
This is the full version of the article published in the proceedings of
3rd IEEE European Symposium on Security and Privacy (EuroS&P 2018).

More is Less: On the End-to-End Security of Group Chats in
Signal, WhatsApp, and Threema

Paul Rösler, Christian Mainka, Jörg Schwenk
{paul.roesler, christian.mainka, joerg.schwenk}@rub.de

Horst Görtz Institute for IT Security
Chair for Network and Data Security

Ruhr-University Bochum

January 15, 2018

Abstract—Secure instant messaging is utilized in two variants:
one-to-one communication and group communication. While
the first variant has received much attention lately (Frosch
et al., EuroS&P16; Cohn-Gordon et al., EuroS&P17; Kobeissi
et al., EuroS&P17), little is known about the cryptographic
mechanisms and security guarantees of secure group commu-
nication in instant messaging.

To approach an investigation of group instant messaging
protocols, we first provide a comprehensive and realistic secu-
rity model. This model combines security and reliability goals
from various related literature to capture relevant properties
for communication in dynamic groups. Thereby the definitions
consider their satisfiability with respect to the instant delivery
of messages. To show its applicability, we analyze three widely
used real-world protocols: Signal, WhatsApp, and Threema.
Since these protocols and their implementations are mostly
undocumented for the public and two out of three applications
among them are closed source, we describe the group protocols
employed in Signal, WhatsApp, and Threema. By applying
our model, we reveal several shortcomings with respect to
the security definition. Therefore we propose generic coun-
termeasures to enhance the protocols regarding the required
security and reliability goals. Our systematic analysis reveals
that (1) the communications’ integrity – represented by the
integrity of all exchanged messages – and (2) the groups’
closeness – represented by the members’ ability of managing
the group – are not end-to-end protected.

We additionally show that strong security properties, such
as Future Secrecy which is a core part of the one-to-one
communication in the Signal protocol, do not hold for its group
communication.

1. Introduction

Short Message Service (SMS) has dominated the text-
based communication on mobile phones for years. Instant
Messaging (IM) applications started by providing free-of-
charge SMS functionality, but today provide numerous addi-
tional features, and therefore dominate the messaging sector
today [4, 5, 6].

One of the main advantages of IM applications over
SMS is the possibility to easily communicate with multiple
participants at the same time via group chats. IM chats
thereby allow sharing of text messages and attachments,
such as images or videos, for both, direct communication
and group communication. Groups are mainly defined by
a list of their members. Additionally, meta information is
attached to groups, for example, a group title. Depending
on the IM application and its underlying protocol, groups
are administrated by selected users, or can be modified by
every user in a group.

With the revelation of mass surveillance activities by
intelligence agencies, new IM applications incorporating
end-to-end encryption launched, as well es established IM
applications added encryption to their protocols to protect
the communication towards the message delivering servers.
Hence analyses, investigating these protocols, also include
malicious server-based attacks [3, 7].

In contrast to open standardized communication pro-
tocols like Extensible Messaging and Presence Protocol
(XMPP) or Internet Relay Chat (IRC), most IM protocols
are centralized such that users of each application can only
communicate among one another. As a result, a user cannot
choose the most trustworthy provider but needs to fully
trust the one provider that develops both, protocol and
application.

End-to-end encryption is the major security feature of se-
cure instant messaging protocols for protecting the protocol
security when considering malicious server-based attacks.
Additionally further security properties like future secrecy
have been claimed [8], analyzed [1], and proven [2]. For-
ward secrecy and future secrecy are properties that describe
the preservation or recovery of security if user secrets are
leaked to the attacker at a later (resp. earlier) point of
time. End-to-end encryption is part of all major IM apps,
including Signal [9], WhatsApp [10], Threema [11], Google
Allo [12], and Facebook Messenger [13]. One of the main
achievements of secure instant messengers is the usability of
its end-to-end encryption. After the application installation,
keys are automatically generated, and encryption is (or can
easily be) enabled. Experienced users may do some simple

checks to verify the public key of their counterpart [14], but
this is often an optional step.

Contrary to classical multi-user chats, for example, to
IRC in which all members are online, groups in IM proto-
cols must work in asynchronous settings; Groups must be
createable and messages must be deliverable even if some
group members are offline.

The fact that widely used secure instant messenger pro-
tocols are neither open source nor standardized makes it
harder to analyze and compare their security properties. This
leads to two major challenges. First, the applications must
be reverse engineered [1, 15, 16] for retrieving a protocol
description. Second, third-party implementations are often
blocked by providers [17] such that an active analysis is
even more complicated.

When analyzing the protocols, the security properties
in the setting of asynchronous, centralized messaging must
be investigated with the whole group environment in mind.
The security of a protocol does not only rely on single
messages, exchanged between two group members. For
example, the abstract security goal confidentiality is based
on the composition of the strength of the encryption algo-
rithm for protecting the content of single messages and the
protocol’s strength to ensure that users who do not belong
to a group must not be able to add themselves to the group
or receive messages from the group without the members’
permission. Additionally, the integrity of the communication
is not restricted to the non-malleability of single exchanged
messages but also consists of the correct message delivery
between the communicating users.

Established definitions like reliable multicast [18, 19]
and related formalizations like group communication sys-
tems (GCS) [20] provide a set of properties that need to be
reached for achieving a secure and reliable group communi-
cation. However, they do not fully match the described set-
ting and over-accomplish the reliability requirements at costs
of the instant delivery of messages. Therefore, the modeling
of our security and reliability definitions bases on the related
literature and the satisfiability of real-world requirements
such as asynchronous communication and instant message
delivery. For this purpose we also considered representative
secure instant messengers by extracting security properties
from their features (provider statements or visual user in-
terface). We matched these properties to definitions from
the mentioned and further related fields of research (e.g.,
authenticated key exchange, reliable broadcast, GCS) and
thereby provide a novel comprehensive security model for
the investigation of secure group instant messaging proto-
cols.

We investigate three popular secure instant messengers:
Signal [9], Threema [11], and WhatsApp [10]. Signal can
be seen as a reference implementation for other secure
instant messenger protocols that implement the Signal key
exchange protocol like Facebook Messenger, Google Allo
and other messengers. However, our analysis shows that the
integration of the Signal key exchange protocol does not
imply same group communication protocols. We chose to
analyze WhatsApp, because it is one of the most widely used

instant messenger applications with more than one billion
users [21]. We additionally chose to analyze Threema as a
widely used representative for the class of proprietary and
closed source instant messengers – not implementing the
Signal key exchange protocol. Signal and Threema are both
used by at least one million Android users [22, 23]. Based
on this examination, we apply our model and evaluate the
security properties. In our systematical analysis, we reveal
several discrepancies between the security definition of our
model and the security provided by the group communica-
tion protocols of these applications.
Our contributions are outlined as follows:

I We present and discuss a realistic and comprehensive
security model for the analysis of group communication
in secure instant messenger protocols (§ 2). Therefore we
employ definitions from related literature and fit them
to the setting of instant message delivery in groups. As
such, we lift strong notions of reliability to a realistic
model and combine them with well established security
goals to introduce a formalism that is applicable for real-
world protocols.

I We describe the group communication protocols of Sig-
nal (§4), WhatsApp (§5), and Threema (§6) and thereby
present three fundamentally different protocols for se-
cure and instant group communication to enable further
scientific analyses.
We analyze them by applying our model and thereby re-
veal several insufficiencies showing that traceable deliv-
ery, closeness and thereby confidentiality of their group
chat implementations are not achieved. As a result, we
show that none of these group communication protocols
achieves future secrecy.

I We provide and compare generic approaches to secure
group communications, based on our observations and
related literature (§8).

All findings have been responsibly disclosed to the ap-
plication developers.

2. Security Model

Secure instant messaging protocols should satisfy the
general security goals Confidentiality, Integrity, Authenticity
and Reliability. Some of them even claim advanced security
goals like Future Secrecy.

One could expect that protocols for group communi-
cation reach the same properties – as well as several oth-
ers –, that are naturally achieved in a two-party scenario.
Intuitively, a secure group communication protocol should
provide a level of security comparable to when a group
of people communicates in an isolated room: everyone in
the room hears the communication (traceable delivery),
everyone knows who spoke (authenticity) and how often
words have been said (no duplication), nobody outside the
room can either speak into the room (no creation) or hear
the communication inside (confidentiality), and the door to
the room is only opened for invited persons (closeness).

2

Figure 1. Overview over syntax of group instant messaging protocols
showing the interacting user’s interfaces on left and the interfaces of the
application to the network on the right.

Even though some of these requirements seem to be well
understood, it is essential for a comprehensive analysis to
take them into account.

2.1. Notation and Assumptions

The instant messenger protocols in scope are central-
ized: all exchanged messages are transmitted via a central
server, that receives messages from the respective senders,
caches them, and forwards them as soon as the receivers are
online. Hence the protocols are executed in an asynchronous
environment in which only the server is always online.

We generally define a group gr as the tuple

gr = (IDgr,Ggr,G∗gr, infogr),G∗gr ⊆ Ggr ⊆ U

where U is the set of protocol users, Ggr is the set of
members in the group and G∗gr is the set of administrators
of the group. The group is uniquely referenced by IDgr.
Additionally, a title and other usability information can be
configured in infogr. We denote communicating users as
A,B,C, .., U, ..,X ∈ U and an administrator as U∗ ∈ G∗gr.

Every user maintains long-term secrets for initial contact
with other users and a session state for each group in which
she is member. The session state contains housekeeping
variables and secrets for the exclusive usage in the group.
Messages delivered in a group are not stored in the session
state.

By distinguishing between delivery and receiving of
messages, we want to emphasize that a received message is
first processed by algorithms before the result is presented
to the user.

2.2. Syntax

In order to provide a precise security model for secure
group instant messaging, we define a group instant messag-
ing protocol as the tuple of algorithms

Σ = ((snd, rcv),

(SndM,Add,Leave,Rmv,DelivM,ModG,Ack))

The first two algorithms (snd, rcv) provide the application
access to the network (network interface). Thereby snd out-
puts ciphertexts and rcv takes and processes ciphertexts. The
latter seven algorithms process actions of the user or deliver
remote actions of other users to the user’s graphical interface
(user interface)1. Each protocol specifies these algorithms
and the interfaces among them. To denote that one algorithm
algA has an interface to another algorithm algB we write
algAalgB.

Every algorithm has modifying access to the session
state of the calling user U for the communication in
group gr. A schematic depiction of the syntax can be seen
in Figure 1.

I snd→ ~c: Outputs a vector of ciphertexts, designated to
the central server, to the network.

I rcvsnd,DelivM,ModG,Ack(c): Receives ciphertext c from
the central server and processes it by invoking one of
the delivery algorithms and possibly the snd algorithm.

Actions of user U are processed by the following algorithms,
which then invoke the snd algorithm for distributing the
actions’ results to the members Vi ∈ Ggr of group gr:

I SndMsnd(gr,m)→ id : Processes the sending of content
message m to group gr.

I Addsnd(gr, V)→ id : Processes adding of user V to gr.
I Leavesnd(gr)→ id : Processes leaving of user U

from gr.
I Rmvsnd(gr, V)→ id : Processes removal of user V

from gr.

Every algorithm that processes the calling user’s actions
outputs a unique reference string id . In order to simplify
the later defined security goals, we subsume the previous
four algorithms as Actn(gr)→ id .

Actions initiated by other users are first received as
ciphertexts by the rcv algorithm and then passed to the
following algorithms, which deliver the result to user U :

I DelivM→ (id , gr, V,m): Stores m with reference
string id from sender V in group gr for displaying it
to user U .

I ModG→ (id , gr′): Updates the description of group gr
with IDgr = IDgr′ to gr′ after the remote modification
with reference string id .

I Ack→ id : Acknowledges that action with id was de-
livered and processed by all its designated receivers.

One practical implementation of the Ack algorithm for the
acknowledgment of message delivery towards the sender is
depicted in Figure 2: the first checkmark is set when the
message is delivered to the central server, and the second
checkmark is only set if the message was delivered to all
group members.

For the same reason, for which we subsumed user
actions under Actn(gr)→ id , we denote both algorithms
DelivM and ModG as Deliv→ (id , gr).

1. For clarity, our syntax disregards irrelevant features of instant mes-
saging applications, such as the update of the group title.

3

Figure 2. Double checkmarks in Signal (upper screenshot) and WhatsApp
(lower screenshot) indicating that a group message was successfully deliv-
ered to all members’ devices.

2.3. Threat Model

We consider three types of adversaries against secure
instant messaging protocols. Thereby we define the ad-
versaries aiming to break one of the subsequently defined
security goals in one designated group named the target
group.
Malicious User. Since all protocols are open for new users,
the adversary may act as a malicious user who can arbitrarily
deviate from the protocol specification. To exclude trivial
attacks against the instant delivery of messages, we assume
that members of the target group behave correctly by always
following the protocol description.
Network Attacker. This adversary has full control over the
communication network, and may access and modify all
unprotected traffic.
Malicious Server. This adversary models attackers with
access to the group instant messaging protocol alone. Mo-
tivated by our aim to analyze the reliance of the instant
messaging protocols on the transport layer protection, we
regard this attacker type. Besides the direct impersonation
of the central server [3, 7], this adversary models attacks
against the transport layer security between users and the
central server [24, 25, 26].

To analyze protocols’ resilience against the compromise
of user secrets, for the definition of Perfect Forward Secrecy
and Future Secrecy, the following two capabilities are added
to the previously described adversaries.
Long-term Secret Compromise. This enables the adversary
to compromise a particular user during or after the protocol
execution, to obtain her long-term secrets. As described for
the malicious user, impersonations are considered as trivial
attacks and therefore sessions, started after the compromise,
are not considered as secure.
Session State Compromise. This enables the adversary to
compromise a user to obtain the full session state at some
intermediate stage of the protocol execution. In contrast to
the long-term secret compromise, this additional capability
is not restricted regarding the impersonation of members in
the target group explicitly because the respective definitions
of Perfect Forward Secrecy and Future Secrecy consider it
accordingly.

2.4. Security Goals

Security and reliability in dynamic group communica-
tion can be divided into three aspects: 1) confidentiality of

the conversations’ content, 2) integrity of the conversation
and 3) the confidentiality induced by the group management.
Except from the last aspect, all defined goals are both ap-
plicable for group messaging and direct messaging. Indeed
some of them are commonly ruled out because they seem
to be reached trivially in a two party setting.

In addition to the subsequently defined security and reli-
ability goals, there exist stronger definitions for the purpose
of secure communication in groups [18, 27]. As we will
argue in section 8, these definitions are not applicable for
instant messaging in the described setting.
Confidentiality. We employ the one-way security notion for
the confidentiality of the communicated content. As such,
the definition of pure confidentiality is only applicable for
non-compromising adversaries. We make then use of this
definition for Perfect Forward Secrecy and Future Secrecy
to regard compromising adversaries.
I End-to-end Confidentiality. No message m sent by

a member U ∈ Ggr in the target group gr via
SndM(gr,m) can be obtained by the adversary.

For defining confidentiality under session state compromise,
we say messages of U in gr for messages that are sent by U
by calling SndM(gr,ms) and messages that are delivered
to U via DelivM→ (id , gr, V,mr).
I Perfect Forward Secrecy. On leakage of user U ’s session

state, confidentiality of past messages of U in gr is
maintained.

Future Secrecy – also known as Post-Compromise Secu-
rity [2] – intuitively means that the protocol continuously
renews the session state of a user’s session and thereby inval-
idates old states in this session. Known protocols [2, 28, 29]
reach this property by the interaction with the session part-
ners.

Accordingly we define one group round-trip as the
sequence of actions after which all members of a group
output ciphertexts via snd and all group members received
the ciphertexts designated to them via rcv.
I Future Secrecy. Let λ be a constant, then λ group round-

trips after the leakage of user U ’s session state, confi-
dentiality of future messages of U in gr is established.

The definition for groups can easily be applied to the two
user setting. The proof of Cohn-Gordon et al. [2] shows
that Signal provides Future Secrecy for λ = 1 for a static
‘group’ of size 2.
Integrity. Defining integrity as a goal for a consecutive com-
munication not only targets end-to-end integrity of single
messages, but the whole communicated content.
I Message Authentication. If a message m is delivered to

V ∈ Ggr by DelivM→ (id , gr, U,m), then it was in-
deed sent by user U by calling SndM(gr,m).

While it is implied by Message Authentication that other
users cannot plant messages into a communication between
two parties, for groups it is necessary to be required2:

2. Please note that disregarding No Creation and Closeness as required
goals provides a weak definition of Reliable Multicast.

4

I No Creation. If a message m is delivered to member
U ∈ Ggr via DelivM→ (id , gr, V,m) with sender V ,
then V ∈ Ggr holds.

Every member in a group can contribute content messages
and it is therefore important for the receiver to know the
exact sender. This differs for the initiation of group manage-
ment actions (see Confidentiality by Group Management).
Certainly, the following security goals are applicable to all
actions a user initiates. For generality the definitions make
use of the abstract algorithm names for actions of a user
and for the respective delivery by its receivers3.
I No Duplication. For every user action Actn(gr)→ id

initiated by user U for group gr the resulting delivery
algorithm Deliv→ (id , gr) is invoked at most once by
each group member Vi ∈ Ggr.

I Traceable Delivery. If the delivery of user action
Actn(gr)→ id by user U is acknowledged to
user V ′ ∈ Ggr by invoking Ack→ id , then the respec-
tive Deliv→ (id , gr) algorithm was invoked by all
members
Vi ∈ Ggr \ {U}.

Intuitively Traceable Delivery means that if a member is
notified about the termination of an action performed in
the group, then the respective delivery was invoked by
all its members4. Please note that we do not restrict who
obtains acknowledgments by the protocol. Commonly the
initiator of an action is informed about the delivery state.
Acknowledging the leaving of a user to this leaving user is,
however, of little value.

We want to remark that Traceable Delivery provides no
guarantees for the delivery of sent messages; it only provides
guarantees regarding the validity of acknowledgments. A
delivery guarantee can indeed not be provided since the
centralized server can always refuse ciphertexts’ forwarding.
I Weak FIFO Order. If user U calls Actn1(gr)→ id1

before Actn2(gr)→ id2, then member V ∈ Ggr will
not invoke Deliv1 → (id1, gr) after she invoked
Deliv2 → (id2, gr).

I Weak Causal Order. If user U1 calls Actn1(gr)→ id1

and user U2 calls Actn2(gr)→ id2 after she in-
voked Deliv1 → (id1, gr), then member V ∈ Ggr will
not invoke Deliv1 → (id1, gr) after she invoked
Deliv2 → (id2, gr).

In contrast to all other security and reliability goals, ordering
– in its strict definition – limits the instant delivery of
messages: a later message would only be delivered if all
its predecessors were delivered. For this reason we relax the
definition such that the instant delivery is possible under the
restriction that message omissions are accepted as long as
the order among delivered messages is preserved.

3. If Actn(gr) → id refers to the SndM algorithm, then
Deliv → (gr, id) refers to the DelivM algorithm. All remaining
actions by a user are delivered by the algorithm ModG.

4. It may seem that this property is implied by Message Authentication
and No Creation. It would therefore be necessary to implement Ack by ex-
plicit acknowledgment messages that are processed as content messages. In
order to keep our model generic, we define Traceable Delivery independent
of assumptions on the implementation.

Confidentiality by Group Management. Group protocols
must fulfill additional requirements to meet confidentiality
as a security goal. While authenticity for content messages
is defined via Message Authentication, the following defini-
tions also imply authenticity for group management actions:
I Additive Closeness. If member U ∈ Ggr modifies the

member set Goldgr to Ggr′ via (id , gr′)← ModG :
|Goldgr |< |Ggr′ |, IDgr = IDgr′ , then an administrator
U∗ ∈ G∗gr called Add(gr, V) to add new member
V = Ggr′ \ Goldgr to the group.

I Subtractive Closeness. If member U ∈ Ggr modifies the
member set Goldgr to Ggr′ via (id , gr′)← ModG :
|Goldgr |> |Ggr′ |, IDgr = IDgr′ , then either an administra-
tor U∗ ∈ G∗gr called Rmv(gr, V) to remove member
V = Goldgr \ Ggr′ from the group, or member V called
Leave(gr) to leave the group.

While Additive Closeness is a security goal, Subtractive
Closeness is defined as a correctness property and thereby
targets reliability. Turning the latter into a security definition,
requiring the enforcement of member set reduction, is of no
value in a centralized server structure where the server can
drop every ciphertext. Since Traceable Delivery is applied
to all user actions, a certain security assertion can be made:
if a member invokes Ack → id for the removal operation
with the same id , then the removal was conducted by all
remaining members.
Secure and Reliable Group Instant Messaging.
Definition 1. A protocol Σ is a Secure and Reliable Group

Instant Messaging Protocol if it fulfills End-to-end Con-
fidentiality, Message Authentication, No Creation, No
Duplication, Traceable Delivery, Additive Closeness,
and Subtractive Closeness in the presence of Malicious
User, Network Attacker, and Malicious Server.

Furthermore the protocol may reach Perfect Forward
Secrecy and Future Secrecy to defend compromising adver-
saries.

Substantiating reliability of the protocol is reached if it
provides Weak FIFO Order and Weak Causal Order. Our
ordering definitions, however, illustrate that there exists a
tradeoff between reliability and instant message delivery.
As such we address ordering as a soft goal for secure
and reliable instant messaging. An additional discussion
regarding this tradeoff can be found in section 8.

3. Methodology

We describe our general evaluation methodology in the
following.
Test Setup. For all three investigated protocols, we used
the official Android versions provided by the Google Play
Store. In order to analyze groups, we created a group of at
least three members using three different devices.
Protocol Descriptions. We derived the protocol descriptions
by analyzing the source code and debugging the imple-
mentations. For Signal, we used source code available on

5

Github [30, 31]. Since neither WhatsApp nor Threema
provide official open source implementations, our analysis
of these protocols mainly bases on the traffic that was re-
ceived by unofficial protocol implementations [15, 16]. The
respective messages and operations were sent by the official
applications running on different devices and transmitted via
the official messenger servers.
Proof-of-Concepts. In order to substantiate the described
protocol shortcomings, we were able to implement proof-of-
concept exploitations for a subset of them. Attacks involving
a malicious server could only partially be exploited since
we did not have access to the official servers. The protocol
descriptions however strongly suggest our evaluation results.
Details are given in sections 4.3, 5.3, and 6.3.
Responsible Disclosure. All tested and untested weaknesses
were acknowledged by the developers during the responsi-
ble disclosure process. An overview on the results of our
protocol evaluation can be found in section 7. Threema has
already updated its application in response.
Constraints of Attack Descriptions. Even though the de-
velopers do not explicitly claim to satisfy our definition of
security, we will call discrepancies between the security
provided by the protocols and security required by our
definition attacks since our model requires its fulfillment.
Description of an Example Protocol Run.

In order to provide a comparable description of the pro-
tocols, Figures 4 (Signal), 6 (WhatsApp) and 8 (Threema)
depict an example protocol run of each protocol containing
direct and group communication. The figures are meant
to highlight the differences in the three group messaging
protocols. The depicted protocol sequence covers the key
usage for the following actions:
(1) User A sends a direct message m = "Hi" to user B.
(2) User A sends a group message m = "Hey" to a group

with members G = {A,B,C}.
(3) User A receives the information that user B leaves the

group with members G = {A,B,C}, such that its
members are G = {A,C} afterwards.

(4) User A sends a group message m = "Ho" to the group
with members G = {A,C}.

(5) User A creates a group with members H = {A,B,C}.
(6) User A sends a group message m = "Yo" to the group

with members H = {A,B,C}.
(7) User A receives a group message m = "Yey" from

user C to the group with members H = {A,B,C}.

4. Signal

Signal is an open source instant messaging application
available for Android, iOS, and as a Google Chrome exten-
sion [32]. It is well-known for its key exchange that reaches
the goals Perfect Forward Secrecy and Future Secrecy. Pre-
vious analyses focused on the key exchange protocol and
direct messaging between two participants [1, 2].

Signal provides group messaging of text messages and
other content such as pictures or videos. We restrict our

investigation to group messaging including the transmission
of text content.

In Signal, a user is allowed to run multiple devices si-
multaneously, for instance, one mobile app (iOS or Android)
plus an arbitrary number of Google Chrome extensions.
Thereby sending and receiving of messages from all con-
nected devices is possible and the chats (groups, and direct
messages) are synchronized among them. Our analysis does
not consider this feature and assumes multiple users with
one device each to form groups because this strengthens the
comparability of the analyzed protocols.

The Signal application implements Curve25519 [33] and
HMAC-SHA256 [34] for the key derivation (Double Ratchet
algorithm). The HMAC is also used for message authentic-
ity in combination with AES-CBC-PKCS5Padding [35] for
preserving confidentiality of the messages. We assume these
implementations secure and did not look for implementation
issues therein.

In the following sections, we shortly introduce the gen-
eral protocol setting stripped down to the essence necessary
to understand the group communication. We then describe
the group protocol and evaluate it regarding the defined
model. Figures 4, 6, and 8 depict an example protocol run of
the analyzed protocols and thereby give an overview on the
fundamental differences in Signal, WhatsApp, and Threema.

4.1. General Initialization Protocol

4.1.1. Session Establishment with the Server. For identi-
fication and authentication, each user (more precisely, each
device) holds credentials. This is a user name, which cor-
responds to the user’s phone number, and a password that
is randomly chosen by the Signal server during the device’s
initial usage. The credentials are sent to the Signal server
in every request. Additionally, Signal uses Transport Layer
Security (TLS) as a cryptographic primitive to protect the
channel between users and the server.

4.1.2. Key Agreement and Key Derivation. The initial
shared secret (root key) between two parties is calculated
with the X3DH Key Agreement Protocol [36] that uses
static and ephemeral Diffie-Hellman shares of both parties.
This root key initializes the Double Ratchet algorithm (DR
algorithm) [37], which can be seen as a stateful encryp-
tion algorithm [38]. The algorithm’s state – consisting of
multiple keys – is updated asymmetrically by both parties
during the communication and symmetrically as long as
only one communication party contributes messages. This
key update process is called ratcheting. When only the
symmetric updating is conducted – as in WhatsApp groups
– this is called symmetric ratcheting. The DR algorithm is
consequently the combination of symmetric and asymmetric
ratcheting. Thereby the initialization keys of the symmetric
ratcheting are called chain keys. By its characteristics, the
symmetric ratcheting cannot provide Future Secrecy but
provides Perfect Forward Secrecy of the resulting keys. The
asymmetric ratcheting provides both properties such that the
combination (DR algorithm) also provides both properties.

6

The encryption DRE and decryption DRD of the DR al-
gorithm have modifying access to the keys which are stored
in the state (denoted as A,B in Figures 3 and 5). The key
for encrypting and decrypting is generated as soon as it is
needed and removed directly afterwards. Only intermediate
keys (e.g., chain keys) that are not used for encryption and
decryption are stored in the state.

c
$←− DREA,B(m), m := DRDA,B(c)

A schematic description of the DR algorithm when used in
the Signal and WhatsApp messaging protocol can be seen
in Figure 9. The usage of the key streams can be seen in
the example protocol run in Figures 4 and 6.

4.2. Group Protocol

Figure 3. Schematic depiction of Signal’s traffic, generated for a message m
from sender A to receivers B and C in group gr with Ggr = {A,B,C}.
Transport layer protection is not in the analysis scope (gray).

In contrast to other secure group messaging protocols
(e.g., WhatsApp and Threema), Signal implements non-
administered groups such that all members of a group
can manipulate the group management information (i.e.
G∗gr = Ggr). The group is uniquely referenced by a random
128 bit vector IDgr.

4.2.1. Group Messages. A group message in Signal is
treated as a direct message but the group ID is additionally
attached to the encrypted plaintext. By using this approach,
the Signal server cannot distinguish a group message from
a direct message. Together with the timestamp tm, the
message is statefully end-to-end encrypted for each member
of the group. Every resulting ciphertext is then sent to
the server together with the respective receiver ID and the
timestamp via TLS. The server forwards the end-to-end
encrypted messages to the respective group members via
TLS, as well. When the server forwards the message to the
receivers, it replaces the receiver’s ID by the sender ID.

Figure 3 describes the format of a group message from
member A to members B and C in group gr that is sent
via the server S5.

5. We omitted irrelevant fields regarding our evaluation in the message
format. The whole format can be found in the format description [39]. We
also left out Google’s Cloud Messaging (GCM) service for clarity.

Messages for group management contain the updated
group information in the end-to-end encrypted message part:

m :=


m, if SndM(gr,m)

(Ggr, infogr), if Add(gr, V) : Ggr := Goldgr ∪ {V }
leave, if Leave(gr)

The server acknowledges messages from the sender, and
the receivers acknowledge the receipt to the server. These
acknowledgments contain the sender ID and the timestamp
tm of the original message but not the group ID. Once a re-
ceiver’s acknowledgment is gained, the server forwards this
receipt acknowledgment to the sender. All acknowledgments
are not end-to-end encrypted, thus only rely on TLS. The
sender collects the members’ acknowledgments and displays
a successful receipt (see checkmarks in Figure 2) as soon
as all receivers’ acknowledgments arrived.

4.2.2. Group Management. The group management con-
sists of two protocol flows: an update flow and a flow that
is processed once a user leaves the group.

The update flow is used for the creation of a group,
for adding users, and for changing group information like
the title of a group. For creating and updating a group, the
modifying member sends an end-to-end encrypted message
to each group member, containing the new set of members
Ggr and the new group information infogr. Signal does not
allow removing of other members from a group. As a result
an update message, containing not the complete member set
Ggr, does not lead to the removal of missing group members.

If a member choses to leave the group, she sends a
leave information together with IDgr end-to-end encrypted
to every other member.

4.2.3. Example Protocol Run. Figure 4 depicts an exam-
ple protocol run. We denote the key derivation function
(ratcheting) by an arrow, which forks multiple keys used for
encryption and decryption (strongly simplified). The only
difference between group messages and direct messages can
be found inside the end-to-end encrypted plaintext. Summa-
rized, one group message results in multiple direct messages.
The group management messages are also communicated
via multiple direct messages.

As Figure 4 shows, A maintains two separate key
streams, one for the communication with B and the one
for C. Both are separately used for direct and group com-
munication (with B resp. C).

4.3. Security Evaluation and Observations

We practically verified two weaknesses of Signal and
created proof-of-concepts for them. First, we burgle into a
group by writing group management messages into it. Sec-
ond, we make a victim believe that a message is delivered
while it is not.

7

Figure 4. Schematic depiction of key streams of A and ciphertexts from and to A that are used when sending and receiving direct and group messages
and modifying the groups in Signal. The legend of the graphic also regards to Figures 6 and 8.

4.3.1. Burgle into the Group. Performing the following
steps allows an attacker to become a member of the targeted
group. The attacker can read any further group communica-
tion and contribute own content to the group chat. Because
every group member in Signal has administrative privileges,
the attacker automatically becomes a group administrator.
Preconditions. The attacker only needs to know the group
ID IDgr and the phone number B of one member.
I Malicious User. In the simplest case, the attacker was a

former member of the group, and has recorded the group
ID using a modified client software.

I Session State Compromise. IDgr is stored in the session
state and can thereby be revealed via this compromise.

Description. The attacker A, knowing the secret group
IDgr, sends the following group update m = ({A}, infogr))
to the known phone number B, using Signal’s direct mes-
saging channel between A and B:

(B, t,DREA,B(IDgr, t, ({A}, infogr)).

In fact, A could also send a content message such that
only this message is sent to B in the group without adding A
to the group. This message breaks the No Creation security
goal. After receiving and validating this message, B’s re-
ceiving Signal application updates its own group description:

Gnewgr := Ggr ∪ {A}.

B will use this set Gnewgr in all future communications with
the group. However until now, A will only receive group
messages from B, but not from the other members.

This changes once group member B sends a second
update message to the group. For example, if B changes
the group icon (which is part of infogr), she will send some
message

(U, t′,DREB,U (IDgr, t
′, (Gnewgr , info′gr))

to all members U ∈ Gnewgr . After receiving this message,
each member U will update her group member set to Gnewgr .
From now on, A receives all group messages.

To all other group members except B, it seems that B
has added A to the group, which would be fine since B was
a member and thereby an administrator of the group.
Optimizations. If A knows the phone number of multiple
members, A can send this group update message (or a
content message) to all of them. Thereby No Creation and

Additive Closeness is broken for a larger set of members,
and it is more likely that one of these members sends the
second update message.
Impact. The protocol does not provide the following secu-
rity goals:
I No Creation. A group member B accepts a content mes-

sage by A, who is not part of the group.
I Additive Closeness. By sending an update message, A

can add herself to the group which breaks Additive
Closeness.

I Future Secrecy. After adding herself to the group, the
confidentiality of future plaintext messages is compro-
mised.

4.3.2. Forging Acknowledgments. Signal provides infor-
mation on the receipt status of messages for the sender in
groups and for direct messaging (see Figure 2). However,
this information can be forged by the Signal server.

Even though the Signal protocol internally provides two
features to detect that sent messages were not received by
the desired recipient, the detection is not effective. Hence
messages can stealthily be dropped during the transmission.
Preconditions.
I Malicious Server. The attacker A must be able to directly

deliver a message to the victim’s Signal application.
Therefore, A must either compromise the Signal server,
or be able to bypass the transport layer protection.

Description. As soon as a sender B sends a group message

(U, tm,DREB,U (IDgr, tm,m))

to all members U ∈ Ggr, the attacker A drops the message,
for instance, she does not forward it to member X . She then
sends multiple acknowledgment response messages to B:

(U, tm, ACK),∀U ∈ Ggr \ {B}

B’s application displays the successful delivery even though
member X never saw message m.
Impact. The attack violates the following security goal:
I Traceable Delivery. The receivers, for whom the mes-

sage was dropped, never see B’s message. As a con-
sequence, B’s device indicates a successful message
delivery (see Figure 2) while members did not receive
the message.

8

Despite the fact that the DR algorithm provides a con-
tinuous key stream, omissions of keys are ignored at the
receiver’s side and thereby the statefulness of the key stream
is not used. Since receiver acknowledgments in Signal are
not end-to-end encrypted, A can drop messages and create
the acknowledgments itself. Dropping messages is however
slightly restricted: the client application only maintains the
last 2000 keys such that a further deviation of the sender’s
and receiver’s key streams causes the encryption to fail 6.
As a result Traceable Delivery is neither provided for group
messages nor for direct messages by Signal.

4.3.3. Ordering. The Malicious Server cannot only drop
messages, but also reorder them. The receiving application
orders simultaneously received messages by the timestamp
which is manipulable for the server. The decryption of
received messages follows this order. Since old omitted keys
are removed after a 2000 new keys are derived, reordering
by the server is restrictedly possible. Henceforth neither
FIFO Order nor Causal Order are provided by Signal.

5. WhatsApp

WhatsApp is a closed source instant messaging protocol.
It uses the Signal protocol for key exchange and encryption
but is independent of Signal’s messaging protocol – espe-
cially, it is independent of the Signal group communication
protocol. WhatsApp is available for most mobile operating
systems7.

Even though WhatsApp is a closed source application,
there exist open source implementations [16, 40] whose
usage is forbidden and aimed to be prevented by Whats-
App [17]. We used a fork8 of Galal’s implementation [16]
to analyze the traffic, generated by the official WhatsApp
Android application9.

The algorithms for exchanging the keys and encrypting
on the end-to-end layer use the same cryptographic primi-
tives as the implementation of Signal relies on. The signa-
tures of group messages are calculated on Curve25519 [33].

Our analysis confirms the description of WhatsApp’s
technical white paper [41] regarding the implementation
of the Signal key exchange protocol but further examines
the messaging protocol as a whole. As a result, we present
several protocol and implementation shortcomings.

5.1. General Initialization Protocol

5.1.1. Session Establishment with the Server. WhatsApp
uses Noise Pipes [42] to protect the communication between
the clients and the server on the transport layer [41]. The
Noise Pipes are implemented with Curve25519, AES-GCM,
and SHA256.

6. https://github.com/WhisperSystems/libsignal-protocol-java/blob/
master/java/src/main/java/org/whispersystems/libsignal/state/SessionState.
java#L41

7. https://www.whatsapp.com/download/
8. https://github.com/colonyhq/yowsup
9. Version 2.17.107 from the Google Play Store

Figure 5. Schematic depiction of traffic, generated for a message m from
sender A to receivers B,C in group gr with Ggr = {A,B,C} in
WhatsApp.

5.1.2. Key Agreement and Key Derivation. The Signal
key exchange protocol, consisting of the X3DH Key Agree-
ment Protocol [36] and the DR algorithm [37], is integrated
in WhatsApp in order to establish a confidential channel for
messaging between two users [41]. A detailed description of
these building blocks can be found in section 4 and Figure 9.

5.2. Group Protocol

WhatsApp limits the maximum number of users in a
group to 256. A group is uniquely referenced by IDgr,
containing the creator’s user ID and a timestamp. The initial
set of administrators G∗gr contains the group creator. By
adding members to the administrator set, this set can be
enlarged. The content of messages is protected on the end-
to-end layer while group modification messages are only
protected on the transport layer. As a result, the WhatsApp
server is mainly responsible for the distribution of group
messages based on the group management. This is a main
difference in comparison to Signal and Threema.

Although WhatsApp integrates the Signal key exchange
protocol for direct messaging, keys in groups are used
very differently: instead of sending encrypted messages to
each group member separately (cf. section 4), each user
generates a symmetric key (chain key) for encrypting only
her messages to the group. The key is then once transported
to every other group member using the DR algorithm for
direct messaging. The dedicated group key is not refreshed
by Diffie-Hellman ratcheting but only with the symmetric
key derivation function in contrast to direct messaging.

5.2.1. Group Content Messages. All messages between the
users and the server are transport layer encrypted. On the
end-to-end layer only the actual content is encrypted and
integrity protected under the symmetric ratcheted encryption
SRE (see subsubsection 4.1.2) with a message key from the
symmetric ratcheting of the sender’s chain key. As a result,
the sender calculates one ciphertext for the whole group.
This ciphertext is then signed with the current signature key
for the respective group (denoted as Sig in Figure 5). The
receiving members can compute the symmetric key for the
decryption from the sender’s chain key, that was sent with
her first message after a group management operation (see
below). Apart from the ciphertext, the transcript to the server

9

https://github.com/WhisperSystems/libsignal-protocol-java/blob/master/java/src/main/java/org/whispersystems/libsignal/state/SessionState.java#L41
https://github.com/WhisperSystems/libsignal-protocol-java/blob/master/java/src/main/java/org/whispersystems/libsignal/state/SessionState.java#L41
https://github.com/WhisperSystems/libsignal-protocol-java/blob/master/java/src/main/java/org/whispersystems/libsignal/state/SessionState.java#L41
https://www.whatsapp.com/download/
https://github.com/colonyhq/yowsup

also contains IDgr and a message identifier IDm. The server
adds the sender ID, a readable sender name and a timestamp
tm to the message for the receivers.

Notifications on the receipt status for the sender and an
acknowledgment for the WhatsApp server are sent protected
on the transport layer only. The server forwards the receipt
statuses to the sender. As soon as all members’ receipts are
collected by the sender, the successful delivery is displayed
by the double checkmark (see Figure 2). Additionally, the
individual receipt statuses are listed in an extended menu.

As a result, group messages only result in one ciphertext
to the server independent of the group size.

The WhatsApp application enables users, for sending a
message, to highlight a reference to a previous message. The
protocol therefore attaches the whole referenced message
and its ID IDm to the newly sent message, such that the
referenced message, the new message, and the ID of the
referenced message are encrypted.

5.2.2. Group Management. Group administrators send
group modifications to the server. These modification mes-
sages are only encrypted on the transport layer and no
cryptography is used to protect them on the end-to-end layer
between a group’s members.

The modification messages contain the tuple OP =
(action,H) where action indicates the operation type like
adding or removing of members, adding of administrators,
leaving of members and H is the set of affected users. After
an administrator sent a message of this format to the server,
the information is distributed to all group members:

(A, IDgr,nameA, IDOP , tOP ,OP)

The session state of each member consist of the chain key
and a signature key pair. Both are generated freshly for the
first message to a new group or for the first message to
the group after a user left or was removed from it as it
can be seen in Figures 6 and 9. After the generation, the
public signature key and the chain key are distributed to all
members via direct messaging between the sender and the
respective receiver using the DR algorithm. Consequently,
the first message after which the group secrets are updated
results in |Ggr| ciphertexts. When a user is added to the
group, the current chain key and the signature key of each
member is sent along with the first message after adding the
new user the same way.

5.2.3. Example Protocol Run. Figure 6 depicts an example
protocol run. In contrast to Signal, WhatsApp maintains
different key streams for direct messaging and for group
messaging. Keys for the group communication are gen-
erated once they are used and distributed via the direct
communication channels. If a group is created or a user
is removed from a group, each member generates a new
group key. Every member needs to store one key for every
direct communication and one key for every member in each
group. The information on group modifications is not end-
to-end encrypted.

5.3. Security Evaluation and Observations

We observed two shortcomings in the design of Whats-
App’s group protocol that allow to (1) burgle into a group
and to (2) forge acknowledgments. The shortcomings have
similar results as the attacks on Signal, although the under-
lying protocol and exploitation differ.

5.3.1. Burgle into a Group. The subsequently described
protocol design weakness allows an attacker A, controlling
some of the messages sent by the WhatsApp server, to
become a member of the group or add other users to the
group without any interaction of the other users.
Preconditions. The attacker A needs to modify the group
information at the client side.
I Malicious Server. can send group modification messages

to the group members.

Description. Suppose we have a group gr with three mem-
bers B,C,D whereas B is the group administrator:

gr = (IDgr,Ggr = {B,C,D},G∗gr = {B}, infogr)

The attacker A can then break Additive Closeness in the
group by conducting the following steps. The attacker sends
the following group modification message to users C,D10:

(B, IDgr,nameB , IDm, tm, (add, {A}))

Each receiving member sets

Gnewgr := Ggr ∪ {A}

and sends her current chain key and signature public key to
A as soon as she sends a message to the group.

Since the modification of the group information is not
bound to a cryptographic operation, it is not necessary that a
group member initiates the operation. The WhatsApp server
can thereby forge a message that indicates an added member
for a group.
Optimizations. The attack can be optimized by also adding
A to B’s view of the group. There are different approaches
to achieve this: (a) if B’s client accepts group modification
messages with source B even though B did not originate
the operation, the described message is also sent to B to
update Gnewgr := Ggr ∪ {A}, (b) if B’s client accepts this
message from a non-administrative member, the message is
sent to B with source C or D, (c) in bigger groups with two
or more administrators, the attacker pretends the message
to be originated from one administrator when sending it to
another.
Impact. Due to the described attack, the protocol does not
reach:
I Additive Closeness. A can write to the group and read

messages.

10. Schematic representation of modification message for adding a new
member to a group.

10

Figure 6. Schematic depiction of key streams of A and ciphertexts from and to A that are used when sending and receiving direct and group messages
and modifying the groups in WhatsApp.

5.3.2. Forging Acknowledgments. Even though Whats-
App’s graphical user interface implies that a sender sees
the receipt status of sent messages (double checkmark), this
weakness allows the attacker to stealthily drop messages.

Preconditions. The attacker needs to drop messages and
send notifications to the sender.

I Malicious Server. can manipulate the transcript between
sender and receivers.

Description. The attacker drops a group message from the
sender and replies with acknowledgments, indicating the
successful receipt for all members. These acknowledgments
are of the form

(U, IDgr, IDm, tm,ack), U ∈ Ggr \ {A}

where A is the original sender of the message.

Impact.
I Traceable Delivery. WhatsApp’s delivery state informa-

tion is vulnerable towards the described attacker.

Although the key derivation from the chain key provides
a consecutive key stream, the omission of message keys is
ignored by the receivers to a certain degree. Our practical
evaluation showed that 1999 omitted keys were ignored.
Additionally the receiver’s acknowledgments are not au-
thenticity protected. Consequently Traceable Delivery is not
provided because the attacker can drop sent messages and
tamper the receiver’s receipt status arbitrarily by sending
forged receipt notifications to the sender. Although our
description covers the group setting, this weakness directly
applies for direct messaging.

5.3.3. No Future Secrecy. Since Diffie-Hellman key ratch-
eting, as one main component of the DR algorithm, is not
integrated into the encryption of group messages, Future
Secrecy cannot be reached in WhatsApp.

5.3.4. Ordering. The sending time for a message is set at
the server side. The receiving clients decrypt and display the
messages in the order the server transmits them. If messages
are received in a different order than they were encrypted,
this is disregarded by the client as the omission of message
keys is. As a result a Malicious Server cannot only drop
messages but also reorder them because they are not listed
in the order of encryption but in the order of transmission by
the server. By employing a reference to a previous message,
Causal Order is at least preserved for this reference.

5.4. Impact of the Weaknesses’ Combination

The described weaknesses enable attacker A, who con-
trols the WhatsApp server or can break the transport layer
security, to take full control over a group. Entering the
group however leaves traces since this operation is listed
in the graphical user interface. The WhatsApp server can
therefore use the fact that it can stealthily reorder and
drop messages in the group. Thereby it can cache sent
messages to the group, read their content first and decide in
which order they are delivered to the members. Additionally
the WhatsApp server can forward these messages to the
members individually such that a subtly chosen combination
of messages can help it to cover the traces.

6. Threema

Threema is a proprietary closed source instant messenger
protocol available for most mobile operating systems [11]. It
uses a centralized server architecture for relaying messages
to the respective receivers and distributing user keys. The
messenger application provides direct messaging and group
chats. In both settings not only text messages but also
pictures, arbitrary files, contacts and other content can be
sent.

Even though the application is closed source, there
are open source implementations available: we based our

11

analysis on the implementation of Berger [15] which was
based on an analysis of Ahrens [43]. We used the open
source implementation only for analyzing the protocol flow
and for proof-of-concept exploitation. We then observed the
results of an attack on a parallel running, original Android
application from the Google Play Store, which simulates the
victim.11

6.1. General Initialization Protocol

During the creation of an identity, the application of
user A generates a Diffie-Hellman share pk lt

A, sends it to
the central key server of Threema with a fresh proof of
possession of the corresponding private part and stores this
private part sk lt

A locally. The Diffie-Hellman share represents
the long term public key of the user. It is used to authenticate
the user during the session key agreement with the server
and for all key agreements with other users.

6.1.1. Session Establishment with the Server. Once the
application is started, a proprietary key exchange protocol
is executed to derive a session key ksesA,S for the channel
between the user A (client) and the Threema server S. Both,
the server’s and the client’s long term keys are used for the
authentication. The protocol is built up on three dependent
Diffie-Hellman key exchanges (DHKEs).

The session channel encryption and the end-to-end
encryption are implemented with the XSalsa20 cipher
[44] with integrity and authenticity protection using the
Poly1305-AES MAC [45].

We identified that Threema implements Curve25519 for
all DHKEs, which is also described in [46].

6.1.2. Key Agreement. A client can either request the
public key of a contact from the central Threema key dis-
tribution server or scan it directly from the contact’s device.
In either case, two users A,B derive a symmetric contact
key kA,B = ECDH(sk lt

A, pk
lt
B) = ECDH(sk lt

B , pk
lt
A) from

the DHKE of the long term key shares. This key is used for
all direct and group messages between these two users as it
can be seen in Figure 8.

6.2. Group Protocol

In Threema, only the creator U∗gr of a group is the
administrator G∗gr = {U∗gr}. Threema limits the number of
group members to 50 per group. Each group is uniquely
referenced by IDgr containing the administrator’s user ID
and a random bit vector, each of 64 bits.

6.2.1. Group Messages. All group messages contain the
reference IDgr as an identification value in the end-to-end
encrypted part. The transmission is implemented the same
way as for direct messages: one group message is sent to
every member as a message that is encrypted with the long
term contact key kA,U ∀ U ∈ Ggr \{A} between the sender

11. Version v.2.92.323

Figure 7. Schematic depiction of traffic, generated for a message m from
sender A to receivers B,C in group gr with Ggr = {A,B,C} in
Threema.

A and the respective group member (see Figure 8). These
end-to-end encrypted messages are sent via the encrypted
session channel between the respective users and the server.
The format of a message can be seen in Figure 7 where
IDm,U is a random message identifier for the respective
receiver, tm is a timestamp and nameA is the readable
name of A. The figure disregards message type labels on
the direction and the content type of the message.

Additionally to the group ID, the end-to-end encrypted
part can contain:

m :=


m, if SndM(gr,m)

Ggr, if update message 1
infogr, if update message 2
leave, if Leave(gr)

In contrast to direct messages between two users (outside
of a group), content group messages are not end-to-end
acknowledged: The server acknowledges the sender’s mes-
sages and the receivers acknowledge the receipt towards the
server. The latter acknowledgments are only encrypted by
the session channel and not forwarded to the sender (i.e. the
sender has no information on the receipt status).

Like WhatsApp, Threema provides the users the ability
to explicitly refer to a previous message when writing a new
one. Thereby also the whole referenced message is attached
to the new message (and then encrypted together).

6.2.2. Group Management. The group management is split
into two protocol flows: an update flow and a flow that is
processed for a user to leave. The update flow is used for the
creation of a group, for adding and removing users, and for
changing group information like the title of a group. Note
that in contrast to Signal, Threema allows the removal of
other members in a group.

Group creation and update follow the same protocol
consisting of two messages, sent from U∗gr to all U ∈
Ggr \ {U∗gr}: (1) a message containing the new set Ggr and
(2) a message containing the updated infogr of the group,
such as the group title. The first message is sent to all
users that were members until the operation is started and
to all users that become a member due to the operation. The
second message is only sent to users that will be members
after the operation.

12

If a user leaves the group, she sends that information
together with the group reference end-to-end encrypted to
all other members.

A group member can request the administrator to syn-
chronize the group information. The administrator then
starts the group update protocol with the current group
information.

6.2.3. Example Protocol Run. Analogically to Signal,
Threema handles group messages similarly to direct mes-
sages: a group message is sent as multiple direct messages.
In contrast to Signal, a flag, which is readable by the
Threema server, indicates the type of the message (e.g.,
group content message). As depicted in Figure 6, all group
messages and all direct messages are encrypted and de-
crypted with the same key. There is no key derivation in
Threema.

6.3. Security Evaluation and Observations

We practically carried out a replay attack on Threema
with a proof-of-concept implementation. The attack breaks
No Duplication and Additive Closeness. We further ob-
served that Threema does not achieve Perfect Forward Se-
crecy, Future Secrecy, or Traceable Delivery.

6.3.1. Replaying Messages. Even though a random ID is
assigned to every message, messages can be resent to a
group easily and thereby No Duplication is broken for the
Threema group messaging protocol.
Preconditions. The attacker needs access to the channel
somewhere between sender and receiver.
I Malicious Server. has control over the transmitted ci-

phertexts.

Description. The attacker A needs to record an end-to-end
encrypted message

(A,B,nameA, tm, IDm,B ,EncA,B(IDgr,m))

once and can resend this message to sender A or receiver
B later repeatedly:

(A,B,nameA, t
′
m, ID

′
m,B ,EncA,B(IDgr,m))

(B,A,nameA, t
′
m, ID

′
m,B ,EncA,B(IDgr,m))

Since Threema only protects the group ID and the actual
content of a message on the end-to-end layer, A can update
the timestamp (and all other unprotected metadata) and
replay the encrypted message. The established encryption
key is used for both directions between sender and receiver,
thus, messages can be resent to the receiver and to the
sender.
Impact. The attack violates the following security goals:
I No Duplication. A can replay messages.
I Additive Closeness. This weakness also affects the Ad-

ditive Closeness of a group because A can rewind every
group manipulation by resending previous group update
messages. For example, A can rewind the removal of a
group member.

6.3.2. No Forward and Future Secrecy. In Threema, every
message between two users is encrypted with the same key,
derived from the DHKE of their long term public keys.
Consequently no security property can be reached when
considering compromising attackers.

6.3.3. No Traceable Delivery. The Threema application
provides no information on the receipt status of sent group
messages. Consequently this property cannot be attacked.

Receivers actually acknowledge group messages only
towards the server. As a result, the sender cannot verify
the message status such that delivery in Threema cannot be
traced.

6.3.4. Ordering. Messages received by the application are
ordered by the receiving time. The sending time is addi-
tionally not protected on the end-to-end layer. Therefore the
Malicious Server can reorder messages arbitrarily during the
transmission. By referencing previous messages, at least for
this reference Causal Order is preserved.

6.3.5. Additional Information Leakage. When a user in
Threema sends a message to a group of which she is not
a member, this message is not accepted by its members.
In order to indicate this non-member status, the group
administrator starts the group update protocol and sends both
the set of members and the title to this user in response. A
user who left the group or who was removed from the group
can thereby keep informed about the group’s management
information. 12

7. Evaluation Summary

E2E
Con

fide
nti

ali
ty

Forw
ard

Sec
rec

y

Futu
re

Sec
rec

y

M
sg

. Auth
en

tic
ati

on

Trac
ea

ble
Deli

ve
ry

No Dup
lic

ati
on

No Crea
tio

n

Clos
en

ess

Signal 6í � 6í 6í

WhatsApp 7 � � �
Threema 7 7 7 � � �

Table 1. 7: NOT IMPLEMENTED SECURITY GOAL;
6í : NOT REACHED AGAINST Malicious User WHO CAN COMPROMISE

VICTIM;
�: NOT REACHED AGAINST Malicious Server;

GRAY SYMBOLS: NOT PROVIDED AS SIDE EFFECT OF ANOTHER
UNREACHED SECURITY GOAL

Table 1 summarizes our evaluation results. The gray cells
indicate, that a security goal is not reached because another
security goal is not provided as well. Since a compromising
Malicious User can break the Additive Closeness of Signal,
Future Secrecy is implicitly violated as well. Signal is
directly attackable regarding Additive Closeness and No
Creation. In contrast, breaking No Creation in WhatsApp
results from breaking Additive Closeness. Threema is vul-
nerable to No Duplication. This can consequentially be

12. This weakness was also fixed in Threema version 3.14.

13

Figure 8. Schematic depiction of keys of A and ciphertexts from and to A that are used when sending and receiving direct and group messages and
modifying the groups in Threema.

used for breaking Additive Closeness by rewinding group
management operations and breaking Additive Closeness
again breaks No Creation. Threema updated their application
in response to our responsible disclosure. Consequently No
Duplication, No Creation, and Additive Closeness are not
attackable anymore.

The descriptions of the attacks against the protocols
regarding our security model always selects the weakest suc-
cessful attacker. Consequently a Compromising Malicious
Server can break the same goals as a Malicious User with
compromising access to the victim’s secrets.

8. Lessons Learned

In this section we first briefly describe specific fixes for
the analyzed protocols and then evaluate general approaches
for reaching the security properties efficiently.

8.1. Fixing the Protocols

8.1.1. Signal. Additive Closeness and No Creation. In
Signal, Additive Closeness can be reached by implementing
a simple check when receiving a group message: if the
sender is not part of the current group, the message is
dropped. This efficiently preserves No Creation and Additive
Closeness. As a side effect, the group ID can then be public
knowledge. We discussed this proposal with Open Whisper-
Systems, but it turned out that this verification is unfeasible
due to their current implementation. Open WhisperSystems
is currently developing a new group management system
with advanced administrative features so that they decided
not to apply our fix.
Traceable Delivery. Signal could reach Traceable Delivery
by treating receipt messages like content messages and
thus end-to-end encrypt them13. This would guarantee the
authenticity of these messages. We will discuss and compare
this approach with the usage of the properties of stateful
encryption (see subsubsection 8.2.1).

8.1.2. WhatsApp. Additive Closeness. In order to ensure
that only administrators of a group can manipulate the mem-
ber set, the authenticity of group manipulation messages

13. Signing the message would be sufficient but the encryption is already
part of the protocol and additionally protects the confidentiality of the
receipt messages.

needs to be protected. This can be achieved, for example,
by signing these messages with the administrator’s group
signature key.

In order to maintain the member set at the server with
regard to a malicious server, a counter for the current
modification step could be attached to every message and
the signed manipulation notification could include the whole
member set instead of its changes only. Thereby, the current
signed notification could be distributed when a member
loses their information of the group (e.g., due to a re-
installation).
Traceable Delivery. The same countermeasure that is de-
scribed for Signal applies to WhatsApp for providing Trace-
able Delivery.

8.1.3. Threema. No Duplication. Since there is already a
message ID appended to every message, this ID only needs
to be cryptographically bound to the message. This would
prevent that one message is accepted by the client multiple
times. We proposed this fix to the developers of Threema.
They appreciated our effort and implemented a fix in Version
3.1414.

8.2. General Outcomes

8.2.1. Reaching Traceable Delivery in General. The re-
sults of our analysis may imply that Traceable Delivery
in instant messaging protocols is seldom reached. Without
going into detail, we also analyzed the respective direct
messaging protocols regarding Traceable Delivery. Signal
and WhatsApp do not reach Traceable Delivery, but the
direct messaging in Threema reaches it by end-to-end en-
crypting the receipt acknowledgment to the sender and
thereby cryptographically ensuring the authenticity of these
acknowledgments.

Using the approach of negative acknowledgments
(NACKs) turns the responsibility of the Traceable Delivery
from the sender to the receiver [47, 48, 49, 50]. The
receiver can therefore use the Signal key exchange protocol
since it is stateful. It provides a consecutive key stream
such that Traceable Delivery can be reached by detecting
an omitted key of this stream. As part of this, the receiver
can refer to the last in-order delivered message within her

14. https://threema.ch/en/versionhistory

14

https://threema.ch/en/versionhistory

normal content messages such that the initial sender can
mark them as delivered (which also reduces communication
complexity). Once a key is omitted, the receiver knows that
a message was not delivered such that she can request the
sender to resend this message.

8.2.2. Securely Managing a Group. In order to reach
Additive Closeness and No Creation in groups, members
of a group need to distinguish between group members and
external users.

We see two natural approaches of a secure group man-
agement:
(1) A consistent view on the member set for each of its

members.
(2) A group secret that serves as a proof of membership.
Abstractly this means that either the receiver always checks
her guest list or a sender always provides a ticket. While
Signal only implements the second mechanism, Threema
mainly uses the first one. WhatsApp somehow follows the
guest list approach while the guest list is manipulable from
outside.
Consistent View. For the effective group management,
group information needs to be maintained locally on every
member’s device. Each user knows, who is part of the group,
that means, who is allowed to write a group message and
from whom group messages should be accepted. In order
to ensure a consistent view on the member set, Traceable
Delivery must be achieved because otherwise the server
provider can undetectably drop messages that aim to ma-
nipulate the member set and thereby cause an inconsistent
view. Even if the group information is centrally stored, it
needs to be ensured, that (1) only members can modify
this information and (2) all members are informed about
a modification.

Schiper and Toueg showed that the problem of member-
ship in groups can be reduced to the more general problem
of maintaining a set of arbitrary elements and thereby decou-
ple the group from the protocol [51]. Similarly we argue that
a protocol, reaching consistency of all messages (content and
group management), can be treated as a protocol considering
static groups. Nevertheless the consistent message delivery
in groups restricts the instant communication for messaging
protocols.
Membership Proof. When solely using a group secret that
protects Additive Closeness and No Creation of the group,
this secret needs to be calculated future secure, when the
whole protocol reaches this property. Otherwise, a revealed
group secret can be used to become part of the group without
the members’ permission.

The underlying problem is related to future secure group
key exchange. A first group key exchange with this property
was recently proposed by Cohn-Gordon et al. [29].

8.2.3. Preserving Order. While FIFO Order can easily be
established by enforcing the properties of stateful encryp-
tion, it inevitably restricts the instant delivery of messages
because if a later message is received earlier, it needs to

be cached until the all previous messages were delivered.
According to our (weaker) definition, messages can be
delivered instantly, but then older messages, that were not
received in the correct order, would need to be dropped.
As Marson and Poettering [52] provide a causal broadcast
algorithm employing authenticated encryption with asso-
ciated data and vector clocks, Causal Order can also be
achieved with standard cryptographic primitives under the
same tradeoff between reliability and instant delivery.

The analyzed applications already employ visual fea-
tures to provide information on the order of messages in the
user interface. However, as our descriptions of the shortcom-
ings reveal, these features are not appropriately protected
towards the Malicious Server. Since the order of messages
– especially the causal context – is very important for the
sense of their content, and instant delivery of messages is
the inevitable characteristic of instant messaging, it is up to
the developers how far reliability is reached with respect to
order preservation.

9. Related Work

Related work to this paper is structured in (1) analyses of
IM applications in general, specific analyses of the analyzed
protocols, as well as (2) theoretical concepts in multi user
settings.
Analyses of IM Applications. Schrittwieser et al. [53] ana-
lyze IM applications regarding the initial authentication and
the account management and describe weaknesses accord-
ingly. Unger et al. [54] systematize current secure instant
messengers by proposing an evaluation security framework.
Regarding group communications, they conduct only a high
level investigation on basic concepts and features of the
protocols.
Analyses of Signal. The analysis of Signal started with
Frosch et al. [1]. They analyze TextSecure v2, the prede-
cessor of the Signal key exchange protocol. As a result,
they identify an Unknown Key-Share (UKS) attack and
propose fixes. Kobeissi et al. [3] describe the application of
formal verification software for analyzing a slightly mod-
ified version of the Signal protocol and other real world
protocols. They derive a proof from an automatic crypto-
graphic verification tool but also model the UKS of Frosch
et al. and present attacks on the protocol that go beyond
the model for the proof. Cohn-Gordon et al. [2] conduct a
formal analysis on the Signal key exchange protocol. There-
fore, they develop a new multi-stage key exchange security
model, identify security properties in the Signal protocol,
and prove it to be secure. Previous to their analysis, they
published a work on definitions and constructions for Future
Secrecy [55]. Bellare et al. [28] investigate ratcheting as a
cryptographic primitive. Their work does not specifically
focuses on a real world protocol, but forms the basis of a
definition and application for this primitive.

All these works concentrate on two party communi-
cations instead of multi-user setups. For this reason, the
security goals identified in this work differ significantly.

15

Analyses of WhatsApp. Schrittwieser et al. [53] analyzed
WhatsApp among other IM applications regarding the au-
thentication and account management and found several
vulnerabilities. Another application specific analysis [56]
focused on WhatsApp’s Android application. A recent news-
paper article described that, even though key verification is
implemented in WhatsApp, its effectiveness can partially
be circumvented for usability reasons [57, 58]. In addition
to these analyses, the WhatsApp protocol was implemented
and published as open source projects [16, 40].
Analyses of Threema. An initial analysis of the Threema
protocol was conducted by Ahrens [43]. Based on this
Berger [15] implemented an open source desktop client on
which we based our protocol analysis. Independent of our
work Schilling and Steinmetz presented a detailed descrip-
tion of the Threema message format and another open source
implementation [59].
Security in Multi User Settings.

Cohn-Gordon et al. [29] recently published a group key
exchange protocol that enables the future secure ratcheting
of a group secret. This protocol is a hybrid of multiple two-
party protocols for the instantiation and a refreshable group
key agreement. They also provide a proof for parts of their
construction.

Bracha and Toueg introduced the notion of reliable
broadcast in the asynchronous setting [19]. Since then many
works introduced and improved algorithms to solve the
problem of validly and consistently delivering messages in a
multi user setting [60, 61, 62, 63] but also refined the notion
and definition to provide realistic attacker models [61].

Chockler et al. [20] give an overview on various mod-
els and results regarding group communication systems
(GCS) like [64, 65] and others. They systematize different
notions and definitions regarding the reliability and security
of group communication in the literature.

Marson and Poettering [52] recently defined a security
model that captures confidentiality and integrity in a multi
user setting, and provided provably secure constructions.
Their work, however, does not cover dynamic groups. Fur-
thermore, as discussed in section 8, their model requires
stronger notions of reliability at costs of the instant message
delivery.

10. Conclusion

Nowadays, Instant Messaging (IM) applications rely
more and more on end-to-end protection. Although the one-
to-one communication of secure instant messaging applica-
tions has been in the focus of recent analyses [1, 2, 3], the
investigation of end-to-end protected group communications
has gained only little attention.

We fill this gap by providing a security model and a
methodology for analyzing group instant messaging proto-
cols. We demonstrate their applicability by conducting a
systematical analysis of three major secure group instant
messengers: Signal, WhatsApp, and Threema.

While our investigation focuses on three major instant
messaging applications, our methodology and the under-
lying model is of generic purpose and can be applied to
other secure group instant messaging protocols as well. For
example, it would be interesting to analyze the group chat
implementations of other Signal-based messaging protocols,
such as Google’s Allo, Wire, and Facebook Messenger, or
even non Signal-based protocols similarly to our investiga-
tion of Threema.

For one-to-one communication the Signal key exchange
protocol is practically used and cryptographically proven
secure. In contrast to this, for group communication no such
protocol exists. A cryptographically future secure group key
exchange was recently published [29]. Still on the one hand,
this protocol was designed for a partially asynchronous
setting and on the other hand, our work shows that the
key exchange is only a building block for a secure and
reliable group messaging protocol. In fact, we demonstrate
that Future Secrecy should not only be restricted to the
establishment of a common secret for encryption.

Consequently our work can be seen as a structural sur-
vey, a base point and an illustration of a target for the design
of secure and reliable group instant messaging protocols.

Acknowledgments. We thank Tibor Jager, Julian Loss,
Moxie Marlinspike, the Threema Security Team, the CCS
2017, and EuroS&P 2018 reviewers for their helpful com-
ments and fruitful discussions.

References

[1] T. Frosch, C. Mainka, C. Bader, F. Bergsma,
J. Schwenk, and T. Holz, “How secure is textsecure?”
in EuroS&P, 2016.

[2] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt,
and D. Stebila, “A formal security analysis of the
Signal messaging protocol,” in EuroS&P, 2017.

[3] N. Kobeissi, K. Bhargavan, and B. Blanchet, “Auto-
mated verification for secure messaging protocols and
their implementations: A symbolic and computational
approach,” in EuroS&P, 2017.

[4] (2017) Communications market report. [On-
line]. Available: https://www.ofcom.org.uk/ data/
assets/pdf file/0017/105074/cmr-2017-uk.pdf

[5] eMarketer. (2015, Nov.) Mobile messaging to reach 1.4
billion worldwide in 2015. [Online]. Available: https:
//www.emarketer.com/Article/Mobile-Messaging-
Reach-14-Billion-Worldwide-2015/1013215

[6] Business2Community. (2015, Aug.) Are
instant messaging apps the future of the
(mobile) internet? [Online]. Available: http:
//www.business2community.com/mobile-apps/instant-
messaging-apps-future-mobile-internet-01313577

[7] C. Garman, M. Green, G. Kaptchuk, I. Miers, and
M. Rushanan, “Dancing on the lip of the volcano: Cho-
sen ciphertext attacks on apple imessage,” in USENIX
Security Symposium, 2016.

16

https://www.ofcom.org.uk/__data/assets/pdf_file/0017/105074/cmr-2017-uk.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0017/105074/cmr-2017-uk.pdf
https://www.emarketer.com/Article/Mobile-Messaging-Reach-14-Billion-Worldwide-2015/1013215
https://www.emarketer.com/Article/Mobile-Messaging-Reach-14-Billion-Worldwide-2015/1013215
https://www.emarketer.com/Article/Mobile-Messaging-Reach-14-Billion-Worldwide-2015/1013215
http://www.business2community.com/mobile-apps/instant-messaging-apps-future-mobile-internet-01313577
http://www.business2community.com/mobile-apps/instant-messaging-apps-future-mobile-internet-01313577
http://www.business2community.com/mobile-apps/instant-messaging-apps-future-mobile-internet-01313577

[8] Moxie Marlinspike, “Advanced cryptographic
ratcheting,” 2013. [Online]. Available: https:
//whispersystems.org/blog/advanced-ratcheting/

[9] Open Whisper Systems, “Signal website,” 2017.
[Online]. Available: https://signal.org/

[10] WhatsApp, “Whatsapp security,” 2017. [Online].
Available: https://www.whatsapp.com/security/

[11] Threema, “Threema website,” 2017. [Online].
Available: https://threema.ch/en

[12] Open Whisper Systems, “Open whisper sys-
tems partners with google on end-to-end en-
cryption for allo,” 2017. [Online]. Available:
https://whispersystems.org/blog/allo/

[13] ——, “Facebook messenger deploys signal protocol
for end to end encryption,” 2017. [Online]. Available:
https://whispersystems.org/blog/facebook-messenger/

[14] S. Dechand, D. Schürmann, K. Busse, Y. Acar, S. Fahl,
and M. Smith, “An empirical study of textual key-
fingerprint representations,” in USENIX Security Sym-
posium, 2016.

[15] P. Berger, “Open source implementation of a threema
desktop client,” 2016. [Online]. Available: https:
//github.com/blizzard4591/openMittsu

[16] T. Galal, “Open source implementation of a whatsapp
client,” 2016. [Online]. Available: https://github.com/
tgalal/yowsup

[17] WhatsApp, “Why am i banned for using whatsapp
plus and how do i get unbanned?” 2016. [Online].
Available: https://www.whatsapp.com/faq/en/general/
105

[18] V. Hadzilacos and S. Toueg, “Distributed systems
(2nd ed.),” S. Mullender, Ed., 1993, ch. Fault-tolerant
Broadcasts and Related Problems.

[19] G. Bracha and S. Toueg, “Asynchronous consensus and
broadcast protocols,” J. ACM, 1985.

[20] G. V. Chockler, I. Keidar, and R. Vitenberg, “Group
communication specifications: a comprehensive study,”
ACM Comput. Surv., 2001.

[21] Statista, “Most popular messaging apps,” 2017.
[Online]. Available: https://www.statista.com/statistics/
258749/most-popular-global-mobile-messenger-apps/

[22] Signal, “Signal private messenger in google play,”
2017. [Online]. Available: https://play.google.com/
store/apps/details?id=org.thoughtcrime.securesms

[23] Threema, “Threema in google play,” 2017. [Online].
Available: https://play.google.com/store/apps/details?
id=ch.threema.app

[24] C. Meyer, J. Somorovsky, E. Weiss, J. Schwenk,
S. Schinzel, and E. Tews, “Revisiting SSL/TLS im-
plementations: New bleichenbacher side channels and
attacks,” in USENIX Security Symposium, 2014.

[25] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger,
M. Dankel, J. Steube, L. Valenta, D. Adrian, J. A. Hal-
derman, V. Dukhovni, E. Käsper, S. Cohney, S. Engels,
C. Paar, and Y. Shavitt, “DROWN: breaking TLS using
sslv2,” in USENIX Security Symposium, 2016.

[26] M. R. Albrecht and K. G. Paterson, “Lucky microsec-
onds: A timing attack on amazon’s s2n implementation

of TLS,” in EUROCRYPT, 2016.
[27] S. Duan, L. Nicely, and H. Zhang, “Byzantine re-

liable broadcast in sparse networks,” in 15th IEEE
International Symposium on Network Computing and
Applications, NCA, 2016.

[28] M. Bellare, A. C. Singh, J. Jaeger, M. Nyayapati, and
I. Stepanovs, “Ratcheted encryption and key exchange:
The security of messaging,” in CRYPTO, 2017.

[29] K. Cohn-Gordon, C. Cremers, L. Garratt, J. Millican,
and K. Milner, “On ends-to-ends encryption:
Asynchronous group messaging with strong security
guarantees,” IACR Cryptology ePrint Archive, 2017.
[Online]. Available: http://eprint.iacr.org/2017/666

[30] Open Whisper Systems, “Source code of
signal-android,” 11 2016, android Application
Version 3.23.0. [Online]. Available: https://
github.com/WhisperSystems/Signal-Android/commit/
ce812ed8ba49fc43db9de018c135be67b5b44f7d

[31] ——, “Source code of signal-service
library,” 11 2016, java Library Version
2.4.1. [Online]. Available: https://github.com/
WhisperSystems/libsignal-service-java/commit/
460cd7559caa74bb6539c72865c71de660a69bac

[32] ——, “Signal github repository,” 05 2017. [Online].
Available: https://github.com/WhisperSystems/

[33] D. J. Bernstein, “Curve25519: New diffie-hellman
speed records,” in PKC, 2006.

[34] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash
functions for message authentication,” in CRYPTO,
1996.

[35] J. Daemen and V. Rijmen, “The block cipher rijndael,”
in CARDIS, 1998.

[36] M. Marlinspike and T. Perrin, “The x3dh key agree-
ment protocol,” 11 2016. [Online]. Available: https://
whispersystems.org/docs/specifications/x3dh/x3dh.pdf

[37] ——, “The double ratchet algorithm,” 11 2016.
[Online]. Available: https://whispersystems.org/docs/
specifications/doubleratchet/doubleratchet.pdf

[38] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A
concrete security treatment of symmetric encryption,”
in Symposium on Foundations of Computer Science,
FOCS, 1997.

[39] Open Whisper Systems, “Message format in
the signal protocol,” 11 2016, specified with
Google Protocol Buffers. [Online]. Available: https:
//github.com/WhisperSystems/libsignal-service-java/
blob/4cedb5c31c11c1e8811b3bb7cd68d56ff7e0c03f/
protobuf/SignalService.proto

[40] mgp25, “Open source implementation of a whatsapp
php api,” 2016. [Online]. Available: https://github.
com/mgp25/Chat-API

[41] WhatsApp Inc., “Whatsapp encryption overview,”
2016, technical white paper. [Online]. Avail-
able: https://www.whatsapp.com/security/WhatsApp-
Security-Whitepaper.pdf

[42] T. Perrin, “The noise protocol framework,” 2016.
[Online]. Available: http://noiseprotocol.org/noise.pdf

[43] J. Ahrens, “Threema protocol analysis,” 2014.

17

https://whispersystems.org/blog/advanced-ratcheting/
https://whispersystems.org/blog/advanced-ratcheting/
https://signal.org/
https://www.whatsapp.com/security/
https://threema.ch/en
https://whispersystems.org/blog/allo/
https://whispersystems.org/blog/facebook-messenger/
https://github.com/blizzard4591/openMittsu
https://github.com/blizzard4591/openMittsu
https://github.com/tgalal/yowsup
https://github.com/tgalal/yowsup
https://www.whatsapp.com/faq/en/general/105
https://www.whatsapp.com/faq/en/general/105
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms
https://play.google.com/store/apps/details?id=org.thoughtcrime.securesms
https://play.google.com/store/apps/details?id=ch.threema.app
https://play.google.com/store/apps/details?id=ch.threema.app
http://eprint.iacr.org/2017/666
https://github.com/WhisperSystems/Signal-Android/commit/ce812ed8ba49fc43db9de018c135be67b5b44f7d
https://github.com/WhisperSystems/Signal-Android/commit/ce812ed8ba49fc43db9de018c135be67b5b44f7d
https://github.com/WhisperSystems/Signal-Android/commit/ce812ed8ba49fc43db9de018c135be67b5b44f7d
https://github.com/WhisperSystems/libsignal-service-java/commit/460cd7559caa74bb6539c72865c71de660a69bac
https://github.com/WhisperSystems/libsignal-service-java/commit/460cd7559caa74bb6539c72865c71de660a69bac
https://github.com/WhisperSystems/libsignal-service-java/commit/460cd7559caa74bb6539c72865c71de660a69bac
https://github.com/WhisperSystems/
https://whispersystems.org/docs/specifications/x3dh/x3dh.pdf
https://whispersystems.org/docs/specifications/x3dh/x3dh.pdf
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://whispersystems.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://github.com/WhisperSystems/libsignal-service-java/blob/4cedb5c31c11c1e8811b3bb7cd68d56ff7e0c03f/protobuf/SignalService.proto
https://github.com/WhisperSystems/libsignal-service-java/blob/4cedb5c31c11c1e8811b3bb7cd68d56ff7e0c03f/protobuf/SignalService.proto
https://github.com/WhisperSystems/libsignal-service-java/blob/4cedb5c31c11c1e8811b3bb7cd68d56ff7e0c03f/protobuf/SignalService.proto
https://github.com/WhisperSystems/libsignal-service-java/blob/4cedb5c31c11c1e8811b3bb7cd68d56ff7e0c03f/protobuf/SignalService.proto
https://github.com/mgp25/Chat-API
https://github.com/mgp25/Chat-API
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
http://noiseprotocol.org/noise.pdf

[Online]. Available: http://blog.jan-ahrens.eu/files/
threema-protocol-analysis.pdf

[44] D. J. Bernstein, “The salsa20 family of stream ciphers,”
in New Stream Cipher Designs - The eSTREAM Final-
ists, 2008, pp. 84–97.

[45] ——, “The poly1305-aes message-authentication
code,” in FSE, 2005.

[46] Threema GmbH, “Threema cryptography whitepaper,”
2016. [Online]. Available: https://threema.ch/press-
files/2 documentation/cryptography whitepaper.pdf

[47] C. Diot, W. Dabbous, and J. Crowcroft, “Multipoint
communication: A survey of protocols, functions, and
mechanisms,” IEEE J. SAC, 1997.

[48] B. N. Levine and J. J. Garcia-Luna-Aceves, “A com-
parison of reliable multicast protocols,” Multimedia
Syst., 1998.

[49] B. Adamson, C. Bormann, M. Handley, and
J. Macker, “Multicast Negative-Acknowledgment
(NACK) Building Blocks,” Internet Requests for
Comments, IETF, RFC 5401, November 2008.
[Online]. Available: https://tools.ietf.org/html/rfc5401

[50] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and
L. Zhang, “A reliable multicast framework for
light-weight sessions and application level framing,”
IEEE/ACM Trans. Netw., 1997.

[51] A. Schiper and S. Toueg, “From set membership to
group membership: A separation of concerns,” IEEE
Trans. Dependable Sec. Comput., 2006.

[52] G. A. Marson and B. Poettering, “With one it is easy,
with many it gets complicated: Understanding channel
security for groups,” Cryptology ePrint Archive, Re-
port 2017/786, 2017, https://eprint.iacr.org/2017/786.

[53] S. Schrittwieser, P. Frühwirt, P. Kieseberg, M. Leithner,
M. Mulazzani, M. Huber, and E. R. Weippl, “Guess
who’s texting you? evaluating the security of smart-
phone messaging applications,” in NDSS, 2012.

[54] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl,
I. Goldberg, and M. Smith, “Sok: Secure messaging,”
in S&P, 2015.

[55] K. Cohn-Gordon, C. J. F. Cremers, and L. Garratt, “On
post-compromise security,” in IEEE CSF, 2016.

[56] C. Anglano, “Forensic analysis of whatsapp messenger
on android smartphones,” Digital Investigation, 2014.

[57] T. B. Manisha Ganguly, “Whatsapp vulnerability
allows snooping on encrypted messages,” The
Guardian, 2017. [Online]. Available: https:
//www.gu.com/technology/2017/jan/13/whatsapp-
backdoor-allows-snooping-on-encrypted-messages

[58] Moxie Marlinspike, “There is no whats-
app ’backdoor’,” 2017. [Online]. Avail-
able: https://whispersystems.org/blog/there-is-no-
whatsapp-backdoor/

[59] R. Schilling and F. Steinmetz, “A look
into the mobile messaging black box,” 2016,
at 33c3. Implementation: https://github.com/o3ma.
[Online]. Available: https://media.ccc.de/v/33c3-8062-
a look into the mobile messaging black box

[60] R. Canetti and T. Rabin, “Fast asynchronous byzantine

agreement with optimal resilience,” in ACM STOC,
1993.

[61] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Se-
cure and efficient asynchronous broadcast protocols,”
in CRYPTO, 2001.

[62] C. Cachin, K. Kursawe, and V. Shoup, “Random ora-
cles in constantinople: Practical asynchronous byzan-
tine agreement using cryptography,” J. Cryptology,
2005.

[63] K. Kursawe and V. Shoup, “Optimistic asynchronous
atomic broadcast,” in ICALP, 2005.

[64] R. van Renesse, K. P. Birman, and S. Maffeis, “Horus:
A flexible group communication system,” Commun.
ACM, 1996.

[65] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K.
Budhia, and C. A. Lingley-Papadopoulos, “Totem: A
fault-tolerant multicast group communication system,”
Commun. ACM, 1996.

Appendix

Figure 9 describes the exact usage of keys for group
communication in Signal and WhatsApp. The DR algorithm
is initialized by the root key (RK) and is updated by
Diffie Hellman key exchanges between the sender and the
receiver (DH ratcheting). The output of these updates is the
input of the symmetric ratcheting which only consists of a
key derivation function. Half of the output is used for the
consecutive ratcheting (chain keys CK) and the other half is
used as encryption keys (message keys MK). While Signal
uses these keys directly for all communication, WhatsApp
generates a separate key stream for group communication.
This additional key stream is update symmetrically only.

18

http://blog.jan-ahrens.eu/files/threema-protocol-analysis.pdf
http://blog.jan-ahrens.eu/files/threema-protocol-analysis.pdf
https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf
https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf
https://tools.ietf.org/html/rfc5401
https://eprint.iacr.org/2017/786
https://www.gu.com/technology/2017/jan/13/whatsapp-backdoor-allows-snooping-on-encrypted-messages
https://www.gu.com/technology/2017/jan/13/whatsapp-backdoor-allows-snooping-on-encrypted-messages
https://www.gu.com/technology/2017/jan/13/whatsapp-backdoor-allows-snooping-on-encrypted-messages
https://whispersystems.org/blog/there-is-no-whatsapp-backdoor/
https://whispersystems.org/blog/there-is-no-whatsapp-backdoor/
https://github.com/o3ma
https://media.ccc.de/v/33c3-8062-a_look_into_the_mobile_messaging_black_box
https://media.ccc.de/v/33c3-8062-a_look_into_the_mobile_messaging_black_box

Figure 9. Sender key stream from A to B and ciphertexts from A to the server when sending one direct message to B and two group messages to a
group G of which A and B are members in Signal and WhatsApp.

19

	Introduction
	Security Model
	Notation and Assumptions
	Syntax
	Threat Model
	Security Goals

	Methodology
	Signal
	General Initialization Protocol
	Session Establishment with the Server
	Key Agreement and Key Derivation

	Group Protocol
	Group Messages
	Group Management
	Example Protocol Run

	Security Evaluation and Observations
	Burgle into the Group
	Forging Acknowledgments
	Ordering

	WhatsApp
	General Initialization Protocol
	Session Establishment with the Server
	Key Agreement and Key Derivation

	Group Protocol
	Group Content Messages
	Group Management
	Example Protocol Run

	Security Evaluation and Observations
	Burgle into a Group
	Forging Acknowledgments
	No Future Secrecy
	Ordering

	Impact of the Weaknesses' Combination

	Threema
	General Initialization Protocol
	Session Establishment with the Server
	Key Agreement

	Group Protocol
	Group Messages
	Group Management
	Example Protocol Run

	Security Evaluation and Observations
	Replaying Messages
	No Forward and Future Secrecy
	No Traceable Delivery
	Ordering
	Additional Information Leakage

	Evaluation Summary
	Lessons Learned
	Fixing the Protocols
	Signal
	WhatsApp
	Threema

	General Outcomes
	Reaching Traceable Delivery in General
	Securely Managing a Group
	Preserving Order

	Related Work
	Conclusion
	Appendix

