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Abstract. This paper considers efficient scalar multiplication of elliptic
curves over binary fields with a twofold purpose. Firstly, we derive the
most efficient 3P formula in λ-projective coordinates and 5P formula
in both affine and λ-projective coordinates. Secondly, extensive exper-
iments have been conducted to test various multi-base scalar multipli-
cation methods (e.g., greedy, ternary/binary, multi-base NAF, and tree-
based) by integrating our fast formulas. The experiments show that our
3P and 5P formulas had an important role in speeding up the greedy,
the ternary/binary, the multi-base NAF, and the tree-based method-
s over the NAF method. We also establish an efficient 3P formula for
Koblitz curves and use it to construct an improved set for the optimal
pre-computation of window TNAF.
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1 Introduction

Koblitz and Miller first introduced the use of an elliptic curve in public key
cryptography [19, 26]. What makes an elliptic curve cryptosystem attractive for
use is that it has a shorter key length, and it is as secure as the larger key length
in other public key cryptosystems. For instance, the shorter key length 283 bits
in an elliptic curve cryptosystem is regarded as secure as the larger key length
3072 bits in an RSA cryptosystem [21].

The dominant operation in elliptic curve cryptography (ECC) cryptographic
schemes is the scalar multiplication, which is an operation that adds a point to
itself a large number of times. The research to increase the speed of this oper-
ation has attracted considerable attention ever since the discovery of the ECC.
Many proposed methods have improved general exponentiation algorithms. The
idea of presenting a scalar in a non-adjacent form (NAF) with signed coeffi-
cients has been a basic method to use. The sparse property of NAF participates
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for minimizing the total number of point addition operations. Furthermore, the
NAF method can be used with window width. The binary width-w NAF allows
coefficients to be in {0,±1,±3, · · · ,±2w−1 − 1}, which makes the representa-
tion sparser. Hence, the binary width-w NAF needs to pefrom an online pre-
computation for 2w−2−1 points. For a length l scalar, the average running time
for this method is approximately l

w+1 point addition and l point doubling. See
[6, 17] for more details of the NAF and the window NAF methods.

Another faster method for scalar multiplication is to convert a scalar to
double-base number system (DBNS). The DBNS with ternary and binary bases
for scalar n is represented such that n =

∑
s 2a 3b where a, b > 0, s ∈ {−1,+1}.

A natural extension of DBNS is multi-base number system (MBNS). The main
advantage of using MBNS is that the scalar has a shorter average expansion
length than its single-base average expansion length. As a result, the total num-
ber of point additions are minimized and that leads to a faster scalar multipli-
cation operation. A greater computation speed can be achieved if an efficient
formula is available for scalar multiplication by an integer in the base. There are
several methods for representing an integer in MBNS, including greedy method
first proposed by Dimitrov, Imbert, and Mishra [8], ternary/binary method de-
veloped by Ciet, Joye, Lauter, and Montgomery [7], tree-based method given by
Doche and Habsieger [10], and multi-base NAF introduced by Longa in [22]. A
scalar multiplication using MBNS expansion has been further researched in [3,
2, 9, 11, 23, 27, 25, 33].

In [18], Koblitz proposed a class of binary curves, what are now called Koblitz
curves, for cryptographic use. [18] also initiated a study of NAF of some algebraic
integers using the Frobenius map τ . A very important extension to Koblitz’s
result was the window TNAF by Solinas [29] which reduces the computation for
scalar multiplication dramatically. More computational properties of the window
TNAF have been revealed by Blake, Murty and Xu [4, 5]. Recently, Trost and Xu
formulated and constructed an optimal pre-computation for window TNAF [30].
Some new formulas have been derived in [30] that require a fewer number of field
operations. For some curves over prime fields, Gallant, Lambert, and Vanstone
proposed the GLV method for efficient scalar multiplication which makes use of
endomorphisms that can be computed efficiently [14]. Working over the field Fp2 ,
Galbraith, Lin and Scott constructed efficiently computable endomorphisms for
a large family of elliptic curves by using twists. They also demonstrated that
the GLV method for these curves is much faster, see [13]. This GLS construction
was extended to binary fields by Hankerson, Karabina, and Menezes in [15] and
showed a great speed improvement as well.

Inversion operation is a very expensive operation in finite fields. The inver-
sion to multiplication (I/M) ratio over binary fields is not fixed, and it gets
effected by the used inversion algorithm on different computing platforms [16].
We usually assume the low I/M ratio is 5, and the high I/M ratio is 8 as sug-
gested in [17]. Much effort on elliptic curve arithmetic has been made in working
on different coordinate systems to avoid field inversion and achieve efficiency.
A common way of avoiding expensive division is to change to projective coordi-
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nate systems. Besides standard projective coordinates, Jacobian and Chudnosky
projective coordinate systems are also used for general curves. For curves over
binary fields, López-Dahab (LD) coordinates [24] is a very efficient alternative.
Recently, Oliveira, López, Aranha, and Rodŕıguez-Henŕıquez proposed a more
efficient coordinate system for binary elliptic curves—the lambda representation
(λ- coordinates) [28].

Devising efficient elliptic curve operations with small scalars have been of
significant interest, e.g., reducing number of field operations for computing 3P
and 5P for an elliptic curve point P . These operations are key to the fast compu-
tation by using DBNS and multi-base number representation. In [7], Ciet, Joye,
Lauter, and Montgomery presented an efficient formula for 3P for both prime
curves and binary curves, and it takes 1 field inversion (I), 4 squarings (S), and 7
multiplications (M): 1I+7M+4S. A ternary/binary algorithm was also designed
in [7] that utilizes 3P with an improved speed over the NAF method. For curves
over a binary field, Dimitrov, Imbert, and Mishra gave an improved 3P formu-
la that requires 1I+6M+3S [8]. The most efficient formulas for computing 3P
were given by Yu, Kim, and Jo in [32], their formula for binary field only need-
s 1I+5M+2S. In [27], Mishra and Dimitrov proposed the Multi-Base Number
Representation for scalar multiplication. They derived an efficient 5P formula
for binary curves with a small number of operations: 1I+13M+5S. Some concise
formulas for Koblitz curves can be found in [30], e.g., for (1− τ)P and (1 + τ)P .

1.1 Our Contribution

In this paper, we consider the problem of fast scalar multiplication for binary
elliptic curves. The main contribution of the paper is twofold. In the first part,
we derive 3P and 5P efficient formulas for binary elliptic curves. In affine coor-
dinates, our improved 5P formula uses 1I+11M+6S. Under the very promising
λ-projective coordinate systems, we are able to set up efficient computation for
3P and 5P and their formulas cost 8M+1Ma+5S and 13M+1Ma+8S respec-
tively, here Ma denotes the cost of multiplication of a general field element with
a fixed field element a (which is usually a coefficient of elliptic curve and has a
small size). The derivation techniques for our 3P and 5P efficient formulas in
λ-projective coordinates are not based on the 3P and 5P efficient formulas in
affine coordinates. λ-coordinates system has its own affine coordinates, which is
called λ-affine coordinates. Thus, it is necessary to find first a formula in λ-affine
coordinates that leads to an efficient formula in λ-projective coordinates. The
derived 3P and 5P efficient formulas in this paper are state of the art, and to
the best of our knowledge, we are the first to present them in λ-projective coor-
dinates. More precisely, our 3P λ-projective coordinates greatly improves that
using LD projective coordinates [31] and Jacobian projective coordinates [8]. A
projective coordinate formula for 5P seems not available in literature.

The second part of our contribution is conducting extensive performance
comparison tests for the MBNS methods in λ-coordinates. The MBNS methods
are one of the best applications that shows the importance of our 3P and 5P
formulas in speeding up scalar multiplication operations. The investigated MBNS
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methods are the greedy, the ternary/binary, the multi-base NAF, and the tree-
based [8, 7, 23, 10]. Our tests compare these methods using our efficient formulas
with respect to three characteristics: the expansion length, the total number of
multiplications, and the running time. Other comparison tests in [8, 7, 23, 10]
emphasize the expansion length and the total number of multiplications. We
include the running time test since it takes into account the time of converting
integer n to a multi-base chain. To the best of our knowledge, we are the first
study that compares the performance of the MBNS methods with the NAF
method in λ-coordinates.

Our comparison test in terms of the total number of multiplications shows
the greedy, the ternary/binary, the multi-base NAF, and the tree-based methods
speed up to 10%, 8%, 12%, and 15% over the NAF method. Our running time
test shows they speed up to 7%, 9%, 12%, and 15% over the NAF method. The
running time test of the greedy method gives less percentage of improvement
than the comparison test in terms of the total number of multiplications. The
reason for that is the running time test considers the time of converting integer n
to a multi-base chain, which implies the greedy method has a higher conversion
cost than other MBNS methods.

Some of the ideas for computing 3P also lead an improvement of the optimal
pre-computation of window TNAF for Koblitz curves [30]. By efficient formulas
for the pre-computed points in the forms of P − τ(P ), P + τ(P ), P − τ2(P ) and
3P and working with the λ-projective coordinates, we show the performance of
the optimal pre-computation of window TNAF with these efficient formulas gets
48%, 24% and 11% faster for window width 4, 5 and 6 respectively.

The rest of the paper is organized into five sections. Efficient formulas for
3P and 5P are given in section 2. In section 3, we briefly review several existing
MBNS methods, and we conduct comparison tests for these methods using our
efficient formulas. In section 4, we briefly review the optimal pre-computation
of window TNAF for Koblitz curves, and we propose 3P efficient formula to the
improved set of the optimal pre-computation of window TNAF with experiments.
Finally, the paper is concluded in section 5.

2 Formulas for 3P and 5P on Binary Elliptic Curves

An elliptic curve E over a binary field F2m can be represented by the simplified
Weierstrass equation

E : y2 + xy = x3 + ax2 + b, (1)

where a, b ∈ F2m and b 6= 0. We denote E(F2m) to be the set of all points (x, y)
with x, y ∈ F2m that satisfy the equation (1) together with the point at infinity
O. E(F2m) forms an abelian group under “+” operation. The identity of the
abelian group is the point at infinity O. The point addition can be computed by
the chord and tangent method.

One of the main advantages of using binary elliptic curves over prime elliptic
curves is that squaring is a linear operation in binary fields. This is the reason
for having a low squaring to multiplication (S/M) ratio in binary fields, and it is
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close to a free operation. In prime fields, the S/M ratio is higher, and it is close to
the cost of one multiplication operation [16]. It is noted that the most expensive
operation for binary fields as well as prime fields is the inversion operation. The
ratio (I/M) can be quite big (e.g. 8). One solution for reducing the cost of the
inversion operation is to use projective coordinates over affine coordinates. We
shall choose to derive efficient formulas in λ-projective coordinate systems as it
has been proved to be better than other projective coordinates.

Another solution for reducing the cost of the inversion operation is to use
efficient formulas. Efficient formulas in affine coordinates are based on the idea
of trading an inversion with multiplication operations for faster performance.
Several efficient formulas for Weierstrass equation in affine coordinates have
been proposed. In our case, we emphasize the 3P and 5P efficient formulas
since these formulas are frequently used with MBNS methods as discussed in
the next section. For affine coordinate systems, the 3P formula given in [32]
has a very small cost of 1I+5M+2S and seems hard to be further improved. In
the first subsection, we are able to derive an efficient affine formula for 5P . For
λ-projective coordinate systems, fast formulas for 3P and 5P seem not available
in the literature. In the second subsection of the paper, we develop efficient
λ-projective coordinate formulas for 3P and 5P , and these formulas will be
incorporated later into MBNS methods to achieve a greater efficiency for scalar
multiplication operations.

2.1 A 5P Formula in Affine Coordinates

As mentioned earlier, an efficient 5P formula under affine coordinate systems
for binary elliptic curves has been proposed in [27], with a cost of 1I+13M+5S
[27]. We propose an improved efficient computation of 5P in affine coordinate
system. The precise formula of 5P is presented by the following theorem.

Theorem 1 Let P = (xP , yP ) ∈ E(F2m) and 6P 6= O. Setα = x4P + x3P + b
β = α2 + x2P (x4P + b)
γ = α2(x4P + b) + x3Pβ

.

Then 5P = (x5P , y5P ) is given by

x5P = xP +
x3
P β
γ +

(x3
P β
γ

)2
y5P = yP + xP + (x5P + xP )

(x3
P β
γ + x2P + a

)
+

xP βα
2(β+(x4

P+b)(x4
P+b+y2P+x2

P ))
γ2 .

Remark 1. 1. The proof of the Theorem 1 is presented in Appendix 5.1.
2. Our 5P efficient formula in affine coordinates costs 1I+11M+6S. Operation

counts for our 5P efficient formula are given in Table 1. A less costly way for
computing 5P without using such a formula is through 4P +P and this way
costs 2I+8M+6S. With our 5P efficient formula, we trade 1I with 3M for
a faster performance. Our 5P formula in affine coordinates saves 2M (but
with an extra S whose cost is low for binary fields) over the proposed 5P
efficient formula in [27].
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Table 1. Operation Counts for our 5P in Affine Coordinates

Computing term Operation counts

α = x4P + x3P + b 1M+2S
β = α2 + x2P (x4P + b) 1M+1S
γ = α2(x4P + b) + x3Pβ 2M

x5P = xP +
x3P β

γ
+

(x3P β
γ

)2
1I+1M+1S

y5P = yP + xP + (x5P + xP )
(x3P β

γ
+ x2P + a

)
1M

+
xP βα

2(β+(x4P+b)(x4P+b+y2P+x2P ))

γ2
5M+2S

1I+11M+6S

2.2 3P and 5P Formulas in λ-Projective Coordinates

The λ-coordinates system is introduced in [28] for elliptic curves over binary
fields. λ-coordinates represent affine point (x, y) ∈ E(F2m) by (x, λ) where λ =
x + y

x . λ-coordinates represent a projective point by (X,L,Z) and Z 6= 0. λ-
affine point (xP , λP ) is converted to λ-projective point (XP , LP , ZP ) by using
the relation (xP , λP ) = (XP

ZP
, LP

ZP
). This representation for λ-coordinates led to

an efficient P+Q formula. The Weierstrass equation for λ-projective coordinates
is given in [28] by

(L2 + LZ + aZ2)X2 = X4 + bZ4.

The authors in [28] presented 2P, P +Q, and 2Q+P formulas for λ-coordinates
system. In this subsection, we derive efficient formulas for 3P and 5P in λ-
projective coordinates.

Table 2. The Cost for Efficient Formulas in Different Projective Coordinates over
Binary Fields

λ-projective LD projective Jacobian projective

2P 4M+1Ma+4S [28] 4M+1Ma+4S [20] 4M+1Mb+5S [1]
P +Q 11M+2S [28] 13M+4S [20] 15M+1Ma+3S [1]
3P 8M+1Ma+5S (this work) 10M+2Ma+7S [31] 13M+2Ma,b+7S [8]
5P 13M+1Ma+8S (this work) n/a n/a

Theorem 2 Let P = (XP , LP , ZP ) ∈ E(F2m). Then 3P = (X3P , L3P , Z3P )
using λ-projective coordinates is given by

T = L2
P + LPZP + aZ2

P

A = (T +XPZP )2

B = TZ2
P +A

X3P = XPZPB
2

Z3P = Z2
PAB

L3P = T (A+B)2 + (LPZP + Z2
P )AB.
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Remark 2. 1. The proof of Theorem 2 is presented in Appendix 5.2.
2. The cost of our 3P efficient formula in λ-projective coordinates, as Table

3 shows, is 8M+1Ma + 5S. The less costly way for computing 3P in λ-
projective coordinates without the 3P efficient formula is through 2P + P
with cost 15M+1Ma + 6S. With our concise 3P formula, we save 7M over
2P +P . Our 3P formula saves 3M over the proposed 3P efficient formula in
LD-projective coordinates in [31]. It saves 6M over the proposed 3P efficient
formula in Jacobian projective coordinates in [8]. Table 2 compares the cost
of 3P in different coordinate systems over binary fields.

Table 3. Operation Counts for our 3P in λ-projective Coordinates

Computing term Operation counts

T = L2
P + LPZP + aZ2

P 1M+1Ma+2S
A = (T +XPZP )2 1M+1S
B = TZ2

P +A 1M
X3P = XPZPB

2 1M+1S
Z3P = Z2

PAB 2M
L3P = T (A+B)2 + (LPZP + Z2

P )AB 2M+1S

8M+ 1Ma+5S

Theorem 3 Let P = (XP , LP , ZP ) ∈ E(F2m). Then 5P = (X5P , L5P , Z5P )
using λ-projective coordinates is given by

T = L2
P + LPZP + aZ2

P

A = (T +XPZP )2

B = TZ2
P +A

C = (T (A+B))2 +AB2

D = A2B +AB2 + C
X5P = XPZPD

2

Z5P = Z2
PCD

L5P = T (C +D)2 + (LPZP + Z2
P )CD + Z2

P (AB)3.

Remark 3. 1. The proof of Theorem 3 is presented in Appendix 5.3.
2. The cost of our 5P efficient formula in λ-projective coordinates, as Table

4 shows, is 13M+1Ma + 8S. The less costly way for computing 5P in λ-
projective coordinates without the 5P efficient formula is through 4P + P
with cost 19M+2Ma+10S. With our 5P efficient formula, we save 6M+1Ma

over 4P+P in λ-projective coordinates. To the best of our knowledge, this is
the first proposed 5P efficient formula in projective coordinates over binary
fields, and it is the most efficient 5P formula for binary elliptic curves.

3 MBNS Methods

The simplest and most studied form of the MBNS is the DBNS with {2, 3}-
integers. A positive integer n is represented in the DBNS with {2, 3}-integers in
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Table 4. Operation Counts for our 5P in λ-projective Coordinates

Computing term Operation counts

T = L2
P + LPZP + aZ2

P 1M+1Ma+2S
A = (T +XPZP )2 1M+1S
B = TZ2

P +A 1M
C = (T (A+B))2 +AB2 2M+2S
D = AB2 +A2B + C 1M +1S
X5P = XPZPD

2 1M+1S
Z5P = Z2

PCD 2M
L5P = T (C +D)2 + (LPZP + Z2

P )CD + Z2
PAB

2A2B 4M+1S

13M+1Ma+8S

the form of

n =

l∑
i=1

si 2ai 3bi

where ai, bi > 0, si ∈ {−1,+1}, and l is the length of the expansion. The MBNS
with {2, 3, 5}-integers is a natural extension to the DBNS with {2, 3}-integers.
A positive integer n in the MBNS with {2, 3, 5}-integers is represented by

n =

l∑
i=1

si 2ai 3bi 5ci

where ai, bi, ci > 0, si ∈ {−1,+1}, and l is the expansion length. An MBNS ex-
pansion for integer n always exists, but it is not unique [8]. What is important to
ECC is the property that under MBNS, an integer n has a short average expan-
sion length compared to that of its single-base average expansion length, hence
it minimizes the total number of point addition during the point multiplication
operation.

In application, when an integer n is represented in MBNS, it has to be rep-
resented as a multi-base chain for efficiency reasons. The double-base chain with
{2, 3}-integers is decreasing sequences of the exponents ai and bi such that
a1 > a2 > · · · > al > 0 and b1 > b2 > · · · > bl > 0. The highest exponents
term 2amax 3bmax of a double-base chain is called a leading factor. The leading
factor and the expansion length of a double-base chain determine the total num-
ber of operations. Thus, they have an important role for minimizing the total
number of operations.

Doche in [9] defines an optimal double-base chain with {2, 3}-integers by
the following three requirements. It represents given integer n. It has a leading
factor that divides given 2amax 3bmax . It has minimum length. For example, let
n = 935811 and 220 313 is given. Then these chains

n = 212 35 − 28 35 + 25 34 + 25 3 + 3

n = 27 38 + 27 36 + 25 34 + 25 3 + 3

n = 24 310 − 22 37 − 35 + 33 − 32
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are optimal for the following reasons. They have leading factors that divide the
given 220 313. The length 5 is the shorter double-base chain with {2, 3}-integers
that represents n according to the enumeration approach in [9]. One of these
optimal chains has a leading factor that is less costly in a particular coordinates
system. For example, the leading factor 212 35 is less costly in λ-coordinates.
We see that Doche in his definition of an optimal chain emphasizes the optimal
length. The optimal length is an important aspect to consider since we generally
assume the cost of P + Q formula is high and the cost of 2P and 3P formulas
are low. However, it is necessary to consider the leading factor for the optimal
cost. Converting integer n to a double-base chain that has an optimal length
on-the-fly is still an open problem [3, 9]. However, efforts were made to propose
methods that convert integer n to a shorter double-base chain.

3.1 Review of MBNS Methods

Greedy Method. One of the early methods that convert an integer n to a
double-base chain is the greedy method with restricted exponents [8]. The greedy
method with {2, 3}-integers has two critical steps. The first step is finding the
best approximation for integer n in term of a {2, 3}-integer. A proposed practical
solution for finding the best approximation is to use a line search algorithm as
presented in [33]. The second critical step is the selection of an upper bound
(amax, bmax) that minimizes the total number of operations. The selection of
these values relies on the cost of 2P, P + Q, and 3P formulas in a particular
coordinates system. The best way to get these values is to try different values of
(amax, bmax) such that amax + bmax log2 3 ≈ log2 n. Then, the best values that
minimized overall cost are selected. For example, Table 7 shows the best upper
bound is (amax = 245, bmax = 104) for the irreducible polynomial of degree
283 in λ-coordinates since this upper bound has lesser cost. The average length
of the greedy method without restricted exponents is O( logn

log logn ), but with the

restricted exponents, the average length is still unproven [10].

Multi-base NAF Method. The multi-base NAF was proposed in [23], and it
is a generalization of the single-base NAF method. The multi-base NAF relies
on non-adjacent property for a shorter multi-base chain. When integer n is rep-
resented in its multi-base NAF, the non-zero digit density becomes less than its
single-base NAF [23]. As a result, the total number of point addition in multi-
base NAF is minimized, and this leads to a faster scalar multiplication operation.
The multi-base NAF has similar properties to the single-base NAF. An integer
n in its multi-base NAF is represented in a unique way. Non-zero digits are not
consecutive. The average length of the multi-base NAF chain with {2, 3}-integers

is approximately O( log2 n
4.1887 ) [23]. The average cost of the multi-base NAF chain

with {2, 3}-integers is approximately

log2 n (
1

4.1887
A+ 0.7162 D + 0.179 T ),
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where A , D , and T are the cost of P + Q, 2P , and 3P formulas respectively
[23]. The average length of the multi-base NAF chain with {2, 3, 5}-integers is

approximately O( log2 n
4.9143 ) [23]. The average cost of the multi-base NAF chain with

{2, 3, 5}-integers is approximately

log2 n (
1

4.9143
A+ 0.6104 D + 0.1526 T + 0.0635 Q),

where A, D, T, and Q are the cost of P+Q, 2P , 3P , and 5P formulas respectively
[23].

Ternary/Binary Method. The ternary/binary method was proposed in [7] as
an efficient scalar multiplication method that outperforms the NAF method. Lat-
er in [8, 10, 23], the ternary/binary was studied in the context of a method that
converts integer n to a double-base chain with {2, 3}-integers. The ternary/binary
method based on the idea of keeping divide integer n by 2 or 3 until n is coprime
with 6. Then this method solves this by either n− 1 or n+ 1, so that 6 divides
n− 1 or n+ 1. This method keeps repeating the process until it reaches 1. The
average length of the ternary/binary chain is approximately O( log2 n

4.3774 )[10].The
average cost of the ternary/binary chain is approximately

log2 n (
1

4.3774
A+ 0.4569 D + 0.3427 T ),

where A , D , and T are the cost of P + Q, 2P , and 3P formulas respectively
[10].

Tree-Based Method. The tree-based method is generalized of the ternary/binary
method as proposed in [10]. The key difference between the ternary/binary and
the tree-based with {2, 3}-integers methods, when n is coprime with 6, the tree-
based method considers both options n− 1 and n+ 1. While the ternary/binary
method considers only one option either n−1 or n+1. Another difference is that
the tree-based method uses the bound size B to control the cost of converting in-
teger n to a multi-base chain. The conversion cost is approximately 2B log2(2B)l
since it needs to sort 2B elements, which costs 2B log2(2B), throughout the ex-
pansion length l. For example, the conversion cost for the tree-based with B = 4
method is 24l.

Let the bound size B = 1 in the tree-based method. The average length of
the tree-based chain with {2, 3}-integers is approximately O( log2 n

4.6419 ), which is ap-
proximately 6% improvement over the length of the ternary/binary method [10].
The average cost of the tree-based chain with {2, 3}-integers is approximately

log2 n (
1

4.6419
A+ 0.5569 D + 0.2795 T ),

where A , D , and T are the cost of P+Q, 2P , and 3P formulas respectively [10].
The average length of the tree-based chain with {2, 3, 5}-integers is approximate-

ly O( log2 n
5.6142 ) [32]. The average cost of the tree-based chain with {2, 3, 5}-integers
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is approximately

log2 n (
1

5.6142
A+ 0.454 D + 0.216 T + 0.0876 Q),

where A, D, T, and Q are the cost of P+Q, 2P , 3P , and 5P formulas respectively
[32].

3.2 Experiments

Our goal in these experiments is to compare the MBNS methods with the
NAF method in λ-coordinates. The tested MBNS methods are the greedy, the
ternary/binary, the multi-base NAF, and the tree-based [8, 7, 23, 10]. Our con-
cise 3P and 5P formulas in λ-coordinates are utilized in all the tested methods.
We denote (2,3)greedy to be the greedy method with restricted exponents in
terms of {2, 3}-integers [8]. (2,3)NAF is the multi-base NAF method with {2, 3}-
integers, and (2,3,5)NAF is the multi-base NAF method with {2, 3, 5}-integers
[23]. (2,3)tree is the tree-based method with {2, 3}-integers, (2,3,5)tree is the
tree-based method with {2, 3, 5}-integers, and B is the bound size [10].

The environment specifications are in the following descriptions. We used
C programming language with GNU C Compiler (GCC) version 4.2. We used
Intel Core i7 processor with speed 2.3 GHz. We utilized the binary field opera-
tions including: squaring, fast reduction modulo, Extended Euclidean inversion,
and right-to-left comb multiplication in [17]. We used GNU Multiple Precision
(GMP) library version 6.1 to generate random integers of different sizes [35]. For
better accuracy, we recorded the average after trying 1000 random integers in
each reading result. We used the NIST binary elliptic curves B-283, B-409, and
B-571 [34].

Table 5 and Table 6 show that the tested MBNS methods with our efficient
formulas succeed in outperforming the NAF method. Table 5 shows the greedy,
the ternary/binary, the multi-base NAF, and the tree-based methods speed up to
10%, 8%, 12%, and 15% over the NAF method. These speed-up results in Table
5 are achieved by comparing only the total number of multiplications with the
NAF method. It does not consider the cost of converting integer n to a multi-base
chain. The conversion cost may affect the overall performance for some methods.
The running time test in Table 6 considers the cost of converting n to a multi-
base chain. Table 6 shows the running time of the greedy, the ternary/binary,
the multi-base NAF, and the tree-based methods are up to 7%, 9%, 12%, and
15% faster than the NAF method. It shows only the running time of the greedy
method has less percentage of improvement than the comparison test in Table
5. It implies converting integer n to a multi-base chain in the greedy method has
a higher cost than the ternary/binary, the multi-base NAF, and the tree-based
methods.

Table 5 also shows if a method has a shorter expansion length, that does
not guarantee it has a lesser number of multiplications. For example, let n =
1118848774838, the ternary/binary method returns this chain that represents n

216315 + 215314 + 214313 − 213312 − 21039 + 2938 − 2837 + 2734 − 2333 + 223 + 2.
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Table 5. Theoretical Comparison between NAF and MBNS Methods in λ-coordinates

B-283 B-409 B-571

l m % l m % l m %

NAF 94.77 2173.13 136.57 3136.67 190.77 4381.11

(2,3)greedy 64.72 1945.81 10.46 92.66 2810.05 10.41 128.32 3925.59 10.39
ternary/binary 65.03 1990.21 8.42 93.92 2883.57 8.06 130.53 4028.01 8.05
(2,3)NAF 67.89 1960.33 9.79 98.09 2834.3 9.63 136.7 3956.86 9.68
(2,3,5)NAF 57.77 1903.77 12.39 83.56 2752.62 12.24 116.81 3846.46 12.2
(2,3)treeB=1 61.52 1923.25 11.49 88.39 2779.69 11.38 123.43 3889.15 11.22
(2,3,5)treeB=1 50.81 1869.46 13.99 73.07 2707.51 13.68 101.81 3784.64 13.61
(2,3,5)treeB=2 47.89 1839.99 15.32 68.85 2662.99 15.1 95.79 3723.41 15.01

l: The average length of the scalar expansion.
m: The average of the total number of multiplications.
%: The speed-up percentage in term of m.

Table 6. Running Time Comparison between NAF and MBNS Methods in λ-
coordinates

B-283 B-409 B-571

Time in ms % Time in ms % Time in ms %

NAF 32.31 78.96 198.69

(2,3)greedy 29.83 7.67 72.87 7.71 184.24 7.27
ternary/binary 29.23 9.53 71.73 9.15 179.55 9.63
(2,3)NAF 29.17 9.71 70.57 10.62 177.03 10.9
(2,3,5)NAF 28.16 12.84 69.03 12.57 173.21 12.82
(2,3)treeB=1 28.43 12.01 69.86 11.52 174.62 12.11
(2,3,5)treeB=1 27.83 13.86 68.52 13.22 171.54 13.66
(2,3,5)treeB=2 27.36 15.32 66.81 15.38 168.11 15.39

The length of this chain is 11, and it costs in λ-coordinates 16×4+15×8+10×
11 = 294M. See Table 2 for the cost of P +Q, 2P , and 3P efficient formulas in
λ-coordinates. The multi-base NAF with {2, 3}-integers returns this chain that
represents n

23235 + 23034 − 22734 − 22533 − 22132 − 21932 − 21432 − 21132 − 293 + 263− 23 − 2.

The length of this chain is 12, and it costs in λ-coordinates 289M. This exam-
ple explains, as Table 5 shows, the ternary/binary method has a shorter aver-
age length than the multi-base NAF method with {2, 3}-integers. However, the
multi-base NAF with {2, 3}-integers method has a lesser average number of mul-
tiplications than the ternary/binary method. In Table 5, the tree-based succeeds
in generating a shorter average length than other tested MBNS methods. The
tree-based method with bound size B = 1 does not always produce an optimal
chain. For example, let n = 1118848774838, the tree-based with {2, 3}-integers
and B = 1 returns this chain that represents n

221312 + 21839 − 21738 + 21437 + 2837 + 2734 − 2333 + 223 + 2.
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The length of this chain is 9, and it costs in λ-coordinates 268M. According
to the enumeration approach in [9], the optimal chain with {2, 3}-integers that
represents n is

221312 + 213312 − 21337 + 2837 + 2734 − 2333 + 223 + 2.

The optimal chain length is 8, and it costs in λ-coordinates 257M.

Table 7. The Cost of Greedy Method with Different Values of (amax, bmax) in λ-
coordinates

B-283 B-409 B-571

amax bmax l m amax bmax l m amax bmax l m

140 91 75.95 2100.73 205 129 108.02 3020.44 285 181 153.14 4251.62
160 79 65.42 1964.21 230 113 94.14 2841.52 325 155 130.04 3954.89
170 72 64.72 1945.81 245 104 92.66 2810.05 345 143 129.09 3923.85
180 65 66.29 1951.83 260 95 95.16 2822.14 365 130 133.01 3945.73
200 53 71.22 1985.8 290 75 103.78 2884.58 405 104 144.96 4034.8
220 40 77.06 2028.37 320 57 111.42 2938.09 445 79 155.84 4113.04
240 27 82.43 2066.38 350 38 119.57 2996.4 485 54 166.89 4192.71
260 15 87.83 2105.48 380 18 128.26 3059.8 525 28 177.83 4270.8

l: The average length of the scalar expansion.
m: The average of the total number of multiplications.

Table 5 also shows the greedy method with {2, 3}-integers has a shorter aver-
age length and a lesser average number of multiplications than the ternary/binary
and the multi-base NAF method with {2, 3}-integers. However, the greedy method
result in Table 5 does not consider the conversion cost nor the effort to selec-
t the best upper bound (amax, bmax) as Table 7 shows. In Table 7, we tried

values from log2 n
2 to log2 n for amax such that amax + bmax log2 3 ≈ log2 n.

We selected (amax = 170, bmax = 72) , (amax = 245, bmax = 104) , and
(amax = 345, bmax = 143) for the irreducible polynomials of degree 283, 409,
and 571 respectively. We used a line search algorithm to find the best approxi-
mation for integer n in term of a {2, 3}-integer [32]. We did not find it a practical
to use a look-up table as proposed in [11]. The look-up table contains off-line
pre-computation for all integers n and their corresponding in term of a {2, 3}-
integer.

4 The Window TNAF for Koblitz Curves

Koblitz introduced in [19] an efficiently computable endomorphism with a special
class of elliptic curves. Koblitz defined the special class of curves Ea over binary
fields F2m by

Ea : y2 + xy = x3 + ax2 + 1, (2)
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where a ∈ {0, 1}. We denote Ea(F2m) to be the set of all points (x, y) that satisfy
the equation (2), plus the point of infinity O . The properties of Koblitz curves
allow a scalar multiplication to use the Frobenius map instead of point doubling.
The Frobenius map τ : Ea(F2m)→ Ea(F2m) is defined by

τ(x, y) = (x2, y2),

τ(O) = O.

One property of Ea is that τ2(P ) + 2P = µτ(P ), for all P ∈ Ea(F2m), where
µ = (−1)1−a. This means τ can be considered to be a complex number that
satisfies τ2 + 2 = µτ . By solving τ2 − µτ + 2 = 0, there is a choice for

τ =
µ+
√
−7

2
.

Let Z[τ ] be a ring of polynomials in τ with integer coefficients. Let element
κ ∈ Z[τ ] and P ∈ Ea(F2m). Then κ can be represented by ul−1τ

l−1+· · ·+u1τ+u0
where ui ∈ Z[τ ]. A scalar multiplication can be performed by κP = (ul−1τ

l−1 +
· · ·+u1τ +u0)P = ul−1τ

l−1(P )+ · · ·+u1τ(P )+u0(P ). Koblitz demonstrated in
[18] a method that converts scalar κ to a unique base-τ expansion. The base-τ
expansion can be represented by ul−1τ

l−1 + · · ·+u1τ +u0 where ui ∈ {0, 1} and
ul−1 6= 0.

Later, Solinas in [29] showed an improved method that converts a scalar to a
unique signed digits representation called TNAF. The TNAF can be represented
by ul−1τ

l−1 + · · · + u1τ + u0 where ui ∈ {0,±1} and ul−1 6= 0. When a scalar
is represented with its reduced TNAF, the average density of nonzero digits
becomes less than its base-τ expansion [29]. As a result of Solinas’s improve-
ment, the total number of point additions are minimized, and that significantly
increases the speed of a scalar multiplication operation.

Solinas showed the window TNAF method can be used with Koblitz curves.
It needs to perform an online pre-computation for 2w−2 − 1 points where w is
the selected window width. According to [30], working on the main subgroup of
Ea(F2m), the reduced window TNAF method can be briefly described as

1. Reduction. Find some suitable ρ = r1 + r2τ ∈ Z[τ ] with |r1|, |r2| being
roughly

√
n, such that

ρ ≡ n (mod
τm − 1

τ − 1
).

Then the computing nP is equivalent to computing ρP .
2. Window TNAF. Fix a positive integer w, choose Cmin = {c1, c3, · · · , c2w−1−1}

with cj being an element with the least norm from the odd congruence class
j = {c ∈ Z[τ ] : c ≡ j (mod τw)}, (j = 1, 3, · · · , 2w−1 − 1). The width-w τ
non-adjacent form of ρ is

ρ =

l−1∑
i=0

εiuiτ
i,
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where εi ∈ {−1, 1} and ui ∈ Cmin ∪ {0} with the properties that in any
segment {uk, uk+1, · · · , uk+w−1} of length w , there is at most one nonzero
ui. We denote the above expression of ρ by TNAFw(n).

3. Pre-Computation: Compute Qj = cjP for each j = 1, 3, · · · , 2w−1 − 1. Note
that c1 = 1, so Q1 = P needs no calculation.

4. Computing nP : Evaluate ρP by Horner’s rule, using TNAFw(n) and pre-
computedQ1, Q3, · · · , Q2w−1 . Discarding the zero coefficients, the TNAFw(n)
of ρ can be written as

ρ = ε0ck0τ
k0 + ε1ck1︸ ︷︷ ︸

k1−k0≥w

τk1 + ε2ck2︸ ︷︷ ︸
k2−k1≥w

τk2 + · · ·+

εs−1cks−1
τks−1 + εscks︸ ︷︷ ︸
ks−ks−1≥w

τks

with εj ∈ {−1, 1} and ckj ∈ Cmin. So nP = ρP can be computed through

nP = τk0(τk1−k0(· · · (τks−ks−1εsQjks
+

εs−1Qjks−1
) + · · ·+ ε1Qjki1

) + ε0Qjk0
).

Trost and Xu in [30] established an optimal arrangement setting for the pre-
computed points of window TNAF. The optimal pre-computation of window
TNAF, as Table 8 shows, costs one point addition and two evaluations of τ at
most for each pre-computed point.

4.1 A 3P Formula for the Optimal Pre-computation of Window
TNAF

Trost and Xu in [30] proposed improvements for the optimal pre-computation
of window TNAF by replacing point additions with the efficient formulas in λ-
coordinates. The efficient formulas are for the pre-computed points in the forms
of P−µτ(P ), P+µτ(P ), and P−τ2(P ). Our contribution in this section has two
parts. Frist, we propose a 3P efficient formula that can be used together with
the already proposed efficient formulas for further speed-up of the optimal pre-
computation of window TNAF. Secondly, we conduct experiments to measure
the achieved improvement for the optimal pre-computation of window TNAF by
using these proposed efficient formulas.
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Recall that the proposed efficient formulas for the pre-computed points in
the forms of P − µτ(P ) and P + µτ(P ) are given in [30] by

A = XP (XP + ZP )2

B = X4
P +XPZP + Z4

P

XP−µτ(P ) = (XP + ZP )4

LP−µτ(P ) = LPA+X3
PZP

ZP−µτ(P ) = ZPA

XP+µτ(P ) = B2

LP+µτ(P ) = X7
PZP + LPAB

ZP+µτ(P ) = ZPAB.

The pre-computed point in the form of P − τ2(P ) can be computed by letting
Q = P + µτ(P ). Then, we have P − τ2(P ) = Q − µτ(Q). The pre-computed
point 3P can be computed by Theorem 2 and it can be recognized in the optimal
pre-computation of window TNAF by the following proposition.

Proposition 1 Let P = (xP , yP ) ∈ Ea(F2m) for Koblitz curve Ea. Then

3P = P − τ2(P ) + µτ(P ).

Proof. We know (τ2+2)P = µτ(P ) for all P ∈ Ea(F2m). It means 2P = µτ(P )−
τ2(P ). It implies 2P +P = µτ(P )− τ2(P ) +P . Thus, 3P = P − τ2(P ) +µτ(P ).

For examples, consider the optimal pre-computation of window TNAF, as
Table 8 shows, with w = 4. Then, the pre-compute point Q3 can be computed
by the inverse of P −µτ(P ) efficient formulas. To explain, Q3 = −(P −τ2(P )) =
−(Q7 − µτ(Q7)). Consider the optimal pre-computation of window TNAF with
w = 6. Then, the pre-computed point Q3 can be computed by the 3P efficient
formulas. To explain, Q3 = Q29 + µτ(P ) = P − τ2(P ) + µτ(P ) = 3P .

As mentioned earlier, the improvement of the optimal pre-computation of
window TNAF is achieved by replacing point additions with the efficient formu-
las. Recall that the point addition in λ-projective coordinates costs 11M+2S.
The efficient formulas for the pre-computed point in the form of P − µτ(P )
costs 5M+3S. The efficient formulas for the pre-computed point in the form of
P +µτ(P ) costs 7M + 5S. The efficient formulas for the pre-computed point 3P
costs 8M+6S. Thus, the pre-computed points for the above cost less than point
addition in λ-projective coordinates.

4.2 Experiments

The goal for these experiments are to measure the improvement for the optimal
pre-computation of window TNAF with the efficient formulas. We replaced the
pre-computed points in the forms of P − µτ(P ), P + µτ(P ), P − τ2(P ), and 3P
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Table 8. The Optimal Pre-computation of Window TNAF when a = 0.

Width Pre-computed points

4 Q3 = −P + τ2P Q5 = −P − τP Q7 = P − τP

5 Q3 = −P + τ2P Q5 = −P − τP Q7 = P − τP
Q9 = Q3 − τP Q11 = Q5 − τP Q13 = Q7 − τP
Q15 = −Q11 + τP

6 Q29 = P − τ2P Q3 = Q29 − τP Q31 = Q3 − τ2P
Q5 = Q31 − τP Q7 = −Q31 − τP Q9 = −Q29 − τP
Q27 = P + τP Q11 = −Q27 − τP Q25 = −P + τP
Q13 = −Q25 − τP Q15 = −Q11 + τP Q17 = −Q9 + τP
Q19 = −Q7 + τP Q21 = −Q17 − τP Q23 = −Q3 + τP

When a = 1, Qj can be obtained by changing only the sign of τ .

of the optimal pre-computation of window TNAF with the efficient formulas.
For simplicity, we denote OPT to be the optimal pre-computation of window
TNAF without the efficient formulas. We denote OPT+ to be the optimal pre-
computation of window TNAF with the efficient formulas. We used two tests to
measure the performance of OPT and OPT+. In the first test, we compare OPT
and OPT+ in terms of the number of multiplications, as Table 9 shows. In the
second test, we did a software implementation, as Table 10 shows, for OPT and
OPT+. We used the NIST Koblitz curves K-283, K-409, and K-571 [34]. The
environment specifications for these experiments are similar to the experiments
in section 3.2.

Table 9. Theoretical Comparison in Terms of the Number of Multiplications

affine coordinates λ-projective coordinates

OPT: I/M = 5 OPT: I/M = 8 OPT OPT+ %

w = 4 21 30 33 17 48.48
w = 5 49 70 77 58 24.67
w = 6 105 150 165 146 11.51

OPT: The optimal pre-computation without the efficient formulas.
OPT+: The optimal pre-computation with the efficient formulas.

Table 9 shows OPT+ speeds up to 48%, 24% and 11% over OPT for window
width 4, 5 and 6 respectively. In Table 9, we counted the number of inversions,
multiplications of OPT and OPT+ in different window width. We converted an
inversion to multiplication based on the ratio I/M assumption. We presented
two cases for the I/M ratio in affine coordinates. The first case is the number of
multiplications for OPT when the I/M ratio = 5. The second case is the number
of multiplications for OPT when the I/M ratio = 8. A squaring operation was
ignored in this method since squaring is almost a free operation over binary
fields.
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Table 10. Running Time Comparison between OPT and OPT+

coordinates affine λ-projective

OPT OPT OPT+ %

w = 4 0.58 ms 0.517 ms 0.281 ms 45.64
K-283 w = 5 1.34 ms 1.113 ms 0. 901 ms 19.04

w = 6 2.92 ms 2.401 ms 2.188 ms 8.87

w = 4 1.05 ms 0.844 ms 0.461 ms 45.37
K-409 w = 5 2.54 ms 1.615 ms 1.993 ms 18.96

w = 6 5.34 ms 4.101 ms 3.694 ms 9.92

w = 4 1.94 ms 1.553 ms 0.834 ms 46.29
K-571 w = 5 4.55 ms 3.565 ms 2.893 ms 18.84

w = 6 9.74 ms 7.488 ms 6.794 ms 9.26

OPT: The optimal pre-computation without the efficient formulas.
OPT+: The optimal pre-computation with the efficient formulas.

Table 10 shows the running time of OPT+ in λ-projective coordinates per-
forms faster than OPT. However, the percentage of improvement is different for
each window width. It shows OPT+ in λ-projective coordinates gives up to a
46% speed-up over OPT if the selected window width is 4. It shows OPT+ gives
up to a 19% speed-up over OPT if the selected window width is 5. OPT+ gives
up to a 9% speed-up over OPT if the selected window width is 6.

5 Conclusion

In this paper, we present the most efficient 3P and 5P formulas for binary elliptic
curves. We are the first to derive efficient formulas for 3P and 5P in λ-projective
coordinates. We also derived the most efficient 5P formula in affine coordinates.
Our efficient formulas have an important role in speeding up scalar multiplica-
tion operations based on MBNS. We investigated the following MBNS methods:
the greedy, the ternary/binary, the multi-base NAF, and the tree-based. We
conducted performance comparison tests to these methods using our formulas
with respect to the expansion length, the total number of multiplications, and
the running time. The total number of multiplications test shows the greedy,
the ternary/binary, the multi-base NAF, and the tree-based methods speed up
to 10%, 8%, 12%, and 15% over the NAF method. Our running time test shows
that the greedy method has a lower percentage of improvement since this test
considers the time of converting integer n to a multi-base chain. It implies the
greedy method has a higher conversion cost than other MBNS methods.

We proposed a 3P efficient formula for the optimal pre-computation of win-
dow TNAF for Koblitz curves. Our 3P formula can be used with the already pro-
posed efficient formulas to the pre-computed points in the forms of P−µτ(P ), P+
µτ(P ), and P − τ2(P ). Our experiments show the optimal pre-computation of
window TNAF using the efficient formulas speed up to 48%, 24%, and 11% if
the used window width is 4, 5, and 6 respectively.
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Appendix: Proofs

5.1 Theorem 1

Proof. We shall prove Theorem 1 by the fact

(x5P , λ5P ) = (x2P , λ2P ) + (x3P , λ3P ).
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By using the P +Q λ-affine formula given in [28], we have

x5P =
x3Px2P

(x3P + x2P )2
(λ3P + λ2P ). (3)

λ5P =
x3P (x5P + x2P )2

x5Px2P
+ λ2P + 1. (4)

We apply x3P = xP +
x3
P

α +
(x3

P

α

)2
and x2P =

x4
P+b

x2
P

in equation (3). We have

x5P =
x3P (α2 + x2P (x4P + b))α2(x4P + b)(

α2(x4P + b) + x3P (α2 + x2P (x4P + b))
)2 (λ3P + λ2P ) (5)

=
x3Pβα

2(x4P + b)

γ2
(λ3P + λ2P ) (6)

We note that

λ3P + λ2P =
xP γ

2

x3Pβα
2(x4P + b)

+ 1. (7)

By applying equation (7) in equation (6), we have

x5P = xP +
x3Pβα

2(x4P + b)

γ2
(8)

= xP +
x3Pβ

γ
+
(x3Pβ
γ

)2
. (9)

We have derived x5P . Next, we want to derive y5P . From equation (4), we have

λ5P =
x3P
x2P

x5P +
x3Px2P
x5P

+ λ2P + 1. (10)

We apply equation (10) to the fact y5P = x5P (λ5P + x5P ) . We have

y5P = x5P (
x3P
x2P

x5P + λ2P + 1 + x5P ) + x3Px2P . (11)

We apply x3P , x2P , and λ2P =
x4
P

x4
P+b

+ λ2P + a+ 1 in equation (11). We have

y5P = x5P
( x3Pβ

α2(x4P + b)
x5P +

x4P
x4P + b

+
y2P
x2P

+ x2P + a+ x5P
)

+
(x4P + b)β

xPα2

= x5P
((x3Pβ

γ

)2
+ x2P + a+ x5P

)
+

(x4P + b)β

xPα2
+

x4Pβ

α2(x4P + b)
x5P +

x6P + y2P (x4P + b)

x2P (x4P + b)
x5P

= yP + xP + (x5P + xP )
((x3Pβ

γ

)2
+ x2P + a+ x5P + xP

)
+
xPβα

2(x6P + y2P (x4P + b))

γ2
.

We note that x6P = β + (x4P + b)2 + x2P (x4P + b) and
(x3

P β
γ

)2
=

x3
P β
γ + x5P + xP .

We have

y5P = yP + xP + (x5P + xP )
(x3

P β
γ + x2P + a

)
+

xP βα
2(β+(x4

P+b)(x4
P+b+y2P+x2

P ))
γ2 .
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5.2 Theorem 2

Proof. We shall prove Theorem 2 by the fact

(x3P , λ3P ) = (xP , λP ) + (x2P , λ2P ). (12)

By using the P +Q λ-affine formula given in [28], we have

x3P =
xpx2P

(xP + x2P )2
(λP + λ2P ). (13)

λ3P =
x2P (x3P + xP )2

x3PxP
+ λP + 1. (14)

We apply the relation λP + λ2P = (xP+x2P )2

x2P
+ 1 in equation (13) . We have

x3P = xP +
xpx2P

(xP + x2P )2
(15)

=
xP
(
x2P + (x2P + xP )2

)
(xP + x2P )2

. (16)

We convert λ-affine point (xP , λP ) to λ-projective point (XP , LP , ZP ) by
using the relation (xP , λP ) = (XP

ZP
, LP

ZP
). Thus, the equations above become

x2P =
L2
P + LPZP + aZ2

Z2
P

=
T

Z2
P

.

x3P =

XP

ZP

(
T
Z2

P
+ (T+XPZP )2

Z4
P

)
(T+XPZP )2

Z4
P

=
XP

(
TZ2

P + (T +XPZP )2
)

ZP (T +XPZP )2

=
XPB

ZPA
.

λ3P =

T
Z2

P

(
XPB
ZPA

+ XP

ZP

)2
X2

PB

Z2
PA

+
LPZP + Z2

P

Z2
P

=
T (A+B)2

Z2
PAB

+
LPZP + Z2

P

Z2
P

=
T (A+B)2 + (LPZP + Z2

P )AB

Z2
PAB

.

5.3 Theorem 3

Proof. We shall proof x5P by the fact

(x5P , λ5P ) = (x2P , λ2P ) + (x3P , λ3P ).
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By using the P +Q λ-affine formula given in [28], we have

x5P =
x2Px3P

(x2P + x3P )2
(λ2P + λ3P ). (17)

We apply the relation λ2P + λ3P = xP (x2P+x3P )2

x2P x3P
+ 1 to equation (17) . We have

x5P = xP +
x2Px3P

(x2P + x3P )2
(18)

=
xP (x2P + x3P )2 + x2Px3P

(x2P + x3P )2
. (19)

Next, we shall derive λ5P by the fact

(x5P , λ5P ) = (xP , λP ) + (x4P , λ4P ).

By using the P +Q λ-affine formula , we have

λ5P =
x4P (x5P + xP )2

x5PxP
+ λP + 1. (20)

We convert λ-affine point (xP , λP ) to λ-projective point (XP , LP , ZP ) by
using the relation (xP , λP ) = (XP

ZP
, LP

ZP
). Thus, the equations above become

x2P =
L2
P + LPZP + aZ2

Z2
P

=
T

Z2
P

.

x3P =
XP

(
TZ2

P + (T +XPZP )2
)

ZP (T +XPZP )2
=
XPB

ZPA
.

x4P =
L2
2P + L2PTZ

2
P + a(TZ2)2

(TZ2
P )2

=
T2

(TZ2
P )2

.

x5P =

XP

ZP

(
T
Z2

P
+ XPB

ZPA

)2
+ TXPB

Z3
PA

( T
Z2

P
+ XPB

ZPA
)2

=
XP

(
(TA+XPZPB)2 + TZ2

PAB
)

ZP (TA+XPZPB)2

=
XPD

ZPC
.

λ5P =

T2

(TZ2
P )2

(
XPD
ZPC

+ XP

ZP

)2
X2

PD

Z2
PC

+
LPZP + Z2

P

Z2
P

=
T2(C +D)2

(TZ2
P )2CD

+
LPZP + Z2

P

Z2
P

=
Z2T2(AB)2 + (LPZP + Z2

P )CD

Z2
PCD

.
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We note the following relations

Z2
PT2 = T (A+B)2 + Z2

PAB

C = (TA+XPZPB)2 = (T (A+B))2 +AB2

D = TZ2
PAB + C = A2B +AB2 + C

Thus , we have

L5P = T (C +D)2 + (LPZP + Z2
P )CD + Z2

P (AB)3.


