On the security of HMFEv

Yasufumi Hashimoto *

Abstract

In this short report, we study the security of the new multivariate signature scheme HMFEv proposed at PQCrypto 2017.

Keywords. HMFEv, multivariate public-key cryptosystem (MPKC)

1 Introduction

In PQCrypto 2017, a new multivariate signature scheme HMFEv was proposed [8]. It is a vinegar variant of multi-HFE [4]. While the multi-HFE is known to be insecure against the direct attack [6], the min-rank attack [1] and the attack using a diagonalization approach [5], HMFEv is considered to be secure against these attacks and efficient enough.

In this short report, we study the structure of HMFEv and give experimental results of the high-rank attack on HMFEv with parameters selected in [8].

2 HMFEv

The signature scheme HMFEv [8] is constructed as follows.
Let $n, m, N, r, v \geq 1$ be integers with $m:=N r$ and $n:=m+v$. Denote by k a finite field, $q:=\# k$ and K an r-extension of k. Define the $\operatorname{map} \mathcal{G}: K^{N} \times k^{v} \rightarrow K^{N}$ as follows.

$$
\mathcal{G}_{l}(X, u)=\sum_{1 \leq i \leq j \leq N} \alpha_{i j}^{(l)} X_{i} X_{j}+\sum_{1 \leq i \leq N} \beta_{i}^{(l)}(u) X_{i}+\gamma^{(l)}(u), \quad(1 \leq l \leq N)
$$

where $X=\left(X_{1}, \ldots, X_{N}\right)^{t} \in K^{N}, u \in k^{v}, \mathcal{G}(X, u)=\left(\mathcal{G}_{1}(X, u), \ldots, \mathcal{G}_{N}(X, u)\right)^{t}, \alpha_{i j}^{(l)} \in K$, $\beta_{i}^{(l)}: k^{v} \rightarrow K$ is an affine form and $\gamma^{(l)}: k^{v} \rightarrow K$ is a quadratic form.

The secret key is invertible affine maps $S: k^{n} \rightarrow k^{n}, T: k^{m} \rightarrow k^{m}$ and the public key is the quadratic map

$$
F:=T \circ \phi_{N}^{-1} \circ \mathcal{G} \circ \phi_{N, v} \circ S: k^{n} \rightarrow k^{m}
$$

where $\phi_{N}: k^{m} \rightarrow K^{N}, \phi_{N, v}: k^{n} \rightarrow K^{N} \times k^{v}$ are one-to-one maps.
A given signature $y \in k^{m}$ is signed as follows. First, compute $Z=\left(z_{1}, \ldots, z_{N}\right)^{t}:=$ $\phi_{N}\left(T^{-1}(y)\right)$ and choose $u \in k^{v}$. Next find $X \in K^{N}$ such that

$$
\begin{equation*}
\mathcal{G}_{1}(X, u)=z_{1}, \quad \ldots, \quad \mathcal{G}_{N}(X, u)=z_{N} \tag{1}
\end{equation*}
$$

The signature for $y \in k^{m}$ is $S^{-1}\left(\phi_{N, v}^{-1}(X, u)\right)$. The signature $x \in k^{n}$ is verified by checking whether $F(x)=y$.

To find X with (1), one needs to solve a system of N quadratic equations of N variables. Since the complexity of solving it is exponential for N, the number N cannot be large. Petzoldt et al. [8] selected the following parameters for practical use.

[^0]Table 1: Parameter Selection of HMFEv [8]

q	n	m	N	r	v	Security
31	44	36	2	18	8	80 bit
256	39	27	3	9	12	80 bit
31	68	56	2	28	12	128 bit
256	61	45	3	15	16	128 bit
31	97	80	2	40	17	192 bit
256	90	69	3	23	21	192 bit
31	131	110	2	55	21	256 bit
256	119	93	3	31	26	256 bit

3 Proposed attack

We first give several notations and study the structure of polynomials in HMFEv.
For integers $n_{1}, n_{2} \geq 1$, let $\mathrm{M}_{n_{1}, n_{2}}(k)$ be the set of $n_{1} \times n_{2}$ matrices of k entries. Denote by $I_{n} \in \mathrm{M}_{n, n}(k)$ the identity matrix and by $0_{n_{1}, n_{2}} \in \mathrm{M}_{n_{1}, n_{2}}(k)$ the zero matrix. For simplicity, we write $\mathrm{M}_{n}(k):=\mathrm{M}_{n, n}(k)$ and $0_{n}:=0_{n, n}$. For an integer $l \geq 1$ and a matrix $A=\left(a_{i j}\right)_{i, j}$, put $A^{(l)}:=\left(a_{i j}^{l}\right)_{i, j}$.

Let $\left\{\theta_{1}, \ldots, \theta_{r}\right\} \subset K$ be a basis of K over k and

$$
\Theta_{N}:=\left(\theta_{j}^{q^{i-1}} I_{N}\right)_{1 \leq i, j \leq r} \in \mathrm{M}_{m}(K), \quad \Theta_{N, v}:=\left(\begin{array}{cc}
\Theta_{N} & \\
& I_{v}
\end{array}\right) \in \mathrm{M}_{n}(K)
$$

It is known that the one-to-one maps $\phi_{N}, \phi_{N, v}$ are given by the matrices $\Theta_{N}, \Theta_{N, v}$. In fact, it is easy to see that

$$
\phi_{N}=\psi_{N}^{-1} \circ \Theta_{N}, \quad \phi_{N, v}=\psi_{N, v}^{-1} \circ \Theta_{N, v}
$$

where $\psi_{N}: K^{N} \rightarrow K^{N r}, \psi_{N, v}: K^{N} \times k^{v} \rightarrow K^{N r} \times k^{v}$ are maps with

$$
\begin{aligned}
\psi_{N}\left(\alpha_{1}, \ldots, \alpha_{N}\right) & =\left(\alpha_{1}, \ldots, \alpha_{N}, \alpha_{1}^{q}, \ldots, \ldots, \alpha_{N}^{q_{N}^{r-1}}\right)^{t} \\
\psi_{N, v}\left(\alpha_{1}, \ldots, \alpha_{N}, u_{1}, \ldots, u_{v}\right) & =\left(\alpha_{1}, \ldots, \alpha_{N}, \alpha_{1}^{q}, \ldots, \ldots, \alpha_{N}^{q^{r-1}}, u_{1}, \ldots, u_{v}\right)^{t}
\end{aligned}
$$

Then the public key F is described by

$$
F=\left(T \circ \Theta_{N}^{-1}\right) \circ\left(\psi_{N} \circ \mathcal{G} \circ \psi_{N, v}^{-1}\right) \circ\left(\Theta_{N, v} \circ S\right)
$$

namely

$$
\begin{aligned}
& F(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)^{t}=\left(T \circ \Theta_{N}^{-1}\right) \cdot\left(\mathcal{G}_{1}\left(\phi_{N, v}(S(x))\right), \ldots, \mathcal{G}_{N}\left(\phi_{N, v}(S(x))\right)\right. \\
&\left.\mathcal{G}_{1}\left(\phi_{N, v}(S(x))\right)^{q}, \ldots, \ldots, \mathcal{G}_{N}\left(\phi_{N, v}(S(x))\right)^{q^{r-1}}\right)^{t} .
\end{aligned}
$$

When we express $\mathcal{G}_{1}(X, u), \ldots, \mathcal{G}_{N}(X, u)$ by

$$
\mathcal{G}_{l}(X, u)=\left(X^{t}, u^{t}\right)\left(\begin{array}{ll}
A_{l} & B_{l} \\
B_{l}^{t} & C_{l}
\end{array}\right)\binom{X}{u}+(\text { linear form of } X, u)
$$

for some matrices $A_{l} \in \mathrm{M}_{N}(K), B_{l} \in \mathrm{M}_{N, v}(K), C_{l} \in \mathrm{M}_{v}(K)$, the polynomials $\mathcal{G}_{1}(X, u), \ldots$, $\mathcal{G}_{N}(X, u), \mathcal{G}_{1}(X, u)^{q}, \ldots, \ldots, \mathcal{G}_{N}(X, u)^{q^{r-1}}$ are written as quadratic polynomials of

$$
\bar{X}:=\psi_{N, v}(X, u)=\left(X_{1}, \ldots, X_{N}, X_{1}^{q}, \ldots, \ldots, X_{N}^{q^{r-1}}, u_{1}, \ldots, u_{v}\right)^{t}
$$

in the forms

$$
\begin{aligned}
\mathcal{G}_{l}(X, u)= & \left.\bar{X}^{t}\left(\begin{array}{cc|c}
A_{l} & & B_{l} \\
& 0_{n-N} & \\
\hline B_{l}^{t} & & C_{l}
\end{array}\right) \bar{X}+\text { (linear form of } \bar{X}\right), \\
\mathcal{G}_{l}(X, u)^{q}= & \bar{X}^{t}\left(\begin{array}{lll|l}
0_{N} & & & \\
& A_{l}^{(q)} & & B_{l}^{(q)} \\
& & 0_{n-2 N} & \\
\hline & B_{l}^{(q)^{t}} & & C_{l}^{(q)}
\end{array}\right) \bar{X}+(\text { linear form of } \bar{X}), \\
& \vdots \\
\mathcal{G}_{l}(X, u)^{q^{r-1}}= & \bar{X}^{t}\left(\begin{array}{ll|l}
0_{n-N} & \\
& A_{l}^{\left(q^{r-1}\right)} & B_{l}^{\left(q^{r-1}\right)} \\
\hline & B_{l}^{\left(q^{r-1}\right)^{t}} & C_{l}^{\left(q^{r-1}\right)}
\end{array}\right) \bar{X}+(\text { linear form of } \bar{X}) .
\end{aligned}
$$

This means that the public quadratic forms are expressed by

$$
f_{l}(x)=x^{t}\left(\Theta_{N, v} S\right)^{t}\left(\begin{array}{ccc|c}
*_{N} & & & * \\
& \ddots & & \vdots \\
& & *_{N} & * \\
\hline * & \cdots & * & *_{v}
\end{array}\right)\left(\Theta_{N, v} S\right) x+(\text { linear form of } x),
$$

and we see that there exist $\delta_{1}, \ldots, \delta_{N} \in K$ such that

$$
f_{m}(x)+\delta_{1} f_{1}(x)+\cdots+\delta_{N} f_{N}(x)=x^{t}\left(\Theta_{N, v} S\right)^{t}\left(\begin{array}{ll}
0_{N} & \\
& *_{n-N}
\end{array}\right)\left(\Theta_{N, v} S\right) x+\text { (linear form). }
$$

Our attack is to try to find $\delta_{1}, \ldots, \delta_{N} \in K$ such that the rank of

$$
H:=F_{m}+\delta_{1} F_{1}+\cdots+\delta_{N} F_{N}
$$

is at most $n-N$, where $F_{l} \in \mathrm{M}_{n}(k)$ is the coefficient matrix of $f_{l}(x)$. We can consider that, if $\operatorname{rank} H \leq n-N, H$ is written by one of the following forms with high probability.

$$
\begin{aligned}
& \left(\Theta_{N, v} S\right)^{t}\left(\begin{array}{ll}
0_{N} & \\
& *_{n-N}
\end{array}\right)\left(\Theta_{N, v} S\right), \\
& \\
& \ldots,
\end{aligned}\left(\Theta_{N, v} S\right)^{t}\left(\begin{array}{lll}
*_{N} & & * \\
& 0_{N} & \\
* & & *_{n-2 N}
\end{array}\right)\left(\Theta_{N, v} S\right)^{t}\left(\begin{array}{lll}
*_{(r-1) N} & & * \\
& 0_{N} & \\
* & & *_{v}
\end{array}\right)\left(\Theta_{N, v} S\right), ~ l l
$$

Once such a matrix H is recovered, the attacker can recover keys equivalent to (S, T) easily.
To find such $\delta_{1}, \ldots, \delta_{N}$, we state a system of polynomial equations of N variables y_{1}, \ldots, y_{N} derived from the condition that the rank of

$$
H\left(y_{1}, \ldots, y_{N}\right):=F_{m}+y_{1} F_{1}+\cdots+y_{N} F_{N}
$$

is at most $n-N$ and solve it. It is known that, for a matrix A and an integer l, the condition that $\operatorname{rank} A \leq l$ is equivalent that the determinants of arbitrary $(l+1) \times(l+1)$ minor matrices of A are zero. In our attack, we choose an integer N_{1} sufficiently larger than N, state N_{1} equations of N variables $\left(y_{1}, \ldots, y_{N}\right)$ by the determinants of $(n-N+1) \times(n-N+1)$ minor matrices of $H\left(y_{1}, \ldots, y_{N}\right)$, find a common solution $\left(y_{1}, \ldots, y_{N}\right)=\left(\delta_{1}, \ldots, \delta_{N}\right)$ of such N_{1} equations by the Gröbner basis algorithm and check whether $\operatorname{rank} H\left(\delta_{1}, \ldots, \delta_{N}\right) \leq n-N$.

We implemented this approach on Magma [2] ver.2.22-3 on Windows 8.1, Core(TM)i7$4800 \mathrm{MQ}, 2.70 \mathrm{GHz}$ for the parameter selections given in Table 1. In this implements, we

Table 2: Running times of high-rank attack on HMFEv

q	n	m	N	r	v	Time	(Security)
31	44	36	2	18	8	2.20 s	(80bit)
256	39	27	3	9	12	13.2 s	(80bit)
31	68	56	2	28	12	19.1 s	$(128 \mathrm{bit})$
256	61	45	3	15	16	261 s	$(128 \mathrm{bit})$
31	97	80	2	40	17	113 s	$(192 \mathrm{bit})$
256	90	69	3	23	21	-	$(192 \mathrm{bit})$
31	131	110	2	55	21	701 s	$(256 \mathrm{bit})$
256	119	93	3	31	26	-	$(256 \mathrm{bit})$

choose $N_{1}=3$ for $(q, N)=(31,2)$ and $N_{1}=10$ for $(q, N)=(256,3)$, and use an approach given in [7] to compute the determinants of polynomial matrices. We remark that, if q is even, we use $F_{l}+F_{l}^{t}$ instead of the coefficient matrix F_{l}, and then we make a minor arrangement for our attack based on the fact that the determinant of a skew-symmetric matrix is zero when the size of the matrix is odd and is a square when that is even (e.g. [3]).

The running times of our attack are given in Table 2. These results show that HMFEv for $N=2$ is not secure at all. While the complexities for the cases of $N=3$ is much more than the cases of $N=2$, we can consider that the security is far from $80,128,192$ or 256 bit.

Acknowledgment. The author was supported by JST CREST no.JPMJCR14D6 and JSPS Grant-in-Aid for Scientific Research (C) no. 17K05181.

References

[1] L. Bettale, J.C. Faugere, L. Perret, Cryptanalysis of HFE, multi-HFE and variants for odd and even characteristic, Designs, Codes and Cryptography 69 (2013), pp. 1-52.
[2] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), pp. 235-265.
[3] A. Cayley, Sur les determinants gauches (On skew determinants), J. Reine Angew. Math. 38 (1849), pp.93-96.
[4] C.H.O. Chen, M.S. Chen, J. Ding, F. Werner, B.Y. Yang, Odd-char multivariate Hidden Field Equations, http://eprint.iacr.org/2008/543.
[5] Y. Hashimoto, Key recovery attacks on multivariate public key cryptosystems derived from quadratic forms over an extension field, IEICE Trans. Fundamentals, Vol. 100-A (2017), pp. 18-25.
[6] M.D.A. Huang, M. Kosters, Y. Yang, S.L. Yeo, On the last fall degree of zero-dimensional Weil descent systems, https://arxiv.org/abs/1505.02532 (2015).
[7] E.V. Krishnamurthy, Error-free polynomial matrix computations, Texts and Monographs in Computer Science, Springer, 1985.
[8] A. Petzoldt, M.S. Chen, J. Ding, B.Y. Yang, HMFEv - An efficient multivariate signature scheme, PQCrypto 2017, LNCS 10346 (2017), pp. 205-223.

[^0]: *Department of Mathematical Science, University of the Ryukyus, e-mail: hashimoto@math.u-ryukyu.ac.jp

