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Abstract. Leveled authentication allows resource-constrained IoT devices to be
authenticated at different strength levels according to the particular types of com-
munication. To achieve efficient leveled authentication, we propose a lightweight
public key encryption scheme that can produce very short ciphertexts without
sacrificing its security.
The security of our scheme is based on the Learning With Secretly Scaled Errors
in Dense Lattice (referred to as Compact-LWE) problem. We prove the hardness
of Compact-LWE by reducing Learning With Errors (LWE) to Compact-LWE.
However, unlike LWE, even if the closest vector problem (CVP) in lattices can be
solved, Compact-LWE is still hard, due to the high density of lattices constructed
from Compact-LWE samples and the relatively longer error vectors. By using
a lattice-based attack tool, we verify that the attacks, which are successful on
LWE instantly, cannot succeed on Compact-LWE, even for a small dimension
parameter like n = 13, hence allowing small dimensions for short ciphertexts.
On the Contiki operating system for IoT, we have implemented our scheme, with
which a leveled Needham-Schroeder-Lowe public key authentication protocol is
implemented. On a small IoT device with 8MHZ MSP430 16-bit processor and
10KB RAM, our experiment shows that our scheme can complete 50 encryptions
and 500 decryptions per second at a security level above 128 bits, with a public
key of 2368 bits, generating 176-bit ciphertexts for 16-bit messages. With two
small IoT devices communicating over IEEE 802.15.4 and 6LoWPAN, the total
time of completing an authentication varies from 640ms (the 1st authentication
level) to 8373ms (the 16th authentication level), in which the execution of our
encryption scheme takes only a very small faction from 46ms to 445ms.

1 Introduction

In the Internet of Things (IoT), data is usually collected by resource-constrained devices
in a variety of environments, and transmitted to powerful platforms to store and process.
For sensitive IoT applications, it is desirable that the IoT devices are authenticated to
ensure the trust to the data source. On the other hand, the IoT devices should also have
a strong method to authenticate the server or other communicating devices, such that
the IoT devices cannot be exploited in IoT botnets.

For resource-constrained IoT devices, leveled authentication can be beneficial, since
they thus can authenticate each other at different levels, depending on the types of com-
munication. For example, a strong mutual authentication should be given to devices that
will exchange messages to update firmware or change configuration, while the requests



to sensor readings may just need a relatively lower level of authentication. Leveled
authentication allows IoT devices to dynamically allocate scarce resources among dif-
ferent authentication tasks.

Due to constrained resources (i.e., the size of memory, CPU speed, and network
bandwidth), small IoT devices are usually authenticated by weak user names and pass-
words in practice. The shared key authentication protocols might be developed by using
lightweight block ciphers, such as PRESENT [8] and and LED [21], with a pool of pre-
shared keys configured in IoT devices before they are deployed, as proposed in [18,
16, 32]. However, the shared key authentication protocols might not be strong enough,
because IoT devices deployed in open environments can be physically compromised.

Ideally, the authentication on IoT devices are still established with public key en-
cryption schemes. However, the widely-used public key cryptosystems, such as RSA
and ECDSA, are not efficient enough for IoT devices [22]. The new lattice-based cryp-
tographic schemes, which is believed to be secure against attacks using quantum com-
puters, may have acceptable computational efficiency for low-end processors [13, 41].
However, the current lattice-based schemes are still not efficient for IoT devices partic-
ularly from the perspective of the sizes of ciperhtexts.

Since IoT devices may not have big RAM to process messages and high wireless
communication bandwidth to transfer messages, the sizes of ciperhtexts (and also the
sizes of public keys) are critical for IoT applications. Lattice-based schemes usually
have much larger ciphertexts than the traditional schemes (e.g., RSA and ECC). For ex-
ample, the Ring-LWE based lightweight public encryption scheme produces ciphertetxs
of 3, 584 bits for only 94-bit security [13], the BLISS signatures are 5K bits for 128-
bit security [17], the authenticated key exchange protocol [44] has the sizes of 5.625K
bytes for a challenge message and 5.75K bytes for a response message at 80-bit security
level, and in the Frodo protocol, the total size of key exchange messages can be 14.22K
bytes for 128-bit security [9].

A mutual authentication protocol usually needs two authenticating parties to ex-
change a fixed number of challenge and response messages, which contain encrypted
or signed random numbers or nonces, depending on whether an encryption scheme or
a signature scheme is used. To achieve leveled authentication, it is not desirable to con-
figure a number of private keys with various lengths on a small IoT device, due to the
storage cost. Instead, the IoT device should be able to use one private key to achieve any
level of authentication by exchanging a configurable number of challenge and response
messages. The current lattice-based cryptographic schemes cannot efficiently support
leveled authentication, since only one encrypted or signed message is already very big
for small IoT devices.

In this paper, we propose a lightweight public key encryption scheme that is suit-
able for leveled authentication of small IoT devices. Our scheme allows more flexible
configuration on the size of ciphertexts. At a required security level, the length of ci-
phertexts in our scheme can be adaptable to the size of a message space. For example,
our scheme at a security level above 128 bits can be configured to generate 176-bit
ciphertexts for a 16-bit message space or 120-bit ciphertexts for a 8-bit message space.

With our scheme, a device can be configured to encrypt challenge and response
messages with short nonces, hence generating correspondingly short ciphertexts. Then,
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the device can achieve leveled authentication by exchanging a specified number of
challenge-response messages. At the lowest authentication level, only one pair of nonces
needs to be encrypted and exchanged. Since a ciphertext is short, it can be efficiently
processed and transmitted in the IoT low bandwidth network.

1.1 Overview of Compact-LWE

The security of our scheme is based on the hardness of the Learning With Secretly
Scaled Errors in Dense Lattice (referred to as Compact-LWE) problem. Its hardness is
proven by reducing the Learning With Errors (LWE) problem [42] to Compact-LWE.

Let s and ai be n-dimensional vectors drawn uniformly from Znq , and the error
terms ei ∈ Zq be sampled from a discrete Gaussian distribution. The LWE problem
involves a set of samples

(ai, 〈ai, s〉+ ei mod q),

where 〈ai, s〉 denotes the inner product of ai and s.
The Compact-LWE problem also involves a set of samples, but defined differently

as
(ai, 〈ai, s〉+ k ∗ ei mod q),

where k ∈ Zq is a secret value coprime with q, ei is uniformly sampled from Zr for
a secret value r, and ai is sampled from Znb with b < r. A public key in our scheme
consists of a set of Compact-LWE samples, and its private key includes s and k.

As introduced below, Compact-LWE is resistant to well-known lattice-based attacks
to LWE, hence permitting a very small dimension parameter n for short ciphertexts.

1.2 Resistance to Lattice-Based Attacks

Suppose there are either m LWE samples or m Compact-LWE samples. Let A be a
n ∗m matrix constructed by taking each of the m vectors ai as a column of A, and let
e be a m-dimensional error vector obtained by collecting ei as its entries.

Then, the lattice-based attacks to LWE try to find s from the m samples by solving
the closest vector problem (CVP) in lattices [31, 33, 28]. That is, in the lattice generated
from the row vectors of A, the problem is to find a lattice point that is closest to the
target AT s + e. In LWE, the vector e has a small Euclidean norm ‖e‖, and thus the
lattice point closest to AT s+ e is AT s, which can then be used to recover s by solving
a system of noiseless linear equations.

In Compact-LWE, the lattice point AT s is no longer the closest one to AT s+k ∗e,
because their distance is k ∗ ‖e‖, which can be as big as q; hence, the lattice-based
attacks [31, 33, 28] are not directly applicable any more. More importantly, even if k
happens to be guessed correctly, the lattice point (k−1AT )s is still not the closest one
to (k−1AT )s+ e, because the error vector e can be much longer than each row vector
of A in Compact-LWE (i.e., due to b < r). Note that k−1AT and AT form the same
lattice modulo q since k is coprime with q.

In other words, since b < r, the lattice generated from the row vectors of A in
Compact-LWE is more dense in the sense that a large number of lattice points could
be within a distance less than ‖e‖ centered around the target (k−1AT )s + e. Thus,
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Compact-lWE is still hard even if CVP, which itself is a hard problem in lattices [23],
can be efficiently solved; this feature makes a big deviation of Compact-LWE from
LWE. If CVP could be efficiently solved, LWE is no longer hard, and all LWE-based
public key encryption schemes or key exchange schemes [42, 31, 9] are thus not secure
any more. As discussed later, Compact-LWE can be regarded as a new hard problem,
lying in between Learning Parity with Noise (LPN) and LWE and taking the advantages
of both LPN (resistance to lattice-nbased attacks) and LWE (big moduli).

The following simple example illustrates the hardness of Compact-LWE by show-
ing the lattice point (k−1AT )s is not the closest one to the target (k−1AT )s + e in
Compact-LWE.

Let q = 8, k = 3, A =

[
0 3
2 1

]
, s =

[
7
2

]
, and e =

[
3
2

]
. Then, we have

k−1 = 3, (k−1AT )s =

[
4
5

]
mod 8, and (k−1AT )s + e =

[
7
7

]
mod 8, as shown in

Fig. 1. Moreover, if the error vector becomes e =

[
2
3

]
, then the target point becomes[

6
0

]
, which itself is also a valid lattice point. In that case, the lattice-based attacks do

not make any sense to Compact-LWE, since the bounded-distance decoding algorithm
used in such attacks simply returns the target point as its solution.

Fig. 1. Lattice with the basis {(0, 3), (2, 1)} or the basis {(0 ∗ 3, 3 ∗ 3), (2 ∗ 3, 1 ∗ 3)} modulo 8;
+ and × are not the closest to each other.

For practical applications of LWE-based encryption schemes, the values of LWE pa-
rameters, in particular n, need to be determined by considering the current lattice-based
attacks1 [31, 33, 28]. For example, s can be recovered with the lattice-based attacks in
2.7 hours, when n = 100, q = 4093, and the standard deviation of the discrete Gaussian
distribution is 4 [28].

With the lattice-based attack tool provided in [28], we confirm the attack-resistance
effectiveness of Compact-LWE. In our experiment, by assuming that k is correctly

1 The algebraic attacks [4] and combinatorial attacks [2, 27] are not effective when the number
of LWE samples is limited [36].
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guessed, the lattice-based attacks cannot succeed on Compact-LWE for a small dimen-
sion parameter like n = 13, for which LWE is attacked successfully in seconds.

1.3 Leveled Authentication Protocol and Performance Evaluation

We use the Needham-Schroeder-Lowe (NSL) public key authentication protocol [37,
34] and our lightweight encryption scheme to implement leveled authentication for IoT
devices. Let A and B be two devices. The NSL authentication protocol works by re-
quiring A and B to exchange two nonces encrypted with each other’s public key. If
A and B really own the corresponding private key to decrypt the encrypted nonces,
then they can successfully authenticate each other. For leveled authentication, we revise
the NSL protocol, such that the number of nonces exchanged depends on the expected
authentication level.

We have implemented our lightweight public encryption scheme on the Contiki plat-
form and evaluated on the resource-constrained MTM-CM5000-MSP2 wireless sensor
node, which is compliant with TelosB/Tmote Sky specification. This device uses Texas
Instruments (TI) MSP430 16-bit processor running at 8MHz, with 48KB ROM and
10KB RAM. This device supports the IEEE 802.15.4 protocol for wireless communi-
cation, which provides 250Kbps physical layer transfer rate.

As an overview of the performance of our scheme, the device performs about 50
encryptions and 500 decryptions per second for plaintexts of 16 bits, generating cipher-
texts of 176 bits, at a security level above 128 bits, with the public key of 2368 bits. This
performance is higher than the performance of the lightweight scheme proposed in [13],
where 33 encryptions and 79.4 decryptions performed per second on a 32MHz ARM
Cortex-M0 processor for 84-bit security. In addition, unlike [13] and other lattice-based
schemes, our scheme does not incur any possibility of decryption failures.

On two MTM-CM5000-MSP devices, the leveled NSL authentication protocol is
evaluated. In the evaluation, we let a nonce be an 1-byte random integer and evaluate
16 levels of authentication. At the 1st authentication level, only one nonce is generated
respectively by each device, and thus a device can be cheated online with the proba-
bility 1

28 , which is reduced to 1
2128 at the 16th authentication level, where each device

generates 16 nonces. Accordingly, the device which initiates an authentication takes
640ms to complete the authentication at the first level, with three 176-bit ciphertexts
exchanged, while taking 8273ms for the 16th authentication level by exchanging thirty-
three 176-bit ciphertexts. In the total authentication time, our encryption scheme only
takes a small fraction from 46ms to 445ms.

Moreover, a higher level of authentication can be achieved gradually and adjusted
dynamically. For example, two IoT devices have authenticated at the 16th authentication
level, and later on they can increase the level by exchanging several extra nonces for
protecting a more sensitive communication.

1.4 Contributions and Paper Organization

The contributions of this paper are summarized as follows.

2 http://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
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– We propose the hard problem Compact-LWE, based on which a lightweight pub-
lic key encryption scheme is constructed. Unlike other LWE schemes [42, 31, 9],
even if the closest vector problem in lattices can be efficiently solved, our scheme
is still secure. This security feature permits very small dimension parameters for
Compact-LWE, thus leading to much shorter ciphertexts.

– We prove the hardness of Compact-LWE by giving the reduction from LWE to
Compact-LWE. In addition to the formal proof, we analyze the resistance of Compact-
LWE against various attacks. A lattice-based attack tool has been used to verify the
security of our scheme with concrete parameters, which can be taken directly in
practical applications.

– We implemented our encryption scheme on the Contiki platform and the leveled
authentication protocol based on the NSL public key authentication protocol. The
IoT devices MTM-CM5000-MSP have been used to evaluate the performance of
our scheme and authentication protocol. In the implementation, we describe how
our encryption scheme can be adapted to Contiki and MTM-CM5000-MSP, so that
modulo operations can be done by the underlying hardware.

The rest of this paper is organized as follows. We introduce the construction of our
scheme and prove its correctness in Section 2. The security of our scheme is analyzed
in Section 3, where the hardness of Compact-LWE is defined and proved. In Section
4, we analyze the resistance of Compact-lWE to three types of attacks, including the
lattice-based attacks. Based on the attack analysis, the concrete security level is defined
in Section 5. Our implementation and evaluation is described in Section 6. The last two
sections include the discussion of related work and the summary of this paper.

2 Construction of Our Lightweight Public Key Encryption
Scheme

Let pp = (q, n,m, t, w, b) be a tuple of positive integers, which are the public param-
eters of our scheme. We require n + 1 < m < n2, n < b, (2log2 b ∗ b + 2) ∗ b < q,
and 2log2 b < n. Let Zq = {0, . . . , q − 1} and other notations like Zb and Zt be simi-
larly defined. Our scheme consists of three algorithms: key generation, encryption, and
decryption.

2.1 Key Generation

Given the public parameter pp, the key generation algorithm generates a random key
pair (K,PK), where K is the private key and PK is the public key. Let Gen(pp) =
(K,PK) denote the key generation algorithm.

The private key K is defined as K = (s, sk , r, p), where s is a n-dimensional vector,
uniformly sampled from Znq , and the components sk, r and p are positive integers in
Zq . A private key needs to satisfy the following conditions.

– t ≤ p
– sk, p and q are mutually co-prime
– sk ∗ (t− 1) + w ∗ r ∗ p < q
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– b < r

The above conditions are used later when proving both correctness and security of
our scheme. After the private key K is generated, the algorithm Gen(pp) then gen-
erates the corresponding public key PK. The public key PK consists of m random
Compact-LWE samples, as defined below.

Let ai ∈ Znb be a vector uniformly sampled for the ith public key sample. Then, the
ith public key sample is the pair

(ai, pki = 〈ai, s〉+ ei ∗ sk−1q ∗ p mod q),

where ei is uniformly sampled from Zr and sk−1q satisfies sk ∗ sk−1q = −1 mod q.
Recall that we used k to refer to sk−1q ∗ p in the previous introduction for brevity.

To reduce the size of public keys, all IoT devices (e.g., manufactured by the same
company) can share the common ai (1 ≤ i ≤ m). As such, an IoT device only needs
to publish pki in its public key PK. This idea of reducing the size of a public key is
described in other LWE-based public key encryption schemes [42, 31].

2.2 Encryption

A plaintext value v comes from Zt. It is encrypted into a ciphertext c with the public
key PK, denoted c = Enc(PK, v). The ciphertext c is a (n+ 1)-dimensional vector.
In the encryption algorithm, w public key samples are randomly selected and added.
Given two samples (ai, pki) and (aj , pkj), their addition is represented as (ai, pki) +
(aj , pkj) = (ai + aj , pki + pkj) mod q, where ai + aj is a vector addition. The
encryption algorithm c = Enc(PK, v) works as follows.

– Sample an integer i uniformly from the set {1, . . . ,m}, and let c′ = (ai, pki) be
the corresponding sample in PK.

– Sample w − 1 integers uniformly from the set {1, . . . ,m}, and for each sampled
integer i, do the update c′ = c′ + (ai, pki).

– Suppose c′ = (a, pk), and generate c = (a, v − pk mod q).

Note that from the set {1, . . . ,m}, a public key sample might be selected repeatedly,
at most w times. The above encryption algorithm is similar to the encryption algorithm
proposed in [42], where the pubic key is a set of LWE samples and the encryption
algorithm adds a random subset of public key samples (i.e., a public key sample is
selected only once) to generate the ciphertext for a message, which can only be 0 or 1.
However, our decryption algorithm is totally different from the one in [42].

2.3 Decryption

Let K = (s, sk , r, p) and sk−1p be the multiplicative inverse of sk modulo p (i.e., sk−1p ∗
sk = 1 mod p). Given the ciphertext c = (a, d), the decryption algorithm Dec(K, c) =
v recovers the plaintext value v with the following steps.

– Calculate c′ = 〈a, s〉+ d mod q.
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– Calculate skv = sk ∗ c′ mod q.
– Calculate v = sk−1p ∗ skv mod p.

Our decryption algorithm is deterministic, and there is no any decryption failure for
all ciphertexts generated from the encryption algorithm. On the contrary, the existing
LWE-based encryption schemes like [13, 42] may incur decryption failures.

2.4 Correctness

The correctness of our scheme is stated in the theorem below.

Theorem 1. Let pp = (q, n,m, t, w, b) be the public parameters and Gen(pp) =
(K,PK). Then, for any v ∈ Zt, we have

Dec(K,Enc(PK, v)) = v.

Proof. At the first two steps of the encryption algorithm, w public key samples are
randomly selected and added. Let l[1],. . . , l[w] be the indexes of the selected public key
samples. Then, based on the key generation algorithm Gen(pp), the selected samples
satisfy the following w equations.

pkl[1] = 〈al[1], s〉+ el[1] ∗ sk−1q ∗ p mod q
. . .

pkl[w] = 〈al[w], s〉+ el[w] ∗ sk−1q ∗ p mod q
By adding the two sides of the above equations, we get

w∑
i=1

pkl[i] = 〈
w∑
i=1

al[i], s〉+
w∑
i=1

el[i] ∗ sk−1q ∗ p mod q

That is, c′ = (
∑w
i=1 al[i],

∑w
i=1 pkl[i]) after the second step of encryption. The ci-

phertext of v generated at the third step of encryption is (
∑w
i=1 al[i], d = v−

∑w
i=1 pkl[i] mod q).

Given the above ciphertext of v, with the secret vector s in the private key K, the
first step of decryption is written as

c′ = 〈
w∑
i=1

al[i], s〉+ d = 〈
w∑
i=1

al[i], s〉+ (v −
w∑
i=1

pkl[i])

That is, c′ = v−
∑w
i=1 el[i]∗sk−1q ∗p after the first decryption step. Since sk∗sk−1q =

−1 (mod q), the second step of decryption generates

skv = sk ∗ (v −
w∑
i=1

el[i] ∗ sk−1q ∗ p) = sk ∗ v +
w∑
i=1

el[i] ∗ p mod q.

Since v ∈ Zt, el[i] < r in each public key sample, and sk ∗ (t− 1) +w ∗ r ∗ p < q,
we have

0 ≤ sk ∗ v +
w∑
i=1

el[i] ∗ p < q,
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and thus

skv = sk ∗ v +
w∑
i=1

el[i] ∗ p (mod q) = sk ∗ v +
w∑
i=1

el[i] ∗ p.

At last, since sk ∗ sk−1p = 1 mod p, the last operation (sk−1p ∗ sk ∗ v+
∑w
i=1 el[i] ∗

sk−1p ∗ p) mod p in the decryption algorithm returns exactly v.

3 Security Analysis

In this section, we prove the hardness of Compact-LWE by giving reduction from LWE
to Compact-LWE. Thus, if an adversary can solve the Compact-LWE problem effi-
ciently, then it can solve the LWE problem efficiently, too. Then, we prove that our
lightweight public key encryption scheme is semantically secure [20], meaning that the
adversary cannot get any information about a message from its ciphertext and the public
key.

3.1 The Hardness of LWE

Let n and q be positive integers, 0 < α < 1, and let Xαq be a discrete Gaussian
distribution with the standard deviation αq. As defined in [39], the LWE distribution,
from which LWE samples are drawn, is given below.

Definition 1. For s uniformly sampled from Znq , the LWE distribution An,s,q,α over
Znq × Zq is obtained by sampling a from Znq uniformly, e from Xαq , outputting (a, y =
〈a, s〉+ e mod q).

There are two hardness problems related to LWE: the search LWE problem and the
decision LWE problem.

Definition 2. Given a set of independent samples (ai, yi) ∈ Znq × Zq drawn from
An,s,q,α, the search LWE problem Search-LWEn,q,α is to find s.

The hardness of Search-LWEn,q,α is proved in [42] and [38] by giving the quantum
or classical reductions from the worst-case hardness of the GapSVP problem to the
search LWE problem. The hardness of Search-LWEn,q,α is summarized in the following
theorem from [11].

Theorem 2 (Theorem 2.16 of [11]). Let n, q ≥ 1 be integers and let α ∈ (0, 1) be such
that αq ≥ 2

√
n. Then there exits a quantum reduction from worst case n-dimensional

GapSVPÕ(n/α) to Search-LWEn,q,α. If in addition q ≥ 2n/2 then there is also a clas-
sical reduction between these two problems.

Definition 3. Given a set of independent samples (ai, yi) ∈ Znq ×Zq , the decision LWE
problem Decision-LWEn,q,α is to distinguish whether a sample is drawn from An,s,q,α
or drawn from the uniform distribution (i.e., yi is also drawn uniformly).
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The hardness of Decision-LWEn,q,α is proved by showing search-to-decision re-
ductions [42, 38]. That is, if Decision-LWEn,q,α can be solved efficiently, then Search-
LWEn,q,α is solved efficiently, too. There are several such reductions, each of which is
for a different type of modulus q. For example, the modulus is supposed to be poly-
nomial and prime in [42], the modulus must be smooth (i.e., the product of multiple
primes) [38], and it can also be a power of 2 in [11]. The theorem for the hardness of
Decision-LWEn,q,α from [11] will be used in our proof.

Theorem 3 (Theorem 2.17 of [11]). Let q be a power of 2, and α satisfy 1/q <
α < 1/ω(

√
log2 n). Then there exists an efficient reduction from Search-LWEn,q,α

to Decision-LWEn,q,α′ for α′ = αω(log2 n).

3.2 Hardness of Compact-LWE

We first give the definition of Compact-LWE distribution, from which the public keys
of our scheme are sampled. In the definition, the number of samplesm is omitted, since
the hardness of Compact-LWE does not depend on this parameter, as in Theorem 2 and
Theorem 3 for LWE. This parameter however is used when we analyze concrete attacks
to our scheme and determine the concrete security level of our scheme later.

Definition 4. For positive integers q, n, t, w, and b, such that b > n, (2log2 b ∗ b+2) ∗
b < q, and 2log2 b < n, let sk, r, and p be secret integers satisfying the conditions spec-
ified in the algorithm Gen. Suppose s is a secret vector uniformly sampled from Znq .
The Compact-LWE distributionDn,s,q,b,t,w,sk,r,p over Znb ×Zq is obtained by sampling
a from Znb uniformly, e from Zr uniformly, outputting (a, y = 〈a, s〉+e∗sk−1q ∗p mod q).

Similarly, there are the search and decision problems for Compact-LWE. If the se-
cret values s, sk, and p are found, then all ciphertexts of our scheme can de decrypted.
Hence, the search problem of Compact-LWE requires the findings of all s, sk, and p.

Definition 5. Given a set of independent samples (ai, yi) ∈ Znb × Zq drawn from
Dn,s,q,b,t,w,sk,r,p, the search Compact-LWE problem Search-Compact-LWEn,q,b,t,w is
to find s, sk, and p.

The hardness of Search-Compact-LWEn,q,b,t,w is proved by giving the reduction
from Search-LWEn′,b′,α for some integer n′ and b′ to Search-Compact-LWEn,q,b,t,w.
In the proof, we reduce samples in Search-LWEn′,b′,α with dimension n′ and modulus
b′ to samples in Search-Compact-LWEn,q,b,t,w with dimension n, modulus q, and any
values for other parameters (e.g., t and w) that are not required by Search-LWEn′,b′,α.
For a vector s and a positive integer j, let s‖Zjq be a vector obtained by extending s with
j uniformly random values from Zq .

Theorem 4. Let b′ be a power of 2, b > b′, and α ∈ (0, 1). For an integer n′ > 1,
such that b′ ≥ 2n

′/2, if Search-Compact-LWEn,q,b,t,w can be solved efficiently by the
adversary, then Search-LWEn′,b′,α can be solved efficiently, too.
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Proof. Suppose s′ ∈ Zn′

b′ is a secret vector. Given a set of independent samples (ai, yi) ∈
Zn′

b′ × Zb′ drawn from An′,s′,b′,α for the problem Search-LWEn′,b′,α, we have

(ai, yi = 〈ai, s′〉+ ei mod b
′ = 〈ai, s′〉+ ei + xi ∗ b′),

for some integer xi < n′ ∗ b′.
Since the above ei is sampled from the discrete Gaussian distribution with the mean

0 modulo b′, we have ei ∈ (−b′, b′). By adding b′ to yi (i.e., y′i = yi + b′), the above
sample is converted into

(ai, y
′
i = 〈ai, s′〉+ ri),

where 0 < ri = ei + xi ∗ b′ + b′ < (n′ ∗ b′ + 2) ∗ b′.
Next, the adversary chooses any values for parameters t, sk, r, w, and p, ensuring

the conditions specified in the algorithm Gen are satisfied (particularly the condition
sk ∗ (t− 1) + w ∗ r ∗ p < q), and also the extra condition (2log2 b

′ ∗ b′ + 2) ∗ b′ < r.
This extra condition is satisfiable, since we have (2log2 b ∗ b + 2) ∗ b < q, b′ < b, and
r can be as big as q based on the choices of t, sk, w, and p.

Let y′′i = y′i ∗ sk−1q ∗ p mod q. From the above sample, the following one can be
obtained

(ai, y
′′
i = 〈ai, s′ · (sk−1q ∗ p)〉+ ri ∗ sk−1q ∗ p mod q),

According to the condition b′ ≥ 2n
′/2, we have n′ ≤ 2 log2 b

′ and then ri <
(n′ ∗ b′ + 2) ∗ b′ ≤ (2log2 b

′ ∗ b′ + 2) ∗ b′ < r. In addition, our scheme requires
n > 2log2 b, so n > 2log2 b

′ > n′.
Thus, when ai is extended with n − n′ zero elements, the above sample is a valid

sample in Dn,s′′,q,b′,t,w,sk,r,p, where

s′′ = (s′ · (sk−1q ∗ p))‖Zn−n
′

q mod q.

The distributionDn,s′′,q,b′,t,w,sk,r,p is a special case of the distributionDn,s,q,b,t,w,sk,r,p,
since s′′ is the special case of s, b′ < b, and the condition sk ∗ (t− 1) + w ∗ r ∗ p < q
still holds for Dn,s,q,b,t,w,sk,r,p.

Hence, if Search-Compact-LWEn,q,b,t,w can be solved by the adversary efficiently,
then its any special case can be solved, and the same algorithm can be used to solve
Search-LWEn′,b′,α.

When b′ ≥ 2n
′/2, Theorem 2 shows that Search-LWEn′,b′,α is hard. Hence, Search-

Compact-LWEn,q,b,t,w cannot be solved by the adversary efficiently. Note that the above
proof allows the error rate α in Search-LWEn′,b′,α to take a value infinitely close to 1,
which makes the hardest case of LWE.

The decision Compact-LWE problem is to distinguish between samples drawn ei-
ther from Dn,s,q,b,t,w,sk,r,p or from an uniform distribution in Znb × Zq .

Definition 6. Given a set of independent samples (ai, yi) ∈ Znb × Zq , the decision
Compact-LWE problem Decision-Compact-LWEn,q,b,t,w is to distinguish whether a
sample is drawn from Dn,s,q,b,t,w,sk,r,p or drawn from the uniform distribution over
Znb × Zq (i.e., ai is uniformly drawn from Znb and yi is drawn uniformly from Zq).
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The hardness proof of Decision-Compact-LWEn,q,b,t,w is similar to the hardness
proof of Search-Compact-LWEn,q,b,t,w, by giving the reduction from Decision-LWEn′,b′,α

for some integer b′ and n′ to Decision-Compact-LWEn,q,b,t,w.

Theorem 5. For an integer n′ > 1, such that b ≥ 2n
′/2, b > b′, α ∈ (0, 1), and

ω(log2n
′)/b′ < α < ω(log2n

′)/ω(
√

log2n
′),

if Decision-Compact-LWEn,q,b,t,w can be solved efficiently by the adversary, then Decision-
LWEn′,b′,α can be solved efficiently, too.

Proof. When ω(log2n
′)/b′ < α < ω(log2n

′)/ω(
√
log2n

′), there existsα′ = α/ω(log2n
′),

such that 1/b′ < α′ < 1/ω(
√
log2 n

′). Under this condition and the condition that b′ is
a power of 2, Theorem 3 shows that Decision-LWEn′,b′,α is hard.

Suppose s′ ∈ Zn′

b′ is a secret vector. Given a set of independent samples (ai, yi) ∈
Znb′ ×Zb′ drawn either from An′,s′,b′,α or from the uniform distribution over Znb′ ×Zb′ ,
the adversary cannot distinguish which distribution a sample comes from, according to
the hardness of Decision-LWEn′,b′,α.

For a sample (ai, yi) ∈ Znb′ ×Zb′ drawn either from An′,s′,b′,α or from the uniform
distribution over Znb′ × Zb′ , the adversary can convert it into a sample in (ai, y

′′
i ) ∈

Znb′ × Zq , which correspondingly belongs to either Dn,s′′,q,b′,t,w,sk,r,p, where

s′′ = (s′ · (sk−1q ∗ p))‖Zn−n
′

q mod q,

or the uniform distribution over U = Znb′ ×{(x+ b′) ∗ sk−1q ∗ p mod q|x ∈ Zb′}, in the
same steps as in the proof of Theorem 4. The adversary still cannot distinguish whether
the sample (ai, y

′′
i ) comes from Dn,s′′,q,b′,t,w,sk,r,p or the uniform distribution over U .

Note that U is a subset of Znb × Zq , since b′ < b.
The adversary cannot have an efficient algorithm to solve the problem Decision-

Compact-LWEn,q,b,t,w; otherwise, the algorithm can distinguish whether any sample in
the problem Decision-Compact-LWEn,q,b,t,w comes from Dn,s,q,b,t,w,sk,r,p or from
the uniform distribution over Znb × Zq , and as a special case the adversary can use
this algorithm to distinguish whether the sample (ai, y

′′
i ) ∈ Znb′ × Zq comes from

Dn,s′′,q,b′,t,w,sk,r,p or from the uniform distribution over U , leading to an efficient so-
lution to Decision-LWEn′,b′,α.

Since Decision-LWEn′,b′,α is hard, the problem Decision-Compact-LWEn,q,b,t,w
is hard, too.

3.3 Semantic Security

Based on the hardness of Decision-Compact-LWEn,q,b,t,w, we prove the semantic se-
curity of our scheme, which is also called the IND-CPA security.

Given the public parameters pp = (q, n,m, t, w, b), the attack game G(pp) shown
below will be used to define the semantic security of our scheme.

1. The challenger runs the key generation algorithm Gen(pp) = (K,PK) and gives
the public key PK to the adversary, together with m samples, denoted by U, drawn
uniformly from Znb × Zq .
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2. The adversary submits a message v ∈ Zt to the challenger.
3. The challenger generates two ciphertexts c0 = Enc(PK, v) and c1 = Enc(U, 0).

That is, U is used by the challenger as if it is a public key. The challenger selects a
random bit i ∈ {0, 1} uniformly and sends back the pair (ci, c1−i).

4. The adversary receives the pair of ciphertexts, and outputs a guess i′, meaning that
ci′ encrypts v with the proper public key PK.

5. The adversary wins the game if i′ = i.

Intuitively, this game means that if the adversary cannot distinguish a ciphertext from
a random number, then the scheme does not leak much information of messages in
cihertexts. Note that our game is defined differently from the usual game for IND-CPA
security [26], in which the adversary selects two values and the challenger randomly
encrypts one of them; however, our game and the usual game are equivalent.

Theorem 6. Under the assumption that the decision problem Decision-Compact-
LWEn,q,b,t,w is hard, the adversary cannot win the game G(pp) with a probability non-
negligibly higher than 1/2.

Proof. Let the matrix A ∈ Zn∗mb be formed as in lattice-based attacks from PK or U.
Let l = (l[1], ..., l[m]) be a column vector, where l[i] ≥ 0 denotes the times of the ith
sample selected in an encryption from PK or U. Let c′ be the vector generated at the
end of the second step of the encryption algorithm. Then, we have l[1]+· · ·+l[m] = w,
w is a small value, and 0 ≤ l[i] ≤ w, satisfying Al = c′. Due to the hardness of Short
Integer Solution (SIS) [36], the vector l cannot be efficiently recovered from A and c′.
That is, given c′, the adversary cannot efficiently check whether c′ is generated from
PK or U by only trying to find the vector l with PK and c′ or with U and c′. Fur-
thermore, the hardness of Decision-Compact-LWEn,q,b,t,w ensures that the adversary
cannot efficiently distinguish whether a single sample is drawn from PK or U based on
their distributions.

Then, given c′0 and c′1 generated at the second step of the encryption algorithm with
PK and U, respectively, but in a random order, the adversary cannot have an efficient
algorithm to determine which is from PK and which is from U with a probability non-
negligibly higher 1/2; otherwise, the adversary can use the same algorithm to solve
Decision-Compact-LWEn,q,b,t,w or to solve the SIS problem. Since the adversary can-
not distinguish c′0 = (a0, pk0) and c′1 = (a1, pk1), then the adversary cannot distin-
guish between (v − pk0) mod q and (0 − pk1) mod q, or between (0 − pk0) mod q
and (v − pk1) mod q, which comprise the last elements of the ciphertexts c0 and c1.
Thus, every element in c0 and c1 cannot be distinguished efficiently with a probability
non-negligibly higher 1/2.

4 Resistance to Attacks

We have proved that our scheme is secure in terms of the way it is constructed. To de-
termine the values of parameters (e.g., the value of n) that make our scheme concretely
secure, we need to consider the possible attacks to our scheme.
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In this section, we analyze the attacks through pubic keys and the attacks to en-
crypted messages. The former attacks aim to recover private keys from the correspond-
ing public keys, while the latter attacks try to recover the plaintext values from the
encrypted messages without knowing the private keys.

4.1 Attacks through Public Keys

The possible attacks to the search LWE includes algebraic attacks [4], combinatorial
attacks [2, 27], and lattice-based attacks [31, 33, 28]. All these attacks are not applicable
to our Compact-LWE based scheme.

4.1.1 Algebraic Attacks The algebraic attacks consider all possible error values in
each LWE sample. When the errors in LWE samples are too small, the algebraic attacks
[4] can lead to the subexponential algorithm to recover private keys. There are at least
n2 samples needed for such attacks for binary errors. Our scheme is not vulnerable to
such attacks, since the errors ei in our public key are not binary and the number of our
public key samples is less than n2.

In addition, if the number of samples is limited, the algebraic attacks cannot apply
to LWE [36] and this result is also applicable to Compact-LWE.

4.1.2 Combinatorial Attacks The combinatorial attacks [2, 27] work by assuming
that there is an LWE oracle that can be used by the adversary to generate any required
number of LWE samples. If two samples have collisions on a block of elements of
a, then one sample can be subtracted by the other to get a new LWE sample, which
have the collided elements eliminated. This procedure eliminates a block of unknowns,
without expanding too much the error value in the new sample. When there are a small
number of elements in s left, the adversary guesses their possible values. If the guess is
correct, then the recovered errors value in the new sample should be small, following
the discrete Gaussian distribution.

This attack does not apply to our scheme for the following reasons. First, the number
of our public key samples is limited and the adversary cannot generate new independent
samples by its own. Second, the errors in our public key are secretly scaled and can be
evenly distributed over Zq , as to be shown in our experiment later. Third, our scheme
allows a relatively big modulus q (e.g., q = 232 in our evaluation, bigger than q = 4093
or q = 16381 used in [31, 28]) and a big q makes the guess of even a small number of
secret values less efficient. Moreover, our requirement b > n ensures that b cannot be
too small, so as to reduce the collision probability of ai ∈ Znb among m < n2 public
key samples.

4.1.3 Lattice-based Attacks Given a small number of LWE samples, the lattice-
based attacks [31, 33, 28] are effective and practical. For example, when n = 100,
q = 4093, and α = 4/4093, the open-source tool developed in [28] takes 2.7 hours
to solve the search LWE problem Search-LWEn,q,α. Due to such attacks, the current
LWE-based encryption schemes have to choose big dimension parameters. However,
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as discussed in Section 1.2 and illustrated in Fig. 1, the lattice-based attacks are not
applicable to our Compact-LWE based scheme, even if the hard problem CVP in lattices
can be efficiently solved.

LWE is an extension of the well-known Learning Parity with Noise (LPN) problem
by extending the modulus q from 2 to bigger integers [42]. Without considering scaled
errors, our Compact-LWE can be seen as a problem sitting in between LWE and LPN,
in the sense that the secret vector s in Compact-LWE is sampled from Zq (the same as
LWE), while the public vector ai is bounded by b < r and r is much smaller than q
(close to LPN).

LPN is known only vulnerable to the combinatorial attacks [7, 2, 27], not to lattice-
based attacks. Like LPN, Compact-LWE is not vulnerable to lattice-based attacks; by
limiting the number of samples, Compact-LWE is resistant to the combinatorial attacks,
the same as LWE [36]. Thus, Compact-LWE can be regarded as a new hard problem,
lying in between LPN and LWE and taking the advantages of both LPN and LWE.

4.2 Attacks to Ciphertexts
In this type of attacks, we consider whether a message can be recovered efficiently from
its ciphertext and the public key, without knowing the corresponding private key.

Let l[i] ≥ 0 denote the times of the ith public key sample being selected in an
encryption. Then, we have the equation

l[1] + · · ·+ l[m] = w,

since w public key samples are randomly selected in one encryption. We also have
l[i] ≤ w, since one sample can be selected at most w times. Let c = (c1, . . . , cn+1) be
a ciphertext and v be the unknown plaintext message. Let ai = (ai1, ..., ain). Then, c
is defined by the following n+ 1 equations.

l[1] ∗ a11 + · · ·+ l[m] ∗ am1 = c1 mod q

. . .

l[1] ∗ a1n + · · ·+ l[m] ∗ amn = cn mod q

l[1] ∗ pk1 + · · ·+ l[m] ∗ pkm = v − cn+1 mod q

Altogether, from an encryption, n+2 equations can be defined withm+1 unknowns
l[1],. . . ,l[m], and v. Our scheme requiresm > n+1. Thus, them+1 unknowns cannot
be uniquely determined by the n+2 equations. As to be discussed later, the parameters
(e.g., w, m and n) need to be chosen to ensure there is a large number of possible
combinations of public key samples when generating a ciphertext, hence allowing a
large number of solutions to the above underdetermined system of linear equations.

5 Concrete Security Level and Size-Adaptable Ciphertexts

In this section, we give the estimation of the concrete security level of our scheme. The
estimation is for private key security and message security, respectively, related to the
attack analysis in the last section. We also discuss the size of ciphertexts, which can be
adaptable to the size of message spaces, without changing the security level of private
keys.
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5.1 Security Level of Private Keys

The security level of a private key is determined by the parameters pp = (q, n,m, t, w, b),
and the distributions of three secret values sk, r and p in the private key. As discussed
in the last section, the current attacks to LWE are not applicable to our scheme. Hence,
to recover a private key from the corresponding public key of our scheme, the adversary
needs to correctly guess sk, p, and all ei in at least n public key samples. Let |sk| and
|p| denote the size of distributions from which sk and p are sampled, respectively, and
ski (1 ≤ i ≤ |sk|) and pj (1 ≤ j ≤ |p|) be the ith and jth elements that can be
sampled in the corresponding distributions. Then, the security level of the private key
in our scheme is defined as log2

(∑|sk|
i=1

∑|p|
j=1 r

n
)

bits, where r ≤ q−1−ski∗(t−1)
w∗pj .

On the other hand, the adversary can take sk−1q ∗ p as a single secret value, without
guessing sk and p individually. By this way, the adversary deals with a system of linear
equations with n + 1 unknowns, so it needs to guess ei for n + 1 equations. Thus, the
security level will be log2(r

n+1) bits. The final security level for private keys is the
minimal value between log2

(∑|sk|
i=1

∑|p|
j=1 r

n
)

and log2(r
n+1).

Given a security level of private keys in our scheme, the domains of r, sk and p are
not public, making it harder for the adversary to launch a brute-force attack. That is, the
adversary has no exact knowledge on what are all possible values of ei, sk, and p that
should be guessed.

5.2 Security Level of Messages

The security level of encrypted messages is determined by three public parameters m,
n and w. As described in Section 4.2, from an encryption, we can construct a linear
system of n + 2 equations with m + 1 unknown variables (i.e., the variables l[i] for
1 ≤ i ≤ m and the variable v). The unknown variable v appears only in one equation.
If l[i] can be determined from the n + 1 equations, in which v is not involved, then v
can be recovered. Hence, we consider only those n + 1 equations, which includes m
unknown variables l[i].

By using the Gaussian elimination, the n + 1 equations can be reduced to a new
equation with m−n unknowns left over from l[1], ..., l[m]. In this new equation, let the
m−n unknowns be represented as l′[i] (1 ≤ i ≤ m−n). Then, the new equation after
Gaussian elimination has the format

l′[1] ∗ a′1 + · · ·+ l′[m− n] ∗ a′m−n = pk′ mod q,

where 0 ≤ l′[i] ≤ w and l′[1] + · · ·+ l′[m− n] ≤ w.
The value of l′[1]+ · · ·+ l′[m−n] takes the binomial distribution, with the success

probability sp = m−n
m and w times of experiments. The probability sp means that a

selection of a public key sample in encryption is accumulated by the sum l′[1] + · · ·+
l′[m− n], rather than by the eliminated unknowns. Let Pr(k) denote the probability of
l′[1] + · · ·+ l′[m− n] = k. Then, we have

Pr(k) =
w!

k! ∗ (w − k)!
∗ (sp)k ∗ (1− sp)

w−k
.
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Given a sum k = l′[1] + · · ·+ l′[m− n], there are different combinations of l′[i] to
make the sum. The number of such combination is

(k +m− n− 1)!

k!(m− n− 1)!
.

The security level of a message is thus defined as

log2

(
w∑
k=0

Pr(k) ∗ (k +m− n− 1)!

k!(m− n− 1)!

)
.

5.3 Size of Public Keys and Size of Cipehrtexts

When the public vector ai is shared, the size of a public key is about m ∗ log2 q bits.
The size of a public key is increased with m, which in return leads to a higher level of
message security.

The size of a ciphertext is dependent on parameters w, b , n and q. In a (n + 1)-
dimensional ciphetrext, the last element has log2 q bits, and other n elements has either
log2(w ∗ b) bits or log2 q bits, depending on which one is smaller. Hence, the size of a
ciphertext is log2 q + n ∗min (log2(w ∗ b), log2 q) bits.

Moreover, the size of our ciphertexts can be adaptable to the size of a message space.
That is, given a security level, the ciphertexts can have a big size for a big message
space, or a small size for a small message space.

The security level of private keys and messages of our scheme is directly determined
by the parametersm, n,w, r, |sk|, and |p|. Without changing the security level, one way
of adapting the size of our ciphertexts to the size of a message space is to increase or
decrease q, t and p, as discussed below.

The size of a message space is determined by the value of t. For a bigger t, we can
increase q to ensure the correctness condition sk ∗ (t − 1) + w ∗ r ∗ p < q still holds,
leading to bigger ciphertexts. Similarly, when t becomes smaller, q can be decreased to
produce smaller ciphertexts.

6 Implementation and Evaluation

In this section, we describe the parameter selection in our experiment and the adaption
of the decryption algorithm to the Contiki operating system and MTM-CM5000-MS.
Then, we evaluate the error distribution in public key samples and verify the attack
resistance of our scheme to lattice-based attacks with a tool. At last, we report the im-
plementation and performance of the leveled Needham-Schroeder-Lowe (NSL) public
key authentication protocol over two MTM-CM5000-MSP wireless sensor nodes using
our encryption scheme.

6.1 Parameter Selection

In this prototype, we use c language to implement our scheme on Contiki, which is an
open-source operating system for IoT devices, such as MTM-CM5000-MSP. In Contiki,
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the data type unsigned long (of the c programming language) is the largest integer
type with 4 bytes. When the sum or product of two integers of unsigned long type
is equal to or bigger than 232, the operation of modulo 232 is implicitly enforced by
the underlying hardware. For example, the sum of two unsigned long integers 1 and
4294967295 is zero on Contiki and MTM-CM5000-MSP.

We thus choose q = 232 to benefit from the modulo operations enforced by the un-
derlying hardware. The parameters in our experiment are listed in Table 1 and Table 2.
Since t is 216, we can encrypt 16-bit messages. These parameters satisfy the conditions
n+ 1 < m < n2, b > n, (2log2 b ∗ b+ 2) ∗ b < q, and 2log2 b < n.

The NSL public key authentication protocol includes two parties, called A and B,
to be mutually authenticated. In Table 2, we specify the domains of private parameters
sk and p for each of them. As described below, this selection of private parameters can
keep the security level of private keys above 138-bits.

q t m w n b

232 216 74 86 13 16

Table 1. Public Parameters

Domain of sk
A {2 ∗ x+ 1|0 ≤ x ≤ 50}
B {2 ∗ x+ 1|0 ≤ x ≤ 500}

Domain of p
A {t+ 2 ∗ x+ 1|0 ≤ x ≤ 500}
B {t+ 2 ∗ x+ 1|0 ≤ x ≤ 50}

Table 2. Private Parameters for A and B in NSL Protocol

For the private parameters for A, when sk = 101 and p = 65536 + 1001 = 66537,
r takes its minimal value

232 − 1− 101 ∗ (65536− 1)

86 ∗ 66537
= 749.43,

which satisfies the condition b < r specified in the key generation algorithm. Thus, the
security level of the private key for A is above

log2
(
50 ∗ 500 ∗ (749.43)13

)
= 138 bits.

Similarly, for B, the minimal value of r is

232 − 1− 1001 ∗ (65536− 1)

86 ∗ 65637
= 749.25,
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satisfying the condition b < r, and the security level of B′s private key is at least

log2
(
500 ∗ 50 ∗ (749.25)13

)
= 138 bits.

The above configuration shows that given the security level, the secret domains of sk
and p cannot be exactly determined, hence making it harder for the adversary to guess
all possible combinations of sk and p in brute-force attacks.

Let sp = 74−13
74 . The security level of messages for this configuration is

log2

(
86∑
k=0

Pr(k) ∗ (74 + k − 13− 1)!

k!(74− 13− 1)!

)
= 129.12 bits,

where
Pr(k) =

86!

k! ∗ (86− k)!
∗ (sp)k ∗ (1− sp)

86−k
.

There are 74 public key samples. When ai is shared, the public key samples include
only the components pk i (1 ≤ i ≤ 74), which have 74 ∗ 32 = 2368 bits. Since in this
configuration log2(w ∗ b) < log2 q, a ciphertext has at least log2 q + n ∗ log2(w ∗ b) =
32 + 13 ∗ log2(1376) = 32 + 13 ∗ 10.42 = 167.46 bits; in our implementation, the
actual size of ciphertexts is 176 bits.

6.2 Adaption of Decryption Algorithm to Contiki

As described above, we exploit the hardware to execute the modular operation mod q
in our implementation. For the third step of decryption, i.e., the calculation of v =
sk−1p ∗ skv mod p, if sk−1p ∗ skv ≥ q, then the hardware executes an operation of mod q
unexpectedly.

To solve this implementation problem, we revise the decryption algorithm by divid-
ing sk−1p into h shares, i.e., sk−1p = sk−1p1 + · · ·+sk−1ph , such that sk−1p1 ∗(p−1) < q,...,
and sk−1ph ∗ (p− 1) < q. We have h = 2 in our implementation. The revised decryption
algorithm decrypts a ciphertext c = (a, d) in the following revised steps.

– Calculate c′ = 〈a, s〉+ d mod q.
– Calculate skv = sk ∗ c′ mod q.
– Calculate skv′ = skv mod p.
– For i = 1 to h, calculate vi = sk−1pi ∗ skv′ mod p.
– Calculate v = v1 + · · ·+ vh mod p.

6.3 Performance of Encryption and Decryption

To evaluate the concrete performance of our scheme, we run the implementation on a
MTM-CM5000-MSP device, which has 8MHz CPU frequency. A pair of private key
and public key is generated with the private parameters for A. Then, we encrypt a set of
integers, and after all encryptions, we decrypt and print the decrypted message to check
decryption correctness.
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Fig. 2. Performance of Encryptions and Decryptions

The performance of encryption and decryption is shown in Fig. 2. In one second,
the device can encrypt about 50 messages and decrypt about 500 ciphertexts. This per-
formance is higher than the performance of the lightweight scheme proposed in [13],
where 33 encryptions and 79.4 decryptions performed per second on a 32MHz ARM
Cortex-M0 processor for 84-bit security.

Fig. 3. Secretly-Scaled Errors in Public Keys

6.4 Secretly-Scaled Errors in Public Keys

The secretly-scaled errors in our public key samples can be as big as q. With the config-
ured parameters, we check the errors used in the generation of public keys with experi-
ments. In the experiment, the key generation algorithm runs for A and B, respectively,
with the public parameters in Table 1 and their private parameters in Table 2.

The errors ei ∗ sk−1q ∗ p mod q are shown in Fig. 3. This experiment shows that
the scaled errors in our scheme are spread evenly across Zq . For such secretly scaled
errors, if an adversary wants any chance of launching attacks to our scheme, the secret

20



sk−1q ∗ p must be firstly guessed. In the next experiment, we will assume sk−1q ∗ p has
been guessed correctly.

6.5 Evaluation of Lattice-Based Attacks

The tool3 (referred to as the KMW tool) developed in [28] is used in this experiment.
The first step of this tool is to generate LWE samples. We change this step, letting the
tool generate Compact-LWE samples (ai, 〈ai, s〉+k ∗ ei mod q), where k = sk−1q ∗ p.
Since k is assumed to be guessed by the adversary, we then change the Compact-LWE
samples into (k−1ai, 〈k−1ai, s〉 + ei mod q) as the output samples. The rest of steps
in the tool are not changed.

The errors in Compact-LWE are sampled uniformly, while in LWE they are usually
drawn from a Gaussian distribution. We evaluate the errors from both the uniform distri-
bution and the Gaussian distribution. For the standard deviation of the Gaussian distri-
bution, we let it be 187, so that 95% error values drawn from the Gaussian distribution
is within [−374, 374], roughly matching the possible number of ei in our configuration
(i.e., [0, 749]). For the uniform distribution, we let the KMW tool to sample the errors
from [−374, 374] uniformly.

Fig. 4. Effectiveness of Attack Resistance

6.5.1 Effectiveness of Attack Resistance In this experiment, we still let q = 232,
n = 13, and m = 74, as in our parameter configuration. If k is guessed and both uni-
form distribution and Gaussian distribution are considered, the only difference between
LWE and Compact-LWE is the range of ai, which is bounded by b.

Hence, to evaluate the attack resistance effectiveness of Compact-LWE, we change
the values b from 1024 to 64, and for each value we run the KMW tool 100 times,
recording the number of successful attacks. Each time the KMW tool generates 74 new
Compact-LWE samples to attack. A successful attack means that the vector AT s is
found and thus the secret vector s can be recovered.

3 https://github.com/pfasante/cvp-enum
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Fig 4 shows the evaluation result for both the Gaussian distribution and the uniform
distribution. For both of them, when b is bigger than about 450, almost every attack
is a successful attack. From 450 downward, the number of successful attacks starts
decreasing. When b is decreased to 136 and smaller values, there is no successful attacks
for both distributions.

In our configuration, we have b = 16. Hence, the lattice-based attacks cannot suc-
ceed on Compact-LWE with our configuration. Since LWE takes b = q = 232, those
attacks to LWE succeed easily for the same dimension parameter n = 13.

6.5.2 Attack Resistance with a Bonus Secret In our encryption scheme, a public
key sample is defined as

(ai, pki = 〈ai, s〉+ ei ∗ sk−1q ∗ p mod q).

Let bs ∈ Zq be a new secret value. In this experiment, we change the public key sample
into

(ai, pki = 〈ai, s〉+ bs + ei ∗ sk−1q ∗ p mod q).

With this revised public key, our encryption algorithm does not change and more
importantly the size of ciphertexts does not change. Hence, we call bs a bonus secret.
The implementation of our scheme is based on this revision. Since w times of bs are
added up in a ciphertext, the decryption algorithm needs to slightly revise its first step
into c′ = 〈a, s〉+ w ∗ bs + d mod q.

Recall that in the lattice-based attacks, a matrix A ∈ Zn×mb is constructed by tak-
ing ai as the columns of A. When bs is included in the public key samples, the matrix
A is actually extended with a new column with all entries being 1. Thus, the lattice
generated with the extended matrix is more dense than the lattice formed when bs is
not considered, hence preventing the lattice-based attacks further in principle. Even if
the bonus secret bs can be removed by subtracting two public key samples, this sub-
traction however widens the range of error values in the new sample and hence the
attack-resistant effect should still be improved. This improvement is confirmed by the
following experiment.

In this experiment, we let KMW tool generate 74 Compact-LWE samples with the
bonus secret, and subtract the first sample from each of the rest samples, obtaining
73 samples with the bonus secret removed. k is still assumed to be guessed by the
adversary. Fig 5 shows the evaluation result, which confirms the attack-resistant effect
is improved significantly, in particular for the uniformly distributed errors.

For the uniformly distributed errors, there is no any successful attacks when b is
less than 836. There is one successful attack for the Gaussian distributed errors when
b is as small as 156, but the total number of successful attacks are obviously reduced.
This experiment shows that our scheme is more concretely secure when errors ei are
sampled from a uniform distribution when a bonus secret is used. Our scheme indeed
selects ei from a uniform distribution. Hence, our scheme in this configuration (b = 16)
is protected from the lattice-based attacks very effectively, even when k is assumed to
be guessed correctly.
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Fig. 5. Effectiveness of Attack Resistance

6.6 Leveled Needham-Schroeder Public-Key Authentication Protocol

We implement the leveled authentication of two MTM-CM5000-MSP devices with
the NSL public key authentication protocol and our lightweight public key encryption
scheme. Let PKA and PKB be the public keys of A and B, respectively. In the NSL
protocol, A and B exchange three messages to authenticate each other, where nA and
nB are fresh nonces.

A → B: Enc(PKB , (nA, A))
B → A: Enc(PKA, (nA, nB , B))
A → B: Enc(PKB , (nB))

To achieve leveled authentication, the NSL protocol needs to be revised to allow A
and B to exchange a variational number of nonces, depending on the required authenti-
cation level of IoT devices. Let M indicate the authentication level. The NSL protocol
revised for leveled authentication is shown below, where the operations L(·) and H(·)
return the first and second byte of its parameter, respectively, and ⊕ denotes the XOR
operation.

A→ B: Enc(PKB , (n
1
A, A))

B → A: Enc(PKA, (L(n
1
A ∗B)⊕H(n1A ∗B), n1B))

A→ B: Enc(PKB , (n
2
A, L(n

1
B ∗A)⊕H(n1B ∗A)))

B → A: Enc(PKA, (L(n
2
A ∗B)⊕H(n2A ∗B), n2B))

. . .
B → A: Enc(PKA, (L(n

M
A ∗B)⊕H(nMA ∗B), nMB ))

A→ B: Enc(PKB , (L(n
M
B ∗A)⊕H(nMB ∗A)))

Note that A can verify the message L(niA ∗B)⊕H(niA ∗B), since A knows both niA
and the identity of B, vice versa for B.

To be efficient, the authentication level should be fine-grained, such that each au-
thentication level does not consume too much computation and communication re-
sources of IoT Devices. For this purpose, we choose 1-byte nonces for A and B to
exchange. The leveled NSL protocol can benefit from the ciphertext-size adaptability
of our scheme for this small nonce space.
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The identities of A and B are also supposed to be 1-byte long. Thus each message
in the revised NSL protocol has two bytes, which can be encrypted by our scheme with
the above configuration. Each ciphertext is 176-bit long.

Fig. 6. Performance of Leveled NSL Authentication Protocol

The protocol is evaluated with two MTM-CM5000-MSP devices. Fig 6 shows the
time of message calculation (i.e, nonce generation, encryption, decryption and nonce
verification) and the total authentication time of the protocol. The latter includes the
message calculation time and the time for transmitting messages with the 802.15.4 and
6LoWPAN protocols. We can see the execution of our scheme takes a very small frac-
tion of the total authentication time.

Due to the unreliability of message transmission, the total authentication time of the
protocol is quite variable. Generally, a lower level of authentication takes less time to
complete, such as 640ms for the authentication at the first level and 8373ms for the 16th
level authentication. Thus, the IoT devices can choose appropriate authentication levels
according to the sensitivity of application messages to be protected.

7 Related Work

The secret vector s in LWE can be sampled from the set {0, 1}n or {−1, 0, 1}n [36].
This variant is called binary-LWE and it does not induce dense lattices as Compact-
LWE. Though it is also proven hard asymptotically, the 140-dimensional binary-LWE
can be attacked successfully in a number of hours, as shown in [28]. Hence, the schemes
based on binary-LWE must choose big dimension parameters for concrete security.

Lindner and Peikert [31] analyzed the concrete security of the LWE-based encryp-
tion schemes by giving a lattice-based attack. For the security level of 128 bits, the
public key size shall be 1120K bits. To enable a shorter public key size, Ring Learn-
ing With Errors (Ring-LWE) was introduced by Lyubashevsky, Peikert and Regev [35].
The Ring-LWE based encryption schemes are able to reduce the public key size by a
factor of n. For example, the public key size of [31] needs 2-5K bits by using Ring-
LWE problem. However, the lightweight public encryption based on Ring-LWE still
produces ciphertexts too big ciphertexts (e.g., 2.8K bits).
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The error distribution of LWE can be replaced by other distributions. For example,
Buchmann et al. [14] studied a variant of LWE with binary errors which are chosen from
the uniform distribution on {0, 1}. It is able to improve the performance of lightweight
lattice-based public key encryption schemes [13]. The proposed scheme [13] achieves
84 bits security level by using the private key and public key with the size 256 bits and
2048 bits, respectively, based on the hardness of Ring-Binary LWE problem.

As a lattice-based hard problem, LWE has been used in various public key crypto-
graphic primitives, such as oblivious transfer protocols [40], identity-based encryption
[1], attribute-based encryption [10] and fully homomorphic encryption [12, 19]. Due to
the inherent security requirements of LWE, the public key and ciphertext sizes are not
comparable to traditional constructions of these primitives. Compact-LWE might also
be applied in other cryptographic primitives to reduce their ciphertext sizes.

Hoffstein, Pipher and Silverman [25] proposed a lattice-based public key encryption
scheme NTRU. It is considered as a practical lattice-based encryption scheme without
known efficient attacks, while the security is not formally proved. Stehlé and Stein-
feld [43] modified the NTRU encryption scheme and then it is provably secure in the
standard model. However, Cabarcas, Weiden and Buchmann [15] pointed out that such
scheme is not practical.

Algebraic Eraser (AE) was introduced by Anshel, Anshel, Goldfeld and Lemieux
[3]. AE is claimed an efficient and secure lightweight (Diffie-Hellman like) key ex-
change protocol for resource constrained devices. Specifically, the shared secret size
needs to be 728 bits for 80 bits security. Therefore, the ciphertext size of AE-based
encryption scheme (on the same security level) is estimated larger than 728 bits. The
security of AE is still questionable [5, 6]. A limitation of AE is that the system setup
must be conducted by a trusted third party.

Elliptic Curve Cryptography (ECC) is suitable to lightweight devices due to the
short key size and efficiency. Many ECC-based lightweight protocols (e.g., [29, 30, 24])
were proposed for RFID and other lightweight devices. However, the underlying com-
putation complexity prohibits the significant improvement of encryption and decryption
performance in practice.

Multilevel authentication in Oracle Application Server4 allows different authenti-
cation levels to be assigned to different applications. Their authentication levels are
determined by a fixed number of authentication factors. For example, user names and
passwords are used for a low level authentication, while a high level authentication is
achieved with certificates. For our leveled authentication, there can be any number of
authentication levels, which can be increased gradually with fine granularity.

8 Conclusion

In this paper, we proposed the Compact-LWE problem, based on which a lightweight
public encryption scheme has been constructed. The hardness of Compact-lWE was
proven by giving the reduction from LWE to Compact-LWE. As a big deviation from
other LWE-based or lattice-based encryption schemes, our scheme is still secure, even
if the well-known closest vector problem in lattices can be solved.

4 http://docs.oracle.com/cd/B14099 19/idmanage.1012/b14078/multilevel.htm
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Due to the attack-resistance of Compact-LWE, we can choose small dimension pa-
rameters for our encryption scheme to generate short ciphertexts. The concrete security
of our scheme was confirmed with a lattice-based attack tool.

We implemented our scheme on the Contiki operating system and used it to im-
plement the leveled authentication based on the Needham-Schroeder-Lowe public key
authentication protocol. The evaluation on MTM-CM5000-MSP wireless sensor de-
vices showed that our lightweight public key encryption scheme and the leveled NSL
authentication protocol can be practically deployed in small IoT devices.
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41. Pöppelmann, T., Oder, T., Güneysu, T.: High-performance ideal lattice-based cryptography
on 8-bit atxmega microcontrollers. In: Proceedings of the 4th International Conference on
Progress in Cryptology – LATINCRYPT 2015 - Volume 9230. pp. 346–365 (2015)

42. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In:
Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM Symposium on The-
ory of Computing, Baltimore, MD, USA, May 22-24, 2005. pp. 84–93. ACM (2005)
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