
A Simpler Rate-Optimal CPIR Protocol

Helger Lipmaa and Kateryna Pavlyk

University of Tartu, Tartu, Estonia

Abstract. In PETS 2015, Kiayias, Leonardos, Lipmaa, Pavlyk, and Tang proposed the first (n, 1)-
CPIR protocol with rate 1− o(1). They use advanced techniques from multivariable calculus (like the
Newton-Puiseux algorithm) to establish optimal rate among a large family of different CPIR protocols.
It is only natural to ask whether one can achieve similar rate but with a much simpler analysis.
We propose parameters to the earlier (n, 1)-CPIR protocol of Lipmaa (ISC 2005), obtaining a CPIR
protocol that is asymptotically almost as communication-efficient as the protocol of Kiayias et al.
However, for many relevant parameter choices, it is slightly more communication-efficient, due to the
cumulative rounding errors present in the protocol of Kiayias et al. Moreover, the new CPIR protocol
is simpler to understand, implement, and analyze. The new CPIR protocol can be used to implement
(computationally inefficient) FHE with rate 1− o(1).

Keywords: Communication complexity, computationally-private information retrieval, cryptographic pro-
tocols, optimal rate

1 Introduction

A computationally private information retrieval ((n, 1)-CPIR, [KO97]) protocol enables the receiver to obtain
an `-bit element from sender’s database of n elements, without the sender getting to know which element was
obtained. An efficient CPIR protocol has to be implemented by virtually any two-party privacy-preserving
database application, and hence CPIR protocols have received significant attention in the literature.

Since there exists a trivial CPIR protocol with linear communication `n where the sender just forwards
the whole database to the receiver, a major requirement in the design of new CPIR protocols is their commu-
nication efficiency. The first CPIR protocol with sublinear communication was proposed by Kushilevitz and
Ostrovsky [KO97], and slightly optimized by Stern [Ste98]. The first CPIR protocol with polylogarithmic-
in-n communication was proposed by Cachin, Micali and Stadler [CMS99]. The first CPIR protocols with
asymptotically truly efficient communication complexity were proposed by Lipmaa [Lip05,Lip09] and Gentry
and Ramzan [GR05].

All mentioned papers were concerned in the communication complexity as a function of n. However,
optimizing the communication complexity of a CPIR protocol as a function of ` is also important, especially
in applications where the database elements are very long, e.g., movies. Optimizing the rate — defined
as the size of useful information (log n + ` in the case of an (n, 1)-CPIR protocol) divided by the actual
communication complexity of the protocol — is also an interesting theoretical question. Indeed, achieving
optimal rate (while still having acceptable computational complexity) is a central question in many areas of
computer science and engineering.

The first constant-rate CPIR protocol was proposed by Gentry and Ramzan [GR05] (ICALP 2005, rate
1/4) and Lipmaa [Lip05] (ISC 2005, rate 1/2). Lipmaa devised another variant of his protocol with optimized
results; the resulting CPIR protocol from [Lip09] had rate 1− 1/a+ o(1) for some positive constant a > 1.
However, the drawback of the latter variant (see Sect. 3.3 for its full description) is an additive term aκ log2

2 n
in the communication complexity (here, κ is the security parameter), which means that the optimal value of
a is actually quite small unless ` is very huge. Moreover, a cannot depend on ` (i.e., it has to be constant),
and thus this CPIR protocol does not achieve rate 1− o(1).

In a recent paper, Kiayias et al. [KLL+15b] proposed a general parameterized family of so called leveled
LBP-homomorphic encryption schemes with rate 1−o(1). Here, LBP denotes the complexity class of functions

implementable by polynomial-size (leveled) large-output branching programs, [Weg00]. They then used the
fact [IP07,Lip09] that such an encryption scheme can be used to efficiently implement CPIR.

However, achieving optimal rate required the authors of [KLL+15b] to perform extensive technical anal-
ysis. More precisely, following earlier papers like [KO97,Lip05,Lip09], the (n, 1)-CPIR protocol of Kiayias et
al. is recursive. First, [KLL+15b] constructs a (leveled) homomorphic encryption scheme that allows to com-
pute an arbitrary function f by constructing a w-ary branching program (for some small w � n, e.g., w = 2)
that computes f . Following [IP07], this homomorphic encryption scheme privately implements the (w, 1)
multiplexer function, needed in every internal node of a branching program, by using a simple (w, 1)-CPIR
protocol that has minimal (i.e., rate 1− o(1)) sender-side communication. However, it has linear client-side
(and hence, total) communication.

In addition, at every internal node, the (n, 1)-CPIR protocol of [KLL+15b] applies a precisely defined
operation of splitting and concatenating, that guarantees that at the level d of the branching program, the
(w, 1)-CPIR protocol operates with database elements of length sdκ, where sd is a parameter to be optimized.
More precisely, the outputs of the CPIR protocol from level d− 1 are cut into some td pieces of length sdκ.
By using this recursive construction, a suitable (w, 1)-CPIR protocol can be used to securely implement any
function from LBP.

Kiayias et al. [KLL+15b] showed, by using an intricate analysis, that the optimal communication is
achieved when s1 = . . . = sm =: s, where m is the length of the branching program. In a nutshell, they
used multivariable calculus to show that the communication complexity of their CPIR protocol is optimized
when s is equal to a root of a certain degree-(m+ 1) polynomial fm. Then, they used Galois theory to show
that fm cannot be solved in radicals. Finally, they used the theory of Newton-Puiseux series to numerically
compute an approximation of the optimal s. As the end result, they obtained a CPIR protocol of rate
1− 1.72

√
κ/` log2 n+O(`−1).

Hence, the analysis used in [KLL+15b] is (very) complicated, resulting in (a) a CPIR protocol with
a complex description, and (b) an optimal parameter choice that, while it can be done efficiently, seems
to be difficult to analyze. For example, the optimal value of s in [KLL+15b] is given by a series. After
that, [KLL+15b] proves that given the so computed s, the communication complexity will be given by
another explicit series. However, in practice one needs to compute an integer approximation of s efficiently.
While [KLL+15b] proposed an efficient algorithm for computing such an approximation, it is unclear how
this will influence the precise value of the communication complexity in the general case.

Moreover, one problem of their scheme is due to “rounding errors”. First, the claimed rate corresponds to
the case when s is a real root while in practice s must be an integer. To deal with this requirement, Kiayias
et al. presented an O(log log n)-time algorithm to compute an integer approximation of s. Second, recall that
each (w, 1)-CPIR protocol at every layer in [KLL+15b] requires plaintexts of the same length sκ. However,
in the optimal construction of [KLL+15b], there is no guarantee that the total output length of the previous
layer divides by s and hence at every layer one has to round up the length of each plaintext. This means
that at every layer, there will be some undue increase in the number of applied (w, 1)-CPIR protocols, which
increases the actual communication complexity of the resulting (n, 1)-CPIR protocol.

The authors of [KLL+15b] did not compute precise upper bounds on the communication of their CPIR
protocol after s is rounded to an integer and one adds up the rounding errors. Instead, [KLL+15b] pro-
vided empirical data (see Sect. 7.1.1 in [KLL+15b], or Fig. 1 in the current paper) that the increase in
communication is insignificant when ` is large, at least for some practically relevant values of ` and n.

Our Contribution. We show how to achieve almost the same communication complexity and rate as in
the protocol of Kiayias et al. [KLL+15b]. We provide precise analysis and comparison in Sect. 5, where we
show that the difference between the communication of the “ideal” CPIR protocol of [KLL+15b] (that does
not take into account rounding errors) and the new CPIR protocol is O(`1/2). After taking into account
the rounding errors, the new protocol will be slightly more communication-efficient for all values of ` and n
analysed in [KLL+15b]. (See Fig. 1.) The new CPIR protocol can be used to implement rate 1−o(1) oblivious
transfer, strong conditional oblivious transfer, asymmetric fingerprinting protocol, and (computationally
inefficient) fully-homomorphic encryption.

2

`/κ Communication

No privacy Kiayas et al. [KLL+15b] This work

Theoretical With rounding Theoretical With rounding

103 2 048 017 4 079 561 4 220 928 4 090 880 4 090 880

104 20 480 017 26 439 497 26 759 168 26 443 776 26 443 776

105 204 800 017 223 161 724 223 942 656 223 163 148 223 163 343

106 2 048 000 017 2 105 572 921 2 107 731 968 2 105 573 376 2 105 573 376

107 20 480 000 017 20 661 566 883 20 664 602 624 20 661 567 027 20 661 569 161

108 204 800 000 017 205 373 669 331 205 394 259 968 205 373 669 376 205 373 669 376

Fig. 1. Comparison with [KLL+15b], for κ = 2048, w = 5, n = 57. The protocol from [KLL+15b] offers better com-
munication if rounding is not taken into account. However, in all cases, the current work offers better communication
in practice (i.e., when parameters have been rounded correctly)

We use the CPIR protocol proposed by Lipmaa in ISC 2005 [Lip05] and ICISC 2009 [Lip09] but with
parameters that we optimize in the current paper. In particular, we consider general w-ary decision trees
instead of just binary contrary to [Lip05,Lip09]. Alternatively, the proposed protocol is an instantiation of
the the CPIR protocol family of Kiayias et al. [KLL+15b] but with different parameter set, namely, with the
values td being constant, t1 = · · · = tm =: t, and the values sd being slightly increasing. This means that the
new CPIR protocol can be seen as a t-times parallel implementation — each for d`/te-bit databases — of the
CPIR protocol from [Lip05], for an optimized value of t. The new analysis is significantly simpler than the
multi-page analysis of [KLL+15b] but surprisingly enough delivers almost the same results. (Intuitively, this
happens since in [KLL+15b], in different layers one uses parameters (s, s, s, . . .) while in the new protocol,
one uses parameters (s, s+ 1, s+ 2, . . .). Since ` and s both are considered to be large, s+ 1 ≈ s.)

To show that our analysis is really simple, we will very briefly outline it next. The communication function
of the w-ary generalization of the CPIR from [Lip05] depends on n (the size of the database), ` (the length
of database elements), κ (the security parameter), t (the parallelism factor) and w (the arity of the decision
tree). Here, t and w are the values to be optimized. First, we use simple univariate analysis to derive the
optimal value topt =

√
(w − 1)`/κ of t for any w. Given the value of topt, we then “near optimize” (see

Sect. 4) the value of w. Here, near optimizing means that we write the communication function as a series
in `, and then choose the integer value of w (namely, w = 5) that minimizes the most significant coefficients
of this series. Since topt is a function of `, the layout of the series crucially depends on the fact that we first
fix topt.

We show that under these values of t and w, the asymptotic communication of the resulting CPIR protocol
is practically the same as in the optimal case in [KLL+15b]. On the other hand, for interesting1 values of
`, the proposed variant will have slightly better communication. More precisely, in the new CPIR protocol,
the communication complexity function, written down as a series in ` coincides with the one of the CPIR
from [KLL+15b] in the first three terms. The communication complexity of the optimal CPIR of [KLL+15b]
has a tailing element O`(1/`) that makes their construction asymptotically slightly more efficient. However,
the difference is not big: for example, in a concrete case where the database elements are 106κ bits long and
the database has n = 57 elements (here, κ = 2048 is the currently recommended security parameter), the
CPIR of [KLL+15b] is — when ignoring rounding errors — more efficient than the new CPIR by 683 bytes
out of more than 3 billion. See Fig. 1 for more examples.

However, this comparison is purely theoretical since it operates with the “ideal” communication function
and does not take into account rounding errors. Compared to [KLL+15b], we do not run into rounding errors
at every layer of the construction. Intuitively, this is the case since in our construction, each ciphertext of

1 Here, by interesting we mean values of ` that correspond to the length of an audio or video file; this was also the
motivating example given in [KLL+15b]. If ` is much shorter, then optimizing the communication complexity as a
function of ` is not relevant.

3

the previous layer is considered to be the plaintext of the next layer and hence the length of the plaintexts
increases by κ bits at each layer. On the other hand, in [KLL+15b], at each layer, the concatenation of t
ciphertexts (of total length (s+ 1)tdκ) is divided into new plaintexts, each of length sκ. The rounding error
(at every layer) is caused by the fact that for an s that is chosen optimally by the analysis of [KLL+15b],
(s+ 1)tdκ is essentially never divisible by s.

In fact, in the new construction, it is only important that s | ` (or else we get a one-time rounding error
at the very bottom of the protocol construction). This means, as we show numerically, that in practice, the
new CPIR protocol achieves slightly better communication complexity than the CPIR of [KLL+15b], while
being much simpler. See Fig. 1 for a communication efficiency comparison. To demonstrate the (relative)
simplicity of the new construction, we will give a full description of the new CPIR protocol on Fig. 3; the
only important distinction from the well-known CPIR protocol of [Lip05], as modified by [Lip09], is in the
first line (the choice of the paramrters). A comparable full description of the CPIR protocol of [KLL+15b] is
significantly longer, albeit mostly due to the more complicated procedure for selecting optimal parameters.
In fact, [KLL+15b] does not give a self-contained description of their CPIR protocol. Fig. 3 in [KLL+15b]
describes their new LHE scheme (that then has to be modified to become a CPIR protocol), but the choice of
all parameters is described later in that paper, together with the issues rising from rounding the parameters.

Extensions And Applications. Based on the ideas of [IP07,KLL+15b] and of the current paper, one can
construct a rate 1 − o(1) homomorphic encryption scheme that can homomorphically evaluate any func-
tion that has a polynomial-size large-output branching program. All known fully homomorphic encryption
schemes have a very low rate. (See [GS16] for insights on why achieving good rate fully homomorphic encryp-
tion scheme might be difficult.) Since the generalization from binary decision trees, that are used to construct
the new CPIR protocol, to arbitrary branching programs is straightforward yet necessitates introducing a
lot of branching program-related terminology, we will omit further discussion and refer to [KLL+15b].

Similarly, one can build a rate 1 − o(1) oblivious transfer, given the new CPIR protocol and known
transformations, see [KLL+15b] for discussion. Finally, based on their CPIR protocol, [KLL+15b] proposed
a new rate 1− o(1) strong conditional oblivious transfer protocol [BK04], and based on the later, [KLL+15a]
constructed the first optimal rate asymmetric fingerprinting protocol. One can plug in the CPIR protocol of
the current paper to those constructions obtaining simpler yet slightly more communication-efficient protocols
for (strong conditional) oblivious transfer and asymmetric fingerprinting.

2 Preliminaries

Notation. For a predicate, let [P (x)] ∈ {0, 1} denote the truth value of P (x), e.g., [x = y] is equal to
1 iff x = y and to 0 otherwise. The Lambert’s W function is defined by the equation z = W (z)eW (z).
Asymptotically, W (z) ≈ ln z − ln ln z. Let κ be the security parameter; in our case it corresponds to the key
length in bits, so κ ≥ 2048.

Public-Key Cryptosystem. A length-flexible cryptosystem (Gen,Enc,Dec) [DJ01,DJ03] consists of three
efficient algorithms, Gen for key generation, Enc for encryption, and Dec for decryption. The public key pk
fixes the plaintext space, the randomizer space Rpk, and the ciphertext space. For a public key pk, plaintext
m (of bitlength ` = |m|), a positive integer length parameter s := d`/κe, and a randomizer r ∈ Rpk we have
c = Encspk(m; r) and m = Decssk(c), and it is required that Decssk(Enc

s
pk(m; r)) = m.

A length-flexible cryptosystem has to satisfy the usual IND-CPA security requirement [DJ01]. That is, no
efficient adversary should be able to distinguish between ciphertexts corresponding to m0 and m1 encrypted
by using the same integer length parameter, even if m0 and m1 were chosen by her.

Let the rate of the cryptosystem be |m|/|c|, i.e., the ratio between the number of useful bits and the
actual transmission length. A length-flexible cryptosystem is optimal rate if |m|/|c| = 1 − o(1) when |m|
increases.

A cryptosystem is additively homomorphic if Decssk(Enc
s
pk(m1; r1) · Encspk(m2; r2)) = m1 + m2.

In [DJ01,DJ03], Damg̊ard and Jurik constructed two IND-CPA secure optimal-rate length-flexible additively

4

homomorphic cryptosystems. See also [BCP03]. An additively homomorphic cryptosystem is also required
to be rerandomizable in the sense that Encspk(m; r) · Encspk(0; r′1) is computationally indistinguishable from
Encspk(0; r′2), for uniformly random r′1, r

′
2 ←r Rpk.

More precisely, in the cryptosystem of [DJ01], the public key is a well-chosen RSA modulus N = pq, the
secret key is (p, q), and for a positive integer s, Encspk(m; r) = (1 + N)mrN

s

mod Ns+1, for m ∈ ZNs and
r ∈ Z∗N . Hence, if the plaintext is of length sκ, the cryptosystem of [DJ01] has ciphertext of length (s+ 1)κ.
The rate of this cryptosystem is

`

`+ κ
= 1− κ

`
+
κ2

`2
+O`(`

−3) .

This is intuitively optimal (up to the choice of κ) since κ bits are needed to randomize the ciphertext. The
Damg̊ard-Jurik cryptosystem from [DJ01] is IND-CPA secure under the DCR assumption [Pai99].

If pk and r are understood in the context (or if their precise value is not relevant), we will not write them
down explicitly.

Computationally-Private Information Retrieval (CPIR). Assume n > 1 and ` are positive integers,
with n, ` = poly(κ). An (n, 1)-CPIR protocol [KO97] for `-bit strings allows the receiver on input x ∈
{0, . . . , n− 1} to obtain fx ∈ {0, 1}` out of the sender’s database f = (f0, . . . , fn−1) without the sender
getting any information about x.

In a two-message CPIR protocol, the receiver first generates a public and secret key pair (pk, sk), then
sends a query Q← Querypk(n, `;x) and pk to the sender, who answers with a reply R← Replypk(n, `;f , Q).
After that, the receiver uses a function Answersk(n, `;x,R) to recover fx.

The receiver’s communication is equal to |Q|, the sender’s communication is equal to |R|, and the total
communication is equal to com := |Q|+ |R|. A non-private CPIR protocol consists of two messages, Q = x
(of log2 n bits) from the receiver to the sender, and R = fx (of ` bits) from the sender to the receiver. We
do not count pk as part of the communication, since (a) it is short, and (b) it can —and will — be reused
between many instances of the CPIR protocol. The rate of a CPIR protocol is equal to (log2 n+ `)/com.

A two-message CPIR protocol is IND-CPA secure if no efficient adversary A can distinguish between
queries corresponding to x0 and x1, even if x0 and x1 were chosen by her. That is,

Pr

[
(pk, sk)← Gen(1κ), (x0, x1)← Apk(1

κ, n, `), b←r {0, 1} ,
Q← Querypk(n, `;xb) : Apk(n, `;Q) = b

]

is negligible in κ, for each probabilistic polynomial-time A and polynomially large n and `.

3 Related Work

There are very few conceptually different approaches for constructing communication-efficient (n, 1)-
CPIR protocols. The (n, 1)-CPIR protocol by Kiyaias et al. [KLL+15b], following earlier proto-
cols [KO97,Ste98,Lip05,IP07,Lip09], homomorphically executes a branching program, by using a (w, 1)-CPIR
at every internal node of the branching program. Here, w is a small constant. See [CMS99,GR05] for a differ-
ent approach that however results in rate that cannot be better than 1/4; see [CMS99,GR05] for a discussion.

3.1 Linear-Communication (w, 1)-CPIR Protocol

Recall that s is a positive integer. The concrete underlying (w, 1)-CPIR protocol used
in [Lip05,IP07,Lip09,KLL+15b] is a simple linear-communication CPIR protocol from [Lip05]2. To
transfer one ` = sκ-bit database element, the receiver sends to the sender w − 1 ciphertexts, and the

2 As shown in [OS08], linear communication is the best one can hope when building a CPIR protocol on top of an
additively homomorphic cryptosystem while not using recursion.

5

R2 = Encs+2(Encs+1(Encs(fx2x1x0)))

Encs+1(Encs(f0x1x0))

Encs(f00x0)

f000 f001

Encs(f01x0)

f010 f011

Encs+1(Encs(f1x1x0))

Encs(f10x0)

f100 f101

Encs(f11x0)

f110 f111

Fig. 2. Using Lipmaa’s (w, 1)-CPIR from [Lip05] with w = 2 and n = 8. The receiver sends Encs(x0), Encs+1(x1),
Encs+2(x2) to the sender. The sender computes recursively the values at intermediate nodes, and then replies with
R2.

sender responds with one ciphertext, where the length of each ciphertext is (s + 1)κ bits. More pre-
cisely, the receiver sends to the sender w − 1 ciphertexts Ci encrypting [x = i] for i ∈ {0, . . . , w − 2},
Ci = Encs([x = i]; ri) for a random ri ←r Rpk. From {Ci}w−2i=0 , by using additive homomorphism, the

sender obtains the ciphertext Cw−1 encrypting [x = w − 1] = 1 −
∑w−2
i=0 [x = i]. Hence, (C0, . . . , Cw−1)

encrypts the x-th unit vector, x ∈ {0, . . . , w − 1}. Then, she uses {Ci}w−1i=0 to homomorphically compute
a randomized ciphertext encrypting

∑n
i=1[x = i]fi = fx. That is, Q = Querypk(n, `;x) = (C0, . . . , Cw−2),

Cw−1 = Encs(1; 0)/
∏w−2
i=0 Ci, and R = Replypk(n, `;f , Q) =

∏w−1
i=0 Cfii · Enc

s(0; r) for a random r. The
receiver just computes Answersk(n, `;x,R) = Decssk(R). This CPIR protocol is IND-CPA secure given that
the underlying Damg̊ard-Jurik cryptosystem is IND-CPA secure, i.e., under the DCR assumption.

While this (w, 1)-CPIR has linear communication, importantly its sender-side communication consists of
only one ciphertext and thus has near-optimal rate (log2 n+`)/(`+κ) = 1−(κ−log2 n)/`+O(`−2) = 1−o(1).

3.2 Lipmaa’s Recursive (n, 1)-CPIR Protocol from [Lip05]

W.l.o.g., assume that n is a power of w, n = wm for some m, where w is a small positive inte-
ger. (In the general case, one can add dummy elements to the database.) The (n, 1)-CPIR protocols
of [KO97,Lip05,Lip09,KLL+15b] are built on top of a (w, 1)-CPIR, w � n, in a recursive manner.

Let (Gen,Enc,Dec) be an optimal-rate length-flexible additively homomorphic cryptosystem like the one
proposed by Damg̊ard and Jurik [DJ01] and (Query,Reply,Answer) be the (w, 1)-CPIR protocol of Sect. 3.1.
In the (n, 1)-CPIR protocol of Lipmaa from ISC 2005 [Lip05], a w-ary decision tree of length m := logw n is
constructed on top of a database of n elements. Then, the internal nodes are assigned labels starting from
bottom. Let x =

∑m−1
i=0 xiw

i, i.e., xi is the ith w-ary digit of x. For an internal node v that has distance i
to the leafs, the label of v is equal to the reply of the (w, 1)-CPIR protocol, given a query Query(w, sκ;xi)
and a database (f0, . . . , fw−1) consisting of the labels of the children of v. (See Fig. 2.) Finally, the sender
replies with the label of the root of the binary decision tree, and the receiver applies to it m times the Answer
function to recover fx.

Since we use the (w, 1)-CPIR protocol of Sect. 3.1, if the labels of the children of v are say (fv0, . . . , fv1),
then the label of v is going to be Encs+i−1pk (fvxi

) (as in Fig. 2), and each application of Answer consists of a
single decryption.

The receiver’s message in the (n, 1)-CPIR protocol corresponds to one (w, 1)-CPIR receiver’s message for
each length parameter s+ i, i ∈ {1, . . . , logw n}, while the sender’s message corresponds to one (w, 1)-CPIR

6

sender’s message for the length parameter s+ logw n. The resulting receiver’s communication is

rec1(w, n, `, κ) :=

logw n∑
i=1

(w − 1)(`/κ+ i)κ

=(w − 1)(`/κ+ (logw n+ 1)/2) logw n · κ
=(w − 1)(`+ (logw n+ 1)κ/2) logw n

and the sender’s communication is

sen1(w, n, `, κ) := (`/κ+ logw n)κ = `+ κ logw n .

(Recall that communication is always measured in bits.) Hence, the total communication com1(w, n, `, κ) =
rec1(w, n, `, κ) + sen1(w, n, `, κ) of the CPIR protocol from [Lip05] is equal to

com1(w, n, `, κ) = ((w − 1) logw n+ 1)`+
κ logw n · ((w − 1) logw n+ (w + 1))

2
.

Its rate is (log2 n+ `)/com1(w, n, `, κ) ≈ 1/((w− 1) logw n+ 1). For large `, com1(·, n, `, κ) is clearly minimal
when w = 2, with

com1(2, n, `, κ) = (log2 n+ 1)`+
κ log2 n · (log2 n+ 3)

2
and rate ≈ 1/(log2 n+ 1).

3.3 Optimizing the Communication by Data-Parallelization

In [Lip05], Lipmaa additionally noted that one can reduce the communication (assuming `/κ � log2 n) by
executing the protocol from Sect. 3.2 separately and in parallel on every (`/t)-bit chunk of the database
elements, where t ≥ 1, t | `, is a positive integer. This results in optimized total communication since
in the (n, 1)-CPIR protocol of Sect. 3.2, the receiver’s communication is much larger than the sender’s
communication. If t > 1, then the same receiver’s message can be used in all t parallel invocations of the
protocol from Sect. 3.2, while the sender has to respond with t messages. Crucially, the bitlength of database
elements in each invocation is divided by t and thus every single message of the receiver and the sender
becomes shorter.

More precisely, assuming again t | `, the parallelized (n, 1)-CPIR protocol of [Lip05] has the receiver’s
communication, the sender’s communication, and the total communication

rec2(w, n, `, κ, t) :=rec1(w, n, `/t, κ) = (w − 1)(`/t+ (logw n+ 1)κ/2) logw n ,

sen2(w, n, `, κ, t) :=t · sen1(w, n, `/t, κ) = t(`/t+ κ logw n) = `+ tκ logw n ,

com2(w, n, `, κ, t) = (w − 1)(`/t+ (logw n+ 1)κ/2) logw n+ `+ tκ logw n . (1)

If t - `, then one has to round `/t upwards.
In ISC 2005 [Lip05], Lipmaa considered parameter settings that resulted in rate ≈ 1/2. In ICISC

2009 [Lip09], Lipmaa considered the following parameter settings: w = 2 and t = a log2 n for large a.
In this case,

com2(2, n, `, κ, a log2 n) =

(
1

a
+ 1

)
`+

(2a+ 1)κ log2
2 n

2
+
κ log2 n

2
. (2)

Thus with such parameters the parallelized (n, 1)-CPIR protocol has rate

log2 n+ `

com2(2, n, `, κ, a log2 n)
=

a

a+ 1
+O(`−2) ≤ 1− 1

a
+O(`−2) .

However, for this estimate to hold, it is needed that a = Θ`(1) does not depend on `. Moreover, due to
the additive term Θ(a)κ log2

2 n in Eq. (2), the communication complexity will actually increase if a is too
large. Hence, by using the parameters proposed in [Lip09], the parallelized (n, 1)-CPIR protocol from [Lip05]
cannot achieve rate 1− o(1).

7

3.4 The CPIR Protocol of Kiayias et al.

Kiayas et al. [KLL+15b] proposed another twist on top of the CPIR protocol of Lipmaa [Lip05]. In a nutshell,
during the recursive procedure, the parallelized CPIR protocol of Sect. 3.3 stores at every childrens’ node the
concatenation of t plaintexts. The label of the parent node is defined to be equal to the concatenation of t
individual ciphertexts. In [KLL+15b], each childrens’ node also stores the concatenation of t plaintexts each
being (say) L bits long. However, this concatenation is then redivided into t′ equal-length new plaintexts
(each of length dtL/t′e). The new plaintexts are then encrypted individually and the resulting ciphertexts
concatenated as the label of the parent node. The major contribution in [KLL+15b] is the computation of
optimal values t and t′ (for each layer of the CPIR tree) and establishing that one can choose those values
so as to obtain a CPIR protocol of rate 1− o(1).

4 Simple Optimal-Rate CPIR Protocol

We now propose a different setting of the parameters for the parallelized (n, 1)-CPIR protocol from Sect. 3.3,
motivated by the approach of [KLL+15b]. We first continue the analysis of [Lip05,Lip09], and find optimal
values of the parameters. After that, for the sake of completeness, we will give a full description of the
resulting CPIR protocol together with a security proof.

4.1 Optimization of Parameters

Recall that the communication complexity of Lipmaa’s parallelized (n, 1)-CPIR protocol is given by Eq. (1).
It depends on three variables (κ, `, and n) that are fixed, and two variables (w and t) that can be optimized.
We were unable to find the global optimum of com2, due to the complicated form of ∂com2/∂w,

∂com2

∂w
=

lnn · lnw · (w lnw(2`+ kt)− 2`(w − 1)− kt(2t+ w − 1))

2tw ln3 w
+

ln2 n · kt(−2w + w lnw + 2)

2tw ln3 w
.

Instead, we will first optimize com2 as a function of t, and then we will “near optimize” the result as a
function of w. By doing so, we obtain a CPIR protocol that has a rate very close to the rate of [KLL+15b],
but with a much simpler analysis.

We will find the optimal value of t by requiring that

∂com2

∂t
=

(t2κ− (w − 1)`) logw n

t2
= 0 .

Since n 6= 0, this holds if
t = topt :=

√
(w − 1)`/κ .

Clearly,

com2(w,n, `, κ, topt) =

`+
2
√
w − 1

log2 w
·
√
`κ · log2 n+

(w − 1)(logw n+ 1) logw n

2
· κ .

(3)

Finding a value of w that optimizes this function seems to be also complicated. Hence, as in [KLL+15b],
we now choose w that just minimizes the most significant term in com2 that depends on w, i.e., the second
term, hoping that the result w will be close to the optimal. The second additive term in the right hand side
of Eq. (3) is minimized when

d

dw

√
w − 1

log2 w
=

(w lnw − 2w + 2) ln 2

2
√
w − 1 · w ln2 w

= 0 ,

8

Parameters: κ, n, `, t = d2
√
`/κe, s = d`/(tκ)e, w = 5,m = dlogw ne.

Receiver’s Querynew(n, `;x):
Generate a new public and secret key pair (pk, sk) for the Damg̊ard-Jurik cryptosystem.
Write x =

∑m−1
d=0 xdw

d for xd ∈ {0, . . . , w − 1}.
For d = 0 to m− 1:
1. For j = 0 to w − 2:

(a) Generate a new randomizer rdj ← Rpk

(b) Let Qdj ← Encs+d−1
pk ([xd = j]; rdj)

2. Compute Qd,w−1 ← Encs+d−1
pk (1; 1)/

∏w−2
j=0 Qdj

Send pk and Querypk(n, `, x) := Q = (Qdj)d∈[0,m−1],j∈[0,w−2] to the sender
Sender’s Replynew

pk (n, `;f ,Q) :
For i− 0 to n− 1:
1. Denote L0,i = fi
2. Write L0,i = (L0,i,0, . . . , L0,i,t−1), with |L0,i,z| = sκ

For d = 0 to m− 1:
1. Compute Qd,w−1 ← Encs+d−1

pk (1; 1)/
∏w−2

j=0 Qdj

2. For i = 0 to n/wd+1 − 1:
(a) For z = 0 to t− 1:

i. Ld+1,i,z = Encs+d−1
pk (0; r′diz) ·

∏w−1
j=0 Q

Ld,iw+j,z

dj for random r′diz ← Rpk

Let R = (R0, . . . , Rt−1) := (Lm,0,0, . . . , Lm,0,t−1).
Return Replypk(n, `;f ,Q) = R.

Receiver’s Answernew
sk (n, `;R) :

For d = m− 1 downto 0:
1. For z = 0 to t− 1: Rz ← Decs+d

sk (Rz)
Return fx = (R0, . . . , Rt−1)

Fig. 3. Full description of the new (n, 1)-CPIR protocol

that is, when

w = − 2

W (−2/e2)
≈ 4.92 . (4)

Since w has to be an integer, we take w = 5, exactly as in [KLL+15b]. Then, topt = 2
√
`/κ. Thus, recalling

that ` = t · sκ, we get that

s =
`

toptκ
=

`

2
√
`/κ · κ

=
1

2
·
√
`/κ .

4.2 Full Protocol

Before giving a full efficiency analysis (it will be done in Sect. 5), we now take a step back and give a detailed
description of the resulting (n, 1)-CPIR protocol. In the description below we do not assume that (say) n is
a power of w, hence we will use the d·e function to compute intermediate parameters. See Fig. 3 for a full
description. We emphasize that — except the different choice of parameters — this is the same protocol as
described in Sect. 3.3 and hence we omit repeating the intuition.

4.3 Security Proof

Lemma 1. Assume that the underlying public-key cryptosystem is IND-CPA secure. Then, the new CPIR
protocol is IND-CPA secure.

Proof (Sketch). The sender, not having access to the secret key, only sees a vector of ciphertexts
(Q00, . . . , Qm−1,w−2). Hence, the security of the CPIR protocol is guaranteed by the IND-CPA security
of the cryptosystem via a standard hybrid argument. ut

9

5 Communication Efficiency Analysis

5.1 Asymptotic Analysis

The given parameter choice results in the following theorem.

Theorem 1. Assume that s =
√
`/κ/2 and log5 n are integers. There exists an (n, 1)-CPIR protocol for

`-bit strings with communication complexity

com2(5, n, `, κ, 2
√
`/κ) = `+

4

log2 5
·
√
`κ · log2 n+ 2

(
log2

5 n+ log5 n
)
κ .

Proof. The result follows from preceding discussion. ut

Note that 4/ log2 5 ≈ 1.72. Note also that

rec2(5, n, `, κ, 2
√
`/κ) =

2

log2 5
·
√
`κ · log2 n+ 2

(
log2

5 n+ log5 n
)
κ ,

sen2(5, n, `, κ, 2
√
`/κ) = `+

2

log2 5
·
√
`κ · log2 n ,

and hence rec2 is sublinear in `.
To compare, the (n, 1)-CPIR protocol of [KLL+15b] (see Cor. 1 therein) achieves communication com-

plexity

`+
4

log2 5
·
√
`κ · log2 n+ 2

(
log2

5 n+ log5 n
)
κ+O(`−1/2) .

Thus, the (n, 1)-CPIR protocol from the current paper has essentially the same communication as
in [KLL+15b] (the first three terms of the series expansion of the communication function com are the
same as in [KLL+15b]), but with a much simpler analysis (and construction).

5.2 Optimization w.r.t. n

Consider now the task of optimization com2 (as in Eq. (1)) as a function of n.
First, finding of the optimal topt does not depend on whether we optimize as a function of ` or n. Hence,

we will assume that topt =
√

(w − 1)`/κ, as before. Writing down the expression for com2 as a — finite —
series in log2 n, we get

com2(w, n, `, κ, topt) =`+
(w − 1)κ

2 log2
2 w
· log2

2 n+

4
√
w − 1

√
`κ+ (w − 1)κ

2 log2 w
· log2 n .

Interestingly enough, the second additive term of this expression is minimized when w = − 2
W (−2/e2) ≈

4.92 ≈ 5, which seems to hint that this value of w may be close to the global minimum.

5.3 Rate

Assume again that s and log5 n are integers. By dividing the length of useful information, log2 n + `, with
the communication (3), we get that the new CPIR has rate

R =
log2 n+ `

com2(w, n, `, κ, topt)

=1− 2
√

(w − 1)κ/` logw n+
2 log2 n+ (w − 1)κ logw n(7 logw n− 1)

2`
+

O(`−3/2) .

(5)

10

Indeed, the communication function

com2(w, n, `, κ, topt) =

∞∑
i=0

ai`
1−i/2

is given by Eq. (3), where a0 = 1, a1 = 2
√

(w − 1)κ logw n, a2 = ((w − 1)κ(logw n + 1) logw n)/2, ai = 0,
where i ≥ 3. Let

R =

∞∑
i=0

bi`
1−i/2 .

We find bi from the condition com2(w, n, `, κ, topt) ·R = log2 n+ ` comparing coefficients of different powers:

`2 : a0b0 = 0⇒ b0 = 0 ,

`3/2 : a0b1 + a1b0 = 0⇒ b1 = 0 ,

` : a0b2 + a1b1 + a2b0 = 1⇒ b2 = 1 ,

`1/2 : a0b3 + a1b2 + a2b1 = 0⇒ b3 = −a1 ,

`0 : a0b4 + a1b3 + a2b2 = log2 n⇒ b4 = log2 n+ a21 − a2 ,

`i , i < 0 :

n∑
i=0

aibn−i = 0⇒ bi .

Thus we arrive to Eq. (5).
One can verify that the second term of Eq. (5) is minimized when w is as in Eq. (4). Assuming w = 5,

the rate is

1− 4

log2 5
·
√
κ/` · log2 n+ ((14κ log5 n− 2κ+ log2 5) log5 n) · 1

`
+O(`−3/2) .

See Sect. 5.4 for a figure showing how the rate grows as a function of `/κ for a concrete value of n.

5.4 Concrete Analysis

If the prerequisites of the theorem are not fulfilled (e.g., n is not a power of w), we need to use ceiling function
in the computation of the communication function, that is, we are interested in the function dcom2(. . .)e :=
drec2(. . .)e+ dsen2(. . .)e.

Kiayias et al [KLL+15b] gave a few numerical examples of the efficiency of their CPIR protocol. In Fig. 1,
we will give a comparison with the current work; the columns “theoretical” give the value of the function
com2, while the columns “With rounding” give the value of the function dcom2e. In all cases, κ = 2048 and
n = wm = 57. As we can see, due to the rounding errors present in the protocol of [KLL+15b], the current
work achieves always slightly better efficiency.

On Fig. 4, we depict the rate of the dcom2e of the new CPIR protocol as a function of log2(`/κ). In
particular, the rate of the protocol from the current paper (when rounding included) is 0.917714 for ` = 105κ
and 0.997207κ for ` = 108κ. Computing a similar graphic for the CPIR protocol of [KLL+15b] would be
quite time consuming.

If n is arbitrary (not a power of w), then a standard approach is to add to the database a number of
dummy elements so as to increase the database size to the next power of w. This will incur similar — very
small! — penalties for the protocols of [KLL+15b] and of the current paper. For example, consider the cases
κ = 2048, ` = 105κ, and w = 5. If n = 57 is increased to n = 57 + 1 (the worst case, since one has to add
57 − 1 dummy elements), the rate will decrease from 0.917714 to 0.906919.

Finally, the problem of optimizing the protocol for small values of ` is clearly out of scope for the current
work since we try to decrease rate for large values of `. See, e.g., Sect. 3 of [Lip05] for a discussion of the
case of small `.

11

10 15 20 25

0.2

0.4

0.6

0.8

Fig. 4. The rate of the new CPIR protocol as a function of log2(`/κ), i.e., on logarithmic scale, for w = 5, n = 57

and κ = 2048. The smooth (blue) line corresponds to the case without rounding errors. The jumpy (purple) line
corresponds to the case with rounding errors; note that it also rounds up the non-private case, i.e., it uses `+ dlog2 ne
as the amount of useful information. This explains why the case with rounding errors usually has a better rate than
the case without

6 Open Problems

A major open problem left by the current work is to construct a CPIR protocol where the rate function
grows faster than Eq. (5), or to show that this is not possible. An impossibility proof might be possible in
some restricted model.

The second open problem is to construct a rate-optimal CPIR protocol with the better computational
complexity. (See [KLL+15b] for a detailed discussion about the computational complexity.)

Acknowledgment. The authors were supported by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 653497 (project PANORAMIX). The first (resp., the
second) author was supported by institutional research funding IUT2-1 (resp., IUT20-57) of the Estonian
Ministry of Education and Research.

References

BCP03. Emmanuel Bresson, Dario Catalano, and David Pointcheval. A Simple Public-Key Cryptosystem with a
Double Trapdoor Decryption Mechanism and Its Applications. In Chi Sung Laih, editor, ASIACRYPT
2003, volume 2894 of LNCS, pages 37–54, Taipei, Taiwan, Nov 30–Dec 4, 2003. Springer, Heidelberg.

BK04. Ian F. Blake and Vladimir Kolesnikov. Strong Conditional Oblivious Transfer and Computing on Intervals.
In Pil Joong Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 515–529, Jeju Island, Korea,
December 5-9 2004. Springer, Heidelberg.

CMS99. Christian Cachin, Silvio Micali, and Markus Stadler. Computational Private Information Retrieval with
Polylogarithmic Communication. In Jacques Stern, editor, EUROCRYPT 1999, volume 1592 of LNCS,
pages 402–414, Prague, Czech Republic, May 2–6, 1999. Springer, Heidelberg.

DJ01. Ivan Damg̊ard and Mads Jurik. A Generalisation, a Simplification and Some Applications of Paillier’s
Probabilistic Public-Key System. In Kwangjo Kim, editor, PKC 2001, volume 1992 of LNCS, pages
119–136, Cheju Island, Korea, February 13–15, 2001. Springer, Heidelberg.

12

DJ03. Ivan Damg̊ard and Mads Jurik. A Length-Flexible Threshold Cryptosystem with Applications. In Rei
Safavi-Naini, editor, ACISP 2003, volume 2727 of LNCS, pages 350–364, Wollongong, Australia, July 9-11,
2003. Springer, Heidelberg.

GR05. Craig Gentry and Zulfikar Ramzan. Single-Database Private Information Retrieval with Constant Com-
munication Rate. In Luis Caires, Guiseppe F. Italiano, Luis Monteiro, Catuscia Palamidessi, and Moti
Yung, editors, ICALP 2005, volume 3580 of LNCS, pages 803–815, Lisboa, Portugal, 2005. Springer,
Heidelberg.

GS16. Kristian Gjøsteen and Martin Strand. Can there be efficient and natural FHE schemes? Technical Report
2016/105, IACR, February 9, 2016. http://eprint.iacr.org/2016/105, last accessed version from June
2016.

IP07. Yuval Ishai and Anat Paskin. Evaluating Branching Programs on Encrypted Data. In Salil P. Vadhan,
editor, TCC 2007, volume 4392 of LNCS, pages 575–594, Amsterdam, The Netherlands, February 21–24,
2007. Springer, Heidelberg.

KLL+15a. Aggelos Kiayias, Nikos Leonardos, Helger Lipmaa, Kateryna Pavlyk, and Qiang Tang. Communication
Optimal Tardos-based Asymmetric Fingerprinting. In Kaisa Nyberg, editor, CT-RSA 2015, volume 9048
of LNCS, pages 469–486, San Franscisco, CA, USA, April 20–24, 2015. Springer, Heildeberg.

KLL+15b. Aggelos Kiayias, Nikos Leonardos, Helger Lipmaa, Kateryna Pavlyk, and Qiang Tang. Optimal Rate
Private Information Retrieval from Homomorphic Encryption. Proceedings on Privacy Enhancing Tech-
nologies, 2015(2):222–243, 2015.

KO97. Eyal Kushilevitz and Rafail Ostrovsky. Replication is Not Needed: Single Database, Computationally-
Private Information Retrieval. In FOCS 1997, pages 364–373, Miami Beach, Florida, October 20–22,
1997. IEEE Computer Society.

Lip05. Helger Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communication. In Jianying Zhou
and Javier Lopez, editors, ISC 2005, volume 3650 of LNCS, pages 314–328, Singapore, September 20–23,
2005. Springer, Heidelberg.

Lip09. Helger Lipmaa. First CPIR Protocol with Data-Dependent Computation. In Donghoon Lee and Seokhie
Hong, editors, ICISC 2009, volume 5984 of LNCS, pages 193–210, Seoul, Korea, December 2–4, 2009.
Springer, Heidelberg.

OS08. Rafail Ostrovsky and William E. Skeith III. Communication Complexity in Algebraic Two-Party Pro-
tocols. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 379–396, Santa Barbara,
USA, August 17–21, 2008. Springer, Heidelberg.

Pai99. Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Jacques
Stern, editor, EUROCRYPT 1999, volume 1592 of LNCS, pages 223–238, Prague, Czech Republic, May 2–
6, 1999. Springer, Heidelberg.

Ste98. Julien P. Stern. A New And Efficient All Or Nothing Disclosure of Secrets Protocol. In Kazuo Ohta and
Dingyi Pei, editors, ASIACRYPT 1998, volume 1514 of LNCS, pages 357–371, Beijing, China, October 18–
22, 1998. Springer, Heidelberg.

Weg00. Ingo Wegener. Branching Programs and Binary Decision Diagrams: Theory and Applications. Monographs
on Discrete Mathematics and Applications. Society for Industrial Mathematics, 2000.

13

http://eprint.iacr.org/2016/105

	A Simpler Rate-Optimal CPIR Protocol

