask:
Q1.1 Does there exist a 2-message MNMC against F2−split?
In turn, SNMC gives rise to MNMC for related function families, and thus appears as a poten-

tially useful notion on its own right.
Q2 Characterize the set of tampering families F for which o(1)-SNMC exists.

Coding for interactive communication There are several open questions here. The main
question is understanding the set of channels over which all functions can be evaluated (regardless
of rate).

Q3 Characterize the channel families F for which CIC with error o(1) exists. In particular,
does it equal the set of channels for which standard NMC exists?
Q4 For which Channel families compilers with a good rate can be devised?
In particular, our construction for Fmulti-a�ne has a good rate. More precisely, by Theorem 4.3, and
Corollary 3.10, we obtain a rate of O(nr3)/nr = O(r2) = O(m2) (where r is the round complexity
of the original protocol Π0, and n is its message size, andm = nr is its communication complexity).
Q5 Explore other notions of robustness for CIC. In particular, if we relax the NMCD requirement
so that Df 's support also includes the set of constant functions. This is arguably a more "natural"
extension of NMC to the interactive setting. Can we achieve this notion for families for which our
original notion is not achievable?

References

[ADKO15] Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-
malleable reductions and applications. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 459�468. ACM,
2015.

[AGM92] Nguyen Q. A, László Györ�, and James L. Massey. Constructions of binary constant-
weight cyclic codes and cyclically permutable codes. IEEE Trans. Information Theory,
38(3):940�949, 1992.

[AGM+15] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prab-
hakaran. Explicit non-malleable codes against bit-wise tampering and permutations. In
Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages
538�557. Springer, 2015.

[Bih94] Eli Biham. New types of cryptanalytic attacks using related keys. J. Cryptology,
7(4):229�246, 1994.

[BR11] Mark Braverman and Anup Rao. Towards coding for maximum errors in interactive
communication. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the
43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA,
6-8 June 2011, pages 159�166. ACM, 2011.

[CGM+15] Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant Pandey, and Jalaj
Upadhyay. Block-wise non-malleable codes. IACR Cryptology ePrint Archive, 2015:129,
2015.

20Clearly, this is equivalent to the same problem for F2−split.

14

[DPW09] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes.
Cryptology ePrint Archive, Report 2009/608, 2009. http://eprint.iacr.org/2009/
608.

[Gel15] Ran Gelles. Coding for interactive communication: A survey. 2015.

[Ham50] R. W. Hamming. Error detecting and error correcting codes. Bell System Technical
Journal, 29(2):147�160, 1950.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

[MB16] Mukul Kulkarni Tal Malkin Marshall Ball, Dana Dachman-Soled. Non-malleable codes
for bounded depth, bounded fan-in circuits. 2016.

[NMC]

[NW93] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SIAM
J. Comput., 22(1):211�219, 1993.

[Ree60] Gustave Reed, Irving S.; Solomon. Polynomial codes over certain �nite �elds. Journal
of the Society for Industrial and Applied Mathematics (SIAM), 8(2):300�304, 1960.

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Trans. Information
Theory, 42(6):1745�1756, 1996.

[Sha48] C. Shannon. A mathematical theory of communication. Bell system technical journal,
27, 1948.

15

http://eprint.iacr.org/2009/608
http://eprint.iacr.org/2009/608

	Introduction
	Preliminaries
	New notions of NMC
	Coding for interactive communication over general channel families
	Protocols against 2-split state
	Families tampering each message ``easily''
	Each message is tampered independently of others.
	Each message is tampered depending on previous messages.

	Future work

