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Abstract. In image processing, algorithms for object classification are
typically based around machine learning. From the algorithm developer’s
perspective, these can involve a considerable amount of effort and exper-
tise to develop, which makes them commercially valuable. On the other
hand, other parties may want to make use of these algorithms to classify
their images, while protecting the privacy of their data. In this paper,
we show how non-linear Support Vector Machines (SVMs) can be prac-
tically used for image classification on data encrypted with a Somewhat
Homomorphic Encryption (SHE) scheme. Previous work has shown how
an SVM with a linear kernel can be computed on encrypted data, but
this only has limited applicability. By enabling SVMs with polynomial
kernels, a much larger class of applications are possible with more accu-
racy in classification results.

1 Introduction

Image processing is used to automate the extraction of useful information from
raw image data. An important example is object classification, where the real-
life objects in an image are identified algorithmically (e.g. type of vehicle, per-
son or animal, land coverage type etc.). Algorithms for object classification are
typically based around machine learning. Examples include the application of
Decision Trees [QYLL10] and Neural Networks [Pop17]. The focus of this pa-
per is the application of Support Vector Machines (SVMs) to object classifi-
cation, which have been shown to provide accurate results in many cases (e.g.
[RGP16,WH16,LLLH17]).

Such classification algorithms can involve a considerable amount of effort
and expertise to develop and train, which makes them commercially valuable.
Therefore, those who develop such algorithms may not wish to hand over the



details of how they work to others. On the other hand, many people and organi-
sations wish to make use of these algorithms in order to classify objects in their
image data. They will often have their own security and privacy concerns about
handing over their captured images to the algorithm provider.

At present, this problem is resolved contractually. One or other of the image
data provider and algorithm provider agree to hand over their sensitive informa-
tion, and trust the other party not to abuse it. This is not ideal, as it is hard to
detect any infringements and a remedy through the courts is likely to be highly
costly and ultimately unsatisfactory.

Homomorphic Encryption (HE) presents the opportunity by which the im-
age classification algorithms can be executed on encrypted data. In this context,
image data can be encrypted by the data provider and sent to the algorithm
provider. The algorithm provider can run their sensitive object classification al-
gorithm on the encrypted data, and pass the encrypted result back to the data
provider. The data provider then decrypts the result. In this way, image data
and classification results are never released to the algorithm provider. Similarly,
details of the algorithm (in particular algorithm parameters) are never released
to the data provider. In this way, the two parties do not have to trust each
other in order to cooperate in a way that is beneficial to both. As an additional
advantage, the image data is never available in clear at the algorithm provider.
It is therefore protected from accidental or malicious release, and frees up the
algorithm provider from the responsibilities of its protection (e.g. the implica-
tions of data privacy regulations). However, it would appear at first sight that
current homomorphic encryption technologies are too slow for such a setting bar
for models which are inherently linear in nature. In this work we show that this
initial opinion is not necessarily correct.

1.1 Homomorphic Encryption

Fully Homomorphic Encryption (FHE) was initially introduced as a concept
shortly after the development of the RSA cryptosystem, by Rivest et al. [RAD78].
Although long sought after, the first functional scheme was only proposed over
thirty years later by Gentry [Gen09a,Gen09b] in 2009. The same blueprint to
construct FHE has been followed in all subsequent work. First a scheme is con-
structed which can evaluate arithmetic circuits of a limited depth, a so-called
Somewhat Homomorphic Encryption (SHE) scheme. If the complexity of the cir-
cuits which the SHE scheme can evaluate is slightly more than the complexity
of the decryption circuit for the SHE scheme, then (by placing a SHE encryp-
tion of the scheme’s private key inside the public key) one can bootstrap the
SHE scheme into a FHE scheme. This bootstrapping operation is obtained by
homomorphically evaluating the decryption circuit on input the ciphertext to be
bootstrapped and the encryption of the secret key.

So far, there have been roughly three generations of SHE schemes. The first
generation consisted of Gentry’s original scheme, which was based on having
two representations of a basis of an ideal of a number field, one easy basis and
one hard basis. Gentry’s original scheme was simplified and implemented in



[GH11,SV10], where the ideal was chosen to be principal, with the easy basis
being the principal generator and the hard basis being the standard two element
representation of this ideal. A second family in the first generation of schemes
was based on the approximate-GCD problem, and consisted of so-called “integer
based” schemes [vDGHV10]. The first family in the initial generation schemes is
now considered insecure due to work of Cramer et al [CDPR16], who extended
the work of Campbell et al [CGS14] to solve the problem of finding small gen-
erators of principal ideals in cyclotomic number fields. The second family of
first generation schemes is not considered competitive compared to the second
generation schemes.

The second generation schemes were all based on the Learning With Er-
rors (LWE) problem, and its generalisation to rings (the Ring-LWE problem)
[BGV12,BV11b,BV11a]. These schemes, generally referred to as BGV, were
extensively optimized and implemented in a series of works by Gentry et al
[GHS12b,GHS12c,GHS12a], with an implementation (HELib) being given in
[HS14]. A variant of BGV, called FV, was presented in [FV12] which embeds
the message into the upper bits of the underlying ring. The second generation
systems also include those based on the NTRU assumption [BLLN13,LTV12],
although the security of these has since been called into question [ABD16]. A
third generation of schemes, based on standard LWE and encoding messages via
matrix eigenvalues, was presented in [GSW13].

In this work we shall concentrate on second generation SHE schemes, and
in particular the BGV family based on the Ring-LWE problem. When used
with “large” plaintext modulus space such schemes have been shown to be
able to encode, and operate on homomorphically, real and complex numbers
[DGBL+15,CSVW16,CSV16,BBB+]. Such numbers are encoded as polynomials
with small coefficients, and then parameters of the SHE scheme are chosen to
ensure that the required computation does not make the encoding polynomials
grow too large. Homomorphic processing of real numbers is needed in order to
perform the SVM computation. Indeed, the methodology to compute on real and
complex numbers we adopt was originally introduced to process Fourier Trans-
forms of images [CSVW16,CSV16]. However, in our application the use of SHE
techniques is much simpler, and requires much less processing.

However, when used with a SHE scheme one is only able to operate on encod-
ings of integer, real and complex numbers up to a given function complexity. This
function complexity is usually measured in terms of the multiplicative depth of
the associated arithmetic circuit (where we use the term arithmetic circuit to
include also “circuits” over the real and complex numbers).

1.2 Prior work on Image Classification on Encrypted Data

Image classification algorithms cannot simply and directly be used with SHE,
and work is required in order to identify which algorithms may be possible, and
how to adapt them to be suitable for use with SHE schemes. For example, feature
extraction needs to be tailored in order to minimise potentially expensive SHE
operations during classification. In this paper we show how classification using



a Support Vector Machine (SVM) with a polynomial kernel can be performed
on data encrypted with an SHE scheme. Previous work has shown how an SVM
with a linear kernel can be computed on encrypted data, but this only has limited
applicability. Indeed in Section 4 we show that using higher degree kernels can
result in more accurate classification. Thus by enabling SVMs with polynomial
kernels, a much larger class of applications are possible with more accuracy in
classification results.

Considering previous work more fully: In [TGP13] the authors describe a
non-interactive face verification algorithm on SHE encrypted data. Their paper
is aimed at a subtly different problem where the classification algorithm is also
outsourced to a third-party along with the data to be classified. It uses an SVM
classifier, but only a linear SVM is employed. Thus, the main differences are that
it is tailored only to face recognition and not more general object classification,
and only a linear SVM has been employed.

In [ZW14], the authors also apply classifiers on SHE encrypted data. How-
ever, they explicitly consider a different model to the classifier use case we have
solved for. In addition, they only provide some building blocks, in particular
an encryption scheme to homomorphically encrypt vectors of integers. Extend-
ing from these building blocks to implementing SVMs on polynomial kernels is
mentioned as a possibility but left as a topic for further research.

In [YBKS17], the authors apply the Paillier homomorphic scheme to aggre-
gate multiple classifiers updated locally using private data. However, they do
not perform the actual classifications using a homomorphic encryption scheme.

Several previous works have considered applying Multi-Party Computation
(MPC) techniques to the problem. For example, in [RPV+14] and in [THL13],
the authors solve the same classification problem as our paper using MPC. How-
ever, for polynomial kernel SVMs this requires online interaction between the
client and server. In [BPTG15] the authors also implement classifiers using 2-
party MPC. However, they do not explicitly provide a solution to an SVM with
a polynomial kernel. They say that other classifiers than the ones it considers
could be constructed from its building blocks, but gives no indication of if or
how this could be done for the specific case of SVM with polynomial kernel.

In all of the MPC based solutions interaction is required between the par-
ties during computation, and may use up a lot of bandwidth for more complex
calculations. In our solution based on SHE, clients provide data and get back
the results. Our method using SHE is therefore conceptually simpler, and allows
classification computations to be performed asynchronously to data provision.

Other related work has considered the learning phase of an SVM classifier.
For example, in [NSS+17] the authors describe a method whereby the learning
phase of an SVM can be performed by an untrusted third party. It is therefore
a different problem to the scenario for our paper. In addition, it is a partial
solution in that only some things are encrypted, and less robust data anonymi-
sation techniques are used to attempt to hide other information. In [YJV06] and
[ZM06], the authors also consider the training stage of an SVM, and a different
model whereby multiple parties wish to cooperate to train a model but not re-



lease their data. They are therefore not applicable to the classification scenario
our paper is aimed at.

1.3 Our Contribution

We show that image classification on encrypted data using a combination of
SVM and SHE can be performed in a reasonable amount of time. We show that
the resulting homomorphic SVM can classify encrypted images with high ac-
curacy (note that the inherent precision loss in using homomorphic operations
means that a high accuracy an algorithm operating on clear data may not trans-
late into high accuracy when operating on encrypted data). We also present a
methodology to enable the output of the SVM to be revealed, without significant
leakage of the SVM model parameters. The methodology essentially masks the
model output in such a way that recovering the model parameters from multiple
queries is similar to solving a system of “non-linear equations with noise”. Since
“linear algebra with noise” (a.k.a. LWE) is known to be hard, we conjecture
that the non-linear version our masking method employs also leads to a hard
problem.

Our methodology assumes an encrypted feature vector is given to an eval-
uator, who applies a SVM whose parameters are known to the evaluator, the
final classification being obtained by a third party (who could be the original
encryptor) who decrypts the output. Two obvious extensions are possible to the
current work, which future work we aim to investigate: Firstly one could also
encrypt the SVM parameters to enable processing by a third independent party.
This would increase the depth of the circuit by one. Secondly using MPC, as
opposed to FHE, may be more efficient in this scenario to determine the output
of a private SVM applied to a private image.

2 Problem Setting

To motivate the need for secure image recognition and explain our problem
setting, we can consider an example satellite based use case. We note that other
potential use cases in other areas are possible. We concentrate on the case of
satellites so as to fix the readers mind on a potential application.

Consider two parties involved: the client (Alice) who has some image data
obtained from the satellite; and a third party algorithm provider (Bob). Al-
ice wishes to identify objects within her image data in an automated way (e.g.
vegetation type, buildings, vehicles). Suppose that Bob has access to a signif-
icant amount of training data, and the capability to use machine learning to
create a sophisticated and accurate image recognition algorithm. This could be
trained to recognise ground objects of interest in the satellite imagery. The cost
of processing power, access to training data and development time would make
it unattractive for Alice to develop such an algorithm on her own and instead
she wishes to make use of the services of Bob. However, if Alice’s imagery is
sensitive, then this poses the problem of trust with using the third party Bob to



process the data. From Bob’s point of view, he will be unwilling to hand over
details of the algorithm to Alice, as there is a risk of losing his investment.

Fig. 1. Example satellite based scenario of privacy preserving object recognition

Our solution using SHE is illustrated in Figure 1. The Data Processing Cen-
tre (DPC) is owned or trusted by Alice, and is where she receives and processes
the satellite image data. During setup, Alice generates parameters and pub-
lic/private key material for an SHE scheme. The parameters and public key
are distributed to the algorithm provider (i.e. Bob), and Alice keeps hold of
the private key at the DPC in order to control decryption. During setup, Bob
only needs to provide Alice with details of the features that his classification
algorithm makes use of, to allow image pre-processing to take place at the DPC.

During operation, in Steps labelled 1 and 2 in the figure, raw image data
is captured at the satellite and sent to the DPC via a Ground Station. Once
the data is received at the DPC it is ready for image processing algorithms to
be applied. The DPC first performs any non-sensitive pre-processing steps on
the unencrypted data. Examples could include data preparation steps such as
a Fast Fourier Transform (FFT), or object detection algorithms to identify the
area of an image that is of interest. Then, in Step 3, features are extracted to
create feature vectors compatible with the model created by Bob. Alice then
uses the SHE public key to encrypt the feature vectors before sending these
to Bob. On receipt of the encrypted data, Bob applies his machine learning
based object classification algorithm to obtain an encrypted result. Finally, in
step 4, the encrypted result is returned to the DPC, which then decrypts the



result using Alice’s private key to obtain the desired classification. Note that it
may be possible for the DPC to recover the Bob’s sensitive model parameters,
by obtaining multiple classification results. This is because the value returned
from the algorithm provider will not in general be a binary classification, but an
algorithm output value that could leak information about the model. This issue
is considered in more detail in section 4.2 for the case of SVMs.

In this work we do not consider protecting the operations in Step 3, namely
the extraction of the feature vectors. Such an extraction mechanism (which de-
pends on the training Bob has previous done) may also be sensitive data. How-
ever, in practice such extraction could be the application of a linear function, i.e.
the output of a precomputed PCA analysis. In other words the output of Step
3 are vectors y obtained from the original input data vectors x via some linear
transformation y = AT · (x−m). The matrix A and vector m being obtained in
the training step by the algorithm provider Bob. If Bob wishes to keep A and m
secret then he can ask Alice to supply an encrypted version of x, and then the
homomorphic application of A and m to obtain y is purely a linear operation
and hence is essentially “for free”. Thus protecting Step 3 is trivially performed.

There are various factors which make such a SVM based application suitable
for securing with SHE:

– The multiplicative depth of the classification algorithm. The greater the
multiplicative depth, the less efficient the SHE scheme will be, which can vary
significantly slow down operations. SVMs with polynomial kernels typically
have low multiplicative depth.

– Simple feature extraction. As described below, feature extraction is a crit-
ical step for accuracy of classification. As the number of features grows,
the running time of the classification algorithm grows, especially given the
slow nature of SHE operations The feature extraction is essentially a linear
operation and is hence fast in our application.

– The accuracy of classification. To be useful, the algorithm still has to give
reasonable performance in classification. This requires a trade-off between
multiplicative depth, feature extraction and running time.

In this paper we show how SVM with polynomial kernel based classification can
be practically used on encrypted data, by utilising SHE and a tailored feature
extraction phase.

3 Method

The solution presented in this paper is the application of a Support Vector Ma-
chine (SVM) trained with a Polynomial Kernel (PK) to SHE encrypted data. We
will refer to these as PK-SVMs. In the rest of this paper we outline the method
we have used and provide background on SVMs, Kernel Methods, Histogram
of Gradients and Principal Component Analysis feature extraction (HoG-PCA)
that form the main elements in our method.



3.1 Support Vector Machines(SVMs)

In pattern recognition and machine learning, a feature vector is an f -dimensional
vector in Rf of numerical features that represent some object. The vector space
associated with these vectors is the called the feature space. An SVM is a su-
pervised binary machine learning algorithm (see for example [Alp10] for an in-
troduction to SVMs). If we have a dataset of feature vectors that belong to one
of two classes, and also their corresponding binary class label, then we can train
an SVM to classify unlabelled examples of these feature vectors.

Training an SVM means running the algorithm on a subset of feature vectors
for which we know the binary class label. The algorithm is a vector space based
machine learning method where the goal is to find a decision boundary between
two classes that is maximally far from any point in the training data. The algo-
rithm achieves this by finding the widest “corridor” it can place in-between the
two classes of the training data within the feature space. The decision boundary
is then placed in the middle of this widest corridor and an identified example
can be classified by simply checking which side of the decision boundary the
examples lies on.

The margin is the distance between the decision plane (or boundary) and
the edge of the corridor. This assumes that the data can be separated into both
classes in the feature space by a corridor and is called a “hard-margin SVM”.
However, for real datasets this is often not the case and instead a “soft-margin
SVM” is applied. The soft-margin SVM algorithm associates a cost with misclas-
sifying an example that is accounted for in the objective function maximised in
the algorithm. In this way, the margin (or corridor) chosen is a tradeoff between
geometric width and the number (and extent) of misclassifications of training
examples. This means SVMs can be applied to non-separable data because a few
outlier misclassifications will not lead to the choice of extreme decision bound-
aries.

The SVM algorithm optimises the normal vector w and intercept b of the
decision plane, which is given by the equation:

x ·w + b = 0.

For an unclassified example z, evaluating the sign of the plane equation z ·w + b
tells you which side of the decision plane the feature vector lies on and can be
interpreted as a class label. The classification of an example using an SVM is
therefore as simple as evaluating the sign of an expression involving a vector
dot product and an addition. SVMs which classify in this way are known as
linear SVMs and the pair (w, b) is all that is needed to specify the model. In
the set-up of our use case this classification is simple enough that an additive
homomorphic encryption scheme would be applicable, such as Paillier [Pai99].
This is the approach taken in previous work.

However, this limits us to the use of linear SVMs. Linear SVMs work very
well for simple classification tasks such as the recognition of hand written digits
or object silhouettes. However, training a non-linear SVM using a kernel can lead



to much better accuracy on more complicated images found in the real world.
So it is to this more complicated methodology that we now turn our attention.

3.2 Polynomial Kernels

A common example of a non-linear SVM is the use of a Polynomial Kernel (PK-
SVM). See [Alp10] for a full description of this approach, however, we briefly
recap the details below. “Kernel methods” owe their name to the use of kernel
functions, which enable SVMs to operate in a high-dimensional, implicit feature
space without ever computing the coordinates of the data in that space. Instead,
this can be achieved by simply computing the inner products between the images
of all pairs of data in the feature space. This operation is often computationally
cheaper than the explicit computation of the coordinates and is known as the
“kernel trick”.

We classify an example with an SVM trained with a kernel in the same way as
a linear SVM, except that we use the Support Vectors (SVs) to calculate the dot
product with the higher dimensional normal vector implicitly. The classification
equation becomes a sum over all the support vectors in the model. When we use
a PK-SVM the classification equation for an unclassified example z becomes:

class(z) = sign
[
b+

n∑
i=1

ai · yi · (1 + xi · z)d
]
, (1)

where

– xi ∈ Rf are the SVs, and the index i runs over the set of n SVs.
– b is the model intercept.
– ai are the Lagrange multipliers, which are the direct output from the SVM

optimisation problem.
– yi are the class labels of the SVs. These are always taken to be +1,−1 for

above or below the decision plane. In practice we only store ai · yi.
– d is the order of the PK used.

The order d of the PK-SVM is used as a parameter with which to select a model.
Selecting d = 1 reduces the model to a linear SVM. However, we are not limited
to a linear boundary but can add degrees of flexibility by selecting higher kernel
orders. The power d gives a multiplicative depth of O(log2 d); hence we now
require z to be encrypted with an SHE scheme for d of a reasonable size, say up
to 10.

Equation 1 is the important equation that we are interested in evaluating
when z is encrypted. Note that the model values (xi, yi, ai, b, d) will in our sce-
nario be held in the clear, by the Algorithm Provider, internally.

3.3 Feature Extraction

Good quality feature extraction is especially important in reducing the number
of ciphertext operations required to evaluate Equation 1 on encrypted examples.



Table 1 below counts the number of ciphertext operations required for the ho-
momorphic evaluation of the inner summation in Equation 1 (i.e. the equation
without the sign determining operation) and shows that they rely heavily on the
number of features used and the number of SVs in the model. Hence, the feature
extraction phase is crucial.

Operation c + p c + c c ∗ p c ∗ c
Count n + 1 n · f − 1 n · (f + 1) n · (blog2 dc+ HW(d)− 1)

Table 1. HE operations count for PK-SVM classification. Key is: c= ciphertext,
p= plaintext, n= number of SVs, f= number of features, d= order of PK-SVM,
HW(d) = Hamming weight of d.

In our experiments we applied a combination of Histogram of Gradients
(HoG) and Principal Component Analysis (PCA) for this feature extraction
phase. The basic summary of the method (which we expand below) is that in
the HoG phase an image is reduced to 142 features, represented by a vector h.
The HoG extraction of features is standard, and reveals no model information.
The HoG feature space is then reduced down to f features using PCA in a di-
mension reduction step. We now elaborate on these two steps in more detail:

HoG Feature Extraction: HoG is a technique that has been used in image
processing to extract features useful for object recognition (see [DT05] for exam-
ple). We start with a 32× 32 pixel image. Note that 32× 32 could be considered
a small size for an image. However, even such small images give good classifi-
cation results and in practice larger images would be compressed to this size to
give improved running times. In additon, it is the number and quality of fea-
tures extracted that fundamentally affects performance, and this is not directly
dependent on image size. The image is divided into small rectangular regions
called cells, for our 32× 32 pixel images we take a cell size of 8× 8 pixels, giving
a total of 16 cells which cover the image.

A histogram of gradients is created for the pixels within each cell. The gra-
dient at a pixel is a measure of the intensity change across that pixel in the
image, and has both a magnitude (the level of intensity change) and a direction
(the direction in which the intensity change is greatest). Gradients are useful
in detecting lines and edges in images, for example, a vertical line will lead to
a large magnuitude intensity change in the horizontal direction. The gradients
for a cell can be sorted into a histogram, where the bins in each histogram are
ranges of gradient direction and the values sum up the magnitudes for gradients
whose direction is in the respective bin. A typical approach would be to use 9
bins per histogram and so the total number of HoG features is (roughly) 9 times
the number of cells that fit into the image size. Since we have 16 cells and each
cell gives 9 bins, this means we have 142 HoG features.



PCA Dimension Reduction: PCA is a standard technique used in machine
learning for dimensionality reduction (see [Alp10]). It is a standard technique
that converts the (likely correlated) features into a smaller set of linearly un-
correlated features called principal components. There is no definitive rule for
selecting the number of principal components as they are data dependent, but
the usual method is to either account for a minimum percentage of the total
variance or remove the components that contribute less than a given percentage
of the total or largest variance. PCA is often used in conjunction with HoG to
reduce the dimension of the feature vector further (see for example [SSK14]).
The PCA dimension reduction depends on the problem instance, and the asso-
ciated PCA matrix A ∈ Rf×142 is determined by Bob in the training phase. The
reduction operation is then given by

z = AT · (h−mh) ,

where mh is the vector of means of the training data. As remarked earlier, in
our experiments, we assume, for simplicity, that A and mh are given to Alice
in the clear. But Alice could provide the encrypted values h to Bob who then
applies the above linear operation himself.

In summary, HoG is good at selecting highly discriminative features, whilst
PCA is good at selecting few features. By combining the two we, hopefully,
end up with a minimal number of discriminative features. PCA helps largely to
reduce f (the number of features) to be as small as possible. The number of
SVs can be considered a measure of how separable the data is, so this too is a
case of feature extraction. Extracting poorly discriminative features results in
less separable data and more SVs.

4 Results

We first discuss the feature extraction applied on our test data, for which we
used the CIFAR-10 dataset [CIF]. Then we go on to discuss how to ensure the
output, obtained by the decryptor, does not allow them to recover the model; i.e.
how to maintain the privacy of the model over many queries. Then we discuss
the homomorphic evaluation of the SVM algorithm.

4.1 Optimised Feature Extraction for HE

Firstly, we ran experiments to validate assumptions about PK-SVMs offering
the potential for greater accuracy in object recognition.

We tried identifying classes of real imagery from the CIFAR-10 dataset and
found that the linear models were less effective. Training with a PK-SVM made
a significant improvement in classification accuracy. Table 2 provides an example
of this, where we trained PK-SVMs on 30,000 examples to identify real images
of cars from the 9 other remaining classes of objects in CIFAR-10. Note that a
PK-SVM of order 1 is the same as a linear SVM. A HoG cell of 8 pixels was



used and principal components with a variance of less than 2% of max variance
were discarded generating f = 57 HoG-PCA features on a training set of 30,000
examples containing 3,023 positive examples. Note that the output of the HoG
stage is 142 features and therefore this experiment also shows the benefit of the
combination of HoG and PCA by reducing the number of features to only 57,
whilst still maintaining reasonable classification accuracies.

PK-SVM order (d) Number of SVs (n) Accuracy Training Time(s)

1 5,631 92.89% 28

2 3,732 96.89% 42

3 4,353 99.60% 94

4 5,140 100.00% 112

Table 2. PK-SVM trials on CIFAR-10 ‘car’/‘not car’ identification task. Using
f = 57 HoG-PCA determined features. Training time measured on an Intel Xeon
CPU E5-1620 v3 @3.5GHz with 32GB RAM.

PK-SVM order (d) Number of SVs (n) Accuracy c + p c + c c ∗ p c ∗ c
1 5,631 92.89% 5,632 320,966 326,598 -

2 3,732 96.89% 3,733 212,723 216,456 3,732

3 4,353 99.60% 4,354 248,120 252,474 8,706

4 5,140 100.00% 5,141 292,979 298,120 10,280

Table 3. PK-SVM trials on CIFAR-10 ‘car’/‘not car’ identification task using
HoG-PCA outputing f = 57 features.

PK-SVM Cell PCA Variance Number of Number
order (d) Size Cut-off Features (f) of SVs (n) Accuracy c + p c + c c ∗ p c ∗ c
2 4 0.08 29 1,191 94.55% 1,192 34,538 35,730 1,191

3 8 0.04 37 1,587 95.41% 1,588 58,718 60,306 3,174

4 8 0.02 57 2,024 96.38% 2,025 115,367 117,392 4,048

Table 4. “SHE optimized” PK-SVM trials on CIFAR-10 ‘car’/‘not car’ iden-
tification task using HoG-PCA optimised for SHE. Accuracy is an average of
5 trials, with 9,000 randomly selected training images and 10,000 test images
in each trial. The PCA Variance Cut-off is the minimum variance of the se-
lected principal components as a percentage of the max variance across the first
principal component.



In this example, PK-SVM improves the classification accuracy, which demon-
strates the usefulness of the technique. More generally, applying PK-SVM to
classification tasks increases the space of models to select from compared to
just using linear SVMs. Applying a PK-SVM can therefore at worst add no
additional benefit, but otherwise only improve classification accuracy. However,
using a PK-SVM as opposed to a linear SVM does increase the computational
complexity of applying the model.

Using the same ‘car’/‘non car’ identification task on CIFAR-10 we established
the homomorphic complexity of using the output of the HoG-PCA feature ex-
traction. Table 3 gives the counts for the same trials presented above but this
time counting the number of homomorphic operations needed to evaluate the in-
ner sum of the SVM equation (i.e. all bar the sign determiniation). One should
read the columns as the number of plaintext (p) and ciphertext (c) combined op-
erations (addition and multiplications). Note, adding a ciphertext to a plaintext
results in a ciphertext, and so on. Also note, that the ciphertext operations are
not equal in terms of computational expense. Ciphertext multiplication (c ∗ c)
can be taken to be significantly the most expensive.

As one can see the number of homomorphic multiplications increases as one
increases the degree d; but increasing d also increases the accuracy of the model.
We hence, tried to minimize the complexity of the model, and hence minimize the
cost of homomorphically evaluating it, whilst still trying to maintain accuracy.
Thus we aimed for different HoG processing and values of the number of feature
vectors f ; whilst still maintaining accuracy.

There are two key HoG-PCA parameters that we optimised over; the size
of the HoG cell and the minimum PCA variance percentage (which determines
the number f of retained PCA feature vectors). The HoG cell can be considered
as the resolution of the HoG features. The minimum PCA variance percentage
is the minimum variance of the principal components selected as features as a
percentage of the max variance across the first principal component. To do this
we simply performed a ‘trial and error’ approach on the parameters for each
trial. In the trials we adjusted the degree d (2,3 or 4), the HoG cell (4 or 8)
and minimum PCA percentage (1,2,. . . ,20) and trained models for each of the
different combinations obtained. For each model we captured the classification
accuracy, as well as f and n. For each value of d = x, we selected the model that
minimised the number of homomorphic multiplications whilst still increasing
accuracy over the best model for d = x− 1.

We found that the number of required homomorphic operations could be
greatly reduced taking this approach. For example, we were able to use 29 HoG-
PCA features to train an order 2 PK-SVM that achieved an average of 94%
accuracy (on 10,000 test examples) when trained on 9,000 randomly selected
training examples (from the 30,000 total examples). The model generated an
average of 1,226 SVs and average ciphertext operation counts are summarised
in Table 4. The size of HoG cell used was 4 pixels and the minimum PCA% was
8%.



4.2 Privacy of Model

The solution proposed in this paper aims to protect privacy both of the client’s
data as well as the model of the algorithm provider. The privacy of the client’s
data is successfully preserved. However, there are two remaining issues that
need consideration in terms of protecting the algorithm provider’s model from
the client.

Firstly, the client needs to do pre-processing of images to extract features
suitable for the algorithm provider’s model. Therefore, the algorithm provider
has to reveal details of the feature extraction used. This does leak some infor-
mation, but on its own it is not useful to the client. And as explained earlier this
is trivial to secure as the extraction of feature vectors is a linear operation.

Secondly, recall the key Equation 1

class(z) = sign
[
b+

n∑
i=1

ai · yi · (1 + xi · z)d
]
.

It is this equation which we will be evaluating homomorphically. All the model
variables (b, ai, yi,xi) are cleartext values, but the data values z are assumed to
be encrypted. Since the values z are real values we encrypt them in the BGV
SHE scheme using the encoding method described in [CSV16] or [BBB+]. The
evaluation of the inner bracket can then be done using a depth O(log2 d) circuit.
The only thing remaining is how to evaluate the final sign function.

The trivial solution is to simply decrypt the value inside the bracket, which we
shall denote by v, and then allow the decryptor to obtain the sign himself. How-
ever, it is clear that after a number of queries the model variables (b, ai, yi,xi)
will then be able to be determined by the decryptor; by simply solving the result-
ing non-linear equations. Thus a method is needed to homomorphically evaluate
the sign function.

The problem is that the sign function is itself a high depth circuit; and thus
evaluating it homomorphically will be prohibitively expensive. Thus instead of
doing this we homomorphically mask the value v and then open the masked
value. This is inspired by a similar method in [NS14]. The evaluator generates
random real numbers r1 and r2 with r1 > r2 > 0 and then computes (homomor-
phically) t = r1 · v + r2.

Now if v > 0 then t will also be greater than zero, and if v < −r2/r1
then t will also be less than zero. Thus from the sign of t one can work out
the sign of v, except for values of v in the range [−r2/r1, 0). In order to select
suitable values for r1 and r2 we captured the values of v from a number of
experiments with our developed classification models. These showed for v that
the smallest magnitude was approximately 0.02 and the largest was 11. We
therefore chose r1 ∈ [1000, 9999] and r2 ∈ [0, 20]. In theory, the magnitude of
v could be less than 0.02 and hence some selections of random r1 and r2 could
lead to misclassifications. However, the probability of this is small. Classification
accuracies given in this section from our experiments with these values of r1 and
r2 also bear out that these are suitable choices.



The question arises as to whether the unmasked value t reveals information
about the masked value v? Alas some information clearly leaks as if the decryptor
knows the range from which the evaluator samples r1, and the expected range
of v, then the value of t (if at the extremity of the expected range) will reveal
some information about v. However, from this partial information it seems a
difficult problem to recover the model. In some sense the resulting problem
becomes solving a degree d+ 1 algebraic “equation with noise”. It is known that
degree one equations with noise are computationally hard (i.e. the Learning
with Errors problem), thus one can expect a higher degree analogue to also be
computationally hard.

||pmin|| ≥ degmin ≥
PK-SVM order (d) f n Worst-case Expected Worst-case Expected

2 29 1,191 37 22 76 75

3 37 1,587 51 30 106 105

4 57 2,024 67 38 136 135

Table 5. Worst-case minimum and the expected values for the size (in bits) of
the plaintext modulus and the minimal value for the degree of the plaintext ring
needed for homomorphic evaluation.

PK-SVM order (d) p N ` log2 q Time (s)
2 4147267 8192 7 149 8.97

3 952727777 16384 12 277 62.08

4 269106186949 16384 13 318 124.59

Table 6. Degree N of the rings, number of HELib levels `, and resulting max-
imum ciphertext modulus q for each of our three PK-SVM models; given a
plaintext modulus p; we also present the average time needed to evaluate the
SVM on encrypted data.

4.3 Classification on SHE Encrypted Data

In this section we outline the results we obtain in evaluating the SVM on en-
crypted data. As explained earlier to simplify the implementation we assume
encrypted values of the f -dimensional feature vector are given to the evalua-
tor. From this data they need to homomorphically evaluate the inner sum in
Equation 1, mask the result, and pass the resulting ciphertext back to the user.

In setting up our experiments there we need to determine two parameter
sets. Firstly we need to determine the precise modulus needed for the plaintext
ring so as to ensure correctness of the result (assuming no errors are introduced



by the homomorphic operations), then we need to estimate the parameters for
the SHE scheme itself (the ring dimension and the ciphertext modulus) so as
to ensure that the encryption is secure, and the homomorphic operations are
performed without error. We use HELib [HS14] as our base SHE library, and
so we use the parameter generation methods included there, to define the ring
dimension and ciphertext moduli.

Mention that in our feature extaction/model all the values are real values. We
encode these using the balanced base-B encoding as the degree of the equation
is quite small. If d becomes bigger one may then need to use encoding methods
such as the LLL method of [CSV16] or the NIBNAF method of [BBB+], which
reduce the degree bound restriction and coefficient size respectively.

Choosing the Plaintext Ring: The coefficients of the SVM model (xi, ai, b)
are real numbers which we encode in a plaintext ring of the formRp = Zp[X]/(XN+
1), where N is a power of two, using the balance base-3 encoding method from
[DGBL+15,CSVW16]. Thus each real number becomes encoded as an element in
Rp, with α ∈ R being encoded as a polynomial Pα(X) such that Pα(3)/Bt ≈ α
for some value of t.

If we examine the required operations on the plaintext then we need to ensure
that the final polynomial, representing the plaintext of the result, does not wrap
around in the ring Rp. In particular this means that the ring dimension N must
not be too small, and the plaintext modulus needs to be large enough to ensure
all coefficients are held exactly. In practice the lower bound found for N here will
be surpassed by the lower bound needed for security of the following encryption,
but lower bounding the plaintext modulus p is crucial for correctness.

Using the method described in [CSVW16] one can obtain an upper bound on
the largest coefficient that could arise in a polynomial when evaluating the inner
sum in Equation 1; we also obtain an upper bound on the resulting degree N . If
we wished to absolutely guarantee correctness then we would need to define the
minimum size (in bits) pmin of the plaintext modulus, and the minimum degree
of the ring degmin to be greater than these values. See Table 5 for these values.

This worst-case analysis corresponds to the case when all the coefficients in
the input base-3 encodings equals unity. But this is really a worst-case since for
randomly chosen inputs, all the three possibilities {−1, 0, 1} are equally likely for
the coefficients in the initial encodings. Hence we also list the expected minimum
values for the size of the plaintext modulus p and the degree of the ring N that
normally works well in practice. These values were computed as maximum over
1000 trails with random inputs of the given precision.

Choosing the Ciphertext Ring: A (fresh) ciphertext in the HELib system is
a BGV ciphertext [BGV12] consisting of two elements in Rq, for some ciphertext
modulus q � p. Security is gauranteed by the size of N and q. We allowed HELib
to select N and q, given our desired security level of 80-bits of security. Due to
the large plaintext modulus space the number of levels in the HELib system does



not correspond to the multiplicative depth log2 d of the arithmetic circuit being
evaluated.

For each PK-SVM order d considered above (and the resulting f , n values and
expected minimum plaintext size) we experimentally found the required number
of levels of the BGV scheme required by HELib to obtain a correct decryption.
We then used the associated N and q values obtained from HELib. These values
are summarized in Table 6.

Homomorphic Evaluation Results: Finally in Table 6 we also present the
wall-clock times obtained from evaluating our three PK-SVM models on en-
crypted data. The computations were performed on a 24 core Dell Precision
T7600 Workstation with twin Intel Xeon E5-2620 processors, each running at
2.5GHz with 6 physical cores (12 logical cores), and 64GB DDR3 Quad Channel
RAM.
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