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Abstract. We propose a novel cryptographic primitive called condi-
tional blind signatures. Our primitive allows a user to request blind sig-
natures on messages of her choice. The signer has a secret Boolean input
which determines if the supplied signature is valid or not. The user should
not be able to distinguish between valid and invalid signatures. A desig-
nated verifier, however, can tell which signatures verify correctly, and is
in fact the only entity who can learn the secret input associated with the
(unblinded) signed message. We instantiate our primitive as an extension
of the Okamoto-Schnorr blind signature scheme and provide variations
to fit different usage scenarios. Finally, we analyze and prove the security
properties of the new scheme and explore potential applications.

Keywords: digital signatures, blind signatures, designated verifier sig-
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1 Introduction

Digital signatures, proposed in [I], are one of the most successful public key
cryptographic primitives. A user U submits a message to a signer S, who ap-
plies a function of his secret signing key sk and generates a signature that can
be verified by everybody that possesses the corresponding public verification key
vk. They allow message integrity, authenticity and non repudiation in a publicly
verifiable manner. A digital signature scheme is secure if no probabilistic adver-
sary A, running in polynomial time (PPT), can output a forgery of a signature,
i.e. a valid signature without possessing the signing key. Instantiations of digital
signatures schemes base their security on well known cryptographic problems
such as the RSA problem [2], the Discrete Log problem ([7] [10]) with its many
variations and many more. Moreover, in [5] a method is given to construct digital
signatures from interactive proofs of knowledge.

Digital signatures are quite versatile, as attested by the plethora of variations
that have been proposed in the literature. Indeed many useful schemes can arise,
if one fiddles with the basic setting of a digital signature scheme. For instance,
blind signatures [3], hide the message to be signed from the signer, thus allowing
the user to maintain her privacy while keeping the signature publicly verifiable.
The security of blind signatures has been studied in [14], [I7] and [20]. The
relevant security properties are blindness or unlinkability, which models the fact



that the signer cannot have access to the message, and resistance to one more
forgery, which states that the user cannot herself create more signatures than
the signer provided. Blind signatures have many important applications such as
electronic cash [3] and electronic voting [9].

Another variation of digital signatures is group signatures [8]. They aim
to provide signer anonymity within a group. This means that the signature is
validated as coming from the group as a whole, without giving evidence as to
which member of the group actually signed. Of course in the case of a dispute, the
traceability property allows the group manager to specify which group member
actually signed.

A less studied primitive related to signatures via zero knowledge proofs, are
designated verifier proofs, proposed in [I2]. They sacrifice the public verifiability
of a proof and propose a scheme where its validity can only be verified by an
entity that has a specific piece of knowledge (e.g. a private key). This entity is
designated by the prover. Such a scheme might seem of no particular use, but this
is not the case, since in [I2], the authors propose a very interesting application in
the context of receipt free and coercion resistant electronic voting. In particular,
they propose that a voting authority use designated verifier proofs, in order to
convince a voter that her ballot was correctly counted. However this proof is
only verifiable by the voter herself and not by any third party. As a result it
cannot be presented voluntarily or involuntarily to a coercer.

1.1 Motivation

In this paper we aim to create a primitive that can be used as a building block
for protocols that require strong guarantees for coercion resistance and privacy.
Such a primitive can be used, for example, in auction and payment systems, but
the primary application we have in mind is remote electronic voting, where the
lack of a controlled environment for vote casting, leaves the voters vulnerable to
coercion attacks. The most well known way to defeat such attacks was proposed
in the JCJ framework [19]. Its main idea, stems from the fact that the coercer
has no incentive to carry out his attack if he cannot tell whether it has succeeded
or not. This can be achieved, if we allow the voter to cast multiple ballots, by
attaching a different but indistinguishable anonymous credential to each vote.
One of these credentials is valid and it is used to cast the vote when the coercer
is not present - JCJ assumes that each voter has a moment of privacy. Only the
votes cast with valid credentials are included in the election tally. In order to
filter out the invalid credentials the authors of [I9] propose a quadratic number
of checks in the number of votes cast. Such a complexity is not practical for real
large scale elections.

A more practical solution, would involve a signer that uses voter identification
information to efficiently retrieve the valid credential and check it against the
one that is provided during the voting process. If the credentials are different,
then the voter is under coercion and the vote should not be counted. This bit of
information has to be conveyed to the counter in a manner undetectable by the
coercer. Of course the signer should not have any access to the contents of the



vote to maintain voter privacy. As a result the signatures have to be blind, as
well. A well known voting scheme built on blind signatures was given in [9], but
it is not coercion resistant. What is needed, is a primitive that can integrate the
coercion resistance property of [I9] and the increased privacy guarantees of [9].

1.2 Owur contribution

Our approach is based on the observation that a combination of a simple group
signature scheme with a designated verifier proof can be used to convey a piece
of secret information from a signer to a specified verifier. For instance if we
imagine the group members, as possible responses to the message to be signed, a
designated group signature is equivalent to sending a particular response to the
verifier. This can be achieved even when the message is blinded, thus enabling
the signer to authorize a secret message and to simultaneously attach an extra
bit of information to it. To this end, we propose a new primitive, called condi-
tional blind signatures, that implements this functionality. We define its security
properties, by extending blindness and unforgeability - the standard properties
of blind signatures - with a new property, conditional verifiability, that incor-
porates the extra bit of information to the validation procedure. Moreover, we
provide an instantiation that is based on the well known Okamoto-Schnorr blind
signatures [I0]. We use our definitions and the particular instantiation to provide
proofs for the security properties. Despite the fact that the motivation behind
our primitive is specific, we believe that it can stand on its own and be used in
many applications apart from electronic voting.

1.3 Related work

On a conceptual level our scheme bears similarities to designated confirmer sig-
natures (DCS) [II] and conditional disclosure of secrets (CDS) [16].

Indeed, designated confirmer signatures were proposed as a combination of
digital signatures and zero knowledge proofs, to solve a problem of undeniable
signatures [6]. In undeniable signatures, if the signer becomes unavailable during
the verification process, the signature cannot be validated. To fix this, a DCS
scheme adds a third party to the protocol, a designated confirmer, that can also
verify (confirm) the signature. Designated confirmer signatures have been studied
extensively since their introduction and many variations have been proposed (e.g.
see [2I] and references therein).

On the other hand, conditional disclosure of secrets was proposed as a way
for a client to obtain a secret held by a server if and only if the input of the
client satisfies a certain condition. The client may hold a secret key and encrypt
the input using the corresponding public key that is known to the server. In
[18], a CDS scheme is used to build a protocol that enables a buyer (client) to
purchase items from a vendor (server), without disclosing which item is bought.
The secret here is the particular item that is purchased and the condition that
must be met for disclosure is that the encrypted price sent by the buyer matches
the price of the item on sale. Of course all comparisons are made on encrypted



inputs by utilizing the homomorphic properties of the underlying cryptosystem.
More recent work on CDS [22] has been able to use them as lightweight zero
knowledge proofs.

Our proposal, resembles DCS in the basic usage scenario, since in our case, as
well, the verifier can be a third party which is ‘designated’ during the signature
creation process. However, the problem we want to solve is the secure passing
of a single bit of information to the verifier through the signature and not the
unavailability of the signer. This might seem similar to CDS, with the signer
playing the role of the server and the client playing the role of the designated
verifier. Our scheme, however, allows for a third participant, namely the user re-
questing signatures. This enables us to also use it in cases where the signer and
the verifier have no conflict of interest, as is typically the case with CDS, and
even in scenarios where the client can be the same entity as the server at a later
time. Moreover, the most important difference of our scheme with both related
proposals is that the user messages are perfectly blinded, so that the signer,
contrary to DCS, cannot have access to their contents. This perfect blindness, in
contrast to CDS combined with encryption schemes, results in messages signed
with conditional blind signatures, being private even in an information theoret-
ical sense. All these make conditional blind signatures a novel and interesting
primitive.

2 Preliminaries

In this section we briefly review the necessary concepts for the construction and
security analysis of our proposal.

2.1 Security Assumptions

The security of our scheme depends on the COMPUTATIONAL DIFFIE HELLMAN
(CDH) and the DECISIONAL DIFFIE HELLMAN (DDH) assumptions, as we show
in Informally, the CDH assumption states that given a group G, a
generator g and two group elements g%, g°,the group element ¢g*® cannot be effi-
ciently computed. The DDH assumption states that the triples of group elements
(g%, g% g?°) and (g%, g°, g¢) where a, b, c are randomly selected from {1,--- , |G|}
cannot be efficiently distinguished.

More formally, following [I5], let G be a group family and g a generator of a
particular member G of G.

Definition 1. COMPUTATIONAL DIFFIE HELLMAN Assumption.
A CDH algorithm A is a probabilistic polynomial time algorithm satisfying:

1
Ak
for some fized k > 0 and sufficiently large n, where the probability is taken over

the selection of G, a,b and the random bits of A. The group family satisfies the
CDH assumption if there is no CDH algorithm for it.

Pr[A(g, 9%, ¢") = g™] >



Definition 2. DECISIONAL DIFFIE HELLMAN Assumption.

A DDH algorithm A is a probabilistic polynomial time algorithm satisfying:

1

Ak

for some fized k > 0 and sufficiently large n, where the probability is taken over

the selection of G, a,b,c and the random bits of A. The group family satisfies
the DDH assumption if there is no DDH algorithm for it.

| Pr[A(g, % ¢",9"") = 1] = Pr[A(g,9", 6", ¢°) = 1]| >

There are many groups where the DECISIONAL DIFFIE HELLMAN Assump-
tion is believed to hold [I5]. One such group is the ¢ order subgroup of quadratic
residues in Z; where ¢,p = 2q + 1 are primes.

2.2 Okamoto-Schnorr Blind Signatures

In we provide an instantiation of our scheme built on the Okamoto-
Schnorr blind signatures. For completeness, we repeat their definition here from
[10).

The public parameters of the protocol are a group G with prime order g,
two generators g1, g2 and a hash function H : {0, 1}* — Z,. The signer S selects
the private signing key si,s2 € Z,; and computes the public verification key
v =g “'g5 *2. The user U wants to sign the message m. The protocol is executed
in the following phases:

1. In the commitment phase, S randomly selects 7,72 € Z,; and commits to
the value x := g1'g52.
2. In the blinding phase, U selects the blinding factors ui,us,d € Z, and com-

putes the following values:

* . U1 U2,.d
X =G g vw
— e = H(m,x")

—e:=¢e¢* —dmod ¢q
Finally she sends the value of e to S.
3. In the signing phase S computes the values y; := r; + es; mod ¢ and ¥y, :=
r9 + ess mod ¢. The blind signature is (z, e, y1, y2).
4. In the unblinding phase U computes the values yi := y; + u; mod ¢ and
Y5 = y2 + uz mod ¢. The plain signature is (z*, e*, y7, y3).
5. To verify the signature the following two relations are checked:

3 Definitions for Conditional Blind Signatures

Our new primitive can be abstractly viewed as a protocol implementing the
following functionality f:

signature := f(b, sk, pk, c)

where:



b is the secret information to be conveyed from the signer to the verifier. We
restrict the secret information to a single bit.

— sk is the signing key.

— pk is the corresponding public key.

— ¢ is the message to be signed.

The participants of the protocol are:

— The user U is the entity that requests blind signatures on messages of her
choice.

— The signer S is the entity that creates the signatures on the message provided
by the user. The signer wants to use the signature to convey the secret
information to the verifier.

— The verifier V is the entity that checks the validity of the signatures and
learns the secret information of S. The verifier can be the signer himself at
a future time.

The adversary A may be any entity except the designated verifier. This
means that, apart from external attackers, both the signer and the user may
have incentive to attack our scheme. For instance, as the signer is presented with
a blinded message, he might want to learn its contents. The user, or an agent
acting on her behalf, on the other hand, might want to retrieve the signer’s secret
information.

The desired security properties of our scheme extend the security properties
of digital and blind signatures:

— The signatures given must be perfectly blind.

— The scheme must be secure against one more forgery.

— No PPT adversary can check the validity of the produced signatures nor can
he extract the secret information, but with probability negligible in relation
to a security parameter.

Concretely, our primitive can be defined as follows:

Definition 3. A conditional blind signature scheme is a triple (Gen, Sign, Vrfy)
with the following properties:

— Gen is an algorithm that takes as input the security parameter 1> and outputs
two pairs of keys (sks,pks) for signing and (sky,pky) for verification, the
message space M and the signature space S. These sets are described by a
set of parameters (e.g. group generators) collectively denoted as params. We
also refer to the set of public keys as pk = (pks, pky) and to the set of secret
keys as sk = (sks, sky).

— Sign(params, pk) = (S(sks, b),U(m)) is a protocol executed between the signer
and the user. The public input to the signing protocol consists of the param-
eters and the public keys. The secret input of the signer is the signing key
sks and the secret information bit b, while the secret input of the user is the
message m to be signed. The protocol outputs a signature sig of m to U.



— Vrfy is an algorithm which on input (sky, m, sig) outputs a single bit repre-
senting the validity of the signature.

We require that correctness holds, that is Vrfy(sky, m, sig) outputs 1 if and only
if sig is the output of the execution of the protocol Sign on message m and the
secret information bit of S is b =1, except with negligible probability.

Conditional blind signatures inherit the Blindness and the security against
One More Forgery properties from the conventional blind signatures schemes.
We extend the respective definitions of [20], to accommodate for the secret bit
b.

We first formally define the blindness property using the BlindExp game
presented in algorithm [T} which states that a malicious signer cannot tell which
of the two messages mg, m, was signed first except with negligible probability. In
particular, at first the (adaptive) adversary, operating in find mode, is allowed
to (maliciously) generate the public parameters pk and the messages mq,m.
Subsequently, in issue mode he is given two blinded versions of the messages in
random order, according to the value of c¢. These correspond to two executions
of the Sign protocol. If these interactions produce results, denoted by (og,01),
he tries to guess which signature corresponds to which message. Since, the secret
bit b can be used to distinguish between two messages, we restrict the adversary
in issuing the two signatures with the same secret bit, which is provided as input.
The BlindExp game returns 1 if and only if he succeeds.

Algorithm 1: BlindExp 4

Input : security parameter A, secret bit b
Output: o € {0,1}

1 (pk, mo,m1) < A(find, 1/\)
2 c+gr{0,1}
3 (00,01) <—A<'*U(’"C>>’<”U(m1*c)>(issue,b)
4 if o9 =1 Vo1 =L then
5 ‘ (00,01) := (L, 1)
6 else
7 | ¢ « A(guess,o0,01)
8 end
9 if ¢ = c* then
10 ‘ return 1
11 else
12 ‘ return 0
13 end




Definition 4. A blind signature scheme II is perfectly blind if for every (un-
bounded) A:

Pr[BlindExp 4 () = 1] = %

The unforgeability property is captured using the notion of One More Forgery
[1I7]. Tt states, that if [ is an integer, polynomial in the security parameter A, an
attacker cannot produce [ + 1 valid signatures, after fewer than [ successful
interactions with the signer. The Strong One More Forgery [I7] is a variation of
the above case, where [ is polylogarithmically bound to the security parameter.
As far as the secret bit is concerned, invalid signatures might assist the aspiring
forger, so we allow him to get signatures with a b of his choice for each invocation
of the signing protocol. A more formal description is given in algorithm [2}

Algorithm 2: OneMoreForge 4 17

Input : security parameter A
Output: o € {0,1}

1 (sk,pk) + Gen(1*)
{(ma,00) = ARS8 (oL
/* k: number of successful interactions for the Sign protocol */
if (Vi,j with i # j = m; # my) A (Vi Vrfy(vk,m;,0;) = 1) Ak <1 then

‘ return 1
else

‘ return 0
end

N

B =R T N ]

Definition 5. A blind signature scheme II is one more unforgeable if for every
PPT A there is a negligible function of A where:

Pr[OneMoreForge 4 ;7(\) = 1] < negl())

Additionally, for our primitive we require an extra property which is called
Conditional Verifiability and defined in the game CondVerExp presented in al-
gorithm [3]

In the particular game, after the parameter generation the adversary A exe-
cutes the Sign protocol in place of the user and adaptively gets valid and invalid
signatures on messages of his choice. Then he creates a challenge message and
receives a valid or invalid signature on this message based on a coin flip. Af-
terwards he tries to determine the value of the coin flip. He may continue to
get signatures of his choice. The scheme is secure with respect to conditional
verifiability if there is no PPT adversary who can succeed in guessing the result
of the coin flip with non negligible advantage. More formally:



Algorithm 3: CondVerExp 4 1

Input : security parameter A
Output: o € {0,1}
C<R {0, 1}
(sk, pk, params) + Gen(1%)
{(mi, sigi) < Sign(S(sks, b;), A(params, pk, {m;, Sigj};;llv bl)>}il:1
me + A(params, pk, {(m;, sigi)}ﬁlzl, challenge)
(e, sige) < Sign(S(sk, ¢), A(params, pk, m.))
/* € is the empty string x/
{(mi7 Sigi) — Sign<s(5k57 b’i)a A(params7pk7 {mjv Sigj};';lla bi»}iz:ll-&-l
¢+ A({m, sigi}ifll?, Me, Sigc, ZUESS)
if ¢ = ¢’ then
‘ return 1
10 else
11 ‘ return 0
12 end

Uk W N

© N o

Definition 6. A conditional blind signature scheme Il has the Conditional Ver-
ifiability property if for each PPT adversary A there is a negligible function negl
with regard to the security parameter A such that:

1
Pr[CondVerExp 4 ;; = 1] < 3 + negl(\)

Definition 7. A conditional blind signature scheme II is secure if it has the
properties Perfect Blindness, One More Forgery and Conditional Verifiability.

We must note here that the user cannot validate the signature she receives,
since she does not have access to the secret bit b. Although this seems counter
intuitive with respect to traditional signatures, in our setting it is the exact
property we want to capture.

4 An instantiation based on Okamoto-Schnorr Blind
Signatures

In this section we propose an instantiation of our scheme based on the Okamoto-
Schnorr Blind Signatures [10]. The intuition behind our construction is that we
replace the elements (y1,y2) of the Okamoto-Schnorr blind signature with a
‘lifted’ signature (k¥',ys) where k is some element of the underlying group with
logarithm known only to the verifier.

Firstly we define the key generation algorithm for the 3 participating entities,
namely the user U, the signer S and the verifier V. The details are presented in
algorithm [4]

For the signing protocol we assume a hash function X : {0,1}* — Z,, which
is modelled as a random oracle. The protocol begins as in the Okamoto-Schnorr
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Algorithm 4: Key Generation Algorithm

Input : security parameter A
Output: (sks,vks), (skv,vky), params

/* Select a group G with prime order ¢ where 2*~! < ¢ < 2* where the

DDH assumption holds x/
1 (¢,G) + GroupGen(1?)
/* Select the appropriate generators */

2 (91,92) < r G
3 params = (q,G, g1, g2)

/* Select the secret sks and public signing keys vks for S */
4 81,82 <R Zq

—s1 _—sS2

5 V=0, g
6 (sks,vks):= ((s1,s2),v)

/* Select secret sky and public verification keys vky for V */
7 S <R Zq
8 k:=gi
9 (skv,pkv) = (s,k)

blind signatures [I0]. The signer commits to a random value. The user selects
the blinding factors and blinds the commitment and the hash to be signed. Our
variation actually begins when the signer is ready to sign the blinded values. We
consider 2 cases:

— If the hidden bit of S is 1, instead of generating the standard Okamoto-
Schnorr tuple, the signer raises the public key of the verifier to the first part
of the signature.

— If the hidden bit of S is 0, then the signature is invalidated merely by selecting
a random element from the underlying group.

In both cases, the second part of the tuple is calculated in the standard way.
The details are given in Note that the unblinding of the first part of
the signature, occurs on the exponent.

For the verification algorithm, the verifier checks the verification equation
using the hash of the message and the commitment. If the secret signer bit is 1,
then the signature will be valid, otherwise the verification equation will not hold.
Thus the verifier will learn the secret bit of the signer. Details are presented in
algorithm

Note that in this specific instantiation of conditional blind signatures, the
verifier can issue valid signatures by choosing a random bsig, and calculating the
corresponding bsig; by the verification equation. This capability is very useful
in cases where the signer wants to send the secret bit to his future self (who is
posing as a verifier), something that would not be otherwise possible due to the
blinding of the messages. Despite the fact, we assume that the signer and the
verifier are the same entity, we intentionally distinguish them to comply with
the broader definition of conditional blind signatures.
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Sign

Signer
input:(params, sks, vks, b)
T1,T2 <R Zq

1 T2

T =01 92

Y1 =11+ es1

Y2 1= T2 + €S2

if b=1 then

(bsigi, bsiga) = (k¥*,y2)
else

bSig1 <R G
bstgs = y2
end

The blind signature is
(z, e, bsigi, bsiga)

(bsig, bsige)

Recipient

input:(params, vkg, m)

Select Blinding Factors

Ul,UQ,d <R Zq

Blind
" = xg}" gy?v?
e" = H(m,z")

e:=¢e¢" —d

Unblind
sig1 := bsigy - k"
stg2 1= bsiga + u2

output (m,x",e", sigi, sigs)

Fig. 1. Signing protocol for conditional blind signatures
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Algorithm 5: Signature Verification

Input : skv,pky,vks, params, H,m, sig = (z*, e, sig1, sig2)
Output: b € {0,1}

if m # m’ then
‘ return 0
end

/

e* =H(m,z")

' = siga

Y2 = sigo

if 2*° = yl’ggy2"sve*'5 and e* = ¢* then
‘ return 1

else
‘ return 0

end

© 00N Ok W N

e
= o

In the case of b = 1 the signatures are valid and can be verified by the
designated verifier. The correctness property follows easily from the verification
equation:

!’ *
Z*s _ y1/92y2 I AN (xg?lgg%d)s _ klerul92(y2+u2)-sv(e+d)~s

o pSku g;-uzvsd — kW kulgzsyzg;uzvsevsd
s’ = kyIQQSyz’USE
o = glsylg2sy2vse

K? e
Sz =g"g"v

ri T2 __ _ritesi raotesa( —s1_—S2\e
<9192 = g1 9o (91795 %)

T T _ ' €es ' €es —E€Ss —es
S 91'95° = 91'91 '92°95 291 g2~ 7

T T2

9195 = 91' 95

5 Security Analysis

5.1 Blindness

For the blindness property we can apply the arguments of the original Okamoto-
Schnorr scheme [I0]. More specifically, the commitment is blinded in exactly the
same way in both schemes and the second parts of the signatures are identical
in both cases. In addition, the message hash is hidden using the value d exactly
as in [10]. The first part of the signature is ‘lifted’ in our case, but the mapping
from y; to kY* is one to one and onto. As a result in the blindness game in
algorithm (1, the probability that an unbounded adversary succeeds in linking
two protocol executions to the corresponding messages and signature pairs is
exactly 1/2.
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5.2 Strong One More Forgery

Our system is also secure against the strong version of the one more forgery
assumption [I7]. We note here that an adversary can create invalid signatures
by randomly choosing y» € Z, and a random element of G. As a result, in the
security proof, an interaction with the signer for an invalid signature does not
provide any advantage, so we may assume that the adversary only interacts with
the signer to obtain valid signatures.

The following theorem demonstrates that the system is secure under the
(strong) one more forgery definition.

Theorem 1. Suppose there exists a PPT adversary A that wins the OneMore-
Forge experiment, for | polylogarithmic in the security parameter X\, with non
negligible probability. Then there exists a PPT algorithm B that solves the COM-
PUTATIONAL DIFFIE HELLMAN problem with non negligible probability.

Proof. Let Abe such an adversary. If A produces two signatures (m, x, e, k¥*, y2),
(m,z, e, kY, ys) for the same message with the same initial commitment and
Y2 — Sp€ # 1z — s9€ then the CDH problem can be efficiently solved, i.e. g?® can
be computed from g, g%, ¢°.

In order to obtain these signatures we apply a Replay Attack as in ([I3],
[I7]). More specifically we run the algorithm with a random oracle #; and then
we repeat the same process with a random oracle Hs such that Hs yields the
same answers to the first ¢ — 1 questions. We expect that with non negligible
probability, we will achieve the collision in the i-th query.

This follows because there is an one to one and onto correspondence between
y1 and k¥! and so the probabilistic analysis presented in ([13],[17]) also holds for
our scheme.

In more detail the reduction is as follows:

— Our input is g, g%, g* and we want to compute g.

— Weset g1 = g,92 = g% k = g° = g5 = g°. We select sy, so and compute the
public key v.

— We supply the public values g1, g2, k, v to A.

— We execute the forgery game with A and random oracle H;.

— We repeat the attack substituting H; with Hs.

— If we receive the required signatures since they are valid: z° = k¥ go¥2%0%°
and z° = kY1 g,¥250%5,

— This means that:

LY — xs‘ngygsUfes

kY91 = x8927y7251}755
— In turn we have:
L= v = 92(—y2+?f2)3v(—6+é)s
— We know:
o t=kVik~V1
o y=(-y2+1)
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ec=(—e+é)
e the values s, so from the secret key we generated

Now we can calculate g?® from the above known values and g1, g, k:

t=g5v” =t=(9")"(g""9,7)"
L p o g (gt gmsnayes
Lo p = gavs gsics g—saacs
= fgh1es = gas(y—sac)

= g% = (f- (gs)slc)(y—sw)*l
(

g
= gab t- (gb)slc)(y—520)71

By using the same techniques as in ([13], [I7]) it follows that the probability
that this attack succeeds is non-negligible. a

5.3 Conditional Verifiability

Finally, we show that the system is conditionally verifiable by a reduction from
the DDH problem:

Theorem 2. Suppose there exist a PPT adversary A that wins the CondVerExp
with non negligible probability. Then there exists a PPT algorithm B that solves
DECISIONAL DIFFIE HELLMAN problem with non negligible probability.

Proof. We will construct B.

— B gets as input g, g%, g°, g°. She tries to find whether ¢ = as or ¢ is uniformly
distributed in Z,
— Bsets g1 = g, g2 = g% and k = ¢7. She randomly chooses s1, s2 and sets
v = g; *'gy °2. She gives g1, g2, k, v to A.
— Using the secret key (s1, s2) B can answer A’s valid signature requests.
— When B gets a challenge request from A she does the following;:
e She randomly chooses 71,72 and sends x := g7 g5* to A.
e A responds with e.

e 3 chooses a random y- and sets
kyl = (gS)T1 (QC)Tz (gc)fyg (95)sle(gc)sze

e B sends the signature pair (bsigy, bsigs) := (k¥*,y2)
— As before B responds to A’s signing requests using the secret key (s1, s2).
— B outputs 1 (the input is a DDH tuple) iff A outputs 1 (valid signature).
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The validity of the signature is fully defined by the message (bsig,bsigs) sent
by the signer. The signature is valid iff k¥' = x°g,7¥2°v~¢*. Now we have:

kv — xsgz—yzsv—es o (gs)rl (gc)rg (gc)—yg (gs)sle(gc)sys _ xsg;yzsv—es

STy —SY2 ssie Ssze

PN gsrlgcrzg—cyzgsslegcsze _ gsrl 92 95 g 9
o (gc)(rz—yz+52€) _ (QGS)(T2—y2+526)

This means that if ro —yo + soe # 0 then the signature is valid iff g¢ = g% which
means that the input is a DDH tuple. Since y5 is chosen randomly, ro —y2+sse =
0 holds only with negligible probability which yields the result. a

The theorems above prove that the system is secure according to the defi-
nitions. We must note however that security for one more forgery depends on
the fact that the number of valid signatures is poly logarithmic to the security
parameter, which is not strong enough. We leave it as future work to strengthen
our scheme to attacks that require a polynomial number of signatures.

6 Variations

In this section we shall provide variations on the instantiation of conditional
blind signatures to make them more usable in practice.

6.1 Reduced Round Conditional Blind Signatures

The signing protocol in requires three rounds of communication to
produce a signature. At first the signer commits to a random group element .
Subsequently the user provides the blinded message, which depends on . Finally
the signer supplies the signature. It would be more practical for the user to be
able to request signatures directly, without having to wait for the commitment.

A simple method to produce a signature in two rounds, can be obtained by
determining a way for both the signer and the user to independently compute
x. For instance, x could be computed from some adequately random fact, like
the hash of a session id in a practical implementation of our scheme.

Moreover, we note that the verification key can be used to issue signatures
through the verification equation, so for simplicity the signer and the verifier can
be the same entity.

We present the reduced round Sign protocol in

The common inputs to both participants are the group parameters and the
public keys pk, = k from algorithm [f] vks = v from and z. Now v
is a random group element, since the keys s, so are not required to produce a
signature. The signer private input is the secret key sk, = s from algorithm [5]
and the secret bit b. The recipient’s private input is the message m.

It is easy to see that the signature is valid since it satisfies the verification
equation in algorithm [} Moreover the view of the user U is the same for x ran-
dom. As a result the security of the reduced round signing protocol is equivalent
to the original.
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Sign

Signer

input:(params, s, b, k,v, x)

Y2 <R Zqg

s

Y= (293" v7°)
if b=1 then
(bsigr, bsiga) = (y1,y2)
else

(bsigi, bsigs) «+r (G X Zq)
end

The blind signature is

(z, e, bsigi, bsigs)

(bsig, bsige)

Recipient
input:(params, m, k, v, z)
Select Blinding Factors

U1, u2,d <R Zq

Blind
"= xgttgi2o?
e’ :=H(m,z")

e=¢c¢" —d

Unblind
sigy := bsigy - k"!
stg2 1= bsiga + u2

output (m,z",e", sig1, sigs)

Fig. 2. Signing protocol for reduced round conditional blind signatures
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6.2 Conditional Blind Signatures with homomorphic encryption

Another useful application of our scheme, comes from the fact that it can be
combined with a homomorphic encryption scheme like El Gamal [4]. Recall that
in [] two ciphertexts created with the same public key can be multiplied to
obtain an encryption of the product of the corresponding plaintexts.

Conditional blind signatures preserve this multiplicative homomorphic prop-
erty. In the signing phase of the protocol in the signer can produce the
encryption of bsig; namely: Enc(k¥'). During unblinding the user will multiply
the encrypted part with Enc(k*?). This produces:

Enc(kY')Enc(k"') = Enc(k¥* k"!) = Enc(k¥:T"1)

which means that the unblinding of the first component of the signature can
be performed in encrypted form. This property will be useful in protocols that
operate on messages in encrypted form.

7 Conclusion and Discussion

In this paper, we introduced a new digital signature primitive which we call
conditional blind signatures. We defined its security properties by extending the
blindness and unforgeability properties of standard blind signatures with con-
ditional verifiability. This new property captures the fact that conditional blind
signatures are verified by a designated verifier if and only if a certain condition
holds. Moreover, we provided an instantiation of this new primitive by extending
the Okamoto-Schnorr blind signatures and proved that it is secure by reductions
from the CDH and DDH problems. Finally, we presented variations that are
applicable to different usage scenarios.

Conditional blind signatures are a generic primitive and as such, they can
be used in every case where the act of signing a message, must convey some
additional piece of information to a designated verifier. For instance, the signer
might be a registrar that checks if a user can participate in a process executed by
the designated verifier. Our scheme allows for such information to be conveyed
in an anonymous manner, without explicitly rejecting user requests that are not
eligible for processing.

A major application of this new primitive can be found in coercion resis-
tant electronic voting, where a voter must defeat a strong adversary that wishes
to dictate the vote and threatens with countermeasures if the voter does not
comply. Conditional blind signatures can be used to design an efficient protocol
that utilizes the JCJ coercion resistance framework [19], where the voter can
cast many ballots authenticated using indistinguishable anonymous credentials.
Before the election one such credential is registered as authentic with the reg-
istration authority. A vote should be counted only if it is accompanied by this
specific credential. As a result, when the voter is under coercion she can provide
a different one, in effect cancelling this ballot. When she gets her moment of
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privacy, as required by the JCJ framework, she can cast a vote with the regis-
tered credential. Of course the coercer should not be able to distinguish the two
cases. This does not apply to the tallier, who must be able to tell which votes
should be counted and which should not. A protocol that utilizes our primitive
to implement the above scenario involves a registration authority that compares
the credentials supplied during voting with the one that is registered before. The
secret bit of the signer is the result of this comparison and indicates whether
the credential is valid or not. The comparison can be easily carried out by the
registrar, since he has access to the voter identity. By applying our primitive he
can convey this bit of information to the tallier, informing her about the validity
of the vote, without leaking it to the coercer. Thus, the tallier will learn if the
votes are under coercion or not and proceed to count them in the former case.
Similar cases can arise in other contexts as well, e.g. in anonymous surveys used
in assessments for courses, services etc. where there can be conflicts of interest
that can lead to coercion.

The design of protocols for applying conditional blind signatures to elec-
tronic voting and anonymous surveys is a natural direction for further research.
Moreover, it would be interesting to investigate alternative instantiations of the
primitive. Another important research goal would be to extend the secret infor-
mation to more than a single bit. Finally, it would be ideal to design instan-
tiations of conditional blind signatures that can be proved unforgeable against
stronger adversaries.

References

1. Whitfield Diffie and Martin Hellman. New directions in cryptography. I[IEEE
transactions on Information Theory, 22(6):644-654, 1976.

2. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120-126,
1978.

3. David Chaum. Blind signatures for untraceable payments. In Advances in Cryptol-
ogy: Proceedings of CRYPTO 82, Santa Barbara, California, USA, August 23-25,
1982., pages 199-203, 1982.

4. Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Information Theory, 31(4):469-472, 1985.

5. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In Advances in Cryptology - CRYPTO 86, Santa
Barbara, California, USA, 1986, Proceedings, pages 186—194, 1986.

6. David Chaum and Hans van Antwerpen. Undeniable signatures. In Proceedings
on Advances in Cryptology, CRYPTO ’89, pages 212-216, New York, NY, USA,
1989. Springer-Verlag New York, Inc.

7. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Advances in Cryptology - CRYPTO °89, 9th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings, pages
239-252, 19809.

8. David Chaum and Eugene van Heyst. Group signatures. In Advances in Cryptology
- EUROCRYPT ’91, Workshop on the Theory and Application of of Cryptographic
Techniques, Brighton, UK, April 8-11, 1991, Proceedings, pages 257265, 1991.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

19

Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting
scheme for large scale elections. In Advances in Cryptology - AUSCRYPT ’92,
Workshop on the Theory and Application of Cryptographic Techniques, Gold Coast,
Queensland, Australia, December 13-16, 1992, Proceedings, pages 244-251, 1992.
Tatsuaki Okamoto. Provably secure and practical identification schemes and corre-
sponding signature schemes. In Advances in Cryptology - CRYPTO 92, 12th An-
nual International Cryptology Conference, Santa Barbara, California, USA, August
16-20, 1992, Proceedings, pages 31-53, 1992.

David Chaum. Designated confirmer signatures. In Workshop on the Theory and
Application of of Cryptographic Techniques, pages 86-91. Springer, 1994.

Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier
proofs and their applications. In Advances in Cryptology - EUROCRYPT 96,
International Conference on the Theory and Application of Cryptographic Tech-
niques, Saragossa, Spain, May 12-16, 1996, Proceeding, pages 143-154, 1996.
David Pointcheval and Jacques Stern. Provably secure blind signature schemes.
In Advances in Cryptology - ASIACRYPT ’96, International Conference on the
Theory and Applications of Cryptology and Information Security, Kyongju, Korea,
November 3-7, 1996, Proceedings, pages 252—265, 1996.

Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures
(extended abstract). In Advances in Cryptology - CRYPTO 97, 17th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 17-
21, 1997, Proceedings, pages 150-164, 1997.

Dan Boneh. The decision diffie-hellman problem. In Algorithmic Number Theory,
Third International Symposium, ANTS-III, Portland, Oregon, USA, June 21-25,
1998, Proceedings, pages 48—63, 1998.

Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data
privacy in private information retrieval schemes. Journal of Computer and System
Sciences, 60(3):592 — 629, 2000.

David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. J. Cryptology, 13(3):361-396, 2000.

Bill Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to
sell digital goods. In In Birgit Pfitzmann, editor, Advances in Cryptology EURO-
CRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 119-135.
Springer-Verlag, 2001.

Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Proceedings of the 2005 ACM Workshop on Privacy in the Electronic
Society, WPES 2005, Alexandria, VA, USA, November 7, 2005, pages 61-70, 2005.
Dominique Schréder and Dominique Unruh. Security of blind signatures revisited.
TACR Cryptology ePrint Archive, 2011:316, 2011.

Fubiao Xia. Designated confirmer signatures : modelling, design and analysis. PhD
thesis, University of Birmingham, UK, 2013.

Sven Laur and Bingsheng Zhang. Lightweight Zero-Knowledge Proofs for Crypto-
Computing Protocols, pages 140-157. Springer International Publishing, 2014.



	Conditional Blind Signatures
	Introduction
	Motivation
	Our contribution
	Related work

	Preliminaries
	Security Assumptions
	Okamoto-Schnorr Blind Signatures

	Definitions for Conditional Blind Signatures
	An instantiation based on Okamoto-Schnorr Blind Signatures
	Security Analysis
	Blindness
	Strong One More Forgery
	Conditional Verifiability

	Variations
	Reduced Round Conditional Blind Signatures
	Conditional Blind Signatures with homomorphic encryption

	Conclusion and Discussion


