
On Two Round Rerunnable MPC Protocols

Paul Laird

Dublin Institute of Technology, Dublin, Ireland
email: {paul.laird}@dit.ie

Abstract. Two-rounds are minimal for all MPC protocols in the ab-
sence of a trusted PKI, however certain protocols allow the reuse of
inputs for different functions, or the re-evaluation of the same function
on different inputs without the re-distribution of public key informa-
tion. These can achieve an amortised round complexity of below two
rounds per computation. Function rerunnable MPC has been achieved
using FHE, while additive homomorphic properties of DH-based cryp-
tosystems have been used to allow input rerunnable protocols. These
differ in properties such as computational cost per execution, collusion
tolerance and number of rounds supported. We discuss the characteris-
tics of some rerunnable protocols, and present a proof of the rerunnable
aggregation protocol of Kursawe, Danezis and Katz from the Decisional
Bilinear Diffie Hellman Assumption [3].

Key words: multiparty computation, private aggregation, cryptographic pro-
tocols

1 Introduction

Minimising the round complexity of multiparty computations has long been a
goal of research into MPC[1], with recent developments including optimal 2
round general MPC under the LWE assumption [6]. This enables arbitrary func-
tion rerunnable MPC, as arbitrary computations may be carried out on cipher-
texts encrypted under a MKFHE scheme [5]. Input rerunnable MPC remains
somewhat less researched, with protocols existing for aggregation and certain
functions such as inner products. Kursawe, Danezis and Katz presented a pro-
tocol for rerunnable privacy-preserving summation based on pairings, and a two
round protocol based on standard Diffie-Hellman [4], which were used as the ba-
sis of a limited rerunnable DH-based protocol and a rerunnable hybrid protocol
using pairings less frequently for efficiency reasons, both of which trade collusion
tolerance for efficiency [7]. The security of the pairings-based protocol of Kur-
sawe, Danezis and Katz, and the related hybrid protocol has not previously been
demonstrated. We present some notation, following [7], introduce the two-round
protocol of Kursawe, Danezis and Katz, followed by its rerunnable extension
using pairings, and comment on its extension to the malicious setting, which
incurs an overhead only in the first run, and is thus amortised over multiple
runs. Performance data for the pairings-based protocol of Kursawe, Danezis and

Katz, as well as the limited rerunnable DH-based protocol and hybrid protocol
are available in [7].

2 Preliminaries

2.1 Notation and definitions

Let k be an integer. We denote the contiguous set of integers {1, . . . , k} by [k].
Let X and Y be distributions. The notation X ≈

C
Y denotes the fact that both

distributions are computationally indistinguishable to any probabilistic polyno-
mial time (PPT) algorithm.

In order to show that the proposed protocol provides the necessary privacy
to the participants, we have to show that it provides privacy against collusions
of up to t users. Intuitively, suppose n − 2 users collude, then it should not be
possible for the colluding users to learn anything about the 2 honest users’ inputs
beyond their sum. If n−1 users collude, then we expect them to learn the honest
party’s input. So for the case of n− 1 ≤ t ≤ n, there is no privacy requirement,
and thus these trivial cases are easily handled in meeting our security definition
below.

We adopt the standard simulation-based definition of security in the semi-
honest model with static adversaries. We base our definition below on Definition
2.1 in [2]. Here we consider only computational security, and relax the more stan-
dard definition to deterministic functionalities with a single output, since this
paper is concerned with aggregation. Note that this definition is general enough
to accommodate multi-aggregation aggregation as provided by our protocol.

Let m ∈ ({0, 1}∗)n be a vector of the inputs from each party and let π
be a protocol. We define OUTPUTπ(m1, . . . ,mn) as the final aggregated result
computed with protocol π from the input vector m. Furthermore, we define the
view of a party Pi in the execution of protocol π with input vector m as

VIEWπ
i (m) = (mi, ri, µ

(1)
i , . . . , µ

(`)
i)

where mi is party P ′is input, ri is its random coins and µ
(1)
i , . . . , µ

(`)
i are the

` protocol messages it received during the protocol execution. Similarly, the
combined view of a set of I ⊆ {1, . . . , n} parties is denoted by VIEWπ

I (x).

Definition 1 (privacy of n-party protocols for deterministic aggrega-
tion functionalities). Let f : ({0, 1}∗)n → ({0, 1}∗) be a deterministic n-ary
functionality and let π be a protocol. We say that π privately computes f if for
every m ∈ ({0, 1}∗)n where |m1| = . . . = |mn|,

OUTPUTπ(m1, . . . ,mn) = f(m1, . . . ,mn) (1)

and there exists a PPT algorithm S such that for every I ⊂ [n] with |I| ≤ t, and
every m ∈ ({0, 1})n where |m1| = . . . = |mn|, it holds that:

{VIEWπ
I (m)} ≈

C
{S(I,mI , f(m))}. (2)

2.2 Single-Aggregation KDK

Kursawe, Danezis and Kohlweiss (KDK) [4] present a specialized multiparty
computation (MPC) protocol for private summation, along with a single-run
2-round concrete instantiation which is shown to be secure in the semi-honest
model under the Decisional Diffie-Hellman (DDH) assumption. We refer to this
protocol as KDK. In their protocol, n parties P1, . . . , Pn can compute a joint
sum of their inputs m1, . . . ,mn ∈ {0, . . . , β} for some positive integer β. An
overview of their protocol follows.

Let p be a prime. The “public parameters” used in the protocol consist of a
description of a cyclic group G of order p together with a generator g of G. It is
assumed that DDH is intractable in G. These public parameters PP = (G, g, p)
are known to all parties Pi. The group operation of G is written multiplicatively.

1. Setup: Party Pi generates a secret key xi ∈ Zp and computes her public
key ui = gxi ∈ G. She broadcasts ui.

2. Main Round:
– Party Pi chooses her input mi ∈ {0, . . . , β}.
– Compute w ←

∏i−1
j∈1 u

−1
j ·

∏n
j∈i+1 uj ∈ G.

– Broadcast vi ← wxi · gmi ∈ G.
3. Output: The protocol produces an output in {0, . . . , nβ}, namely the sum

of the user inputs. To compute the sum σ:
– Compute z ←

∏n
j=1 vj .

– Use Pollard’s Lambda algorithm to compute the discrete log σ ∈ {0, . . . , nβ}
of z with respect to g in G.
The time complexity of Pollard’s lambda algorithm is

√
nβ, or lower if

there is a region of the solution space where the result is known to lie
with high probability (such as within the error bounds of a substation
power consumption reading for the area containing smart meters, whose
actual readings are being aggregated.

– Output σ.

It can be easily observed that
∏n
j=1 vj = g

∑n
j=1mj

2.3 Multi-Aggregation KDK (MA-KDK)

If the protocol must be run a number of times, it would be desirable to avoid
re-running the “Setup” phase above which involves each party generating and
broadcasting a new public key; in practice, a verification step for these keys may
also be needed, further increasing the round complexity. To re-use the published
keys ui, . . . , un for more than a single round of aggregation, Kursawe et al.
propose a multi-aggregation protocol accommodates an unbounded number of
aggregations, using bilinear pairings to achieve this.

Let G1, G2 and GT be cyclic groups of prime order p. Let e : G1×G2 → GT
be a cryptographic bilinear pairing. Furthermore, the Bilinear Decisional Diffie
Hellman (BDDH) assumption is expected to hold with respect to G1, G2, GT
and e. Let H : Z→ G2 be a hash function. The main changes to KDK to support
multiple rounds are as follows (optimizations are discussed later):

– The public parameters include generators P ∈ G1, Q ∈ G2 and g = e(P,Q) ∈
GT .

– The public keys are generated as Ui ← xiP ∈ G1 for all 1 ≤ i ≤ n.
– In aggregation k, party Pi computes

• Qk ← H(k) ∈ G2 (i.e. for a good choice of H, we have Qk = rQ for some
uniformly random r, which is intractable to find).

• w ←
∏i−1
j=1 e(Uj , Qk)−1 ·

∏n
j=i+1 e(Uj , Qk) ∈ GT .

The rest of the protocol remains unchanged except that the computations are
performed in GT , and Pi may choose a different input value in every round.
Naturally, the output of the protocol is then (σ1, . . . , σ`) ∈ {0, . . . , nβ}` if `
rounds are executed.

Note that there is no requirement for P 6= Q or G1 6= G2 hence we provide
a proof of security where P = Q; G1 = G2; g = e(P, P) ∈ GT ;Qk = rP for
uniformly random r. This allows a more straightforward mapping to the DBDH
as described in [3].

Theorem 1. Under the DBDH assumption, the KDK multi-aggregation protocol
is computationally private in the random oracle model.

The proof of security of MA-KDK is not presented in the KDK paper, and is
outlined in the following section.

3 Proof of Theorem 1

Theorem 1. Under the DBDH assumption, the KDK multi-aggregation protocol
is computationally private in the random oracle model.

Proof. Let h = n − t be the number of honest users. If h ≤ 1, it is trivial to
construct a simulator S since S can fully learn m and then simulate all parties.
Therefore, we assume that h ≥ 2. Let w = h(h − 1)/2. Let q be the number
of executions of the protocol. For each round ρ, the random oracle is invoked
so that, for common string sρ representing the execution instance (such as the
time), Qρ ← H(sρ) ∈ G2 (i.e. we have Qρ = rρP for some uniformly random rρ,
which is intractable to find). Consider the following series of Hybrids.
Hybrid 0: This is the same as the real distribution i.e. the LHS of Equation 2

with the exception that we “simulate” each honest party Pk using input m
(ρ)
k in

round ρ; therefore we have access to xk.
For 1 ≤ s ≤ w: Hybrid s involves two honest parties which we denote by Pi

and Pj , in round ρ. Their equations share the monomial xixjrρ. There are wq
such monomials and the goal of each Hybrid s is to replace the s-th monomial
with a uniformly random element.
Hybrid s: The changes between Hybrid s and Hybrid s−1 involve changing the

protocol messages of the honest parties Pi and Pj in round ρ. Let m
(ρ)
i and m

(ρ)
j

be the inputs of these honest parties in round ρ. Generate a uniformly random

integer as ∈ {0, . . . , p − 1} and replace all occurrences of gxixjrρ by gas in the
computation of the second message by Pi and Pj in round ρ.

Hybrid s− 1 and Hybrid s are computationally indistinguishable under the
DBDH assumption[3].
Hybrid s − 1 involves the DBDH instance (P, xiP, xjP, rρP, e(P, P)xixjrρ) and
Hybrid s involves the DBDH instance (P, xiP, xjP, rρP, e(P, P)as) where xi, xj , rρ
and as are uniformly distributed in {0, . . . , p − 1}. A non-negligible advantage
distinguishing between Hybrid 0 and Hybrid 1 implies a non-negligible advantage
against DBDH.

H is modelled as a random oracle and as such rρ will be a uniformly random
element in Zp for each round ρ. For each DBDH tuple (P, xiP, xjP, rρP, e(P, P)xixjrρ),
there are several tuples which differ in just one of {xiP, xjP, rρP}, and for which
e(P, P)xixjrρ may be known (such as e(P, P)xdxjrρ for dishonest party Pd’s xd,
used in computing vd, however these do not confer any non-negligible advantage
in distinguishing (P, xiP, xjP, rρP, e(P, P)xixjrρ) and (P, xiP, xjP, rρP, e(P, P)as)
under DBDH as otherwise an adversary could sample some uniformly random b ∈
Zp, evaluate bP and e(xiP, xjP)b for a verified tuple (P, xiP, xjP, bP, e(P, P)xixjb),
and similarly replace xi or xj , and thus gain an advantage in DBDH.

Hybrid wq+1: Without loss of generality, assume that parties P1, . . . , Ph are
the honest parties. For all 1 ≤ i < h and 1 ≤ ρ ≤ q, replace the protocol
message vi,(ρ) of party Pi in aggregation ρ with gRi,(ρ) · gmi,(ρ) for uniformly
random Ri,(ρ) ∈ Zp. Furthermore, for every 1 ≤ ρ ≤ q, replace the protocol

message vh,(ρ) with g−
∑h−1
j=1 rj,(ρ)+mh,(ρ) . As the replacement of each term shared

by two honest parties with uniformly random values cannot be distinguished
without an advantage in DBDH, nor can an adversary distinguish the product
of such terms and a single uniformly random value. Distinguishing Hybrid wq+1
and Hybrid wq is therefore impossible.

Hybrid wq + 2 Finally, in this Hybrid, the inputs m1,(ρ), . . . ,mh,(ρ) are re-

placed by a random partition of
∑h
k=1mk,(ρ), namely the values s1,(ρ), . . . , sh,(ρ)

for every ρ ∈ {1, . . . , q}.

An adversary has a zero advantage distinguishing Hybrid wq+ 2 and Hybrid
wq + 1. To see this, suppose the adversary could distinguish the hybrids. Then
it can determine that some party’s input (say Pi) in some aggregation ρ is
not si,(ρ). But vi, (ρ) = gr

′
for some uniformly random r′, which provides no

information about the message (whether it is mi,(ρ) or si,(ρ)). Note that vh,(ρ)
gives no additional information since it can be derived from the information
known to the adversary (recall that the sum in each aggregation is known).

Since Hybrid wq+ 2 no longer relies on the honest parties’ messages, and all
other information needed to construct the distribution can be derived from the
simulators’ inputs in Equation 2, it follows that there exists an algorithm S that
can simulate the real distribution. ut

4 Privacy in the Malicious Setting

We only give a brief overview here of how to prove privacy in the presence of mali-
cious adversaries.The protocol uses a NIZK argument system (Setup,Prove,Verify)
for statements of the form Si = {(xi) : ui = xiP}. The common reference string
σ ← Setup(1κ) is known to all parties and consists of a description of a hash
function HNIZK, which is modeled in the proof as a random oracle. A party Pj
rejects a public key and proof pair (ui, pi) if Verify(σ, Si, pi) 6= 1. As a result,
we can argue that the xi for i ∈ I are independent of {xj}j∈[n]\I with all but
negligible probability. The main modification to the proof of Theorem 1 involves
the simulation of the NIZK proofs for the honest parties, since we need to embed
DBDH challenges and thus do not know the exponents. Before embedding the
DBDH challenges, we have a series of h = n− t hybrids, where in the k-th such
hybrid, we invoke the zero-knowledge property of the NIZK argument system
to simulate (which will involve programming the oracle HNIZK) the proof string
pk for honest party Pk with a computationally indistinguishable proof string
p′k. The remainder of the proof proceeds in the same manner as the proof of
Theorem 1.

References

1. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communica-
tion, computation and interaction via threshold fhe. Advances in Cryptology–
EUROCRYPT 2012, pages 483–501, 2012.

2. Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly-
secure multiparty computation. Electronic Colloquium on Computational Complex-
ity (ECCC), 18:36, 2011.

3. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryp-
tion scheme. In Eurocrypt, volume 2656, pages 255–271. Springer, 2003.

4. Klaus Kursawe, George Danezis, and Markulf Kohlweiss. Privacy-friendly aggrega-
tion for the smart-grid. In Privacy Enhancing Technologies, pages 175–191. Springer,
2011.

5. A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly Multiparty Compu-
tation on the Cloud via Multikey Fully Homomorphic Encryption. In Proceedings
of the 44th symposium on Theory of Computing, pages 1219–1234, 2012.

6. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via
multi-key fhe. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 735–763. Springer, 2016.

7. Constantinos Patsakis, Michael Clear, and Paul Laird. Private aggregation with
custom collusion tolerance. In International Conference on Information Security
and Cryptology, pages 72–89. Springer, 2014.

