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Abstract. This paper presents a constant-time fast implementation for
a high-security code-based encryption system. The implementation is
based on the “McBits” paper by Bernstein, Chou, and Schwabe in 2013:
we use the same FFT algorithms for root finding and syndrome com-
putation, similar algorithms for secret permutation, and bitslicing for
low-level operations. As opposed to McBits, where a high decryption
throughput is achieved by running many decryption operations in par-
allel, we take a different approach to exploit the internal parallelism in
one decryption operation for the use of more applications. As the re-
sult, we manage to achieve a slightly better decryption throughput at
a much higher security level than McBits. As a minor contribution, we
also present a constant-time implementation for encryption and key-pair
generation, with similar techniques used for decryption.

Keywords: McEliece · Niederreiter · bitslicing · software implementa-
tion

1 Introduction

In recent years, due to the advance in quantum computing, cryptographers are
paying more and more attention to post-quantum cryptography. In particular,
NIST’s call for proposal [16] serves as an announcement to declare that post-
quantum cryptography is going to be reality, and the whole world needs to
be prepared for that. Among other things, we need post-quantum public-key
encryption schemes, and the most promising candidates today are from code-
based cryptography and lattice-based cryptography.

In 1978, McEliece proposed his hidden-Goppa-code cryptosystem [13] as the
first code-based encryption system. Until today, almost 40 years of research has
been invested on cryptanalyzing the system, yet nothing has really shaken its
security. It has thus become one of the most confidence-inspiring post-quantum
encryption systems we have today, and it is important to evaluate how practical
the system is for deployment.

This work was supported by the Netherlands Organisation for Scientic Research
(NWO) under grant 639.073.005 and by the Commission of the European Commu-
nities through the Horizon 2020 program under project number 645622 PQCRYPTO.
Permanent ID of this document: a6d277b6724b21ae996418cbec02d682. Date:
2017.06.26.



reference m n t bytes sec perm synd key eq root all arch

McBits [3]
13 6624 115 958482 252 23140 83127 102337 65050 444971 IB

13 6960 119 1046739 263 23020 83735 109805 66453 456292 IB

This paper 13 8192 128 1357824 297
3783 62170 170576 53825 410132 IB
3444 36076 127070 34491 275092 HW

Table 1. Number of cycles for decoding for McBits and our software.

In 2013, Bernstein, Chou, and Schwabe published the “McBits” paper [3],
which presents a software implementation of Niederreiter’s dual form [15] of
the McEliece cryptosystem. McBits features (1) a very high decoding (and thus
decryption) throughput which is an order of magnitude faster than the previous
implementation by Biswas and Sendrier [8], and (2) full protection against timing
attacks. These features are achieved by bitslicing non-conventional algorithms
for decoding: they use the Gao–Mateer additive FFT [11] for the root-finding,
the corresponding “transposed” FFT for syndrome computation, and a sorting
network for secret permutation.

The decryption throughput McBits achieves, however, relies on the assump-
tion that there are many decryption operations that can be run at the same
time. This is a reasonable assumption for some applications, but not for the all
applications. The user would be glad to have an implementation that is capable
of decrypting efficiently, even when there is only one decryption operation at the
moment.

The main contribution of this paper is that we show the assumption is NOT a
requirement to achieve a high decryption throughput. Even better, our software
actually achieves a slightly better decryption throughput than McBits, at a much
higher security level. To achieve this, we need to have a deep understanding about
the data flow in each stage of decoding algorithm in order to figure out what
kind of internal parallelism there is and how it can be exploited.

Speeds. The decoding speed of our software, as well as those for the highest-
security parameters in [3, Table 1], are listed in Table 1. Most notations here
are the same as in [3, Table 1]: we use m to indicate the field size 2m, n to
denote the code length, and t to denote the number of errors. “Bytes” is the size
of public keys in bytes; “Sec” is the (pre-quantum) security level reported by
the https://bitbucket.org/cbcrypto/isdfq script from Peters [17], rounded
to the nearest integer. We list the cycle counts for each stage of the decoding
process as in [3, Table 1]: “perm” for secret permutation, “synd” for syndrome
computation, “key eq” for key-equation solving, and “root” for root finding.
In [3, Table 1] there are two columns for “perm”: one stands for the initial
permutation and one stands for the final permutation, but the cycle counts are
essentially the same (we pick the timing for the initial permutation). Note that
the column “all”, which serves as an estimation for the KEM decryption time,

2

https://bitbucket.org/cbcrypto/isdfq


key-generation encryption decryption arch

1552717680 312135 492404 IB
1236054840 289152 343344 HW

Table 2. Cycle counts for key generation, encryption (for 59-byte messages), and
decryption.

is computed as

“perm”× 2 + “synd”× 2 + “key eq” + “root”× 2.

This is different from the “total” column in [3, Table 1] for decoding time, which
is essentially

“perm”× 2 + “synd” + “key eq” + “root”.

The difference is explained in Section 6 in detail. “Arch” indicates the microar-
chitecture of the platform: “IB” for Ivy Bridge and “HW” for Haswell.

We comment that the way we exploit internal parallelism brings some over-
head that can be avoided when using external parallelism. In general such an
overhead is hard to avoid since the data flow of the algorithm is not necessarily
friendly for bitslicing internally. This is exactly the main reason why our soft-
ware is slower in “key eq” than McBits (a minor reason is that we are using
a larger t). Despite the extra overhead, we still perform better when it comes
to “synd” and “root”. The improvement on “perm” is mainly because of our
use of an asymptotically faster algorithm. Our “all” speed ends up being bet-
ter than McBits. We emphasize that the timings for McBits are actually 1/256
of the timings for 256 parallel decryption operations, while the timings for our
software involve only one decryption operation.

For completeness, we also implement the complete KEM/DEM-like ([19])
encryption system as described in [3, Section 6]. The corresponding cycle counts
for key generation, encryption, and decryption are presented in Table 2.

For comparison with lattice-based cryptosystems, NTRU Prime [4], which
appears to be the fastest high-security NTRU-type system (that has a constant-
time implementation) at the moment, takes

– 1 multiplications in F9829[x]/(x739 − x− 1) for encryption and
– 2 multiplications in F9829[x]/(x739 − x− 1) plus

1 multiplication in F3[x]/(x739 − x− 1) for decryption,

where each multiplication in F9829[x]/(x739−x− 1) takes around 50000 Haswell
cycles. As other lattice-based cryptosystems, NTRU Prime has a relatively small
public key size of 1232 bytes. Our system has a ciphertext overhead of only 224
bytes, while NTRU Prime takes at least 1141 bytes.

Parameter Selection. As shown in Table 1, we implement one specific pa-
rameter set (m,n, t) = (13, 8192, 128), with 1357824-byte public keys and a 2297

security level. We explain below the reasons to select this parameter set.
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The Gao–Mateer additive FFT evaluates the input polynomial at a prede-
fined F2-linear subspace of F2m . The parameter n indicates the size of the list of
field elements that we need to evaluate at, so for n = 2m we can simply define
the subspace as F2m . In the case of n < 2m, however, there is no way to define
the subspace to fit arbitrary choice of the field elements (which is actually a part
of the secret key), so the best we can do is still evaluate at the whole F2m . In
other words, having n < 2m would result in some redundant computation.

The parameter n also indicates the number of elements that we need to apply
secret permutations on. The permutation algorithm we use, in its original form,
requires that the number of elements to be a power of 2. The algorithm can
be “truncated” to deal with an arbitrary number of elements, but this makes
implementation difficult.

Having t close to the register size is convenient for bitslicing the FFT al-
gorithms and the Berlekamp–Massey algorithm. We choose t = 128 to match
the size of XMM registers in SSE-supporting architectures, as well as the size of
the vector registers in the ARM-NEON architectures. Not having t close to the
register size will not really affect the performance of FFTs: the algorithms are
dominated by the t-irrelevant part as long as t is much smaller than 2m. A bad
value for t has more impact on the performance of the Berlekamp–Massey algo-
rithm since we might waste many bits in the registers. Choosing t = 128 (after
choosing n = 2m) also forces the number of rows mt and number of columns
n −mt of the public-key matrix to be multiples of 128, which is convenient for
implementing the encryption operation.

For the reasons stated above, some other nice parameters for (m,n, t) are

– (12, 4096, 64) with 319488-byte public keys and a 2159 security level,
– (12, 4096, 128) with 491520-byte public keys and a 2189 security level, and
– (13, 8192, 64) with 765440-byte public keys and a 2210 security level.

We decided to select a parameter set that achieves at least a 2256 pre-quantum
security level and thus presumably at least a 2128 post-quantum security level.

The reader might argue that such a high security level is not required for real
applications. Indeed, even if quantum algorithms can take a square root on the
security level, it still means that our system has a roughly 2150 post-quantum
security level. In fact, we even believe that quantum algorithms will not be able
to take a square root on the security: we believe there is a overhead of more
than 220 that needs to be added upon the square root. However, before the
post-quantum security of our system is carefully analyzed, we think it is not a
bad idea to implement a parameter set that is very likely to be an overkill and
convince users that the system achieves a decent speed even in this case. Once
careful analysis is done, our implementation can then be truncated to fit the
parameters. The resulting implementation will have at least the same speed and
a smaller key size.

Organization. The rest of this paper is organized as follows. Section 2 intro-
duces the low-level building blocks used in our software. Section 3 describes how
we implement the Beneš networks for secret permutations. Section 4 describes
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how we implement the Gao–Mateer FFT for root finding and the correspond-
ing “transposed” FFT for syndrome computation. Section 5 introduces how we
implement the Berlekamp–Massey algorithm for key-equation solving. Finally,
Section 6 introduces how the components in Section 3, 4, 5 are combined to
form the complete decryption, as well as how key generation and encryption are
implemented.

2 Building blocks

This section describes the low-level building blocks used in our software. We will
use these building blocks as black boxes in the following sections. The imple-
mentation techniques behind these building blocks are not new. In particular,
this section presents (1) how to use bitslicing to perform several field operations
in parallel and (2) how to perform bit-matrix transposition in software. Readers
who are famliar with these techniques may skip this section.

Individual Field Operations. The finite field F213 is constructed as F2[x]/(g),

where g = x13+x4+x3+x+1. Let z = x+(g). Each field element
∑12

i=0 aiz
i can

then be represented as the integer (a12a11 · · · a0)2 in software. Field additions
are carried out by XORs between integers. Field multiplications are carried out
by the following C function.

typedef uint16_t gf;

gf gf_mul(gf in0, gf in1)

{

uint64_t i, tmp, t0=in0, t1=in1, t;

tmp = t0 * (t1 & 1);

for (i = 1; i < 13; i++) tmp ^= (t0 * (t1 & (1 << i)));

t = tmp & 0x1FF0000;

tmp ^= (t >> 9) ^ (t >> 10) ^ (t >> 12) ^ (t >> 13);

t = tmp & 0x000E000;

tmp ^= (t >> 9) ^ (t >> 10) ^ (t >> 12) ^ (t >> 13);

return tmp & ((1 << 13)-1);

}

The squaring function is written in a similar way. Computing the inverse of a
field element is carried out by raising the element to the power 213 − 2 using 12
squarings and 4 multiplications.

Bitsliced Field Operations. The field multiplication function gf_mul and the
field addition shown above are rather inefficient. The reason is that each logical
instruction deals with only a small number of bits. For the algorithms used in
our software, however, most of the time several field operations can be performed
in parallel. We thus “bitslice” the field operations. The idea of bitslicing is to
use bitwise logical operations to simulate w copies of a combinational circuit:
the data for the ith copy is stored in the ith bits of the registers. In this way,
the number of bits involved in each instruction can be improved to w. Bitslicing
is also heavily used in [3]. We emphasize that for [3], the w copies are from w
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different decryption operations. For our software, the w copies are all from the
same decryption operation.

void vec64_mul(uint64_t *h, uint64_t *f, uint64_t *g)

{

int i, j;

uint64_t r[2*13 - 1];

for (i = 0; i < 2*13 - 1; i++)

r[i] = 0;

for (i = 0; i < 13; i++)

for (j = 0; j < 13; j++)

r[i+j] ^= r[i+j] ^ (f[i] & g[j]);

for (i = 2*13-2; i >= 13; i--)

{

r[i - 9] ^= r[i];

r[i - 10] ^= r[i];

r[i - 12] ^= r[i];

r[i - 13] ^= r[i];

}

for (i = 0; i < 13; i++) h[i] = r[i];

}

Fig. 1. The C function for bitsliced multiplications in F213 [x]/(x13 + x4 + x3 + x+ 1)
using 64-bit words.

The function vec64_mul for bitsliced field multiplications using 64-bit words
is shown in Figure 1. One can of course use 128-bit or 256-bit words instead.
According to Fog’s well-known performance survey [10], on the Ivy Bridge archi-
tecture, the bitwise AND/XOR/OR instructions on the 128-bit registers (XMM
registers) have a throughput of 3 per cycle, while for the 256-bit registers (YMM
registers) the throughput is only 1. On Haswell, the instructions for the 256-bit
registers have a throughput of 3 per cycle. We thus use the corresponding func-
tion vec128_mul for Ivy Bridge and use vec256_mul as much as possible for
Haswell. Since both functions are heavily used in our software, they are written
in qhasm [2] code for the best performance.

Many CPUs nowadays support the pclmulqdq instruction. The instruction
essentially performs a multiplication between two 64-coefficient polynomials in
F2[x], so it can be used for field multiplications. Our multiplication function
vec256_mul takes 138 Haswell cycles, which means a throughput of 1.86 field
multiplications per cycle. The pclmulqdq instruction has a throughput of 1/2 on
Haswell. We may perform 2 multiplications between 13-coefficient polynomials
using one pclmulqdq instruction. However, non-bitsliced representations make
it expensive to perform reductions modulo the irreducible polynomial g. On
Ivy Bridge the throughput for pclmulqdq is only 1/8, which makes it even less
favorable.
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Transposing Bit Matrices. Bit-matrix transposition appears to be a well-
known technique in computer programming. Perhaps due to the simplicity of
the method, it is hard to trace who the credit belongs to. Below we give a brief
review on the idea.

The task is to transpose a w×w bit matrix M , where w is a power of 2. The
idea is to first divide the matrix into 4 w/2×w/2 submatrices, i.e., the left upper,
right upper, left bottom, and right bottom submatrices. Then a “coarse-grained
transposition” is performed on M , which simply interchanges the left bottom
and right upper submatrices. Finally each block is transposed recursively, until
we reach 1× 1 matrices. The idea is depicted below.

M =

(
M00 M01

M10 M11

)
=⇒ M ′ =

(
M00 M10

M01 M11

)
=⇒

(
MT

00 M
T
10

MT
01 M

T
11

)
= MT

The benefit of this approach is that it can be carried out efficiently in soft-
ware. Suppose we are working on a w-bit machine, where the matrix is naturally
represented as an array of w w-bit words in a row-major fashion. Observe that
each of the first w/2 rows of M ′ is the concatenation of the first halves of two
rows in M . Similarly, each of the second w/2 rows is the concatenation of the
second halves of two rows in M . Therefore, each row in M ′ can be generated
using a few logical operations. After this, in order to carry out operations in the
recursive calls efficiently, the operations involving the upper two blocks can be
handled together using logical operations on w-bit words. The same applies for
the bottom two blocks. The C code for transposing 64× 64 matrices is shown in
Figure 2.

The same technique can be easily generalized to deal with non-square matri-
ces. Our software makes use of functions for transposing 64× 128 and 128× 64
matrices, where instructions such as psrlq, psllq, psrld, pslld, psrlw, and
psllw are used to shift the 128-bit registers.

3 The Beneš Network

As described in [3], a “permutation network” uses a sequence of conditional
swaps to apply an arbitrary permutation to an input array S. Each condi-
tional swap is a permutation-independent pair of indices (i, j) together with
a permutation-dependent bit c; it swaps S[i] with S[j] if c = 1. Our software
uses a specific type of permutation network, called the Beneš network [1], to
perform secret permutations for the code-based encryption system.

The McBits paper uses a “sorting network” for the same purpose but notes
that it takes asymptotically more conditional swaps than the Beneš network:
O(n log2 n) versus O(n log n) for array size n = 2m. We found that the Beneš
network is more favorable for our implementation because it is easier to use
the internal parallelism due to its simple structure. This section introduces the
structure of the Beneš network, as well as how it is implemented in our software.

Conditional Swaps: Structure. The Beneš network for 2m elements consists
of a sequence of 2m− 1 stages, where each stage consists of exactly 2m−1 condi-

7



const uint64_t mask[6][2] =

{

{0X5555555555555555, 0XAAAAAAAAAAAAAAAA},

{0X3333333333333333, 0XCCCCCCCCCCCCCCCC},

{0X0F0F0F0F0F0F0F0F, 0XF0F0F0F0F0F0F0F0},

{0X00FF00FF00FF00FF, 0XFF00FF00FF00FF00},

{0X0000FFFF0000FFFF, 0XFFFF0000FFFF0000},

{0X00000000FFFFFFFF, 0XFFFFFFFF00000000}

};

for (j = 5; j >= 0; j--)

{

s = 1 << j;

for (p = 0; p < 32/s; p++)

for (i = 0; i < s; i++)

{

idx0 = p*2*s + i;

idx1 = p*2*s + i + s;

x = (in[idx0] & mask[j][0]) | ((in[idx1] & mask[j][0]) << s);

y = ((in[idx0] & mask[j][1]) >> s) | (in[idx1] & mask[j][1]);

in[idx0] = x;

in[idx1] = y;

}

}

Fig. 2. The C code for transposing 64× 64 bit matrices. The matrix to be transposed
is stored in the array in. The transposition is performed in-place.

tional swaps. The set of index pairs for these 2m−1 conditional swaps is defined
as {

(α · 2s+1 + β, α · 2s+1 + 2s + β) | 0 ≤ α < 2m−1−s, 0 ≤ β < 2s
}
,

where s is stage-dependent. The sequence of s is defined as

m− 1,m− 2, . . . , 1, 0, 1, . . . ,m− 2,m− 1.

To visualise the structure, the size-16 Beneš network is depicted in Figure 3.
The Beneš network is often defined in a recursive way, in which case the

size-2m Beneš network is viewed as the combination of the first and last stage,
plus 2 size-2m−1 Beneš networks in the middle. Also note that in some materials
the sequence of s is defined as

0, 1, . . . ,m− 2,m− 1,m− 2, . . . , 1, 0.

The two ways to define the sequence for s are equivalent up to a permutation of
the array indices.

Conditional Swaps: Implementation. Consider the Beneš network for an
array S of 2m bits for some even m. We may consider S as a 2m/2×2m/2 matrix
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Fig. 3. The size-16 Beneš network with 7 stages. Each horizontal line represents an
element in the array. Each vertical line segment illustrates a conditional swap involving
the array elements corresponding to the end points.

M such that
Mi,j = S[i · 2m/2 + j].

In each of the first and last m/2 stages, the index pairs always have an index
difference that is a multiple of 2m/2. This implies that in each of these stages,
Mi,j is always conditionally swapped with Mi′,j , where i′ is a function of i. This
implies that the conditional swaps can be carried out by performing bitwise
logical operations between the rows (and the vectors formed by the corresponding
conditions): a conditional swap between Mi,j and Mi′,j with condition bit c can
be carried out by 4 bit operations

(y ←Mi,j ⊕Mi′,j ; y ← cy;Mi,j ←Mi,j ⊕ y;Mi′,j ←Mi′,j ⊕ y),

as mentioned in [3]. Likewise, the m− 1 stages in the middle can be carried out
by using bitwise logical operations between columns.

The Beneš network can be easily implemented on a machine with 2m/2-bit
registers. The matrix M can be represented using an array of 2m/2 2m/2-bit
words in a row-major fashion. With such a representation, the conditional swaps
between the rows can be performed by bitwise logical instructions between the
words. To deal with the m− 1 stages in the middle, we transpose the bit matrix
right after the first m/2 stages and right before the last m/2 stages (using the
technique described in Section 2), to maintain a column-major representation of
M during the m− 1 stages.

For our system it is required to permute 2m = 213 bits. We store these bits
in a 64× 128 matrix, and the same technique described above still applies.

4 The Gao–Mateer Additive FFT

Given a predefined F2-linear basis {β1, β2, . . . , βk} ⊂ F2m and an `-coefficient

input polynomial f =
∑`−1

i=0 fix
i ∈ F2m [x] such that ` ≤ 2k ≤ 2m, the Gao–
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Mateer FFT evaluates f at all the subset sums of the basis. In other words, the
FFT outputs the sequence f(e1), f(e2), . . . , f(e2k), where

(e1, e2, e3, e4, e5, . . . ) = (0, β1, β2, β1 + β2, β3, . . . ).

Such an FFT will be called a size-2k FFT.
Assuming that βk = 1. The idea is to compute two polynomials f (0) and f (1)

such that
f = f (0)(x2 + x) + xf (1)(x2 + x),

using the “radix conversion” described in [3, Section 3] (this is called “Taylor
expansion” in [11]). Note that f (0) is a d`/2e-coefficient polynomial, while f (1)

is a b`/2c-coefficient polynomial. Observe that α2 +α = (α+ 1)2 + (α+ 1). This
implies that once t0 = f (0)(α2 + α) and t1 = f (1)(α2 + α) are computed, f(α)
can be computed as t0 + α · t1, and f(α + 1) can be computed as f(α) + t1.
Observe that the output of the FFT is the sequence

f(e1), f(e2), . . . , f(e2k−1), f(e1 + 1), f(e2 + 1), . . . , f(e2k−1 + 1),

and e1, . . . , e2k−1 forms all subset sums of {β1, . . . , βk−1}. Therefore, two FFT
recursive calls are carried out to evaluate f (0) and f (1) at all subset sums of
{β2

1 + β1, . . . , β
2
k−1 + βk−1}. Finally, f(ei) and f(ei + 1) are computed by using

f (0)(e2i + ei) and f (1)(e2i + ei) from the recursive calls, for all i from 1 to 2k−1.
In the case where βk 6= 1, the task is reconsidered as evaluating f(βkx) at the

subset sums of {β1/βk, β2/βk, . . . , 1}. This is called “twisting” in [3]. Note that
it takes ` − 1 multiplications to compute f(βkx). To sum up, the Gao–Mateer
additive FFT consists of 4 steps: (1) twisting, (2) radix conversion, (3) two FFT
recursive calls, and (4) combining outputs from the recursive calls.

In order to find the roots of an error locator, we need to evaluate at every
field element in F213 . The corresponding basis is defined as

{β1 = z12, β2 = z11, . . . , β13 = 1}.

Having β13 = 1 means that the first twisting can be skipped. Since we use
t = 128, the error locator for our system is a 129-coefficient polynomial. However,
for implementation of the FFT algorithm it is more convenient to have a 128-
coefficient input polynomial. We therefore consider the error locator as x128 + f
and compute α128+f(α) for all α ∈ F213 . Below we explain how the Gao–Mateer
additive FFT for root finding, as well as the corresponding “transposed” FFT
for syndrome computation, are implemented in our software.

Radix Conversions and Twisting. As described in [3], the first step of the
radix conversion is to compute polynomials Q and R from the 4n-coefficient (n

is a power of 2) input polynomial f =
∑4n−1

i=0 fix
i:

Q = (f2n + f3n) + · · ·+ (f3n−1 + f4n−1)xn−1 + f3nx
n + · · ·+ f4n−1x

2n−1,

R = (f0) + · · ·+ (fn−1)xn−1

+ (fn + f2n + f3n)xn + · · ·+ (f2n−1 + f3n−1 + f4n−1)x2n−1,
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so that f = Q(x2n + xn) + R. Then Q and R are fed into recursive calls
to obtain the corresponding R(0), R(1), Q(0), Q(1). Finally, the routine outputs
f (0) = R(0) + xnQ(0) and f (1) = R(1) + xnQ(1). The recursion ends when we
reach a 2-coefficient polynomial f0 + f1x, in which case f (0) = f0 and f (1) = f1.

Here is a straightforward way to implement the routine. First of all, represent
the input polynomial f as a 4n-element array in of datatype gf (see Section 2)
such that fi is stored in in[i]. Then perform 4n XORs

for (i = 0; i < n; i++) in[2*n+i] ^= in[3*n+i];

for (i = 0; i < n; i++) in[1*n+i] ^= in[2*n+i];

to storeRi in in[i] andQi in in[2*n+i]. Likewise, the additions in the recursive
calls can be carried out by in-place XORs between array elements. Eventually

we have f
(0)
i in in[2*i] and f

(1)
i in in[2*i+1].

Representing the polynomials as arrays in gf is, however, expensive for twist-
ing: as mentioned in Section 2, the function gf mul is not efficient. Therefore in
our software the polynomials are represented in bitsliced format. In this case, the
additions can be simulated by using bitwise logical instructions and shifts. As
a concrete example, let f be a 64-coefficient input polynomial in F213 [x], which
is represented as a 13-element array of type uint64 t. Then the following code
applies the radix conversion on f .

const uint64_t mask[5][2] =

{

{0x8888888888888888, 0x4444444444444444},

{0xC0C0C0C0C0C0C0C0, 0x3030303030303030},

{0xF000F000F000F000, 0x0F000F000F000F00},

{0xFF000000FF000000, 0x00FF000000FF0000},

{0xFFFF000000000000, 0x0000FFFF00000000}

};

for (k = 4; k >= 0; k--)

for (i = 0; i < 13; i++)

{

in[i] ^= (in[i] & mask[k][0]) >> (1 << k);

in[i] ^= (in[i] & mask[k][1]) >> (1 << k);

}

In the end, the coefficients of f (0) are represented by the even bits of the words,
while the coefficients of f (1) are represented by the odd bits.

The same technique can also be used to complete the radix conversions in
the FFT recursive calls. Since a twisting operation simply multiplies fi by βi

k,
they are carried out using bitsliced multiplications. See Figure 4 for the code
for all the radix conversions and twisting operations, including those in the FFT
recursive calls. Note that the first twisting operation, which should take place
before the first radix conversion, is already skipped in the code. Our software
uses similar code but replaces 64-bit words by 128-bit words.

Butterflies. The reader might have noticed that the last 4 stages of Figure 3 are
similar to the well-known butterfly diagram for standard multiplicative FFTs.
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for (j = 0; j <= 4; j++)

{

for (i = 0; i < 13; i++)

for (k = 4; k >= j; k--)

{

in[i] ^= (in[i] & mask[k][0]) >> (1 << k);

in[i] ^= (in[i] & mask[k][1]) >> (1 << k);

}

vec64_mul(in, in, s[j]); // twisting

}

Fig. 4. The code for performing the twisting operations and radix conversion in the
FFT for a 64-coefficient polynomial f ∈ F213 [x].

In a standard multiplicative FFT, f is written as f (0)(x2) + xf (1)(x2) so that
f(α) and f(−α) can be computed using f (0)(α2) and f (1)(α2) obtained from
recursive calls. The similarity (between multiplicative FFTs and additive FFTs)
in the ways of rewriting f results in the same “butterfly” structure.

In the case of a “full-size” additive FFT, where ` = 2k, the whole butterfly
diagram has to be carried out. The technique used for carrying out the Beneš
network (see Section 3) can be easily generalized to carry out the diagram. For
decoding, however, ` is usually much smaller than 2k = 2m. As the result, we
only need to carry out the last log2 ` stages of the complete butterfly diagram.

As described in Section 3, we carry out the second half of the Beneš network
by using a bit-matrix transposition in the middle. In the case of additive FFT
butterflies, there will be m bit-matrix transpositions. The ideal case is that the
` is small enough so that the transpositions can be avoided. The corresponding
code using 64-bit words for m = 12 is presented in Figure 5. For the parameters
` = 128 and m = 13, we are close to this ideal case but need to carry out 1 or 2
extra stages. The extra stages can be carried out by interleaving the 128-bit or
256-bit words.

The Bottom Level of Recursion. As shown in Figure 4, when carrying out the
radix conversions and twisting operations, we maintain a list of ` field elements.
On the other hand, as shown in Figure 5, when carrying out the FFT butterflies,
we maintain a list of 2m field elements. Apparently some operations are required
to transit from the `-element representation to the 2m-element representation.
This has to do with how the bottom level of recursion is defined.

The straightforward way to end the recursion is to check whether the input
polynomial has only 1 coefficient; if so, the output is simply copies of the coeffi-
cient (the constant term). This is exactly the case for Figure 4 and Figure 5: after
running the code in Figure 4, we simply prepare the bitsliced representation of
64 copies of each elements and store them in out, and then Figure 5 can be run
to complete the FFT.

12



for (i = 0; i <= 5; i++)

{

s = 1 << i;

for (j = 0; j < 64; j += 2*s)

for (k = j; k < j+s; k++)

{

vec64_mul(tmp, out[k+s], consts[ consts_ptr + (k-j) ]);

for (b = 0; b < 13; b++) out[k][b] ^= tmp[b];

for (b = 0; b < 13; b++) out[k+s][b] ^= out[k][b];

}

consts_ptr += (1 << i);

}

Fig. 5. Butterflies in the additive FFT.

We do better by using the idea in [3, Section 3] to end the recursion when the
input is a 2-coefficient polynomial. Let the input be f = f0 + f1x and the basis
be {β1, . . . , βk}. The idea is to first prepare a table containing f1βi for all i, and
then each output element can be computed using at most one field addition. To
implement the idea, we perform the radix conversions and twisting operations as
in Figure 4 but stop when we reach 2-coefficient polynomials. At this moment,
the `/2 elements corresponding to f0 would lie in the lower `/2 bits of the `-bit
words, while those for f1 would lie in the higher `/2 bits. The outputs of the
lowest-level FFTs can then be obtained by carrying out bitsliced multiplications
and additions using bitwise logical operations between the `/2-bit words.

After this, we have the bitsliced representation (an array of m `/2-bit words)
for the first output elements of the lowest level FFTs, the representation for the
second output elements, and so on; in total there are 2m/(`/2) such arrays. In
order to group the output elements that belong to the same lowest-level FFT,
we perform a sequence of m transpositions on 2m/(`/2) × (`/2) = 128 × 64 bit
matrices, using the technique described in Section 2. Finally, the FFT butterflies
can be performed using code similar to Figure 5.

The Transposed Additive FFT. As described in [3, Section 4], a linear algo-
rithm can be represented as a directed graph, and an algorithm that performs
the transposed linear map can be obtained by reversing the edges in the graph.
The way we implement the FFT makes it easy to imagine the structure of the
graph and program the corresponding transposed FFT. As shown in Figure 4
and Figure 5, each inner loop in our FFT code essentially applies a simple linear
operation on the values in in or out. In general it suffices to modify the loops to
reverse the order that the inner loop is iterated and then replace the inner loop
by its transpose. The transposed additive FFT code with respect to Figure 4
and Figure 5 is shown in Figure 6 (the code for transposing the bottom level of
recursion is skipped).
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for (i = 5; i >= 0; i--)

{

s = 1 << i;

consts_ptr -= s;

for (j = 0; j < 64; j += 2*s)

for (k = j; k < j+s; k++)

{

for (b = 0; b < 13; b++) out[k][b] ^= out[k+s][b];

vec64_mul(tmp, out[k], consts[ consts_ptr + (k-j) ]);

for (b = 0; b < 13; b++) out[k+s][b] ^= tmp[b];

}

}

:

:

:

for (j = 4; j >= 0; j--)

{

vec64_mul(in, in, s[j]); // twisting

for (k = j; k <= 4; k++)

for (i = 0; i < 13; i++)

{

in[i] ^= (in[i] & (mask[k][1] >> (1 << k))) << (1 << k);

in[i] ^= (in[i] & (mask[k][0] >> (1 << k))) << (1 << k);

}

}

Fig. 6. Transposed FFT code with respect to Figure 4 and Figure 5.

5 The Berlekamp-Massey Algorithm

The description of the original Berlekamp–Massey algorithm (BM) can be found
in [12]. In each iteration of the algorithm, a field inversion has to be carried out.
To perform the inversion in constant time, we may use the square-and-multiply
algorithm, but this is rather expensive as discussed in Section 2. To avoid the
problem, our implementation follows the inversion-free version of the algorithm
as described in [21].

The algorithm begins with initializing polynomials σ(x) = 1, β(x) = x ∈
F2m [x], ` = 0 ∈ Z, and δ = 1 ∈ F2m . The input syndrome polynomial is denoted

as S(x) =
∑2t−1

i=0 Six
i. Then in iteration k (from 0 to 2t − 1), the variables are

updated using operations in Figure 7. Note that ` and δ are just an integer and
a field element, and multiplying a polynomial by x (to update β(x)) is rather
cheap. Therefore the algorithm is bottlenecked by computing d and updating
σ(x). We explain below how the algorithm is implemented in our software.
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d←
t∑

i=0

σiSk−i

[
σ(x), β(x), `, δ

]
←


[
δσ(x)− dβ(x), xβ(x), `, δ

]
, d = 0 or k < 2`.[

δσ(x)− dβ(x), xσ(x), k − `+ 1, d
]
, otherwise.

Fig. 7. Iteration k in the inversion-free BM.

General Implementation Strategy. Assume that there are (t+1)-bit general-
purpose registers on the target machine. For example, one can assume that t = 63
and that we are working on a 64-bit machine. We store polynomials σ(x) and
β(x) in the bitsliced format, each using an array of m (t + 1)-bit words. The
constant terms σ0 and β0 are stored in the most significant bits of the words; σ1
and β1 are stored in the second significant bits; and so on. We also use an array
S′ of m (t+1)-bit words to store at most t+ 1 coefficients of S(x). This array is
maintained so that Sk is stored in the most significant bits of the words; Sk−1
is stored in the second significant bits; and so on.

To compute d, we first perform a bitsliced field multiplication between σ(x)
and S′. The result is the bitsliced representation of σ0Sk, σ1Sk−1, . . . , etc. The
element d can then be computed as the parities of the m (t+ 1)-bit words. After
this, Sk+1 is inserted to the most significant bits of the words in S′, which will
be used in the next iteration.

To update σ(x), we need to perform two scalar multiplications δ ·σ(x) and d ·
β(x). The bitsliced representations of t+1 copies of δ and d are first prepared, and
then bitsliced multiplications are carried out to compute the products. Updating
β(x) is done by conditionally replacing the value of β(x) by σ(x) (which can be
easily represented as logical operations) and then shifting each word to the right
by one bit to simulate the multiplication by x.

The implementation strategy pretty much simulates the circuit presented
in [21, Figure 1]. Using the strategy, (each iteration of) the BM algorithm can
be represented as a fixed sequence of instructions. In particular, the load and
store instructions always use the same memory indices. As the result, the imple-
mentation is fully protected against timing attacks.

Haswell Implementation for t = 128. Exactly the same implementation
strategy cannot be used for t = 128 on Haswell for there is no (128 + 1)-bit reg-
isters. To solve this problem, our strategy is to store σ0 and Sk in two variables
of datatype gf. The elements σ1, . . . , σ128 and Sk−1, . . . , S0 are still stored in the
bitsliced format, using two arrays of 128-bit words. To compute d, the product
σ0Sk is computed separately. Similarly, to update σ(x), the product σ0δ is com-
puted separately. Note that β0 is always 0, so we simply store β1, . . . , β128 in the
bitsliced format.
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We also need a way to update S′ and β(x) without generic shift instructions
for 128-bit registers. Our solution is to make use of the shrd instruction. Given
64-bit registers r1, r0 as arguments, the shrd instruction is able to shift the least
significant bit of r1 into the most significant bit of r0. Therefore, with 2 shrd

instructions, we can shift a 128-bit word by one bit to the right. In particular,
the second shrd shifts one bit into the most significant bit of the 128-bit word.
Therefore, we update S′ by setting this bit to bits of Sk and update β by setting
this bit to 0 or bits of σ0 (depending on the condition).

To optimize the speed for Haswell, we combine the two vec128_mul function
calls for δ ·σ(x) and d ·β(x) to form one vec256_mul. As discussed in Section 2,
this is better because 256-bit logical instructions have the same throughput as
the 128-bit ones.

We also use 256-bit logical instructions to accelerate vec128_mul. A field
multiplication can be viewed as a multiplication between 13-coefficient polyno-
mials, followed by a reduction modulo g. Let the polynomials be f and f ′; the
idea is to split the polynomial multiplication into two parts f(f ′0 + · · · + f ′6x

6)
and f(f ′7 + · · ·+f ′12x

5 +0x6). In this way, we create two bitsliced multiplications
for computing d, and the two can be combined as what we do for δ · σ(x) and
d ·β(x). Note that for combining the two products and the reduction part we still
use 128-bit logical instructions. By using 256-bit logical instructions, we improve
the cycle counts of vec128_mul from 137 to 94 Haswell cycles.

As a minor optimization, we also combine the computation of σ0Sk and σ0δ.
This is achieved by using the upper 32 bits of the 64-bit variables in gf mul for
another multiplication. In this way, two field multiplications can be carried out
in roughly the same time as gf mul.

As discussed in Section 4, the input of the FFT function for root finding is the
bitsliced representation of f0, . . . , f127; f128 is not stored since it is assumed to be
1. In fact, at the end of the Berlekamp–Massey algorithm we have fi = σ128−i.
Therefore we perform a field inversion for σ0 and bitsliced multiplications to
force a monic output polynomial for the Berlekamp–Massy algorithm.

6 The Complete Cryptosystem

In [3, Section 6] a complete public-key encryption system is described. The
cryptosystem uses a KEM/DEM-like structure, where the KEM is based on
the Niederreiter cryptosystem. To send a message, the sender first uses the re-
ceiver’s Niederreiter public key to compute the syndrome of a random weight-t
error vector. Then the error vector is hashed to obtain two symmetric keys. The
first symmetric key is used for a stream cipher to encrypt the arbitrary-length
message. The second symmetric key is used for a message authentication code
to authenticate the output generated by the stream cipher. The syndrome, the
stream-cipher output, and the authentication tag are then sent to the receiver.

The receiver first decodes the syndrome using the Niederreiter secret key.
The resulting error vector is then hashed to obtain the symmetric keys, and the
receiver verifies (using the tag) and decrypts the stream-cipher output. Note that
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the receiver can fail in decoding or verification. The decryption algorithm should
be carefully implemented such that others cannot distinguish (for example, by
using timing information) what kind of failure the receiver encounters.

We show below how key-pair generation, KEM encryption, and KEM de-
cryption are implemented in our software.

Private-Key Generation. The private key of the system consists of two parts:
(1) a sequence (α1, . . . , αn) of n distinct elements in F2m and (2) a square-free
degree-t polynomial g ∈ F2m [x] such that g(αi) 6= 0 for all i.

For our implementation, g is generated as a uniform random degree-t monic
irreducible polynomial in F2m [x]. To generate g, we first generate a random el-
ement α in the extension field F2mt . The polynomial g is then defined as the
minimal polynomial of α in F2m [x], if the degree is t. To find the minimal poly-
nomial, we view F2mt as the vector space (F2m)t and try to find linear depen-
dency between 1, α, α2, . . . , αt using Gaussian elimination. A description of the
algorithm can be found in, for example, [20, Section 17.2].

The benefit of this approach is that it is easy to make Gaussian elimination
constant-time: [3] already shows how this can be achieved in the case of bit ma-
trices. Note that the algorithm can fail to find a degree-t irreducible polynomial
when α ∈ F2mt′ such that t′ is a divisor of t. For our parameters m = 13 and
t = 128 the probability of failure is only 2−832.

Recall that we use n = 2m. Let φ be a permutation function such that
φ(e1, . . . , e2m) = (α1, . . . , α2m), where (e1, . . . , e2m) is the stardard order of field
elements introducted by the FFT (see Section 4). In our software, the permu-
tation function is defined using the condition bits in the corresponding size-2m

Beneš network. Instead of generating the sequence αi and then figure out the
condition bits, the condition bits are generated as random bits in the current
implementation; the reader may refer to [3, Section 5] for a brief discussion on
this approach. We comment that there are (2m − 1)2m−1 = m2m − 2m−1 con-
dition bits in the Beneš network, while a list of 2m field elements takes m2m

bits. In other words, representing (α1, . . . , αn) as condition bits actually saves
the size of secret keys.

Public-Key Generation. Let H be the bit matrix obtained by replacing each
entry in the matrix

1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

αt−1
1 /g(α1) αt−1

2 /g(α2) · · · αt−1
n /g(αn)


by a column of m bits from the standard-basis representation. The receiver
computes the row-reduced echelon form of H. If the result is of the form

[
I|H ′

]
,

the public-key is set to H ′; otherwise a new secret key is generated.
In our implementation, the images g(e1), . . . , g(en) are first generated using

the FFT implementation described in Section 4. After this, the inversions of all
these images are computed, using Montgomery’s trick [14] with bitsliced field
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multiplications. Now we have the bitsliced representation of the first row of the
matrix 

1/g(e1) 1/g(e2) · · · 1/g(en)
e1/g(e1) e2/g(e2) · · · en/g(en)

...
...

. . .
...

et−11 /g(e1) et−12 /g(e2) · · · et−1n /g(en)

 .

The remaining rows are then computed one-by-one using bitsliced field multipli-
cations. Since all the rows are represented in the bitsliced format, the matrix can
be easily viewed as the corresponding mt × n bit matrix. Then the Beneš net-
work is applied to each row of the bit matrix to obtain H. Finally we follow [3,
Section 6] to perform a constant-time Gaussian elimination. The public key is
then the row-major representation of H ′ (one can of course use a column-major
representation instead).

KEM Encryption. The KEM encryption begins with generating the error
vector e of weight t. This is carried out by first generating a sequence of t
random m-bit values, which indicates the positions of the errors. The t values
are then checked for repetition. If a repetition is found, we simply regenerate the
t random m-bit values; otherwise, we convert the indices into the error vector as
a sequence of n/8 bytes.

To compute each bit of the syndrome, each 128-bit word in the corresponding
row is first ANDed with the corresponding 128-bit word in the error vector. The
128-bit results are then XORed together to form one single 128-bit word. We
make use of the popcnt instruction to compute the parity of the 128-bit word,
and the syndrome bit is set to the parity. Finally, after processing all the rows
of the public key, we deal with the identity matrix by XORing the first mt/8
bytes of the error vector into the syndrome.

KEM Decryption. As explained in [3], decoding consists of 5 stages: the initial
permutation, syndrome computation, key-equation solving, root finding, and the
final permutation. This is why the “total” column in [3, Table 1] is essentially

“perm”× 2 + “synd” + “key eq” + “root”.

The “all” column in Table 1, however, is computed as

“perm”× 2 + “synd”× 2 + “key eq” + “root”× 2.

In other words, we count one extra “root” and one extra “synd”.
The reason we count “root” one more time is a matter of implementation

choice. To perform syndrome computation, each of the 2m input bits is required
to be scaled by 1/g(α)2, where α is the corresponding point for evaluation. Since
1/g(α)2 depends only on g, [3] uses them as pre-computed values. This strategy
saves time but enlarges the size of secret keys. We decide to save the size of
secret keys and compute all 1/g(α)2 on the fly, using “root” for computing g(α),
Montgomery’s trick for simultaneous inversions [14] with bitsliced multiplica-
tions, and bitsliced squarings.

18



The reason we count “synd” one more time is for re-encryption. A decoding
algorithm is only required to decode when the input syndrome corresponds to
an error vector of weight t. For KEM, however, we need additionally the ability
to reject invalid inputs. We therefore check the weight of the error vector and
perform “synd” again to compute the syndrome of the error vector. The decoding
is considered successful only if the weight is exactly t and the syndrome matches
the output of the first “synd” stage.
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