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Abstract. C. Carlet, P. Charpin, V. Zinoviev in 1998 defined the associated Boolean function
γF (a, b) in 2n variables for a given vectorial Boolean function F from Fn

2 to itself. It takes
value 1 if a 6= 0 and equation F (x) +F (x+a) = b has solutions. This article defines the differ-
entially equivalent functions as vectorial functions having equal associated Boolean functions.
It is an open problem of great interest to describe the differential equivalence class for a given
Almost Perfect Nonlinear (APN) function. We determined that each quadratic APN function
G in n variables, n ≤ 6, that is differentially equivalent to a given quadratic APN function
F , can be represented as G = F + A, where A is affine. For the APN Gold function F , we
completely described all affine functions A such that F and F +A are differentially equivalent.
This result implies that the class of APN Gold functions up to EA-equivalence contains the
first infinite family of functions, whose differential equivalence class is non-trivial.
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1 Introduction

Optimal differential properties of Almost Perfect Nonlinear (APN) functions allow to use them
as S-boxes in cryptographic applications (see [37] of K. Nyberg). To find the new constructions
of APN functions is an actual problem.

In the well-known paper [16] of C. Carlet, P. Charpin and V. Zinoviev, it was introduced the
associated Boolean function γF (a, b) in 2n variables for a given vectorial Boolean function F from
Fn2 to itself. It takes value 1 if a 6= 0 and equation F (x) +F (x+ a) = b has solutions. In [26] we
determined that there do not exist two APN functions F and G such that γF (a, b) = γG(a, b)+1
for all a, b ∈ Fn2 , a 6= 0, where n ≥ 2. But for a given APN function in n variables, it always
exists at least 22n distinct functions having the same associated function. The question arises:
does it exist more than 22n such functions? Surprisingly, working on [26] we computationally
found an example of such an APN function in 4 variables.

In this paper we introduce the definition of differentially equivalent functions as functions
that have equal associated functions. Note that one of the open problems stated by C. Carlet [14]
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18-07-01394), by the program of fundamental scientific researches of the SB RAS I.5.1. (project 0314-2016-
0017), by the Russian Ministry of Science and Education (the 5-100 Excellence Programme and the Project no.
1.12875.2018/12.1).
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can be formulated as follows: is it possible to describe all differentially equivalent functions for
a given APN function? An answer to this question can potentially lead to new APN functions.
In this paper we study the mentioned problem for quadratic APN functions and more precisely
for the APN Gold functions. Also we continue the research of the linear spectrum of a quadratic
APN function F . The linear spectrum is a differential and EA-equivalence invariant, which
allows us to obtain several nonequivalence results.

The definition of differential equivalence for an arbitrary vectorial function was generalized
by C. Boura, A. Canteaut, J. Jean, V. Suder [5]. They called two functions DDT-equivalent if
their difference distribution tables are equal. DDT-equivalence implies differential equivalence
(that is called γ-equivalence in [5]), but the converse is not true [5]. In case of APN functions
these equivalences coincide. Note that the term differential equivalence with respect to a subspace
that is used by V. Suder in [39] describes another property.

Section 2 provides basic definitions related to APN functions. In section 3 we introduce
the definition of the differential equivalence and describe its general properties. A conjecture
about the differential equivalence of quadratic APN functions is formulated. Section 4 contains
a new result of the APN Gold function F (x) = x2k+1 over the finite field F2n with gcd(k, n)=1.
We prove that up to extended affine equivalence (EA-equivalence), APN Gold functions with
k = n/2 − 1, where n = 4t, form the first infinite family of functions that have a non-trivial
differential equivalence class. Section 5 is devoted to several new properties of the associated
Boolean function γF of a quadratic APN function F . In section 6 the linear spectrum of a
quadratic APN function is studied and theorem about its zero values is proved. Section 7
contains the computational results obtained. Section 8 concludes the paper: it formulates the
remaining open questions.

Note that this paper is an extended version of [27].

2 Definitions

2.1 Vectorial Boolean functions

Let F2n be the finite field of order 2n and Fn2 be the n-dimensional vector space over F2. Let 0
denote the zero vector of Fn2 and x · y = x1y1 + . . . + xnyn denote the inner product of vectors
x, y ∈ Fn2 . A mapping F : Fn2 → Fm2 is called a vectorial Boolean function or a (n,m)-function.
If m = 1, F is called a Boolean function in n variables. The Hamming weight wt(f) of a Boolean
function f is defined as wt(f) = |{x ∈ Fn2 : f(x) = 1}| and the Hamming distance between
f and g is defined as dist(f, g) = |{x ∈ Fn2 : f(x) 6= g(x)}|. Any (n,m)-function F can be
considered as a set of m Boolean functions that are called coordinate functions of F in the
form F (x) = (f1(x), . . . , fm(x)), where x ∈ Fn2 . The algebraic normal form (ANF) of F is the
following unique representation:

F (x) =
∑

I∈P(N)

aI
(∏
i∈I

xi
)
,

where P(N) is the power set of N = {1, . . . , n} and each aI belongs to Fm2 . Here + denotes
the coordinate-wise sum of vectors modulo 2. The algebraic degree of F is degree of its ANF:
deg(F ) = max{|I| : aI 6= 0, I ∈ P(N)}. A function is called affine if its algebraic degree is not
more than 1 or, equivalently, if F (x + y) = F (x) + F (y) + F (0) for any x, y ∈ Fn2 . An affine
function F is linear if F (0) = 0. Functions of algebraic degree 2 are called quadratic.
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The Walsh transform Wf : Fn2 → Z of a Boolean function f : Fn2 → F2 is defined as
Wf (u) =

∑
x∈Fn

2
(−1)f(x)+u·x. For a (n,m)-function F the Walsh spectrum consists of all Walsh

coefficients WFv(u), u ∈ Fn2 , v ∈ Fm2 , v 6= 0, where Fv = v · F is a component Boolean function
of F . A function is called bent if all its Walsh coefficients take only values ±2n/2.

In this paper we consider only (n, n)-functions and Boolean functions. Further, by vectorial
Boolean functions we mean only (n, n)-functions. It is convenient to identify the vector space
Fn2 with the finite field F2n and to consider vectorial Boolean functions as mappings from F2n to
itself. A function F has the unique representation as a univariate polynomial over F2n of degree
not more than 2n − 1

F (x) =
2n−1∑
i=0

λix
i, where λi ∈ F2n .

It is known that the algebraic degree of F can be calculated as deg(F ) = maxi=0,...,2n−1{wt(i) :
λi 6= 0}, where wt(i) is a binary weight of an integer i. Thus, an affine function F is of the form
F (x) = λ+

∑n
i=0 λix

2i , where λ, λi ∈ F2n (additionally, F is linear if λ = 0).
For a function f : F2n → F2 it is usually considered the following representation that is called

the trace form (it is not unique):

f(x) = tr
( ∑
i∈CS

λix
i + λx2n−1

)
,

where λi, λ ∈ F2n , tr denotes the trace function tr(x) = x+ x2 + x22
+ . . .+ x2n−1

and CS is a
set of representatives of cyclotomic classes modulo 2n − 1. Note that the trace function takes
values only from F2 and it is a linear function. A cyclotomic class modulo 2n − 1 of an integer
i is the set C(i) = {i · 2j mod (2n − 1), j = 0, . . . , n − 1}. Cardinality of any cyclotomic class
modulo 2n − 1 is at most n and divides n.

There are two definitions of equivalence of vectorial Boolean functions that are usually con-
sidered, when studying cryptographic functions. Let F and F ′ be (n, n)-functions. F and F ′ are
called extended affine equivalent (EA-equivalent) if F ′ = A′ ◦F ◦A′′+A, where A′, A′′ are affine
permutations on Fn2 and A is an affine function on Fn2 . Two functions F and F ′ are said to be
Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if their graphs GF = {(x, F (x)) : x ∈ Fn2}
and GF ′ = {(x, F ′(x)) : x ∈ Fn2} are affine equivalent [16].

Both these equivalences preserve the APN property of a function. But, in general, CCZ-
equivalence modifies the algebraic degree of a function (in contrast to EA-equivalence). EA-
equivalence is a particular case of CCZ-equivalence. In several cases they coincide, for example,
for Boolean functions and vectorial bent Boolean functions as shown by L. Budaghyan and C.
Carlet in [10]. Also, it was proved in [41] by S. Yoshiara that two quadratic APN functions are
CCZ-equivalent if and only if they are EA-equivalent.

2.2 APN functions

A function F from Fn2 to itself is called almost perfect nonlinear (APN) if for any a, b ∈ Fn2 ,
a 6= 0, equation F (x) + F (x + a) = b has at most 2 solutions. Equivalently, F is APN if
|Ba(F )| = |{F (x) + F (x+ a) : x ∈ Fn2}| = 2n−1 for any nonzero vector a.

Although APN functions are intensively studied, it is very hard to give a complete description
of the class. Power, or monomial functions, which are functions over F2n of the form F (x) = xd,
are the simplest candidates to study whether they are APN or not. It is known 6 classes
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of monomial APN functions, and there is a conjecture of H. Dobbertin [18] that this list is
complete. Note that in 1964 V. A. Bashev and B. A. Egorov proved the APN property of the
inverse function F (x) = x2n−2, for odd n (as M. M. Glukhov mentioned in [24]). Infinite families
of APN polynomials were also found (see, for example, the book [9] of L. Budaghyan, surveys
[38] of A. Pott, [24] of M. M. Glukhov, [40] of M. E. Tuzhilin).

Another longstanding problem in APN functions is the existence of APN permutations in
even number of variables n. There are several partial nonexistence results on APN permutations
(for example, [2], [23], [24], [31]) and the only APN permutation in even n was discovered in
[8] for n = 6 by J. F. Dillon et al. In [32] V. Idrisova proposed two methods for searching APN
permutations that are based on special symbol sequences generated by the invented algorithm.

Complete classifications over EA- and CCZ-equivalences of APN functions up to dimension
5 were obtained in [6] by M. Brinkman and G. Leander. For n = 6 there are also known all 13
CCZ-inequivalent quadratic APN functions (found in [7], verified in [21] by Y. Edel). In [43]
Y. Yu, M. Wang, Y. Li developed a new approach for finding CCZ-inequivalent quadratic APN
functions and presented 487 CCZ-inequivalent quadratic APN functions for n = 7 and 8179 ones
for n = 8 (in updated version of [42]).

3 The differential equivalence of vectorial Boolean functions

In this section we introduce the definition of the differential equivalence of vectorial Boolean
functions and consider its basic properties, mainly for quadratic functions.

3.1 Definition and basic properties of differential equivalence

Let F be a (n, n)-function. In [16] a Boolean function γF in 2n variables associated to F was
introduced. It takes value 1 if and only if a 6= 0 and F (x) + F (x+ a) = b has solutions. It was
shown that F is APN if and only if γF has the Hamming weight 22n−1 − 2n−1.

Let us introduce the following definition.

Definition 1. Two functions F,G from Fn2 to itself are called differentially equivalent if γF = γG.
Denote the differential equivalence class of F by DEF .

Problem 1. [14] If we are given an APN function F , is it possible to find a systematic way to
build another function G such that γF = γG?

This open problem can be also formulated in terms of the differential equivalence: is it
possible to describe the differential equivalence class of a given APN function? It is a rather
natural question, but it seems to be difficult to find an answer for an arbitrary APN function.
Indeed, we could not even say that the differential equivalence between two APN functions
implies EA- or CCZ-equivalence between them. It makes this problem even more interesting
since we potentially could find new APN functions by studying the differential equivalence classes
of the known ones.

Let us denote the set {F (x) + F (x+ a) : x ∈ Fn2} by Ba(F ), where a ∈ Fn2 .

Proposition 1. Let F : Fn2 → Fn2 be an APN function and n > 1. Then Fc,d(x) = F (x+ c) + d
is differentially equivalent to F for all c, d ∈ Fn2 and all the functions Fc,d are pairwise distinct.
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Proof. Let us consider Ba(Fc,d) for an arbitrary nonzero a from Fn2 :

Ba(Fc,d) = {F (x+ c) + d+ F (x+ c+ a) + d : x ∈ Fn2} = Ba(F ).

Thus, by definition F and Fc,d are differentially equivalent for any c, d ∈ Fn2 .
Suppose that there exist c, d, c′, d′ ∈ Fn2 such that Fc,d = Fc′,d′ . Then F (x + c) + d =

F (x+ c′) + d′ for all x ∈ Fn2 . Since n > 1, equation F (x) +F (x+ a) = b has at least 4 solutions
if a = c+ c′ and b = d+ d′. Since F is APN, then c = c′ and d = d′.

We will call the functions Fc,d trivially differentially equivalent to F . The next proposition
means that we only need to study the differential equivalence classes of the EA-equivalence
representatives.

Proposition 2. Let F,G be EA-equivalent functions from Fn2 to itself. Then |DEF | = |DEG|.
Moreover, if G = A′◦F ◦A′′+A and DEF = {F1, . . . , Fk}, then DEG = {A′◦F1◦A′′+A, . . . , A′◦
Fk ◦A′′ +A}.

Proof. Let us firstly note the following: if F and G are EA-equivalent and G = A′ ◦F ◦A′′+A,
then for all nonzero a

Ba(G) = A′
(
BA′′(a)+A′′(0)(F )

)
+A′(0) +A(a) +A(0).

Thus, the statement is a straightforward corollary from this fact and the differential equivalence
definition.

There is the next natural question: “Is it true that an analogue of proposition 2 for CCZ-
equivalent functions takes place?” Let us consider the case n = 4: there exist two EA-equivalence
classes of APN functions and their representatives are CCZ-equivalent [6]. We computationally
found that cardinalities of the differential equivalence classes of these two representatives are
equal to each other (see section 7). So, such an analogue holds up to 4 variables.

3.2 The differential equivalence of quadratic APN functions

It is known that affine APN functions on Fn2 do not exist when n > 1. So quadratic APN
functions are the simplest APN functions with the smallest possible algebraic degree. But even
in this case APN functions are still not classified for an arbitrary number of variables. We can
use the following useful property of quadratic functions: if F is a quadratic function, then Ba(F )
is an affine subspace for all nonzero a ∈ Fn2 . If F is an APN function, then Ba(F ) is an affine
hyperplane (i. e. it has cardinality 2n−1) for all a 6= 0.

Let us consider the crooked functions. The definition of the crooked functions was introduced
in connection with distance regular graphs by T. D. Bending and D. Fon-Der-Flaass in [1].
In [35] G. Kyureghyan generalized this definition to the following: a function F is called crooked
if Ba(F ) is an affine hyperplane for all a 6= 0. Obviously, quadratic APN functions are always
crooked. There is also a conjecture (proved for monomial functions [35] and binomial functions
of the form xd + uxe [4]):

Conjecture 1. [35] All crooked functions are quadratic.
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If conjecture 1 is true, then for solving problem 1 for a quadratic APN function F, we only
need to study which quadratic functions are differentially equivalent to F . The first natural step
in this direction is to study whether function G that is EA-equivalent to F is also differentially
equivalent to F .

We start to consider this question by studying when just an affine function is added to a
given quadratic APN function. It is easy to see that the number of affine functions A such that
F +A ∈ DEF , where F is a quadratic APN function, is an EA-equivalence invariant.

Note 1. There exist at least 22n distinct affine functions A such that F and F +A are differen-
tially equivalent to any quadratic APN function F on Fn2 . Indeed, AFc,d(x) = F (x) +F (x+ c) +d

is affine for all c, d ∈ Fn2 and F (x) + AFc,d(x) = F (x + c) + d, which is differentially equivalent

to F according to proposition 1. So, all these functions AFc,d are distinct. And all corresponding

F + AFc,d are trivially differentially equivalent to F. The question arises: are there any other
affine functions? Surprisingly, the answer is “no” for almost all quadratic APN functions up to
6 variables.

Computationally (see section 7), we obtained the following result.

Theorem 1. Let F be a quadratic APN function in n variables, n = 2, 3, 4, 5, 6. Then each
differentially equivalent to F quadratic APN function G is represented as follows: G = F + A,
where A is an affine function. Moreover, the number K of such functions A equals to 22n for all
functions except functions from two EA-equivalence classes with the following representatives:
1) n = 4: APN Gold function F (x) = x3, K = 210;
2) n = 6: APN function F (x) = α7x3 + x5 + α3x9 + α4x10 + x17 + α6x18, K = 213.

This means that we found all affine functions that do not change the associated Boolean
function when adding to a quadratic APN function for a small number of variables up to 6.
And we also computationally proved that there are no two differentially equivalent quadratic
APN functions F and G such that F +G is not an affine function. This results in the following
conjecture.

Conjecture 2. Let F be a quadratic APN function in n variables. Then each quadratic APN
function G that is differentially equivalent to F, can be represented as follows: G = F +A, where
A is an affine function.

4 APN Gold functions

An APN Gold function is a quadratic monomial function of the form F (x) = x2k+1 over F2n ,
where gcd(k, n) = 1. It is easy to see that Gold functions are permutations if n is odd and
3-to-1 functions otherwise. It also has maximal possible nonlinearity (AB-functions) when n is
odd [16].

APN Gold functions take a special place among APN functions. At first, these functions are
the only exceptional monomial functions along with APN Kasami functions [29]. Also, despite
the fact these functions seem to be rather simple (due to their small algebraic degree and the
univariate representation), many other interesting constructions of APN functions have been
found based on them (for example, [11], [12], [22]).
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In [26] we tried to find an affine function A for a given quadratic APN function F such that
Ba(F+A) = Fn2 \Ba(F ) for as many vectors a as possible. Working on [26], we found that for the
APN Gold function in 4 variables there exist 210 affine functions such that Ba(F +A) = Ba(F )
for all a ∈ F4

2. This shows that the differential equivalence class of quadratic APN function F is
wider than the trivial class of cardinality 28.

In this section we prove that for an APN Gold function F (x) = x2k+1 there exist exactly
22n+n/2 distinct affine functions A such that F and F +A are differentially equivalent if n = 4t
for some t and k = n/2± 1; otherwise the number of such affine functions is equal to 22n.

4.1 Preliminary lemma

Here we consider a lemma that is necessary for proving a new result on APN Gold functions.

Lemma 1. Let n be an integer. Let P ik = 2i − 2k − 1, where i = 0, . . . , n− 1 and k runs from 1
to n− 1 except the case k = n/2 if n is even. Then the following statements hold:
1) P 0

k and P kk are in one cyclotomic class modulo 2n − 1 (say, C) for all k;

2) P ik and P jk are in distinct cyclotomic classes modulo 2n − 1 not equal to C for all i 6= j and
i, j 6= 0, k;
3) if n is odd, then |C(P ik)| = n for all i and k;
4) if n is even, then |C(P ik)| = n for all i and k except the following cases: |C(Pn−1

n/2−1)| =

|C(P k−1
n/2+1)| = n/2.

Proof. 1) Hereinafter, P ik means the representative of P ik congruence class modulo 2n − 1 be-
longing to the interval from 0 to 2n−2. By definition, binary weights of P 0

k = −2k and P kk = −1
are equal to n− 1. It is easy to see that all integers from 0 to 2n − 2 of binary weight n− 1 are
in one cyclotomic class modulo 2n − 1 (say, C) of cardinality n.

2) Consider all integers P ik and their binary representations, see Table 1. The integers
P 1
k , . . . , P

k−1
k (we denote them by group A) have binary weights n−k, . . . , n−2 correspondingly.

Thus, they belong to pairwise distinct cyclotomic classes modulo 2n−1 not equal to C. Similarly,
the integers P k+1

k , . . . , Pn−1
k (group B) belong to pairwise distinct cyclotomic classes modulo

2n − 1 not equal to C since their binary weights runs from k to n− 2.
The binary representation of P ik consists of two groups of consecutive 1s that have lengths

n − k and i − 1 if i = 1, . . . k − 1, and k and i − k − 1 if i = k + 1, . . . , n − 1. Two such
integers belong to the same cyclotomic classes if lengths of consecutive 1s groups are equal.
Thus, any two integers from groups A and B correspondingly belong to the distinct classes.
Indeed, n− k 6= k by proposition condition and n− k 6= i− k − 1 for all i = k + 1, . . . , n− 1.

3), 4) According to the previous studying of P ik binary representations, the only possible
case when |C(P ik)| 6= n is the following: if lengths of consecutive 1s groups in P ik are both equal
to n/2 − 1. If n is odd, this case is not realized. If n is even, then these possibilities are the
following: i = n− 1 if k = n/2− 1 and i = k− 1 if k = n/2 + 1. In both these cases P ik = 2n/2P ik
modulo 2n − 1 that completes the proof.

4.2 The main result concerning APN Gold function

The associated Boolean function of an APN Gold function is known [16].

Proposition 3. [16] Let F : F2n → F2n be a Gold function F (x) = x2k+1, where gcd(k, n) = 1.

Then γF (a, b) = tr
(
(a2k+1)−1b

)
+ tr(1) + 1 if a 6= 0 and γF (0, b) = 0 for all b ∈ F2n.
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Table 1: Binary representations of integers P ik.

i P ik = 2i − 2k − 1 mod(2n − 1) = (bn−1, . . . , bk, . . . , b0) ∈ Fn2 wt(P ik)

0 1 1 . . . 1 1 0 1 1 . . . 1 1 1 1 1 n− 1

1 1 1 . . . 1 1 1 0 0 . . . 0 0 0 0 0 n− k
2 1 1 . . . 1 1 1 0 0 . . . 0 0 0 1 0 n− k + 1

3 1 1 . . . 1 1 1 0 0 . . . 0 0 1 1 0 n− k + 2

. . . . . . . . .

k − 1 1 1 . . . 1 1 1 0 1 . . . 1 1 1 1 0 n− 2

k 1 1 . . . 1 1 1 1 1 . . . 1 1 1 1 0 n− 1

k + 1 0 0 . . . 0 0 0 1 1 . . . 1 1 1 1 1 k

k + 2 0 0 . . . 0 1 0 1 1 . . . 1 1 1 1 1 k + 1

. . . . . . . . .

n− 1 0 1 . . . 1 1 0 1 1 . . . 1 1 1 1 1 n− 2

The following theorem contains a new result on APN Gold functions.

Theorem 2. Let F : F2n → F2n be a Gold function F (x) = x2k+1, where gcd(k, n) = 1. Then
the following statements hold:
1) if n = 4t for some t and k = n/2 ± 1, then there exist exactly 22n+n/2 distinct affine
functions A such that F and F + A are differentially equivalent; all of them are of the form
A(x) = α + λ2kx + λx2k + δx2j , where α, λ, δ ∈ F2n, δ = δ2n/2

, and j = k − 1 for k = n/2 + 1
and j = n− 1 for k = n/2− 1;
2) otherwise, there exist exactly 22n distinct affine functions A such that F and F + A are

differentially equivalent; all of them are of the form A(x) = α+ λ2kx+ λx2k , where α, λ ∈ F2n.

Proof. From proposition 3 we get that γF (a, b) = tr
(
(a2k+1)−1b

)
+ tr(1) + 1 if a 6= 0 and

γF (0, b) = 0 for all b ∈ F2n . Let A be an affine function from F2n to itself and L be its linear
part, i. e. L(x) = A(x) +A(0). Then

γF+A(a, b) = γF
(
a, b+ L(a)

)
= tr

(
(a2k+1)−1(b+ L(a)

)
+ tr(1) + 1

= tr
(
(a2k+1)−1b

)
+ tr

(
((a2k+1)−1L(a)

)
+ tr(1) + 1.

Thus, γF+A(a, b) = γF (a, b) + tr
(
(a2k+1)−1L(a)

)
. So, F and F +A are differentially equivalent

if and only if the linear part L of A satisfies the equality tr
(
(a2k+1)−1L(a)

)
= 0 for all a ∈ F2n .

Denote by N the number of such affine functions A.
Let A(x) = α + L(x) = α +

∑n−1
i=0 λix

2i be an affine function, where α, λi ∈ F2n , i =
0, . . . , n− 1. Then the following equalities hold for all a ∈ F2n :

tr
(
(a2k+1)−1L(a)

)
= tr

(n−1∑
i=0

λia
2i(a2k+1)−1

)
=

n−1∑
i=0

tr(λia
2i−2k−1) = 0.

The last equality represents a polynomial equation in variable a of degree not more than 2n−1
that has 2n solutions. So, all its coefficients must be equal to 0. Let us find the coefficients
of all monomials xd, d = 0, . . . , 2n − 1. For this, we need to study cyclotomic classes of all
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exponents P ik = 2i − 2k − 1, i = 0, . . . , n − 1, for a given k. Lemma 1 (1,2) gives us that there
are only two exponents P 0

k and P kk that belong to one cyclotomic class modulo 2n − 1. So,

this means that there is a relation between λ0 and λk in the form λ0 = (λk)
2k for all n since

P 0
k = 2kP kk

(
mod (2n − 1)

)
. To study the other coefficients consider the following cases.

Case 1. If n is odd, then according to lemma 1 (2,3) λi = 0 if i 6= 0, k. Thus, N = 22n since
we can choose such α, λk that they are arbitrary elements from F2n .

Let n be even, n = 2`. There are two different possibilities.
Case 2. If ` is odd, then gcd(n, n/2± 1) = 2. So, we do not consider k = n/2± 1 by theorem

condition and as a result λi = 0 if i 6= 0, k according to lemma 1 (4). Similarly to case 1,
N = 22n.

Case 3. If ` is even, then gcd(n, n/2± 1) = 1.
• If k 6= n/2± 1, then according to lemma 1 (4) we have λi = 0 if i 6= 0, k. Thus, N = 22n.
• If k = n/2 + 1, then according to lemma 1 (4) we have λi = 0 if i 6= 0, k − 1, k and

λk−1 = (λk−1)2n/2
. Since the number of elements x ∈ F2n satisfying the equality x = x2n/2

is
equal to 2n/2, we have N = 22n+n/2.
• If k = n/2 − 1, then according to lemma 1 (4) we have λi = 0 if i 6= 0, k, n − 1 and

λn−1 = (λn−1)2n/2
. Similarly to the previous, N = 22n+n/2.

Theorem 2 shows that the class of APN Gold functions contains the first infinite family
of quadratic APN functions whose differential equivalence class is wider than trivial class of
cardinality 22n (see note 1). Indeed, the cardinality of DEF , where F (x) = x2n/2±1+1, n = 4t,
is greater or equal to 22n+n/2 (since theorem 2 (1) describes only differentially equivalent to F

functions of special form). Note that functions F (x) = x2n/2±1+1 are in the same EA-equivalence
class for any n.

Also, APN Gold functions F (x) = x2n/2−1+1, n = 4, 8, are the only functions up to EA-
equivalence (except one function in 6 variables) among all known quadratic APN functions in
2, . . . , 8 variables that have more than 22n affine functions preserving the associated Boolean
functions when adding to the original functions (see theorem 1 and section 7). That is why we
may call this property of APN Gold functions remarkable.

5 Properties of the associated Boolean function

In this section we get several properties of the associated Boolean function for quadratic APN
functions.

Let F be a quadratic APN function. Then γF is of the form γF (a, b) = ΦF (a) · b+ϕF (a)+1,
where ΦF : Fn2 → Fn2 , ϕF : Fn2 → F2 are uniquely defined from

Ba(F ) = {y ∈ Fn2 : ΦF (a) · y = ϕF (a)}

for all a 6= 0 and ΦF (0) = 0, ϕF (0) = 1. Note that Ba(F ) is a linear subspace if and only if
ϕF (a) = 0. It is easy to see that (F (x) + F (x+ a) + F (a) + F (0)) ·ΦF (a) = 0 for all x ∈ Fn2 by
definition.

Let us denote
AFv = {a ∈ Fn2 : ΦF (a) = v}

for v ∈ Fn2 . In [35] G. Kyureghyan considered two sets TF (v) and TF (v) for a quadratic APN
function F. In terms of this work, them can be expressed as follows: TF (v) = {a ∈ AFv : ϕF (a) =
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0} ∪ {0} and TF (v) = {a ∈ AFv : ϕF (a) = 1}. It is known [35] that if F is crooked, then TF (v)
is a subspace and TF (v) is either empty or is a coset of TF (v) for any v. Thus, we can get the
following two propositions for quadratic APN functions (that are crooked by definition).

Proposition 4. Let F be a quadratic APN function in n variables. Then AFv ∪ {0} is a linear
subspace for any vector v ∈ Fn2 , v 6= 0, and AF0 = {0}.

Proof. It is a direct corollary of proposition 1 [35].

Proposition 5. Let F be a quadratic APN function in n variables. Then there exists cv ∈ Fn2
for any vector v ∈ Fn2 such that ϕF (x)|AF

v
= cv · x|AF

v
.

Proof. It is a direct corollary of proposition 1 [35].

It is known the following statement.

Proposition 6. [16] Let F be a quadratic APN function in n variables, n is odd. Then ΦF is
a permutation; therefore, γF is a bent function of Maiorana–McFarland type.

Thus, when n is odd, all AFv , v ∈ Fn2 , are pairwise distinct and each of them consists of one
element. We prove the following theorem for even n.

Theorem 3. Let F be a quadratic APN function in n variables, n is even. Then dimension of
AFv ∪ {0} is even for any v ∈ Fn2 .

Proof. Step 1. The Walsh coefficients of F and γF are connected by the following rule [16]
(here Fv = v · F is a component function of F ):

WγF (u, v) = 22nδ(u, v)− (WFv(u))2 + 2n, (1)

where δ(u, v) = 1 if (u, v) = (0,0) and δ(u, v) = 0 otherwise.
All component functions Fv, v 6= 0, are quadratic since APN functions do not have affine

component functions [15]. Then WFv ∈ {0,±2kv} for all v 6= 0, where kv is an integer, n/2 ≤
kv ≤ n− 1 [17]. Let us consider WγF (u, v) according to equality (1):

If v = 0, then
• u = 0: WγF (u, v) = 22n − 22n + 2n = 2n;
• u 6= 0: WγF (u, v) = 0− 0 + 2n = 2n.

If v 6= 0, then
• WFv(u) = 0: WγF (u, v) = 0− 0 + 2n = 2n;
• WFv(u) = ±2kv : WγF (u, v) = 0− 22kv + 2n = 2n − 22kv .

Step 2. From the other hand, WγF (u, v) = −2n
∑

a∈AF
v

(−1)ϕF (a)+u·a if v 6= 0. Indeed, consider
WγF using γF (a, b) = b · ΦF (a) + ϕF (a) + 1:

WγF (u, v) =
∑
a,b∈Fn

2

(−1)b·ΦF (a)+ϕF (a)+1+u·a+v·b

= −
∑
a∈∈Fn

2

(−1)ϕF (a)+u·a
∑
b∈∈Fn

2

(−1)b·ΦF (a)+v·b

=
∑
b∈Fn

2

(−1)v·b −
∑

a∈Fn
2 ,a6=0

(−1)ϕF (a)+u·a
∑
b∈Fn

2

(−1)b·ΦF (a)+v·b.

10



If v = 0, then WγF (u, v) = 2n − 0 = 2n, since ΦF (a) 6= 0 when a 6= 0.
If v 6= 0, then WγF (u, v) = 0− 2n

∑
a∈Fn

2 :ΦF (a)=v(−1)ϕF (a)+u·a.

Step 3. We have WγF (u, v) = −2n
∑

a∈AF
v

(−1)ϕF (a)+u·a. According to proposition 5, there
exists cv ∈ Fn2 for any vector v ∈ Fn2 such that ϕF (x)|AF

v
= cv · x|AF

v
. Then WγF (cv, v) =

−2n|AFv |. According to step 1, we have the only possible case: −2n|AFv | = 2n − 22kv . This
results in |AFv |+ 1 = 22kv−n or dim(AFv ∪ {0}) = 2kv − n. Since n is even, we get the required
statement.

Let us prove the following auxiliary statement.

Proposition 7. Let F be a quadratic APN function in n variables. Then, for any nonzero
vector v ∈ Fn2 , the set {x ∈ Fn2 : v · ΦF (x) = 0} is represented as

⋃
i∈IMi, where Mi is a linear

subspace of dimension 2, and Mi ∩Mj = {0}, i, j ∈ I, i 6= j.

Proof. Let v 6= 0 and v ·ΦF (x) = 0, where x ∈ Fn2 , x 6= 0. This means that there exists a vector
y ∈ Fn2 such that v = F (y) + F (y + x) + F (x) + F (0) (since F is an APN function, there is no
such a vector z that is not equal to y or y+x). This implies v ·ΦF (y) = 0 and v ·ΦF (x+ y) = 0
by definition of ΦF . Thus, the set {x, y, x+ y} together with the zero vector forms the required
linear subspace of dimension 2.

We get the following upper bound on the algebraic degree of ΦF for odd n.

Theorem 4. Let F be a quadratic APN function in n variables, n is odd, n ≥ 3. Then
deg(ΦF ) ≤ n− 2.

Proof. Let v ∈ Fn2 be an arbitrary nonzero vector. We prove that deg(v · ΦF ) ≤ n − 2 and as
a result deg(ΦF ) ≤ n − 2. We use the following widely known equality for counting the ANF
coefficients of a Boolean function f in n variables:

gf (a) =
(

2wt(a)−1 − 2wt(a)−n−1
∑

b�(a+1)

Wf (b)
)

mod 2. (2)

Since ΦF is a permutation by proposition 6, then v · ΦF is balanced for any nonzero vector
v ∈ Fn2 . This implies Wv·ΦF

(0) = 0 and deg(v · ΦF ) < n.
Let v be a nonzero vector from Fn2 . Let us prove that deg(v · ΦF ) 6= n − 1. This means

that gv·ΦF
(ak) = 0 for all ak ∈ Fn2 such that wt(ak) = n − 1, k = 1, . . . , n. Equivalently,∑

b�(ak+1)Wv·ΦF
(b) = Wv·ΦF

(0) + Wv·ΦF
(ek) = Wv·ΦF

(ek) is divided by 8 according to (2),

where ek is the vector with one nonzero coordinate k. Indeed,

Wv·ΦF
(ek) =

∑
x∈Fn

2

(−1)v·ΦF (x)+x·ek =

∑
x∈Fn

2 : v·ΦF (x)=0

(−1)x·e
k

+
∑

x∈Fn
2 : v·ΦF (x)=1

(−1)1+x·ek = 4|M | − 2n,

where
M = {x ∈ Fn2 : v · ΦF (x) = 0, x · ek = 0}.
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We need to prove that |M | is even. By proposition 7, {x ∈ Fn2 | v · ΦF (x) = 0} =
⋃
i∈IMi,

where Mi is a linear subspace of dimension 2, and Mi ∩Mj = {0}, i, j ∈ I, i 6= j. Note that the
number of vectors x ∈ Fn2 such that v · ΦF (x) = 0 is equal to 2n−1 since ΦF is a permutation.
So, |I| = (2n−1−1)/3 and it is an odd integer. Let Mi = {0, xi, yi, xi+yi}, i ∈ I. For any i ∈ I,
there is an odd number (one or three) of nonzero vectors x ∈ Mi such that xk = 0. Thus, |M |
is even since we have an odd number of nonzero vectors belonging to M and 0 ∈M .

Note 2. The bound of theorem 4 is tight for all known quadratic APN functions in not more than
8 variables (including also even numbers). Moreover, it holds that all their component functions

are of degree n − 2. For example, for an APN Gold function we have ΦF (a) = (a2k+1)−1,
ΦF (0) = 0, and deg(ΦF ) = n− 2.

6 The linear spectrum of a quadratic Boolean function

In this section we introduce the notion of the linear spectrum of a quadratic APN function as a
new combinatorial characteristics of the function.

Let F be a quadratic APN function in n variables and L : Fn2 → Fn2 be a linear function.
Then Ba(F + L) equals either Ba(F ) or Fn2 \Ba(F ) for all a ∈ Fn2 .

Let us denote kFL = |{a ∈ Fn2 \{0} : Ba(F ) = Ba(F +L)}|. If γF is represented as γF (a, b) =
ΦF (a) · b+ϕF (a) + 1, then γF+L(a, b) = γF (a, b+L(a)) = ΦF (a) · b+ ΦF (a) ·L(a) +ϕF (a) + 1.

Thus,
kFL = |{a ∈ Fn2 \ {0} : ΦF (a) · L(a) = 0}|. (3)

Definition 2. The linear spectrum of a quadratic APN function F in n variables is vector
ΛF = (λF0 , . . . , λ

F
2n−1), where λFk is the number of linear functions L such that kFL = k.

It is easy to see that
∑2n−1

k=0 λFk = 2n
2
.

The notion of the linear spectrum is essentially arisen while studying quadratic APN func-
tions. Let us describe two directions of studying APN functions, to which the linear spectrum
is especially important.

The first direction is the following. In [26] it was suggested an approach for finding iterative
constructions of APN function. In particular, to get a quadratic APN function S in n + 1
variables, one needs to take two admissible (see definition 4 [26]) quadratic functions F and G
in n variables such that F+G is an affine function. We can formulate this statement (assertion 7
[26]) in terms of this paper as follows. Two functions F and F+L are not admissible if kFL > 2n−1,
where F is a quadratic APN function and L is a linear function. Thus, we are interested in
possible values of kFL .

The second direction is to find the linear spectrum coefficient λF2n−1 for a quadratic APN
function F in n variables. It is equal to the number of linear functions L such that F and F +L
are differentially equivalent. As we computationally obtained (see theorem 1, section 3.2), there
are no two differentially equivalent quadratic APN functions in small number of variables up
to 6 such that their sum is not affine. So, λF2n−1 multiplied by 2n seems to show how many
differentially equivalent functions to F exist. Also, the next proposition states that the linear
spectrum is invariant under EA- and differential equivalences and it can be used for obtaining
nonequivalence results.
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Proposition 8. The linear spectrum of a quadratic APN function is
1) a differential equivalence invariant;
2) a EA-equivalence invariant.

Proof. 1) It follows from definitions of the differential equivalence and the linear spectrum.
2) Let G = A′ ◦ F ◦ A′′ + A, where F,G are quadratic APN functions in n variables, A′, A′′

are affine permutations, A is an affine function. Then Ba(G) = A′
(
BA′′(a)+A′′(0)(F )

)
+ A′(0) +

A(a) + A(0). Hence, kFL = kGL′ for any linear function L since Ba(F ) = Ba(F + L) if and only
if Ba(G) = Ba(G+ L′), where L′(x) = A′

(
L(x)

)
+ A′(0). As long as A′ is a permutation, then

L′ runs through the set of all linear functions when looking all linear functions L. Thus, by
definition of the linear spectrum, we have ΛF = ΛG.

Proposition 9. Let F be a quadratic APN function in n variables, n > 1. Then λF2n−1 ≥ 2n.

Proof. It is a direct corollary of the fact from note 1 with a remark that here we consider just
linear functions (not affine).

Let us prove the following theorem on zero values of the linear spectrum.

Theorem 5. Let F be a quadratic APN function in n variables, n > 1. Then the following
statements hold:
1) λFk = 0 for all even k, 0 ≤ k ≤ 2n − 2;
2) if n is even, then λFk = 0 for all 0 ≤ k < (2n − 1)/3.

Proof. 1) Let n be odd. By equality (3) we have kFL = |{a ∈ Fn2 \ {0} : ΦF (a) · L(a) = 0}|
for any linear function L. Equivalently, kFL = 2n − 1− wt(f), where f(a) = ΦF (a) · L(a). Since
deg(ΦF ) ≤ n− 2 by theorem 4 and L is linear, then deg(f) ≤ n− 1. This implies that wt(f) is
even and kFL is odd. The proof for even n is contained in item 2).

2) Let γF (a, b) = ΦF (a) · b + ϕF (a) + 1. Recall AFv = {a ∈ Fn2 : ΦF (a) = v} for a vector
v ∈ Fn2 . By theorem 3, dimension of linear subspace AFv ∪ {0} is even. Hence, the minimum
possible nonzero |AFv | is equal to 3. Moreover, if |AFv | > 3, then AFv can be represented as the
union of sets AFv,i, i = 1, . . . , |AFv |/3, such that AFv,i ∪ 0 is a linear subspace of dimension 2.

Let M ∪ {0} be a linear subspace of dimension 2 that coincides with AFv or with AFv,i
for some i if |AFv | > 3. Note that there are exactly (2n − 1)/3 such subspaces M . Then
ΦF (a) · L(a)|M = c · L(a)|M is a linear Boolean function, where c = ΦF (a), a ∈ M . Hence,
ΦF (a) ·L(a) = 0 either for all three vectors a ∈M or for only one. Since (2n− 1)/3 is odd, then
according to (3) we get that kFL is odd that completes the proof of item 1). Moreover, there are
at least (2n − 1)/3 nonzero vectors a ∈ Fn2 such that ΦF (a) · L(a) = 0. This means that λFk = 0
for all 0 ≤ k < (2n − 1)/3.

Note 3. It is possible to make the upper bound of theorem 5 (2) even stronger. For this one
should find cardinalities of the sets AFv , v ∈ Fn2 , for a quadratic APN function F . This can be
done by the following algorithm:

1. Let d = (2n − 1)/3 and v be the first vector in all ordered nonzero vectors from Fn2 .

2. If |AFv | > 3, then replace the current d by d− |AFv |/3 + 2dim(AF
v ∪{0})−1 − 1. Take the next

vector v and repeat step 2 until all vectors v will be looked.
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Table 2: Value distribution of ΦF for even n.

n # EA classes
# {v ∈ Fn2 : |AFv | = k}
k = 3 k = 15

4 1 5 –

6 13
for 12 classes: 21 –
for 1 class: 16 1

8 ≥ 8179
for 7680 classes: 85 –
for 487 classes: 80 1
for 12 classes: 75 2

This algorithm provides the final bound: λFk = 0 for all k, 0 ≤ k < d. The algorithm is
correct since we can consider the whole set AFv instead of AFv,i, i = 1, . . . , |AFv |/3, in the proof of
the theorem 5.

We computationally found the linear spectra of all quadratic APN functions in 3, 4, 5, 6
variables, see section 7.

7 Computational results

Here we present results that were obtained using computer calculations. Recall that the exact
number of EA-equivalence classes of quadratic APN (n, n)-functions is known for all n from 2
to 6 ([6], [7], [21]). For n equal to 7, 8 there are known partial results from [43] and updated
version of [42]. We took representatives of EA-equivalence classes of APN functions from [6]
(note that the function N13 in Table 5 [6] is not quadratic) and updated version of [42].

7.1 Value distribution of ΦF

By proposition 6, ΦF is a permutation for a quadratic APN function F in n variables, when n is
odd. According to theorem 3, the preimage Φ−1

F (v) for any nonzero v ∈ Fn2 , where n is even, is
either the empty set or forms a linear subspace of even dimension together with the zero vector.
We computationally found value distribution of ΦF for all known quadratic APN functions in
4, 6, 8 variables (Table 2).

7.2 The linear spectra of quadratic APN functions

We obtained the linear spectra of all quadratic APN functions in 3, 4, 5, 6 variables as listed in
Tables 3, 4, 5, 6. Calculations for n = 6 were conducted using supercomputer NKS-30T SSCC
SB RAS.

Note 4. We obtained that the linear spectra of EA-equivalence representatives of quadratic APN
functions in 5, 6 variables are pairwise distinct except two functions N3 and N10 in Table 6 for
n = 6, which have equal spectra. Moreover, the bound from theorem 5 (2) with the algorithm of
note 3 is tight for all considered n. Note 3 is actual for only one function in 6 variables: one
set AFv of the APN function N11 in Table 6 is of cardinality 15.
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Table 3: The linear spectrum of quadratic APN functions in 3 variables.
N ΛF

1. 0 56 0 280 0 168 0 8

Table 4: The linear spectrum of quadratic APN functions in 4 variables.
N ΛF

1. 0 0 0 0 0 15552 0 25920 0 17280 0 5760 0 960 0 64

7.3 Differentially equivalent APN functions in a small number of variables

Here we summarize the obtained computational results about the differential equivalence classes
of APN functions in n = 2, 3, 4, 5, 6, 7, 8 variables.

Result 1. Table 7 illustrates a classification under the differential equivalence of all APN
functions in small number of variables n = 2, 3, 4. For these dimensions we see that differential
equivalence between two functions implies also their EA-equivalence.

Result 2. Further we study how many affine functions A in n variables exist for a given
quadratic APN function such that F and F + A belong to the same differential equivalence
class.

At first we present mathematical background for our search. Let F be a quadratic APN
function, A be an affine function from Fn2 to itself and L(x) = A(x) +A(0). Then γF+A(a, b) =
γF (a, b+ L(a)) = γF (a, b) + ΦF (a) · L(a).

Thus, F and F +A are differentially equivalent if and only if

ΦF (a) · L(a) = 0 for all a ∈ Fn2 . (4)

The equalities (4) form the system of equations over n2 binary variables `i,j , i, j = 1, . . . , n, if we
represent L as L(x) = (

∑n
i=1 `1,ixi, . . . ,

∑n
i=1 `n,ixi). Let r be rank of this system. Then there

exist exactly 2n
2−r+n affine functions A such that F and F +A are differentially equivalent.

We computationally studied ranks of system (4) for all known EA-equivalence classes of
quadratic APN functions in 2, . . . , 8 variables. Our computational results are listed in Table 8.
As we can see, for almost all considered EA-equivalence classes in n variables with representative
F there exist exactly 22n trivial affine functions A such that F and F + A are differentially
equivalent. The exceptional cases from Table 8 are the following functions in even number of
variables:

n = 4: APN Gold function x3;
n = 6: 4th APN function from [7] α7x3 + x5 + α3x9 + α4x10 + x17 + α6x18;
n = 8: APN Gold function x9.

Table 5: The linear spectra of quadratic APN functions in 5 variables.
N N[6] ΛF

1. 1. 0 0 0 0 0 5952 0 84320 0 605120 0 2737920 0 6249600 0 9663072
0 8035200 0 4563200 0 1331264 0 252960 0 25792 0 0 0 0 0 32

2. 2. 0 0 0 0 0 6944 0 74400 0 649760 0 2618880 0 6457920 0 9413088
0 8243520 0 4444160 0 1375904 0 243040 0 26784 0 0 0 0 0 32
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Table 6: The linear spectra of quadratic APN functions in 6 variables.
N N[6] ΛF

1. 1. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2565573 0 17869363 0 59537331 0 125825973 0 188763661 0 213866654
0 190026141 0 135740661 0 79238211 0 38171835 0 15254095 0 5076811 0 1405263 0 325493
0 62735 0 10311 0 1500 0 190 0 18 0 4 0 0 0 1

2. 2. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2553543 0 17877699 0 59589621 0 125781705 0 188741889 0 213800958
0 190121337 0 135798669 0 79173675 0 38162187 0 15236991 0 5094747 0 1409499 0 327285
0 59859 0 11151 0 882 0 126 0 0 0 0 0 0 0 1

3. 3. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2542806 0 17905671 0 59586660 0 125776980 0 188633340 0 213945417
0 190123668 0 135775332 0 79089192 0 38209626 0 15282540 0 5048316 0 1425060 0 329238
0 54684 0 11340 0 1890 0 63 0 0 0 0 0 0 0 1

4. 4. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2554340 0 17874904 0 59587206 0 125810414 0 188677693 0 213867958
0 190098845 0 135772125 0 79211561 0 38138853 0 15249741 0 5086925 0 1411959 0 326341
0 62023 0 9639 0 1151 0 135 0 9 0 1 0 0 0 1

5. 5. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2557241 0 17872451 0 59577007 0 125814360 0 188696571 0 213867180
0 190078715 0 135775295 0 79212625 0 38139345 0 15258109 0 5082923 0 1411065 0 325759
0 61833 0 9853 0 1346 0 128 0 16 0 1 0 0 0 1

6. 6. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2560448 0 17872948 0 59553053 0 125832589 0 188720207 0 213854452
0 190068147 0 135758015 0 79225563 0 38153459 0 15254401 0 5079821 0 1408589 0 325919
0 62817 0 9957 0 1289 0 133 0 14 0 2 0 0 0 1

7. 7. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2554224 0 17872307 0 59600606 0 125785578 0 188702449 0 213850382
0 190100817 0 135791481 0 79195077 0 38133595 0 15258913 0 5085601 0 1412147 0 325797
0 61795 0 9659 0 1255 0 126 0 13 0 1 0 0 0 1

8. 8. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2567716 0 17858235 0 59557665 0 125814883 0 188753869 0 213881510
0 190016913 0 135750653 0 79230265 0 38172707 0 15255327 0 5075247 0 1408231 0 323437
0 63067 0 10415 0 1455 0 206 0 20 0 2 0 0 0 1

9. 9. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2555995 0 17877082 0 59574886 0 125801851 0 188718247 0 213851252
0 190094459 0 135757863 0 79214449 0 38150271 0 15253395 0 5080817 0 1412525 0 325359
0 62017 0 9901 0 1312 0 131 0 11 0 0 0 0 0 1

10. 10. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2542806 0 17905671 0 59586660 0 125776980 0 188633340 0 213945417
0 190123668 0 135775332 0 79089192 0 38209626 0 15282540 0 5048316 0 1425060 0 329238
0 54684 0 11340 0 1890 0 63 0 0 0 0 0 0 0 1

11. 11. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 10089045 0 53809170 0 134516080 0 209269815 0 227340608
0 184963439 0 119789795 0 66717075 0 34914745 0 17946799 0 8758623 0 3769445 0 1351275
0 395005 0 92041 0 16273 0 2310 0 275 0 5 0 0 0 1

12. 12. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2579442 0 17845114 0 59521616 0 125838552 0 188808200 0 213899042
0 189939792 0 135702744 0 79305436 0 38173660 0 15256304 0 5072200 0 1396584 0 327292
0 62320 0 12040 0 1218 0 266 0 0 0 0 0 0 0 2

13. 14. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2554106 0 17873083 0 59600915 0 125783545 0 188687890 0 213892662
0 190078149 0 135762125 0 79218325 0 38152995 0 15239255 0 5085771 0 1413065 0 327485
0 61575 0 9519 0 1237 0 110 0 10 0 0 0 1 0 1

Note. All values in the table must be multiplied by 64.
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Table 7: Cardinalities of differential equivalence classes of APN functions on Fn2 .

n # APN functions EA deg # differential equivalence classes with cardinalities

2 192 x3 2 12 classes of 24 functions

3 688128 x3 2 10752 classes of 26 functions

4 18 940 805 775 360
x3 2 1 156 055 040 classes of 210 functions
f [12] 3 17 340 825 600 classes of 210 functions

Here f(x) = x3 + (x2 + x+ 1)tr(x3).

Table 8: Total numbers of affine functions A on Fn2 such that F and F + A are differentially
equivalent, where F is a EA-equivalence representative of quadratic APN functions.

n # EA classes # affine functions A: F +A ∈ DEF

2 1 24

3 1 26

4 1 210

5 2 for all 2 classes: 210

6 13 for 12 classes: 212; for 1 class: 213

7 ≥ 487 for all known 487 classes: 214

8 ≥ 8179
for 1 class from known 8179: 220

for other 8178 classes: 216

Result 3. As we know from section 6, the linear spectrum of a quadratic APN function is
a differential equivalence invariant. Thus, we can state (see Tables 5, 6) that there are no two
quadratic differentially equivalent APN functions in n = 5, 6 variables that belong to distinct
EA-equivalence classes except possibly functions N3 and N10 in Table 6 (since they have equal
spectra). But we succeeded to check that this possibility is not realized. The next question was to
understand what quadratic APN functions from the same EA-equivalence class are differentially
equivalent. Surprisingly, it happened that if any two quadratic APN functions F and G are in
the same differential equivalence class, then F +G is affine.

Our computational proofs of result 3 were based on theorem 3 and the following fact: if F
and G are EA-equivalent, then ΦF and ΦG are linear equivalent, i. e. ΦG = L′ ◦ΦF ◦ L′′, where
L′, L′′ are linear permutations.

We summarized computational results in theorem 1 in section 3.2.

8 Conclusion

In this paper we introduced the definition of the differential equivalence of vectorial Boolean
functions and considered its basic properties in general and quadratic cases. We studied functions
that are obtained by adding affine functions to a given Gold function. And this allowed us to
start analyzing the differential equivalence classes of APN Gold functions. This theoretical result
and computer calculations for a small number of variables showed a remarkable property of APN
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Gold functions, which is not usual for almost all known quadratic APN functions.
Also, we formulated a conjecture about the differential equivalence of quadratic APN func-

tions that would be interesting to study further. It states that if two quadratic APN functions
are differentially equivalent, then their sum is an affine function. But the most exciting problem
that remains open about the differential equivalence in common case is the existence of two
differentially equivalent APN functions that are not CCZ-equivalent. The positive answer to
this question can give a new method for constructing APN functions inequivalent to the known
ones.

Acknowledgements. The author would like to thank Natalia Tokareva, Nikolay Kolomeec and
Valeriya Idrisova for fruitful discussions related to this work. The author is also very grateful
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