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Abstract. Inspired by the astonishing success of cryptocurrencies, most
notably the Bitcoin system, several recent works have focused on the
design of robust blockchain-style protocols that work in a peer-to-peer
setting such as the Internet. In contrast to the setting traditionally con-
sidered in multiparty computation (MPC), in these systems, honesty is
measured by computing power instead of requiring that only a certain
fraction of parties is controlled by the adversary. This provides a potential
countermeasure against the so-called Sybil attack, where an adversary
creates fake identities, thereby easily taking over the majority of par-
ties in the system. In this work we design protocols for Broadcast and
Byzantine agreement that are secure under the assumption that the ma-
jority of computing power is controlled by the honest parties and for the
first time have expected constant round complexity. This is in contrast
to earlier works (Crypto’15, ePrint’14) which have round complexities
that scale linearly with the number n of parties; an undesirable feature
in a P2P environment with potentially thousands of users. In addition,
our main protocol which runs in quasi-constant rounds, introduces novel
ideas that significantly decrease communication complexity. Concretely,
this is achieved by using an appropriate time-locked encryption scheme
and by structuring the parties into a network of so-called cliques.

1 Introduction

In multiparty computation (MPC), a set of n fixed players aims to compute
a function f by jointly running a distributed protocol such that nothing but
the output of the function is revealed. A fundamental building-block for most
MPC protocols is a so-called broadcast channel. Messages sent via the broad-
cast channel are guaranteed to be delivered consistently to all parties. More
formally, a broadcast channel shall satisfy the following two requirements. First,
the consistency property, which guarantees that all honest parties receive the
same consistent message m. Second, the validity property, which ensures that
if the sender is honest and sends a message m∗, then all honest parties receive
m∗. The problem of constructing broadcast channels was first formulated as the
“Byzantine Generals Problem” by Lamport in 1982 [22], and since then has been
intensively studied in cryptographic research, and more generally, in the area of
distributed computing [10, 33, 7, 35, 14, 9, 19].



A common assumption enabling particularly efficient protocols is the use of a
trusted setup via a public key infrastructure (PKI). A PKI guarantees that the
participants of the protocol are aware of each others public key, and has, e.g.,
been used in [19, 10] to construct efficient broadcast protocols. Unfortunately,
constructing a PKI can prove particularly difficult to achieve in a fully decen-
tralized peer to peer (P2P) setting like the Internet, where parties a-priori do
not have any established relationship, and in fact may not even be aware of each
other. An additional difficulty in such a setting arises from the fact that secure
broadcast protocols typically require that the majority of the parties behaves
honestly. This requirement is, however, hard to guarantee in a P2P setting, be-
cause potentially malicious parties can enter the system at any time. In fact,
it is hard to even define the concept of a “party” as, for instance, a user of the
protocol may create many “virtual” fake parties on a single machine, thereby
easily taking over the majority of the parties in the system. Such an attack is
called the Sybil attack [11], which is an important threat for designing secure
distributed systems.

An approach to overcome the above challenges has been proposed in the
seminal work of Satoshi Nakamoto with the Bitcoin cryptocurrency [26]. Bitcoin
does not rely on a trusted PKI setup, and prevents the Sybil attack by oper-
ating under the assumption that the majority of computing power is controlled
by the honest parties. At a technical level, Bitcoin (and other cryptocurrencies)
guarantee the assumption that the majority of computing power is controlled by
the honest parties via the so-called Proof of Work (PoW) – a concept initially
proposed by Dwork and Naor at Crypto’92 [12]. Informally, a PoW is a resource
intensive proof that guarantees that the prover invests computational effort in
solving a puzzle, while verification that the puzzle was solved correctly can be
done very efficiently. Using PoWs, we can now restrict the amount of adversari-
ally controlled parties in a system, by requiring that participation in a protocol
is only allowed when the party successfully completes a PoW.

Inspired by the Bitcoin system, many recent academic works (see, e.g., [15,
27–29, 17] and many more) give PoW-based protocols solving the problem of
state-machine replication [31, 21], in which an often (unknown) set of parties
agrees on an ordered log of transactions – the so-called blockchain. At an ab-
stract level, the blockchain allows users that do not trust each other to reliably
maintain an append-only register that stores the state of a decentralized sys-
tem. As the name suggests, the blockchain is built from a chain of blocks, where
a block Bi is connected to the previous block Bi−1 by containing the hash of
Bi−1. A drawback of most of these works is that implicitly the security of these
protocols rely on the trusted creation of a so-called genesis block B0. Notice
that the creation of the genesis block has to be trusted because we require B0

to be unpredictable until the point of its publication.1 An heuristic approach

1 For readers familiar with the Bitcoin network, if the genesis block is known in advance
of the official launch of the cryptocurrency, then an adversary could run a pre-mining
attack. In such an attack the adversary mines a longest chain starting with the genesis
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to guarantee this unpredictability is used by Bitcoin via letting B0 contain an
article of the New York Times published on the date the currency was launched.

Motivated by the problem of securely creating the genesis block, two recent
works [2, 20] present protocols which can be used to replace the trusted setup
with a distributed protocol, whose security solely relies on the assumption that
some fraction of computing power is controlled by the honest parties. At a high-
level, in these works the authors construct protocols for “one-shot” broadcast
among an initially unknown number of parties2 in a setting without any pre-
established trust infrastructure. Concretely, it is shown that even when only
a non-negligible fraction of computing power is controlled by the adversary,
then the protocols of [2, 20] can realize a secure broadcast channel among the
participating users. An important drawback of the above works, however, is that
their round complexity increases linearly with the number of parties. This is in
particular problematic in large-scale settings with possibly thousands of users.

In this work we study the question if the round complexity of broadcast
– and of the related problem of byzantine agreement – can be reduced3. Our
main result shows that this is indeed the case, by giving the first protocol that
runs in a constant number of rounds when the majority of computing power is
controlled by the honest parties. We emphasize that while the protocols of [2, 20]
allow to realize broadcast in a setting that is more adversarial than the setting
considered in our work (they even work when the majority of computing power
is corrupted), the related problem of byzantine agreement is in fact meaningful
only in a setting with an honest majority. Hence, in particular for one of the
main applications of creating the genesis block (which indeed requires byzantine
agreement rather than broadcast), our protocol improves previous works, while
still working in the same adversarial model. Moreover, even for the broadcast
setting, we believe that in large-scale settings with thousands of users improving
on efficiency may be more important for many applications than considering a
stronger adversarial model.4 We provide further details and comparison with
other related work in the next sections.

1.1 Our contributions

Expected constant round broadcast in the PoW model. Building on
the earlier works of [19, 20, 2], we propose a novel protocol which realizes secure
broadcast and runs in an expected constant number of rounds. More concretely,
our protocol works in the model introduced in [2] and borrows ideas from the

block long before the system starts. This enables him – despite having only limited
computational resources – to run, e.g., a double spending attack.

2 This is in contrast to the traditional MPC setting, where the exact number of parties
running the protocol is known to all players.

3 In byzantine agreement, parties agree on a value x. If all the honest parties give the
same input to the protocol, then agreement should be reached on this value.

4 Notice that our protocols require that the adversary can take over the majority of
computing power – which for large-scale settings will be hard to achieve anyways.
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work of Katz and Koo [19]. The latter builds expected constant round broadcast
protocols in the trusted PKI model when the majority of keys is controlled by
the honest users. Following the approaches of [20, 2], we show how to adapt this
protocol into an expected constant round protocol, for a setting without trusted
PKI but when we can rely on the assumption that the majority of parties is con-
trolled by the honest users. While we believe that this is an interesting feasibility
result, we notice that our protocols have the drawback that they increase the
communication complexity when compared to the works of [20, 2]. Improving on
the communication complexity forms the second main contribution of our work
outlined next.

Broadcast with significantly reduced message complexity. Our sec-
ond contribution are secure broadcast protocols that provably run in expected
logarithmic and quasi-constant number of rounds, but achieve significantly bet-
ter communication complexity. To this end, we again rely on the protocols of
Katz and Koo [19], but replace the most communication intensive parts with a
novel protocol that enables to share consistently random coins assuming that the
majority of computing power is honest. While the original protocol uses verifi-
able secret sharing (VSS) to achieve this goal, we present a protocol that makes
use of time-locked-encryption [30] in a novel way. Time-locked encryption allows
to “send a message into the future” by guaranteeing that the time-locked cipher-
text c of message m can only be decrypted once a certain time, δ, has passed. To
illustrate how we can use time-locked encryption to consistently share random
coins let us consider the following strawman solution. In the first phase, each
party Pi commits to a random secret coin xi via a commitment ci. In the second
phase, these commitments are publicly opened by the parties.

Unfortunately, this simple approach runs into the following problem. Since
the adversary is rushing, he can simply wait for the honest parties to open all
their commitments, and then once all honest coins are known, choose whether or
not it will provide the opening to its own commitments. Clearly, such behavior
will bias any coin which is derived in some public manner from the available
coin shares (for example, by adding them up or running them through a random
oracle). However, by using time-locked encrypted ciphertexts rather than com-
mitments, we can overcome this problem in the following way: If an adversary
refuses to open its commitment, the honest parties can open them in at most
time δ to complete the protocol in a deterministic way without the help of the
adversary, and thereby preventing any adversarial bias. Notice that of course the
above argument requires that the time-locked ciphertexts hide the coin shares of
the honest parties until the protocol is completed, but this is naturally guaran-
teed by the security properties of the time-locked encryption scheme. Concretely,
similar to earlier works that use time-locked encryption in protocol design [24]
we can rely on non-parallelizable time-locked encryption from [4, 30]. We believe
that our coin-sharing protocol and the use of time-locked encryption is of in-
dependent interest and may find applications in other settings to improve the
efficiency of protocols that otherwise rely on heavy tools such as VSS protocols.

4



Efficient broadcast for large scale settings. Finally, we ask the ques-
tion of how to design efficient broadcast protocols for a large-scale setting with
(many) thousands of parties. The main idea is to partition the parties into dis-
joint subsets– so-called cliques. Each clique then emulates a party in our original
protocol. Choosing the number of cliques as

√
n, we can decrease the commu-

nication complexity com to about
√
com. A similar approach was recently also

taken in [25]. However, in our protocol, we let the parties choose their cliques
themselves, whereas in [25] parties are delegated to cliques randomly. To gener-
ate the randomness needed for this assignment of parties to cliques, the protocol
presented in [25] requires an expensive first protocol round which requires that
5
6 of the computing power is honest. After this first round, the protocol in [25]
can tolerate a corruption rate of 1

3 for running future broadcasts. Since in our
protocol we let parties choose their cliques themselves, we do not need this ex-
pensive first round of the protocol, and thus can achieve the optimal corruption
rate of 1

3 for the entire protocol. We notice that [25] achieves better communica-
tion complexity than our protocol once the first round of generating the initial
randomness has passed. The details of our protocol for large-scale broadcast and
its analysis are moved to Appendix F.

1.2 Related Work

Broadcast and state-machine replication. Secure broadcast channels are
a fundamental building block of cryptographic protocols and distributed systems
in general, and hence have been studied extensively by the research community.
Lately, motivated by the consensus mechanisms used in cryptocurrencies, there
has been growing interest in the design of secure protocols for broadcast and
byzantine agreement in the PoW model. Most important for our work are the
already mentioned results of Katz et al. [20] and Andrychowicz and Dziem-
bowski [2], which we compare in detail with our constructions in Section 6.
Besides these works, there has lately been a flurry of works that study the
consensus mechanisms of Blockchain-based cryptocurrencies (see [15, 27–29] and
more). While a detailed comparison of the models and assumptions considered
in these works is beyond the scope of this paper, we emphasize that the main
difference between protocols for Blockchain-based consensus mechanisms and
our work is the fact that the former requires a trusted generation of the genesis
block. As already outlined in the introduction our approach does not make such
assumptions, and instead relies solely on the requirement that the majority of
computing power is controlled by the honest users. On the other hand, once
set-up, Blockchain-based protocols may achieve better efficiency (in particular,
in terms of message complexity) than the constructions that we present in this
work.

Another difference of our protocols when compared to Blockchain-based pro-
tocols is that the latter considers the problem of so-called state-machine replica-
tion in which parties agree on an ordered log of transactions. Given a protocol
for state-machine replication, it is easy to achieve byzantine agreement or broad-
cast. We notice that in the synchronous model, one may use the approach shown
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in [19] to run multiple instances of a consensus protocol back-to-back to agree
on an ordered log. We can also use the approach of [19] to achieve state-machine
replication, and thereby even achieving consensus in the so called permissionless
setting, where the set of parties can grow (or decrease) during the execution
of the protocol. The only assumption our protocol relies on is that during the
multiple execution runs the majority of computing power is always controlled
by the honest parties.

We remark that such a bootstrapping approach may lead to improvements
over blockchain based consensus protocols in particular regarding the storage
space needed to perform the protocol. If in every execution of our protocol, all
parties in the system (also newly joined ones) agree on some set of transactions,
there is no need to keep the entire history of the state. This is in contrast to many
existing blockchain protocols which require a continuous chain that starts with
the honestly generated genesis block. Of course, a downside of such an approach
is that newly joined users can not check the validity of past transactions within
the system, but instead rely on that the majority of computing power was always
honest during the lifetime of the protocol. We leave a further comparison and
improvements in this direction for future work. Finally, we draw a comparison
to the conceptually related work of [16] who show how to directly bootstrap a
blockchain protocol without prior trusted generation of the genesis block. At a
high-level, this is achieved under the assumption of an honest majority and by
starting with multiple, verifiably fresh candidate-genesis blocks and eventually
converging on one of them. While their work offers an alternative to our boot-
strapping approach for the genesis block, its scope is more limited to the realm
of blockchain protocols than our work. More precisely, our work offers a solution
for a one-shot consensus/broadcast, which has applications that go beyond the
trusted creation of a genesis block. For example, one can use our protocols to
efficiently establish a PKI without prior trust assumptions or agree on a trusted
majority of parties. Using the approach of [16] to solve these problems is possible
(as explained above), but requires an expensive setup phase (in the case of [16]).

Non-Parallelizable Functions. The versatile concept of non-parallelizable
functions and puzzles has been the focus of some recent works [3, 24, 6, 8]. One of
the main applications of such functions is the creation of unpredictable random
beacons via so-called delay functions [12, 18, 1, 23]. The authors of [6, 8] show how
such functions can be used to convert the headers of the Ethereum blockchain
into an unpredictable random beacon by suitably applying them to the headers
of the blocks and extracting the entropy from the resulting values. While these
works show the practicality of non-parallelizability as a concept for randomness
generation, they again rely on the existence of a blockchain structure for the
creation of random beacons and thus require a trusted setup in form of a genesis
block.
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2 Model and Definitions

In this section we introduce some notation, cryptographic building blocks and
the model for communication and computation that we use for our constructions.

2.1 Communication Model

We consider a setting in which some set of parties P1, . . . , Pn engage in a dis-
tributed protocol Π. We follow the modeling approach of [2], and do not require
any trusted setup and assume unlike in the traditional multiparty computation
setting that neither the number of honest parties nor the exact number of par-
ties engaging in Π is known. In particular, we emphasize that no public key
infrastructure (PKI) needs to be shared among the parties, i.e., the parties do
not initially know each others public keys. In contrast to standard MPC based
solutions, we assume that the honest parties control a majority of the computing
power in the system (instead of controlling an explicit number of parties), and
that all parties in the system can send at most θ messages in a round of length
∆, where ∆ denotes some measure of real time (say, one minute). As discussed
in [2] some bound on the total number of messages that parties can send within
one round is necessary. This is the case, because already accepting/processing
messages takes time, and otherwise the adversary can launch a denial-of-service
attack simple by sending too many messages.

We make the standard assumption of having bilateral channels between all
parties. In addition, as in [2], we assume a public broadcast channel C that can
be accessed by all parties. This channel C is solely needed to allow honest parties
to send messages to an unknown number of parties. Note that in this case, the
parties cannot use the bilateral channels, because the corresponding parties may
not even be known yet.

We emphasize that we require only mild reliability guarantees from the chan-
nel C. Concretely, honest parties can use C to broadcast a message m to all par-
ties, and the adversary can delay the delivery of such messages for at most ∆.
In particular, we require that the adversary cannot drop messages from any of
these channels. On the other hand, similarly to bilateral channels the adversary
is allowed to read all messages that are sent via C, and it can use C to send
messages only to a certain subset of honest parties. The latter property in par-
ticular allows the adversary to introduce inconsistencies between honest parties,
which must be avoided by a reliable broadcast channel as we want to construct
in this paper. A possible way to implement the channel C in practice are network
gossiping protocols – similar as the one used by Bitcoin [2].

An important quality measurement of our protocols is the communication
complexity of individual parties. To give a fair estimate of this parameter, we
use a worst case analysis in the pure bilateral channels model assuming that each
message sent via C corresponds to sending a single message via the corresponding
bilateral channel. We will provide efficiency estimates of our protocols using
the following two metrics commonly used in the MPC literature. The message
complexity as the number of messages that every party must send in order to
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complete the protocol, and the bit complexity as the total number of bits that
every party must send in order to complete the protocol.

2.2 Model of Computation

As in standard complexity-based cryptography, we assume that parties are PPT
Turing machines. Since the security of our protocols relies on the assumption
that the majority of computing power is controlled by honest parties, we need
however a more fine-grained specification of computing power. To this end, we
follow earlier works and model computing power by the number of queries that
parties can make to certain types of oracles. In this work, we will be inter-
ested in two types of oracles to measure computing power. First, queries to a
random oracle that models hash function evaluations and second, queries to
an oracle OR, which allows to perform ring operations and equality checks
over the ring of integers ZN , for N ∈ N. OR answers queries of tuples of the
form

(
(a11, a

2
1, op1, N1), . . . , (a

1
l , a

2
l , opl, Nl)

)
where ∀i : a1i , a

2
i ∈ ZNi , opi ∈ {=

,×,+,−,÷} and l is polynomially bounded (in some security parameter κ).
Here, the operations {×,+,−,÷} denote the standard modular ring operations
and “=” denotes the modular equality relation. OR’s replies are of the form
b1, ..., bl, where bi = a1i opia

2
i ∈ ZNi if opi ∈ {×,+,−,÷} and bi ∈ {0, 1}, if

opi ∈ {=}. We emphasize that we use the oracle OR mainly as a way to for-
malize the amount of computational power that parties invest. One way to view
access to OR is that it provides the fastest way to compute operations over the
ring ZN . This allows us to consider w.l.o.g. only adversaries that perform all
such operations by calling OR on appropriate inputs, and hence restricting the
number of queries that they can make to OR is a way to limit the adversary’s
computational efforts.

An alternative way to restrict the computational effort of the adversary was
considered, e.g., in [3, 24]. Roughly speaking, these works restrict the computa-
tional power by representing adversaries as an arithmetic circuit. The depth of
an arithmetic circuit corresponds in our modeling to the number of sequential
queries to OR, while the width of the circuits represents the number ` of oper-
ations that can be executed in parallel. We opted for modeling computational
effort by queries to an oracle instead of representing adversaries as arithmetic
circuits, because our modeling falls more in line with the hashrate limitation
modeling used by earlier works [2, 20], on which our work is based.

We assume that every honest party in the system may query either oracle
π times during real time δ.5 Here, we follow the work of [2] and assume for
simplicity that each honest party in the system can ask an equal amount of
queries to the oracles during real time δ. We use πmax to denote the total amount
of hash queries that can be asked to the random oracle during time δ by all

5 In reality, ring operations typically take more real time than hash function evalu-
ations. We make the simplifying assumption that both oracles can only be queried
π times during time δ which makes presentation simpler. Adjusting our model to
capture the difference in evaluation time is straight-forward.
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participants in the system and πA to refer to the total number of hash queries
that can be made by the adversary. As above, we assume again for simplicity
that the same parameters πmax and πA also apply to queries to OR. Our honest
majority assumption immediately yields πmax

πA
< 1

2 . We further set n := dπmax

π e
as an upper bound on the total number of parties in the system, and assume that
πmax and therefore n is known to all honest parties.

2.3 Basic definitions

We denote protocols with the uppercase letter Π. We denote vectors with bold-
faced lettersM and writeM [i] to denote the ith element ofM . We write x $← S
to denote that a variable x is uniformly sampled from the finite set S. We write
[n] to refer to the set of numbers from 0 to n− 1. To denote that the view of a
party on some variable x is local, i.e., it could be different for every party, we
write x̂ instead of x to keep recursive subindexing as low as possible.

Proofs of Work. A proof of work is a proof that some amount of computa-
tional effort has been invested by a prover P. Generating such a proof is resource
intensive for P, but can be verified efficiently by a verifier V. Intuitively, such
proofs can be useful to keep an adversary from flooding the honest parties with a
large amount of ‘spam messages’. This could be achieved by accepting messages
only if they are accompanied with a valid proof of work. Since the adversary’s
computing power is limited, this mechanism essentially rules out such flooding
attempts. Indeed, PoWs where first introduced in [12] to address the problem of
handling spam messages. We will use PoWs to measure computational power of
the parties and use it as a measure to prevent the so-called sybill attack. Sybill
attacks allow the adversary to flood the protocol with many fake “dummy iden-
tities” and are problematic for large-scale multiparty protocols that rely on the
assumption that some fraction of the protocol participants are honest. We use
the modelling of PoWs as introduced by Andrychowicz and Dziembowski [2].

Definition 1 (Proof-of-Work Scheme). Let H be a random oracle and let
κ be the security parameter. A Proof-of-Work Scheme is a tuple of PPT al-
gorithms (SolveH,VerifyPowH) with the following specification. The algorithm
SolveH takes as input a challenge p $← {0, 1}κ and outputs a solution ψ ∈ {0, 1}∗.
The algorithm VerifyPowH takes as input challenge p and solution ψ and out-
puts either 0 or 1. For correctness we require that for all p ∈ {0, 1}κ we have
that VerifyPowH(p,Solve(p)) = 1. Moreover, we say that (SolveH,VerifyPowH)
is π-secure if for all PPT algorithms A, the success probability in the following
experiment is negligible in κ:

– A is allowed to make polynomial number of queries to the random oracle H.
– A gets p $← {0, 1}κ and can make at most π further queries to the random

oracle H. Finally, A outputs ψ. A wins if VerifyPowH(p, ψ) = 1.

We will use the π-secure POW scheme from [2] and set δ, κ such that SolveH

runs in time δ := 4κ2∆ and VerifyPowH runs in time κ log(π · δ)/π. To simplify
notation, we will omit the parameterization of Solve and VerifyPow.
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Signature Schemes. Our constructions will use a digital signature scheme
satisfying the standard security notion of unforgeability under chosen message
attacks (UF-CMA-security). For ease of notation, in our protocols we will assume
that each signature is accompanied with its corresponding public key.

Broadcast and Consensus. In this work, we construct protocols that allow
to implement secure broadcast or consensus protocols. A broadcast channel,
as suggested by its name, allows a sender (usually called dealer) PD to send
a message to all parties in the system with the guarantee, that every honest
party receives the same message which is the message that PD intended to send.
Formally, we have the following definition:

Definition 2. A protocol run between n parties where a distinguished party PD
holds initial input m is a Broadcast protocol if the following properties hold for
all honest parties Pi, Pj , i, j ∈ [n]

– Consistency: At the end of the protocol, Pi, Pj outputs mi = mj are identical.
– Validity: If PD is honest, then Pi outputs mi = m.

A consensus or byzantine agreement protocol allows n parties with certain
inputs m1, . . . ,mn to jointly agree on a value.

Definition 3. A protocol for n parties P1, . . . , Pn with inputs m1, . . . ,mn, is
a Byzantine Agreement protocol if the following properties hold for all honest
parties Pi, Pj , i, j ∈ [n]

– Agreement: At the end of the protocol, Pi, Pj outputs mi = mj are identical.
– Validity: If the inputs of all honest parties are identical mi = mj = m then

all honest parties output m.

It is easy to see that byzantine agreement implies broadcast, since a simple
broadcast protocol can be constructed by adding just one more step. The idea is
to first let the dealer send his value m to all parties and then let the parties run
a byzantine agreement protocol on the value they received from the dealer. If
the dealer was honest, the properties of the byzantine agreement ensure validity,
i.e., that all parties output m. The agreement requirement of broadcast follows
directly from the agreement property of the byzantine agreement.

2.4 Time-Locked Encryption

In this section we introduce the notion of time-locked encryption which serves
as a main building block in our schemes. Informally, a time-locked encrypted
ciphertext that is encrypted at time t cannot be decrypted until time, say t+ δ.

Requirements for Our Scheme. We introduce a variant of time-locked en-
cryption which allows to simultaneously encrypt multiple messages in such a way
that they cannot be decrypted before some time bound δ has passed. To this
end, we present a time-locked encryption scheme ΠTL, which allows the parallel
encryption of k messages (m1, . . . ,mk) to ciphertexts (c1, . . . , ck). ΠTL provides
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Game SemSecA(1κ) :

00 m← AOR,H̃(1κ)

01 (c0)← EncOR,H̃TL (0)

02 (c1)← EncOR,H̃TL (m)
03 b← {0, 1}
04 b′ ← AOR(cb)
05 Return b′ = b

Fig. 1. Semantic security game for time-locked encryption in the OR model. 0 denotes
a vector containing only zero strings, which has the same length as m.

a (deterministic) procedure OpenTL, which on input of one of these ciphertexts
ci, i ∈ [k] returns a token ψ after δ time steps. One may think of this token as
a trapdoor that enables efficient decryption without knowledge of any private
input. We require that each ciphertext can only be decrypted with one unique
token ψ. Note however that once this token is known, it can be used to decrypt
all ciphertexts of the tuple (c1, . . . , ck).

Definition 4. A Time-Locked Encryption Scheme in the OR model is a tuple
of PPT algorithms (EncORTL ,Open

OR
TL ,Dec

OR
TL ). The randomized encryption algo-

rithm EncORTL takes as input k messages m1, . . . ,mk in the message space M
and outputs k ciphertexts c1, . . . , ck in the ciphertext space C. The deterministic
open algorithm OpenORTL takes as input a single ciphertext c′ and outputs a to-
ken ψ′. The deterministic decryption algorithm DecORTL on input (c′, ψ′) outputs
m′ ∈ M ∪ {⊥}. We require the following properties for a time-lock encryption
scheme ΠTL secure in the OR model:

Correctness For the encryption (c1, . . . , ck) = EncORTL (m1, . . . ,mk) of message
vector (m1, . . . ,mk) it holds ∀i, j ∈ [k] that DecORTL (ci,Open

OR
TL (cj)) = mi.

Uniqueness For all c, we have that DecORTL (c, ψ
′) = ⊥ unless ψ′ = OpenORTL (c).

Secrecy We say that ΠTL satisfies semantic security if for all PPT adversaries
A playing Game SemSec depicted in Figure 1 and making at most π calls
to OR, we have that Pr[SemSecA(1κ) = 1] = negl(κ).

Building Time-Locked Encryption. We now show how to instantiate a time-
lock encryption scheme in the OR model under Conjecture 1 which was originally
introduced in [30] and is based on the non-parallelizability of repeated squaring.
The concept of non-parallelizable functions have recently drawn considerable
interest [3, 24, 6, 8]. Also, the recent work of Lin et al. [24] considers time-locked
puzzles based on a hardness conjecture similar to Conjecture 1.

Conjecture 1. [30] Let N = rq, where r, q ← PrimeGen(1κ) are primes, let a $←
ZN , and let A be an algorithm that calls OR less than π times. Then Pr[ψ ≡N
a2
π | ψ ← AOR(a, π,N)] = negl(κ).
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In the following, let H̃ : {0, 1}∗ → {0, 1}κ be a random oracle. We prove in
Lemma 1 that the resulting scheme satisfies SemSec security. A detailed proof
of Lemma 1 can be found in Appendix A.

Time-locked encryption scheme ΠTL

EncTL(m1, ...,mn)

q, r
$← PrimeGen

N = rq, ϕ(N) = (r − 1)(q − 1)

a
$← ZN

s ≡ϕ(n) 2π, ψ ≡N as

K = H̃(ψ)

R1, ..., Rn
$←∈ {0, 1}κ

∀i ∈ [n] : ci := Ri||
(
H̃(K||Ri)⊕ (mi, r, q)

)
Return ((c1, a, π,N)..., (cn, a, π,N))

OpenTL(c, a, π,N)

Return ψ ≡N a2
π

DecTL (R||C, a, π,N, ψ)

K′ = H̃(ψ)
(m′, r′, q′) = H̃(K′||R)⊕ C
N ′ = r′q′, ϕ(N ′) = (r′ − 1)(q′ − 1)

s′ ≡ϕ(N′) 2
π, ψ′ ≡N′ as

′

If N ′ = N and ψ ≡N ψ′, return m′.
Otherwise, return ⊥.

Lemma 1. The time-locked encryption scheme ΠTL satisfies correctness, se-
crecy and uniqueness under Conjecture 1 in the random oracle model.

We remark that adding a, π, and N to every ciphertext tuple is not necessary,
but makes black-box use in our subsequent protocols more simple. This way
every tuple can be decrypted individually and independently.

3 Constructing a Graded Public Key Infrastructure
(GPKI)

Our goal is to build a broadcast protocol using POWs. We proceed in several
modular steps. First, we will construct a protocol, inspired by [2], that achieves
a slightly weaker property than a PKI, which we call a Graded PKI (GPKI).
Then we use this GPKI to achieve gradecast, a preliminary version of broadcast.

3.1 Public Key Infrastructure from Proof of Work

As a first step, we show how to construct something similar to a public key
infrastructure (PKI). The challenge that we face without an a-priori setup is
that we cannot easily achieve a global consistent view on the participants running
the protocol. In fact, as discussed in the last section, we do not know the exact
number of parties but only an upper bound. We address this problem by building
a so-called graded PKI, which shall satisfy the following properties:

Definition 5 (Graded Public Key Infrastructure). Let g̃i be a local func-
tion (for party Pi) that assigns the public key of every other party a grade from
0 to 2. We say that n parties share a Graded PKI (GPKI) if the following prop-
erties hold for all honest parties Pi, Pj:
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– Graded Validity: Pi’s public keys have grade 2 for Pj: g̃j(pki) = 2.
– Graded Consistency: If Pi has g̃i(pkk) = 2 then Pj has g̃j(pkk) ≥ 1 for all k

(i.e., here we also consider keys of malicious parties).
– Bounded Number of Identities: Let K := {pk|∃ Pj : g̃j(pk) ≥ 1} be the global

set of accepted identities. Then, |K| ≤ n.

Note that a graded PKI differs from a “real” PKI since the local view of honest
party Pi on the identity set K̂i ⊂ K can be different from the view of every other
honest party. We give the description of our protocol below but defer the details
of the proof to Appendix B. The protocol begins with a 2-round challenge phase
in which parties exchange randomly chosen challenges among each other. This
phase is followed by a PoW phase in which each party Pi computes a PoW on
the combination of all the challenges that it has received, as well as on a freshly
generated public key pki. In the two main rounds that follow, all parties Pi and
Pj exchange their PoWs and public keys, along with a proof that Pi included
Pj ’s challenge to compute its (correct) PoW and vice-versa. If Pi receives a valid
proof from Pj by the end of the first round in this last phase, it sets g̃i(pkj) = 2
and relays all of the information received by Pj to all other parties. If Pi receives
Pj ’s message indirectly from Pk by the end of the second round and g̃i(pkk) = 2
has already been set in the first round, but pkj has not been assigned a grade
yet, then Pi sets g̃i(pkj) = 1. This ensures that all honest parties accept each
others public keys with grade 2 and that if an honest party accepts any public
key with grade 2 then all other parties accept it with grade at least 1.

In order to prove that a certain party’s challenge has been used to compute
a proof of work, we will use Merkle commitments. Commitments are a crypto-
graphic building block, which allows a prover to commit to a value such that
later the commitment cannot be opened to a different value. Merkle commit-
ments have the additional feature that one can commit to a long value, while
the opening proof remains short (logarithmic in the length of the committed
value). For simplicity we will consider the case where we want to commit to a
power of 2 elements. The main building block is the Merkle Hash Tree which
allows to hash multiple values into one single hash root h and later verify for
each element if it was included in the hash. A Merkle Tree MT is a a labeled
binary tree which is computed from a set of 2`−1 < t ≤ 2` elements. The leaf
nodes of MT are computed as the hash of these elements while all other nodes
are computed as the hashes of their two children nodes.

On an high level a Merkle commitment scheme (Mhash, Mproof,Mver) uses
Merkle Trees and a hash function H : {0, 1}∗ → {0, 1}κ, which we model as
a random oracle. On input of 2`−1 < t ≤ 2` elements x1, . . . , xt the algorithm
Mhash creates a Merkle Tree (using H to hash the values).ÂťThe algorithm
outputs the Merkle Tree MT and its root hash h. The algorithm Mproof takes
as input such a Merkle Tree MT , a value xi and an index i ∈ [2`]. If MT is
a correct Merkle Tree and xi is its i-th leaf the algorithm outputs an `–tuple
ϕ = Mproof(xi, i,MT ) which contains all elements necessary to compute the
hashes from xi to h. On input of an element x, an index i, a root hash h and a
proof ϕ, one can call Mver(xi, i, h, ϕ) to verify whether xi was used to compute
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the Merkle Tree with root hash h by calculating the hash path from xi using the
elements stored in ϕ. If this results in a root hash h′ = h, the algorithm outputs
1; otherwise it outputs 0. For more information on how to create Merkle Trees
efficiently we refer to [32]. In addition to Merkle commitments our protocol below
will use a πA-secure POW scheme (Solve,VerifyPow) with security parameter
κ as defined in the previous section, and a UF-CMA-secure signature scheme
(Gen,Sign,Ver). Our protocol runs in time 4∆ + δ, where δ is chosen such that
it is not possible for the adversary to compute more than one PoW solution per
unit π of computing power under its control (after learning all challenges), until
the end of the protocol. This guarantees that no more than a total of n public
keys can be accepted by the honest parties even if the adversary controls all but
one party.

Key Grading Protocol ΠKG

1. Challenge Phase:

This phase consists of 2 rounds, each lasting a time interval ∆ each with
message complexity O(θ) and bit complexity O(θκ) per party.

Round 1: Each party Pi draws a1
$← {0, 1}κ and sends (Chal1, a

1) to every
party, where Chal1 is a unique label referring to the first round of ΠKG.

Round 2: After round 1, Pi received m̂ ≤ θ challenges A1
i = (a11, . . . , a

1
m̂). Pi

computes (MT 1
i , a

2
i ) = Mhash(A1

i ) and sends (Chal2, a2i ) to every party.

Let A2
i = (a11, . . . , a

1
m̂, a

2
1, . . . , a

2
m̂)m̂≤θ be all elements received by Pi in this

phase, then ai denotes its Merkle hash, i.e. (MT 2
i , ai) = Mhash(A2

i ).

2. Proof of Work Phase:

This phase consists of 1 round, lasting time δ without any messages.

Round 3: Every party Pi samples a secret and public key pair (ski, pki)
$←

Gen(1κ) and computes ψi = Solve(ai, pki)
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3. Key Ranking Phase:

This phase consists of 2 rounds, each lasting time interval ∆ with message
complexity O(θ) and bit complexity O(θ(log(θ) + `+ κ)) per party.

Round 4: For every a2j ∈ A2
i , every party Pi creates the Merkle proof ϕ2

i,j =
Mproof(a2j , j,MT 2

i ) and sends message (Key2, pki, ai, ϕ
2
i,j , ψi) to Pj , where

Key2 is a label referring to the first round of the key ranking phase.
Round 5: For every message of form (Key2, pkk, ak, ϕ

2
k,i, ψk) that Pi received

at the end of round 4, it checks if VerifyPow((ak, pkk), ψk) = 1 and if
Mver(a2i , i, ak, ϕ

2
k,i) = 1. If both checks pass, it assigns grade 2 to public

key pkk and adds pkk to K̂i. For every a1j ∈ A1
i party Pi creates ϕ1

i,j =
Mproof(a1j , j,MT 1

i ) and sends (Key1, pkk, ak, ϕ
2
k,i, a

2
i , ϕ

1
i,j , ψk) to Pj .

For every message of form (Key1, pkj , aj , ϕ
2
j,k, a

2
k, ϕ

1
k,i, ψj) that Pi received at

the end of round 5 from Pk, it checks if pkj has not yet been assigned a grade
and if VerifyPow((aj , pkj), ψj)=Mver(a2k, k, aj , ϕ

2
j,k)=Mver(a1i , i, a

2
k, ϕ

1
k,i) = 1.

If all checks pass, Pi sets g̃i(pkj) = 1. Any unranked key is assigned grade 0.

The upper bound on the number of challenges is θ by definition of the com-
munication model. Therefore, the message complexity of our protocol is O(θ)
and the bit complexity O(θu), where u = ` + κ + log(θ) is comprised by the
length of the POW ψ (length `), the challenge (length κ) and the Merkle Proof
ϕ (length log(θ)) that an element a was included in the POW challenge. We give
a formal proof for Lemma 2 in Appendix B.1.

Lemma 2. Protocol ΠKG achieves a GPKI among n parties in the random
oracle model where the number of malicious identities is strictly less than n

2 .

3.2 From graded PKI to Gradecast

Now that we have a GPKI, we can use it to construct a protocol called gradecast
(originally introduced by [13]). This protocol is used to distribute a message m
from a dealer PD to all parties under similar, but weaker conditions than for the
full-fledged broadcast protocol.

Definition 6. A protocol achieves Gradecast among n parties for some dealer
PD with input m iff the following properties hold for all honest parties Pi, Pj:

Graded Validity: If PD is honest, then Pi outputs mi = m with gi = 2.
Graded Consistency: If Pi outputs mi with gi = 2 then Pj outputs mj = mi

and gj ≥ 1.

Next, we describe an n-party protocol that achieves gradecast for message
m ∈ {0, 1}λ, which requires a GPKI. Let (Gen,Sign,Ver) denote a UF-CMA-
secure signature scheme. Then, the 5-round protocol ΠGC achieves gradecast
running in time 5∆ with message complexity O(n) and bit complexity O(n(λ+
n(κ+ |σ|))). Here, |σ| denotes the length of a signature.
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Gradecast Protocol ΠGC

Round 1: To gradecast m ∈ {0, 1}λ, PD computes σ = Sign(skD,m) and sends
(m,σ) to all parties.

Round 2: Each party Pi does the following upon receiving (mi, σi) from PD: It
checks if Ver(pkD,mi, σi) = 1 and if gi(pkD) ≥ 1. If both checks pass, Pi sends
(mi, σi) to every other party. Otherwise, it sets mi := ⊥ and sends nothing

Round 3: Let (mj,i, σj,i), j ∈ [n̂] be the message/signature pair that Pi received from
Pj at the end of round 2. If ∃ j, k ∈ [n̂] : mj,i 6= mk,i and Ver(pkD,mj,i, σj,i) =
Ver(pkD,mk,iσk,i) = 1, it sets mi := ⊥. If mi 6= ⊥, Pi sends (mi, σ

′
i) to each

other party, where σ′i = Sign(ski,mi).
Round 4: Each party Pi that received l ≥ n

2
messages at the end of round 3 of

the form (m∗, σ∗j,i), j ∈ [l] with g̃i(pkj) = 2 and s.t. Ver(pkj ,m
∗, σ∗j,i) = 1, sends

(m∗, σ∗1,i, pk1, ..., σ
∗
l,i, pkl) to all other parties. It then outputs mi := m∗, gi := 2.

Round 5: Each party Pi that has not determined its output yet but received a
message (m∗, σ′1, pk1, . . . , σ

′
l, pkl) at the end of round 4 such that ∀j ∈ [l]:

Ver(pkj ,m
∗, σ∗j,i) = 1, g̃i(pkj) ≥ 1 and l ≥ n

2
, outputs (mi, gi) with mi :=

m∗, gi := 1. Otherwise, Pi sets gi = 0 and outputs ⊥.

The following lemma is proven in Appendix B.2.

Lemma 3. Given a graded PKI, ΠGC is a constant round protocol achieving
graded broadcast if strictly more than n

2 parties are honest.

The idea of this protocol is to integrate the structure of the GPKI with the orig-
inal gradecast protocol from [19] which relies on a full-fledged PKI. Informally,
the original protocol does not include the checks in rounds 4 and 5 on the grades
of the public keys under which the signatures were created. The main insight
now is that the properties of the GPKI ensures graded consistency for the pro-
tocol ΠGC. Namely, we want to achieve that any message that is accepted by
an honest party with grade 2 in round 4, is accepted with (at least) grade 1 by
every other honest party by the end of round 5. To accept a message in round
4, we require that there were at least n/2 signatures under public keys of grade
2. By the properties of a GPKI, this guarantees that any accepted message (in
round 4) has obtained at least this amount of signatures under public keys of
grade at least 1 and is thus accepted in round 5 by every other honest party.

4 Electing a Leader with a Graded PKI

To lift a gradecast protocol to a full-fledged broadcast, we will follow the ap-
proach of Katz and Koo [19] and use a protocol for oblivious leader election. To
this end, we adapt their approach (which uses a PKI instead of a GPKI) and
build a leader election protocol using either moderated Verifiable Secret Sharing
(VSS) or Time-Lock-Encryption (TLE). The authors of [19] show how to build
a protocol for byzantine agreement from leader election and we can use their
construction with only minor modifications. For this reason, we move this last
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step of constructing byzantine agreement from oblivious leader election to Ap-
pendix C. We begin by giving a formal definition of the properties of an oblivious
leader election protocol.

Definition 7. (Oblivious Leader Election): A two-phase protocol for n parties
is an Oblivious Leader Election protocol with fairness ε tolerating t malicious
parties if each honest party Pj outputs an index ij ∈ [n] at the end of the second
phase and for any PPT adversary controlling at most t parties, with probability
at least ε (over the random coins of the honest parties) there exists i ∈ [n] s.t.
the following conditions hold:

– Consistency: All honest parties Pj output ij = i.
– Honesty: Pi followed the protocol specification at least for the first phase.

Note in particular that if Pi was honest up to the end of the first phase, then it
has followed all steps of the entire protocol according to the specification, up to
this point. In the following sections we focus on how to build an oblivious leader
election protocol from the building blocks that we have established thus far.

4.1 Oblivious Leader Election from Verifiable Secret Sharing (VSS)

The authors of [19] show how to build a constant-round oblivious leader election
protocol from verifiable secret sharing (VSS) in a setting where a PKI is given.
We show in detail how to translate the scheme of [19] into a setting where only a
graded PKI (and hence a gradecast protocol) is given (c.f. Appendix C). While
this protocol runs in constant rounds, the construction exhibits a very large
communication complexity. This results from the fact that O(n2) runs of a VSS
scheme are executed in parallel, where each of them requires O(n) gradecast
executions, i.e, O(n3) runs of the gradecast protocol have to be executed in
parallel. Note that the gradecast protocol has a cost of O(n2(|σ| + κ)) for any
message up to a size of O(n2). This comes from the fact that regardless of the
message length, each user must send O(n) messages including O(n) signatures.

Therefore, one idea to improve communication complexity is by batching
multiple messages into one VSS execution. Unfortunately, due to technical rea-
sons, this approach does not work in the protocol of [19]. Even when we apply
further optimizations to their protocol, this results in an overall bit complex-
ity of O(n5(log(n) + |σ|+ κ)) in the bilateral channels model. One of our main
technical contributions is a method to replace the VSS approach with a time-
locked encryption scheme. At a high level, the time-locked encryption gives us
more flexibility, because parties do not need to interact after an initial phase of
distributing commitments in order to open them. In contrast, in the VSS-based
version of the protocol, parties must combine their shares to reconstruct the
secret values. By removing the need for communication after an initial phase of
setup and commitment distribution, we can batch many messages into a single
invocation of the gradecast protocol per party. All in all, the resulting scheme has
to run only O(n) gradecasts in parallel, which greatly reduces the bit complexity
while adding only a small penalty to the running time of the protocol.
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4.2 Oblivious Leader Election from Time-Locked Encryption (TLE)

We now present our protocol for oblivious leader election from time-locked en-
cryption. We proceed using a two-step approach, introducing first a protocol
ΠBCE which we call Broadcast Emulation protocol. Then, we show how to com-
bine ΠBCE with time-locked encryption to elect a leader.

Broadcast Emulation. The goal of the protocol ΠBCE is to jointly distribute
up to n messages per party, where we only require mild consistency guarantees
for the message delivery. We will show that these mild consistency requirements
suffice to build an oblivious leader election protocol when using time-locked
encryption. In the ΠBCE protocol every party Pi starts with some set of n̂
messages m1, . . . ,mn̂, where each such message is assigned to one known party.
ΠBCE now proceeds in two phases. In Phase 1, each Pi gradecasts the message
vector M = (m1, . . . ,mn̂) using a single invocation of the gradecast protocol
from the previous section. Each message mj is sent together with a public key,
pkj , which identifies the party Pj owning pkj as the relay for the message mj .

In Phase 2, each honest party Pi collects all messages for which he was
assigned as the relay, i.e., all messages attached to its public key, and combines
them into one message vector M ′. It then gradecasts M ′, again using only
a single invocation of the gradecast protocol (thereby effectively relaying the
messages in M ′). This time it includes for every message m′ within M ′ the
public key corresponding to the original sender, i.e., the party from which it
received m′ in Phase 1. At the end of Phase 2, every relay Pj is assigned a flag
fj ∈ {0, 1} by each honest party Pi. This flag indicates whether from Pi’s view,
Pj correctly relayed each message that it was supposed to relay.

Our protocol guarantees that Pi sets fj = 1, if Pj honestly ran ΠBCE. Con-
versely, if any honest party sets fj = 1, we are guaranteed that Pj has followed
ΠBCE as specified in the protocol description. At the end of the protocol, every
honest party outputs its flags f1, ..., fn̂ and all the message vectors relayed by the
other parties in Phase 2, i.e., M ′

1, ...,M
′
n̂. To allow to use the ΠBCE protocol

in a modular way as a subprotocol in the leader election, we require that every
party Pi additionally outputs the sets Ti,1, ..., Ti,n̂ and Ti, T̃i, which are defined
as follows: The set Ti,j contains all grade-two messages m intended to be relayed
by Pj in Phase 2. This means that m was the first component of a tuple (m, pkj)
inside a message vectorM which Pi received with grade 2 in Phase 16. We then
set Ti, resp. T̃i, as the set of all message vectors M that Pi received in Phase 1
with grade 2 (resp. grade at least 1).

The protocol ΠBCE runs gradecast as a subprotocol twice and thus has a
constant number of rounds. The message complexity for each party is O(n2) the
bit complexity is O(n3(λ+ κ+ |σ|)).

6 Since a pair (m, pkj) gradecastet by some party in Phase 1 of ΠBCE means that Pj
should relay m via gradecast in Phase 2.
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Broadcast Emulation Protocol ΠBCE

Phase 1:

Let m1, . . . ,mn̂ be Pi’s messages with mj ∈ {0, 1}λ, j ∈ [n̂]. Pi gradecasts
M = (m1, pk1, . . . ,mn̂, pkn̂).

Phase 2:

Let M j = (mj
1, pk1, . . . ,m

j
n̂, pkn̂) be the message vector that Pi received with

grade gj from party Pj in Phase 1. Let Ti (T̃i, respectively) denote the set of
all message vectors that Pi received in Phase 1 as part of a message with

grade 2 (≥ 1, respectively). Let Ti,j ⊂ Ti denote the set of all messages m that
Pi received in Phase 1 as part of a message vector M with grade 2 and as the
first component of a pair (m, pkj). Pi gradecasts M

′ = (m1
i , pk1, . . . ,m

n̂
i , pkn̂).

Output Determination:

Let M ′
j = (m̃1

j , pk1, . . . , m̃
n̂
j , pkn̂) be the message vector that Pi received with

grade g′j from party Pj at the end of Phase 2. Pi assigns a flag fj to every
party Pj which is by default set to 1. It sets fj = 0, if g′j < 2, if Pj has relayed

more than n messages or if there exists (mk
j , pkj) ∈Mk with gk = 2 but

(mk
j , pkk) /∈M ′

j .
a Pi outputs f1, . . . , fn̂,M ′

1, ...,M
′
n̂, Ti,1, ..., Ti,n̂, Ti, T̃i.

a This can be understood as Pj refusing to relay message mk
j for which it

was named the relay by Pk in Phase 1. Note that from Pi’s perspective, Pk
appears to be honest.

Lemma 4. Let Pi and Pj be honest parties. Moreover, denote with mj
k the mes-

sage sent by Pj in Phase 1 for which party Pk was specified as the relay. ΠBCE

satisfies the following conditions given that strictly more than n
2 of all parties

are honest.

1. Pi outputs fj = 1 at the end of Phase 2.
2. If Pi outputs fk = 1, then Pi and Pj both received M ′

k from Pk in Phase 2.
3. If Pi outputs fk = 1 then Pk included mj

k in its relay M ′
k in Phase 2.

4. If M ∈ Ti then M ∈ T̃j.

Proof. We show that the four properties as defined above hold. Let Pi, Pj be
honest. We begin by showing Property 1, i.e., that Pi outputs fj = 1 at the end
of Phase 2. We show that all checks performed by Pi at the end of ΠBCE hold
with respect to Pj . Suppose that Pi receivesMk from Pk in Phase 1 with grade
gk = 2. By the properties of gradecast, Pj receives Mk in Phase 1 with grade
at least 1 by the graded consistency property of gradecast. Thus, Pj includes
(mk

j , pkk) in its message vector M ′
j for Phase 2 and by the graded validity

property of gradecast, Pi receives M ′
j in Phase 2 with grade g′j = 2. Finally, Pj

does not relay messages for more than n parties since n̂ ≤ n by the bounded
number of identities of the graded PKI. Therefore, Pi outputs fj = 1.
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For Property 2, we show that if Pi outputs fk = 1, then Pj has received
the same vector M ′

k from Pk in Phase 2 as Pi. Since Pi only sets fk = 1 if
g′k = 2, this follows directly from the graded consistency property of gradecast.
For Property 3, we will show that if Pi outputs fk = 1 then (mj

k, pkj) ∈ M ′
k

given that (mj
k, pkk) ∈M j , i.e., Pk faithfully relays all messages in Phase 2 for

which it is designated to relay by party Pj . By graded validity, Pj ’s message
vector M j in Phase 1 has grade gj = 2 for Pi. Since Pi has set fk = 1, it
must hold that (mj

k, pkj) ∈ M ′
k as otherwise condition three in the checks of

ΠBCE would be violated. Finally, Property 4 follows directly from the graded
consistency property of gradecast.

From Broadcast Emulation to Oblivious Leader Election. We present
the oblivious leader election protocol ΠOLE based on ΠBCE. The idea of this
protocol is to assign random values xi to every party Pi and make the leader
the party with the smallest xi. To ensure that the consistency property of our
protocol is satisfied, the honest parties must all choose the same value xi as their
local minimum with constant probability. We start by presenting a strawman
solution using ΠBCE as follows. The protocol proceeds in two phases, both of
which have two substeps. In Step 1 of the first phase, each party Pi selects
uniformly random coins xi,j ∈ [n4] for all j ∈ [n̂] and computes corresponding
commitments ci,j . In Step 2 of Phase 1, the parties distribute the computed
commitments by running ΠBCE. The commitment ci,j will be relayed by Pj in
Phase 2 of ΠBCE. Thus, Pj relays a message of the form (c1,j , ..., cn̂,j).

In Phase 2, the commitments of the parties are opened and xj is computed as
xj = G̃(x1,j ||...||xn,j) by every party. Here, G̃ : {0, 1}∗ → [n4] denotes a random
oracle. By the properties of ΠBCE, if fj = 1 from the view of at least one honest
party, we know that all parties have received the same values xk,j (from the
opened commitments) and that all the values chosen by honest parties were
included in the call to G̃. Since the honest parties’ input to G̃() are themselves
uniformly random values, one may conclude that xj is a uniform value in [n4]
and all honest parties have a consistent view of xj7.It would then follow from
the uniformity of the values xj that with probability roughly 1− n−t

n (recall that
t is the number of dishonest parties), the smallest value xj will correspond to an
honest party Pj , i.e., the honest parties elect an honest leader.

Unfortunately, the above approach does not work due to the following two
challenges that we need to address. First, we must ensure that the commitments
hide the random coins of the honest parties. Otherwise, the adversary could
simply adjust its own coins so that the elected leader is chosen from the set
of corrupted parties. This problem is easily solved by ensuring that the com-
mitments are hiding. However, there is a another more challenging issue. The
adversary, albeit not being able to adaptively choose its coins, can adaptively

7 We remark that the adversary cannot influence the values of the honest parties that
are input to G̃(). This follows from our model assumption, according to which the
adversary cannot drop or modify messages sent by honest parties
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choose not to provide the opening information for its commitments. Even worse,
he may distribute to some honest parties an opening, while he may refuse to
send the opening to others. This completely breaks the security proof of the pro-
tocol because of two reasons. First, the adversary may bias the outcome of the
protocol by opening its commitments in such a way that it becomes more likely
that a dishonest party is elected leader. Second, the adversary may introduce
inconsistencies between honest parties of which party being the elected leader.

Our solution to these problems is to use time-lock ciphertexts instead of com-
mitments. We have already shown that our construction for time-lock encryption
is hiding until time δ after the ciphertexts have been published. Moreover, the
ciphertexts in our construction have the property that they can be opened to a
unique value only. Concretely, Phase 2 of our OLE protocol will consist of the
parties randomly choosing ciphertexts that they have received in Phase 1 and
computing the opening tokens for them. They will then simply send these tokens
to the network. The uniqueness property of our time-lock encryption protocol
ensures that every ciphertext can either be opened, or that one can produce a
proof (in the form of a token) that the ciphertext is invalid. We will show that
this procedure guarantees that with constant probability all parties know the
corresponding decryption to every necessary ciphertext by the end of Step 1 of
Phase 2. In order to guarantee efficiency, our protocol includes checks which en-
sure that the honest parties need to compute only O(n) such decryption tokens
in order to open all of the adversary’s time-locked ciphertexts.

Before explaining the protocol, we will introduce all sets and flags which we
will use in the following description of ΠOLE.

1. Recall, that every honest party Pi outputs Ti,1, ..., Ti,n̂, Ti, T̃i at the end of
the ΠBCE protocol. To argue about a global set on all messages that were
received with grade 2 (respectively with grade 1) by at least one honest party
Pj , we additionally define the sets T :=

⋃
j Tj (resp. T̃ :=

⋃
j T̃j), where the

union operator iterates over the set of honest parties.
2. Additionally, each party needs to compute two setsM and S, where S con-

tains all ciphertexts which can be decrypted correctly. All other ciphertexts,
which were not computed correctly are stored inM. Notice that these both
sets include additional information, necessary for verifying these claims.

3. At the end of the protocol each party Pi will assign a flag trusti,j to every
other party Pj if this party behaved honestly from Pi’s view. The set trusti
contains all parties j that are assigned trusti,j = 1 by Pi.

Next, we present the formal description of our protocol individually for every
phase. Overall, the protocol consists of O(r) rounds (where r = O(log(n))). It
inherits the message and bit complexity from the underlying ΠBCE. In the setup
and coin distribution phase all parties Pi choose n̂ random coins xi,j , j ∈ [n̂]
and encrypt them. They distribute their time-locked-ciphertext using the ΠBCE

protocol. At the end of this phase, Pi assigns a trust value trusti,j to every party
Pj from the ΠBCE protocol which equals to the value of its output flag fj .
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Oblivious Leader Election Protocol ΠOLE

Phase 1: Setup and Coin Distribution

Step 1: For all j ∈ [n̂], Pi chooses random xi,j ∈ [n4] and sets trusti,j = 1. It
generates c = (c1, . . . , cn̂) = EncTL(xi,1, . . . , xi,n).

Step 2: Pi runs ΠBCE on input c and outputs (f1, ..., fn̂,M
′
1, ...,M

′
n̂,

Ti,1, ..., Ti,n̂, Ti, T̃i). ∀j where fj = 0, Pi sets trusti,j = 0.

In the first step of Phase 2 of ΠOLE, the time-locked ciphertexts need to be
opened. In order to do so, every party Pi randomly chooses one vector M̃ ∈ T̃i
and computes its opening token ψ̃. Then it checks if M̃ can be decrypted with
token ψ8. If this is not possible, we call M̃ malformed, i.e., if there are ci, cj ∈ M̃
s.t. ∃ψ : DecTL(ci, ψ) = ⊥,DecTL(cj , ψ) 6= ⊥. Otherwise, we call M̃ wellformed
which means we can decrypt every component of M̃ using the decryption token
ψ := OpenTL(M̃ [1]). If M̃ is wellformed, Pi sends ψ̃ (together with M̃) to all
other parties. This step is repeated r times to ensure that all ciphertexts are
decrypted with high probability (c.f. Lemma 6)

In the second step, Pi verifies the validity of the ` received opening tokens
ψ̃j , j ∈ [`] with respect to their corresponding time-locked ciphertext c̃j ∈ M̃j

s.t. c̃j ∈M ′
i, i.e., c̃j was one of the ciphertexts relayed by Pi in the second phase

of the internal run of ΠBCE. If the opening is valid, Pi adds the pair (ψ̃j , c̃j)
to S. Intuitively, at the end of the second step, Pi (from Pj ’s perspective) is
responsible for including in the set S to every time-locked ciphertext c within
Tj,i the pair (c, ψ) s.t. ψ is the unique opening token for c. If ψ does not exist,
then instead Pi must provide a proof for this fact within the setM. At the end
of the second step, Pi gradecasts S and M. Now, Pi adjusts the trust towards
party Pj by setting trusti,j = 0 if any of these checks pass: (1) if the grade of
the message is not 2, (2) if Sj contains invalid ciphertexts, (3) if Mj contains
any valid, i.e., wellformed ciphertext vectors (4) if Pj did not provide all of the
necessary opening tokens to ciphertexts in Ti,j (5) if Pj provided an invalid proof
for not being able to open c ∈ Ti,j .

8 In the following, we will slightly abuse notation and say that M̃ can be decrypted
with a unique token ψ, if every component of M̃ can be decrypted using ψ.
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Oblivious Leader Election Protocol ΠOLE (cont.)

Phase 2: Decryption

Init: Every party sets S ← ∅,M← ∅
Step 1: Each Pi repeats this step r times: Sample M̃ $← T̃i, compute ψ̃ ←

OpenTL(M̃ [1]). If M̃ is not malformed, send (ψ̃,M̃) to every other party.
Step 2: Let (ψ̃1,M̃1, . . . , ψ̃`,M̃ `) be the set of pairs that Pi received in the

previous Step. Pi checks ∀j ∈ [`] if there exists (c̃j , ·) ∈ M̃ j ∩M ′
i
a, M̃ j is

not malformed, and DecTL(ψ̃j , c̃j) 6= ⊥, then Pi adds (ψ̃j , c̃j) to S. If M̃ j

is malformed, Pi instead adds (M̃ j , ψ̃j , c̃j) toM. Pi gradecasts (S,M).
Step 3: We denote as (Sj ,Mj) the sets received from Pj in this manner and

denote the assigned grade as gj . Pi sets trusti,j = 0 if one of the following
conditions holds:
(1) if gj < 2,
(2) ∃(ψ, c) ∈ Sj : DecTL(c, ψ) = ⊥,
(3) ∃(M , ψ, ·) ∈ Mj , 6 ∃ s.t. (ci, ·), (cj , ·) ∈ M : DecTL(ci, ψ) 6=

DecTL(cj , ψ),
(4) ∃c ∈ Ti,j s.t. (·, c) /∈ Sj and (·, ·, c) 6∈ Mj ,
(5) ∃(M , ·, c) ∈Mj : c ∈ Ti,j , (c, ·) 6∈M .

a Here, · is a placeholder for a public key.

At the end of Phase 2 each honest party Pi now knows the opening tokens
necessary to decrypt the random values xik,j = DecTL(ck,j , ψk,j). Additionally,
each party Pi has a trust value trusti,j ∈ {0, 1} assigned to Pj , where trusti,j = 1
means that Pj behaved honestly during the protocol execution (so far). Now
everyone can jointly elect a leader by querying a random oracle G̃ on all random
coins and using the result to determine the leader among the trusted parties.

Oblivious Leader Election Protocol ΠOLE (cont.)

Output determination:

For all j ∈ [n̂], k ∈ [n], Pi does as follows: Let (ck,j , ·) ∈M ′
j such that

(ψk,j , ck,j) ∈ Sj . Let xik,j = DecTL(ck,j , ψk,j). If xik,j is outside of [n4], Pi sets
xik,j = 0. It then computes xij := G̃(xi1,j ||...||xin̂,j) and adds j to trusti iff

trusti,j = 1. Pi then outputs the j ∈ trusti which minimizes the value of xij .

We proceed by proving a sequence of statements about ΠOLE which together
prove Theorem 1. The idea of the proof is roughly as follows. Note that the set
trusti contains all parties j which have followed the protocol correctly from Pi’s
view. We now define trusted := {k|∃i s.t. k ∈ trusti and Pi was honest at the end
of Phase 2 ofΠOLE}. Informally, trusted is the set of all parties that have followed
ΠOLE correctly with respect to at least one honest party Pi (in other words, it
is the union of all sets trusti for all honest parties Pi). The basic structure of
our proof is now as follows. We start with proving in Lemma 7 that with high
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probability for all honest Pi, Pj , i ∈ trustj , i.e., at the end of the protocol, honest
parties trust each other. Thus, for each honest party Pi, we have that i ∈ trusted
at the end of the protocol. Note that the sets trusti and trustj as defined in the
protocol may differ in general for honest parties Pi, Pj . For this reason, the set
trusted may not be explicitly known to any of the honest parties and is purely
used as part of our proof strategy.

The next step for proving Theorem 1 is to show that if k ∈ trusted, xk =
xik = xjk for all honest Pi, Pj , i.e., trusted parties have consistent coins among
honest parties (cf. Lemma 9). Furthermore, we prove (also in Lemma 9) that
these coins are uniformly random in the interval [n4]. Combining these two
observations, we prove in Lemma 10 that with high probability, the minimal
value xj for j ∈ trusted corresponds to an honest party Pj . Since the values
are uniformly random in the interval [n4], they are also unique with suitable
probability. Note that in this case, all honest parties will indeed choose the same
(honest) Pj as their leader, because every honest party Pi chooses its leader
locally from trusti ⊆ trusted and for all i, we have that j ∈ trusti, given that Pj
is honest. Before moving on to proving Theorem 1, we start with the following
simple technical lemma, whose proof can be found in the appendix.

Lemma 5. For all n > 2, (1− 1
n )
n ≤ 1

e .

We now are ready to prove the following statement about the global consensus
on the tokens for wellformed ciphertexts.

Lemma 6. Let the number of honest parties at least n
2 . At the end of Step 1 of

Phase 2 of ΠOLE, w.p.r. at least 1− ne− r2 , each honest party Pi knows for each
wellformed M ∈ T the unique token ψ s.t. ∀c ∈M : DecTL(c, ψ) 6= ⊥.

Proof. Note that there are at most n possible tokens for wellformed M ∈ T̃
(this follows from the uniqueness of the tokens and the bounded number of
identities). On the other hand, there are at least n2 honest parties and ∀i, T ⊂ T̃i.
In each round, Pi selects a message vector M̃ at random from T̃i and computes
ψ

$← OpenTL(M̃ [1]). Clearly, Pi selects each M̃ with probability at least 1
n in

any given round. Therefore, the probability that in a single round, the unique
token ψ to a wellformed vector M ∈ T is not computed by any of the honest
parties, is at most (1− 1

n )
n
2 ≤ 1√

e
. This follows from Lemma 5 and the fact that

the square root function is monotone. Whenever an honest party computes a
token ψ, it sends it to every other party in the network. Thus, after r rounds
and by the union bound, the probability that there exists a vector M ∈ T s.t.
M̃ is not malformed and for which Pi does not know the unique decryption
token ψ, is at most ne−

r
2 .

We proceed by proving that for any honest parties Pi, Pj , i ∈ trustedj (and thus
i, j ∈ trusted).

Lemma 7. Let Pi and Pj be honest parties and let Ei,j be the event that j ∈
trustedi. Then Pr[

∧
i,j Ei,j ] ≥ 1− ne− r2 .
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Proof. Note that immediately after Phase 1, Property 1 of Lemma 4 guarantees
that every honest player outputs fj = 1, so j ∈ trustedi at the end of Phase 1.
We show that with probability at least 1− ne− r2 there exists no honest parties
Pj , Pi s.t. Pj violates one of Pi’s checks at the end of Phase 2. Clearly Check
(1) holds, which follows directly from the properties of gradecast. Check (2)
also holds, because by the protocol specification, Pj only includes (c, ψ) in Sj
if DecTL(c, ψ) 6= ⊥. For check (4), note that if c ∈ Ti,j , Pj received (c, pkj) as
part of the same message vectorM ∈ T̃j as Pi (by Property 4 of Lemma 4). By
the protocol specification, Pj includes (M , ·, c) ∈ Mj only if (c, ·) ∈M , and so
this check also holds from Pi’s perspective. It follows in a similar manner that
Check (3) also holds, because Pj does not include vectors M in Mj that are
not malformed. Finally, we argue that also the last check holds with probability
at least 1 − ne−

r
2 . To see this, note that by Lemma 6, Pj knows the unique

tokens to every wellformed vector M ∈ T at the end of Step 1 of Phase 2 with
probability at least 1−ne− r2 . Since these vectors contain the ciphertexts within
Ti,j , Pj knows the unique tokens to every ciphertext in Ti,j at the end of Step 1
of Phase 2 with probability at least 1− ne− r2 . By the protocol specification, for
all c ∈ Ti,j , Pj includes (ψ, c) ∈ Sj s.t. DecTL(c, s) 6= ⊥.

Next, we analyze the distribution of xij := G̃(xi1,j ||...||xin,j) for some honest
party Pi and j ∈ trusted. In the following, without loss of generality we denote as
x1,j , ..., xl,j the values corresponding to the honest parties (since honest parties
do not send conflicting values). We will omit the superscript i since any honest
party Pi will use these values to compute its respective view of xij . We will denote
the adversary A’s contribution to xij as xiA, i.e., xij = G̃(xi1,j ||...||xil,j ||xiA) =

G̃(x1,j ||...||xl,j ||xiA). We remark that the view of xA may be different for two
honest parties. We prove the following claim:

Lemma 8. Let j ∈ trusted, let the indices in [l] correspond to honest parties, and
let U be uniform over [n4]. Then, for k ∈ [l], no PPT algorithm A can distinguish
xk,j from U at the end of Phase 1 of ΠBCE, except with negl. probability.

Proof. Since x1,j , ..., xl,j are chosen uniformly at random from this range, it
remains to argue that given the view up until the end of Phase 1, A can not
distinguish any of them from U . Since ΠBCE (and thus Phase 1 of ΠOLE) runs
in less than δ real time and we are in the OR model, A can make at most π−1 calls
to OR within this time span. Therefore, we can apply Lemma 1. Consider the
following experiment: We sample b $← {0, 1} and set u0

$← [n4], u1 = xk,j for some
k ∈ [l]. A is given (ub,C). Here, C denotes the vector of time-locked ciphertexts
of honest parties computed in Phase 1 of ΠOLE. Applying a standard hybrid
argument and using the fact that in this experiment, A may not choose what
challenge message ub is encrypted (as opposed to our security notion of SemSec),
we see that A’s advantage in distinguishing the two cases is negligible.

Finally, we obtain from the previous lemma the following corollary which
states that the values xj , j ∈ trusted obtained by the honest parties at the end
of the protocol are uniformly random in the interval [n4].
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Corollary 1. Let j ∈ trusted, let the indices in [l] correspond to the honest
parties, and let U be uniformly distributed in [n4]. Then no PPT algorithm A
can distinguish xij = G̃(xi1,j ||...||xil,j ||xiA) = G̃(x1,j ||...||xl,j ||xiA) from U at the end
of Phase 1 of ΠBCE, except with negligible probability.

Lemma 9. Let Pi, Pj be honest parties and let k ∈ trusted. Then xk = xik = xjk
mod n4 and xk is uniformly distributed in [n4].

Proof. Let k ∈ trusted. Using Property 2 from Lemma 4 and the graded con-
sistency property of gradecast, for l ∈ [n], Pi and Pj obtain the same set Sk
of time-locked ciphertexts/decryption tokens. Therefore, it immediately follows
that both parties decrypt to the same unique values and for all l ∈ [n], xil,k = xjl,k.
This means that we can omit the superscript and simply write xl,k and thus also
xk. It now follows from Corollary 1 that xk is uniformly distributed in [n4].

Lemma 10. Let i = mink∈trusted xk = G̃(x1,k||...||xn̂,k). Then, with probability
at least n−tn −

1
n2 , Pi is honest (here t denotes the number of malicious parties).

Proof. Due to Lemma 9, we know that ∀k ∈ trusted, the value xk is uniformly
random in the range [n4]. Now, assume that all coins xk, k ∈ trusted are distinct.
Because |trusted| ≤ n and using the union bound, this assumption holds with
probability at least 1 − 1

n2 . According to Lemma 7, there are n − t values in
trusted corresponding to honest parties. Thus the probability that the unique,
random, and minimal value xi, i ∈ trusted, corresponds to an honest party Pi, is
at least n−t

n (1− 1
n2 ) ≥ n−t

n −
1
n2 .

With Lemmas 9-10, we get that at the end of ΠBCE, every honest party elects
the same leader with probability ≥ n−t

n −
1
n2 . Hence, ΠOLE is an O(log n)-round

OLE protocol with constant fairness that satisfies honesty and consistency.

Theorem 1. If the majority of parties is honest, then ΠOLE is an O(r)-round
oblivious leader election protocol in the random oracle model with fairness (1 −
ne−

r
2 )(n−tn −

1
n2 ).

A Quasi-Constant Round Protocol. In each round of Step 1 of Phase 2 of
ΠOLE, Pi samples M̃ $← T̃i and computes OpenTL(M̃1). One can easily improve
the running time of the protocol by letting Pi only compute decryption tokens
which it does not already know. Instead of sampling M̃ uniformly at random,
Pi could instead sample M̃ from the set of vectors for which it has not already
computed or received the openings. This saves much redundant work, since now
the honest parties only compute new tokens instead of recomputing already
available ones. Concretely, we reformulate Step 1 of ΠBCE as follows:

26



Quasi-Constant Round Version of Step 1:

Pi sets Opened = {}. Pi repeats the following r times: It samples M̃ $← T̃i \ Opened,
computes ψ̃ ← OpenTL(M̃ [1]). If M̃ is not malformed, it sends (ψ̃,M̃) to every party
(including itself). Let (M̃1, . . . ,M̃ `) be the set of wellformed vectors that Pi receives
in this manner. Pi sets Opened = Opened ∪ {M̃1, . . . ,M̃ `}.

Let Xk be the number of decryption tokens which have not been computed
by any honest party until the end of round k. We make the assumption that
∀k : Xk = E[Xk],, i.e., in evthe above protocol is constant round for all practical
purposes (see below). A similar heuristic has also been used in the analysis of
Wagner’s k-list algorithm [34].

Lemma 11. If the majority of parties is honest, then under the assumption that
∀k : Xk = E[Xk] the following holds: ∀k : Xk = E[Xk] ≤ nl(k) where l(k) is
defined for k ≥ 1 as l(k) =

√
e
−l(k−1) and l(1) =

√
e.

Proof. (Sketch). As in the proof of Lemma 6,X1 = E[X1] ≤ n(1− 1/n)n/2 ≤ n√
e
.

Since every party only decrypts ciphertexts from M̃
$← T̃i \ Opened in the sec-

ond round, where |T̃i \ Opened| = X1 ≤ n√
e
, the probability of a token ψ that

opens M ∈ T̃i \ Opened not being computed by any honest party Pi in the sec-
ond round, is at most (1− 1

X1
)n/2. Thus, we can bound X2 as X2 = E[X2] ≤

X1(1− 1
X1

)n/2 ≤ n√
e
(1−

√
e
n )n/2 ≤ ne−

√
e/2 = n

√
e
−
√
e
.When repeating this ar-

gument, we get X3 ≤ n(1−
√
e
√
e
/n)n/2 ≤ n

√
e
−
√
e
√
e

. Iterating this argumen-
tation over k rounds yields Xk ≤ nl(k).

In other words, the above analysis gives us an r-round protocol where r =
O (log(log(· · · log(n) · ··))). Here, . . . stand for r iterative applications of log() to
n. For all practical purposes, our protocol can be seen as being constant-round.

4.3 Achieving Consensus

So far we have seen how to construct a graded PKI (c.f. Lemma 2). From there we
have shown how to elect a leader with ΠOLE which internally uses the gradecast
and broadcast emulation protocols (c.f. Theorem 1). What remains to show is
how to put these things together and achieve consensus using ΠOLE. Showing
this last step requires us to slightly adapt the byzantine agreement protocol
from [19] to work given only a GPKI rather than a PKI.

Lemma 12. Let the number of corrupted parties be strictly less than n
2 . If there

exists a constant round gradecast protocol and an O(r)-round OLE protocol with
fairness ε = O(1) in the random oracle model, then there exists an O(r)-round
protocol for byzantine agreement.

To construct a byzantine agreement protocol ΠBA from oblivious leader elec-
tion we only add minor changes to the original description of [19], and defer the
construction and proof to Appendix E. The following corollary summarizes the
security properties of our final protocol ΠBA.
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Corollary 2. Suppose the adversary corrupts < n
2 parties. Then ΠBA achieves

byzantine agreement in the random oracle model and has the following properties:

– ΠBA has an expected quasi-constant number of rounds (c.f. Lemma 11).
– ΠBA has a message complexity of O(n2) and a bit complexity of O(n3).
From the close relation of byzantine agreement and broadcast protocols, it

follows that ΠBA immediately gives rise to a broadcast protocol which runs in
roughly the same time and is secure under the same assumptions (c.f. Section 2).

5 Broadcasting with a large number of parties

When n becomes large, consensus and broadcasting protocols suffer from in-
creasing message and bit complexity. In this section, we propose an approach
for efficiently running our broadcast protocol ΠBC when n becomes large. In
contrast to the previous section, we now require that the adversary can only
statically corrupt less than 1/3 of the computing power available in the system.

Informally, the idea of the protocol ΠCP is to divide the set of all players in
a fixed number of k groups of size `� n, called cliques. This allows the parties
to run protocols with a high message and bit complexity only internally in the
cliques, while the overall, global communication between all parties is reduced.
The cliques internally elect one member as its leader which will act as a relay for
later broadcasts. We show that this protocol is secure as long as the adversary
can corrupt strictly less than half of the leaders.

The first challenge of this protocol is to assign parties into cliques. We inte-
grate this process in the Key Grading protocol ΠKG, which is run globally. Each
party randomly assigns itself to one of the k cliques by including its clique identi-
fier in the POW challenge. This commits all parties to their choice and prevents
them from later changing it. After ΠKG terminates, a GPKI infrastructure has
been created in which each public key is assigned to a clique identifier. Next,
each clique internally elects a leader using the ΠOLE protocol. Note, that this
step is the bottleneck of ΠBC, which is now only done internally within a clique
(with ` ≈ n/k parties) instead of running it globally (with n parties). The elected
leaders can now each act as a relay in order to broadcast a message m for any
party Pi, i ∈ [n]. Concretely, the party Pi sends m to all leaders of all cliques.
The leaders will then agree on the message of every party Pi by running ΠBC

(only among the leaders). After agreeing on m, every leader sends m to all par-
ties in the system. If Pj receives the same message from at least k

2 leaders, it
accepts m as Pi’s message. It is easy to see that if at least k

2 of the leaders are
honest, then all honest parties accept the same message which equals m if Pi
was honest. We can only allow static corruption as otherwise an adversary could
simply wait until the leaders are elected and then corrupt all of them.

To break the properties of the broadcast protocol an attacker needs to corrupt
the majority (i.e., ≥ dk/2e) of the leaders. This is easy when it controls 1/3 or
more of the parties. Approximately, all cliques will contain n/k honest parties.
The attacker can force clique i to elect a malicious leader by overruling all
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honest votes. For this purpose, it needs to generate t > n/k public keys (and
corresponding proof of works) with clique identifier i. If the attacker controls
1/3 or more of the computational power, it can execute this attack in half of the
cliques, thus forcing the election of k/2 corrupted leaders.

The main advantage of using the clique approach is that we are able to
significantly decrease the communication complexity. Choosing the number of
cliques as k =

√
n, each clique contains roughly

√
n parties. This means that the

leader election steps in all the cliques now result in communication complexities
of only O(n3/2). The same is true for the agreement steps among the leaders
and so the overall communication complexity to broadcast a message is reduced
from O(n3) to only O(n3/2). On the downside of course, ΠCP only works in a
more restricted attacker model. A proof for the following theorem including the
specification of protocol ΠCP can be found in Section F.

Theorem 2. Let n be the number of parties, α > 0, β > 0, k < n the number of
cliques, ε > 2

√
ln(1/α)

k and t = (1−β)(n−nε)
3 the number of malicious parties, then

ΠCP achieves broadcast with probability at least (1− α)(1− k2e−(n−t)β2/3k).

6 Discussion and Comparison

We compare our constant round protocols to the works of [2] and [20] which
consider similar settings. [20] implicitly assume a random beacon as a form
of trusted setup which makes their communication complexity independent of
θ. More precisely, they use a random oracle which cannot be queried before
the protocol has started. Moreover, their protocol requires knowledge of the
exact number of parties running the protocol. Our work and [2] require only an
upper bound on the number of participants. Both [2, 20] tolerate any number of
corruptions, while our protocol requires an honest majority. While [2] has a linear
running time in the number of parties, our protocol runs in expected constant
number of rounds. We provide a more detailed comparison in Table 1. We use
RB to indicate that there is no public random beacon, # denotes that knowledge
of the number of participating parties is not required, and t denotes the maximal
tolerable fraction of corrupted parties. Adp. denotes whether a protocol is secure
against adaptive corruptions. u := log (θ)+κ+ ` and v = log(n)+κ+ |σ| where

Origin RB Adp. # t Round Comp. Msg. Comp. Bit Comp.
[20] – X – – O(n) O(n2) O(n2`)
[2] X X X – O(nκ2) O(n2 + θ) O(n2κ log(θ) + θu+ n`)

New (VSS) X X X 1
2

O(κ2) O(n4 + θ) O(n5v + θu+ n`)

Clique Version X – X 1
3

O(κ2) O(n2 + θ) O(n
5
2 v + θu+ n`)

New (TL Enc.) X X X 1
2

O(κ2) O(n2 + θ) O(n3v + θu+ n`)

Clique Version X – X 1
3

O(κ2) O(n+ θ) O(n
3
2 v + θu+ n`)

Table 1. Comparison of round and communication complexities
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κ denotes the length of the security parameter, ` denotes the length of the proof
of work, |σ| is the length of a signature and θ denotes the maximal number of
messages that can be sent by all parties within ∆ time.
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Game KDMSecA(1κ) :

00 K = (K0, ...,Kn−1)
$← GenKDM(1

κ)

01 b
$← {0, 1}

02 b′ ← AOb,OR,H̃(1κ)
03 Return b′ = b

O0(g, j)
04 c = EncKDM(g(K),Kj)
05 Return c

O1(g, j)
06 c = EncKDM(0

|g(K)|,Kj)
07 Return c

Fig. 2. KDM Security Game in the random oracle model.

A Security of Our Time-Lock Encryption Scheme

In our time-locked encryption scheme presented in Section 2.4, we encrypt the
trapdoor r, q s.t. N = rq with the key K = H̃(ψ), where ψ ≡N a2

π

. Thus, we
must argue that our scheme remains secure when encrypting the values r and
q with a key K that implicitly depends on them. To this end, we briefly recall
the notion of Key Dependent Message Security (KDM Security for short), as
introduced in [5]. In the KDM security game, the challenger first generates keys
K = (K0, ...,Kn−1) using the key generation algorithm GenKDM. To formalize
the KDM security game, we define two oracles RealK,H̃ and FakeK,H̃ which have
access to K and H̃, and OR. On input of (j, g) with j ∈ [n] and where g is a
fixed output-length function, RealK,H̃ returns EncKDM(g(K),Kj) and FakeK,H̃

returns EncKDM(0
|g(K)|,Kj). Note that both encryptions are computed on strings

of equal length (since g has a fixed-length output). g can be applied to K and
can depend on H̃ in an arbitrary way. The adversary A gets oracle access to the
random oracle H̃, OR, and either the oracle RealK,H̃ or FakeK,H̃ . It can issue
queries of the form (j, g) to the oracle provided to it. The goal of the adversary is
to distinguish whether it is interacting with RealK,H̃ or FakeK,H̃ . We formalize
the KDM security game in Figure 2. We refer to the oracle RealK,H̃ as O0 and
to the oracle FakeK,H̃ as O1.

Definition 8. (KDM Security). Let KDM = (GenKDM,EncKDM,DecKDM) be a
symmetric encryption scheme. The key generation algorithm GenKDM on input
1κ outputs a key K $← K. The encryption algorithm EncKDM takes as input a
message m ∈M and a key K ∈ K and outputs a ciphertext c ∈ C. The decryption
algorithm DecKDM takes as input a ciphertext c ∈ C and a key K ∈ K and outputs
a message m ∈ M. We require that the scheme be correct: ∀K ∈ K,∀m ∈ M :
DecKDM(EncKDM(m,K),K) = m. We say that KDM satisfies KDM Security if
for all PPT adversaries A we have that Pr[KDMSecA = 1] = negl(κ).

We begin by recalling the following lemma from [5]. It presents a simple
symmetrical encryption scheme satisfying KDM security which we will use as a
starting point in the security proof of our time-lock encryption scheme.

Lemma 13. [5] Let ΠKDM := (GenKDM,EncKDM,DecKDM) be defined as follows.
Let GenKDM(1

κ) be the algorithm that samples a uniform K ∈ K =M = {0, 1}κ,
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Game GA
0 (1

κ) :

00 r1, q1, ..., rn, qn
$← PrimeGen(1κ)

01 ∀i : Ni = riqi

02 ∀i : ai
$← ZNi

03 ∀i : ψi ≡Ni a2
π

i

04 ∀i : Ki :=
(
H̃(ψi), ai, π,Ni

)
05 K = (K0, ...,Kn−1)

06 b
$← {0, 1}

07 b′ ← AOb,H̃,OR(1κ)
08 Return b′ = b

O0(g, j)
09 c = EncKDM(g(K),Kj)
10 Return c

O1(g, j)
11 c = EncKDM(0

|g(K)|,Kj)
12 Return c

Fig. 3. Game G0.

let EncKDM be defined as EncKDM(m,K) := R||
(
H̃(K||R)⊕m

)
, where R is a

uniformly random string from {0, 1}κ. Let DecKDM be a decryption algorithm
defined as DecKDM(R

′||C ′,K ′) := H̃(K ′||R′)⊕C ′. Then ΠKDM is KDM secure.

We will consider the slightly altered schemeΠKDM
2 := (Gen2KDM,Enc

2
KDM,DecKDM)

in which GenKDM and EncKDM are replaced by the algorithm Gen2KDM and Enc2KDM,
which work as follows. GenKDM samples primes q, r $← PrimeGen and sets N =

rq, ϕ(N) = (r − 1)(q − 1), a
$← ZN , s ≡ϕ(n) 2π, ψ ≡N as. It then returns K =

(H̃(ψ), N, a). Enc2KDM is defined as EncKDM(m,K) :=
(
R||
(
H̃(K||R)⊕m

)
, a, π,N

)
.

In the following lemma, we prove the KDM security of ΠKDM
2 with respect to

an adversary who can make at most π − 1 calls to OR.

Lemma 14. Let KDMSecΠTL
2

be the KDM security game instantiated with
ΠKDM

2 . Then, for any PPT adversary A making at most π−1 queries to OR (ei-
ther directly or indirectly) and at most q further queries (encryption queries, di-
rect RO queries, and indirect RO queries), Pr[KDMSecAΠTL

2
(1κ) = 1] = negl(κ),

given that Conjecture 1 is true.

Proof. Assume throughout the proof that A does not ask H̃ on the same query
twice. Cleary, this is w.l.o.g., since there is no need to repeat a query to H̃
for which A already knows the answer. For the first part of the proof, let us
assume that A does not query H̃ on any of the values ψi, either directly or
via an encryption query. We prove the statement via a sequence of games. Let
G0 = KDMSecΠTL

2
. G0 is depicted in Figure 3.

We begin by introducing a second, auxiliary game G1 which is depicted
in Figure 4. In G1, direct queries on a point s to H̃ are answered by setting
H̃(s)

$← {0, 1}κ. On the other hand, calls to H̃ that result from calls to the oracles
O0 and O1 are simulated by choosing R,C $← {0, 1}κ and then defining H̃(s)
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Game GA
1 (1

κ) :
00 bad← false
01 ∀s ∈ {0, 1}∗ : H̃(s) := ⊥
02 X ← ∅
03 r1, q1, ..., rn, qn

$← PrimeGen(1κ)
04 ∀i : Ni = riqi

05 ∀i : ai
$← ZNi

06 ∀i : ψi ≡Ni a2
π

i

07 ∀i : Ki :=
(
H̃(ψi), ai, π,Ni

)
08 K = (K0, ...,Kn−1)

09 b
$← {0, 1}

10 b′ ← AOb,H̃,OR(1κ)
11 Return b′ = b

H̃(s) :
12 If s ∈ X then
13 bad← true
14 If H̃(s) = ⊥
15 H̃(s)

$← {0, 1}κ
16 Return H̃(s)

OR(a, b, op, N) :
17 Return a op ba

a op ∈ {=,×,+,−,÷} is
performed over the ring
ZN

O′0(g, j) :
18 Compute M ← g(K)
19 To do this, run g. When g calls the RO
on s and H̃(s) = ⊥, set H̃(s)

$← {0, 1}κ
and return H̃(s) a

20 R
$← {0, 1}κ

21 C
$← {0, 1}|M|

22 If H̃(Kj ||R) 6= ⊥
23 bad← true
24 C ← H̃(Kj ||R)⊕M
25 H̃(Kj ||R)← C ⊕M
26 X ← X ∪ {Kj ||R}
27 Return (R||C, aj , π,Nj)
a When g calls OR on (a, b, op, Nj), reply
with OR(a, b, op, Nj).

O′1(g, j) :
28 Compute M ← g(K).
29 R

$← {0, 1}κ

30 C
$← {0, 1}|M|

31 If H̃(Kj ||R) 6= ⊥
32 bad← true
33 C ← H̃(Kj ||R)⊕ 0|M|

34 H̃(Kj ||R)← C ⊕ 0|M|

35 X ← X ∪ {Kj ||R}
36 Return (R||C, aj , π,Nj)

Fig. 4. Game G1.
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O′′(g, j) :
37 Compute M ← g(K)
38 To do this, run g. When g calls the RO
on s and H̃(s) = ⊥, set H̃(s)

$← {0, 1}κ
and return H̃(s)

39 R
$← {0, 1}κ

40 C
$← {0, 1}|M|

41 If H̃(Kj ||R) 6= ⊥
42 bad← true
43 X ← X ∪ {Kj ||R}
44 Return (R||C, aj , π,Nj)

Fig. 5. Oracle O′′(g, j)

accordingly. As both games return identically distributed values, it immediately
follows that Pr[GA

0 (1
κ) = 1] = Pr[GA

1 (1
κ) = 1].

Consider now the oracle procedure O′′(·) depicted in Figure 5. Denote with
G2 the game resulting from G1, if O′0(·) is replaced with O′′(·). We argue that
|Pr[GA

1 (1
κ) = 1] − Pr[GA

2 (1
κ) = 1]| ≤ Pr[bad2 | b = 0], where bad2 denotes the

event that bad becomes true at any point during game GA
2 (1

κ). To this end,
we first argue that bad is set with the same probability in both games. The
claim then follows, because the games can clearly only differ if at some point
in either game, bad becomes true. In order to obtain O′′(·) from O0(·), we have
deleted the statements C ← H̃(Kj ||R) ⊕M and H̃(Kj ||R) ← C ⊕M from the
code of O′0(·). Clearly, deleting the statement C ← H̃(Kj ||R) ⊕ M does not
change the probability that bad is set to true in game G1, since by the time
that the statement is executed, bad has already been set. Similarly, deleting the
statement H̃(Kj ||R) ← C ⊕M does not change the probability that bad is set
in G1. To see why this is true, note that whenever this statement is executed
in G1 then subsequently, the statement X ← X ∪ {Kj ||R} is also executed.
Now, either there is a subsequent call H̃(Kj ||R) or H̃(Kj ||R) is never queried
for the remainder of G1. In the former case, G1 sets bad. In the latter case,
bad is not set as a result of deleting the statement H̃(Kj ||R) ← C ⊕M in G1.
We now define G3 as the game resulting from G2 when also O′1(·) is replaced
with O′′(·). By the same argumentation as above, we have that |Pr[GA

2 (1
κ) =

1]−Pr[GA
3 (1

κ) = 1]| ≤ Pr[bad3 | b = 1], where bad3 denotes the probability that
bad gets set to true in G3. We finally define the game G4 in which there exists
only a single copy of O′′(·) which is called regardless of the value of b. Clearly,
Pr[GA

3 (1
κ) = 1] = Pr[GA

4 (1
κ) = 1]. Summing up, we have that |Pr[GA

1 (1
κ) =

1] − Pr[GA
2 (1

κ) = 1]| ≤ 1
2 (Pr[bad2 | b = 0] + Pr[bad3 | b = 0]) = Pr[bad4.] We

argue that in G4, the probability that bad4 is set in a query to O′′(·) is at most
q2/2κ, since at all times H̃ is defined on at most q points and before testing
whether H̃(Kj ||R) 6= ⊥, we sample R $← {0, 1}κ. Similarly, the probability that
bad4 is set in a call to H̃ is at most qn/2κ ≤ q2/2κ. This follows since in G4,
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setting bad4 to true while calling H̃ is only possible if one guesses correctly a value
in the set X . Since the values returned by both O′′(·) and H̃ are independent of
K in G4, the values in X which are of the form Kj ||· are uniformly random from
A’s perspective in G4. This follows from the assumption that A has not queried
any of the values ψi to H̃ and thus K is a uniformly random vector from A’s
perspective.

Now assume instead that for some i, A calls H̃(ψi) s.t. ψi ≡Ni a2
π

i at some
point during the game GA

0 = KDMSecAΠTL
2

, either directly or via an encryption
query. W.l.o.g., assume that this is the first query of this form that A provokes
in GA

0 . Then one can build an adversary B that breaks Conjecture 1. B simulates
G1 to A. It begins by sampling K ′0, ...,K ′n−1 uniformly at random from {0, 1}κ

and i $← {1, ..., q}. It samples ∀j ∈ [n], i 6= j : ri, qiPrimeGen(1κ) and sets Nj =
rjqj , aj ← ZNi . It sets K[j] =

(
K ′j , aj , π,Nj

)
and sets K[i] = (K ′i, a, π,N),

where a and N are the values B obtained from its own game. It answers all
subsequent encryption queries by A of the form (g, j) by computing g(K). On
input a query s to H̃, B checks if H̃(s) has previously been defined. If so, it
returns H̃(s). Otherwise, it sets H̃(s)

$← {0, 1}κ and returns H̃(s). When A asks
a query of the form OR(a, b, op, N) :, it answers the query by forwarding it to
OR in its own experiment. When H̃ is queried for the ith time on input ψ, then
B aborts its simulation and outputs ψ as a solution. Since A has asked at most
π − 1 queries to OR, so has B. Moreover, it is easy to see that B’s simulation of
G0 is perfect for A (up to the point of aborting) from a real execution of G1 if
B guesses correctly the value of i for which A first queries H̃ on ψi. Therefore,
B returns the correct value ψ ≡N ψi, thus breaking Conjecture 1.

A.1 Proof of Lemma 1

Note that in game SemSec, the adversary A essentially obtains weakened ver-
sions of the oracles RealK,H̃ or FakeK,H̃ seen in KDMSecΠTL

2
: Namely, it ob-

tains either

EncTL(0) :=
(
Enc2KDM(0̃i,K0)

)
i∈[n] =

(
Ri||(H̃(K0||Ri)⊕ 0̃i), a0, π,N0

)
i∈[n]

or

EncTL(m) =
(
Enc2KDM(m̃i,K0)

)
i∈[n] =

(
Ri||(H̃(K0||Ri)⊕ m̃i), a0, π,N0

)
i∈[n]

(for some random Ri ∈ {0, 1}κ), where m̃[i] = (mi, r0, q0) and 0̃ is defined
analogously. It may issue no further encryption queries. Furthermore, A is not
allowed to choose what function of K0 is encrypted in game SemSec nor can
it see any ciphertexts that depend on Kj , j ≥ 1. Using this intuition, we now
prove Lemma 1.

Proof. Correctness and uniqueness of the scheme are easily verified. We prove
that the scheme satisfies secrecy. We show that from any PPT adversary A that
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wins game SemSec, one can construct a PPT B against KDMSecΠTL
2

with
the same advantage as A by simulating SemSec to A as follows. B runs A on
input 1κ. B answers all queries made by A to the oracles H̃ or OR by forwarding
them to its own version of these oracles and providing A with the answers that
it obtains in this manner. When A outputs its challenge m, B queries Ob on the
tuple (gN0

, 0) where gN0
is a function that mapsm to the vector (mi, r0, q0)i. It

obtains the answer c = (ci, a0, π,N0)i and returns it to A. When A returns a bit
b′, B returns b′. Clearly, B provides a prefect simulation of the game SemSec
to A. Therefore, B’s advantage in KDMSecΠTL

2
is equal to A’s advantage in

SemSec. Using Lemma 14, we obtain that A’s advantage must be negligible.

B Details on the Graded Public Key Infrastructure

What remains to show for our protocol is why the protocol ΠKG which we con-
struct in Chapter 3 achieves the properties of a graded public key infrastructure
(GPKI) and that the protocol ΠGC is a gradecast protocol.

B.1 Proof of Lemma 2

In Lemma 2 we claim that protocolΠKG achieves a graded PKI among n parties.
We prove this lemma by showing that the adversary cannot create more public
keys than the number of parties that it controls (sybil attack). To prevent a
pre-computation attack by the adversary, every honest party needs to ensure,
that the challenge used for the Proof of Work Phase is fresh. For this reason a
valid Proof of Work ψk from party Pk is only accepted by an honest party Pi if a
fresh challenge a2i (generated in the Challenge Phase) was included in the puzzle.
If this is the case, it assigns the grade 2 to Pk’s public key. This resembles the
highest confidence in trust. But since there might exist another honest party Pj
who’s challenge a1j was not included in Pk’s puzzle, Pi needs to guarantee that
Pj accepts pkk with grade 1 in this case. For this reason Pi’s second challenge a2i
depends on all challenges Pi learned in the first round of the Challenge Phase.
This also includes a1j . Therefore when Pj learns Pk’s Proof of Work on challenge
a2i , and receives a proof that a2i includes a1j , then Pj knows that Pk’s Proof
of Work was created freshly. Nevertheless, since it did not include a2j , Pj only
assigns grade 1 to pkj .

Proof. Let Pi, Pj be honest parties. First we show that the protocol achieves
Graded Validity, i.e., Pi’s public key is accepted by Pj with grade 2. Following
the protocol, Pi includes Pj ’s second challenge a2j in A2

i in round 2 and thus
includes it in M2

i . In round 4, Pi sends pki along with a valid proof of work
in form of a message (Key2, pki, ai, ϕ

2
i,j , ψi) to Pj . Thus, every check in round

5 by Pj will pass on this message and Pj will accept Pi’s key pki with grade
2. Next we show Graded Consistency. Suppose that Pi accepts a key pkk with
grade 2. Then it must have received a valid message (Key2, pkk, ak, ϕ

2
k,i, ψk) in

round 4 by Pk. Valid means, that the proof of work ψk is correct and ϕ2
k,i

38



proves that ψk depended on Pi’s challenge a2i . Therefore, it will send message
(Key1, pkk, ak, ϕ

2
k,i, a

2
i , ϕ

1
i,j , ψk) to Pj in round 5. It is clear that Pj will accept

pkk with grade (at least) 1, since the set A1
i of challenges on top of which the

hash a2i of Pi was computed, included Pj ’s challenge a1j and Pi computed a
correct proof ϕ1

i,j for this fact. Moreover, Pj can check just as Pi before that ψk
depended on a2i and VerifyPow((pkk, ak), ψk) = 1.

It remains to show that the number of identities is bounded by n, which
follows directly from the fact that an adversary that controls less than half of
the hashing power can generate strictly less than dn2 e identities pk which are
accepted by at least one honest party. Every honest party Pi will accept every
pk that comes with a proof of work which includes a challenge a1i or a2i indirectly.
From the fact that these challenges are chosen randomly by the honest parties,
we know that the adversary cannot predict them and thus must invest some
number computing steps to compute a proof of work on a given public key pk.
Let I denote the set of public keys for which the adversary made at least π calls to
the random oracle during the POW phase of the protocol. We follow the analysis
of [2] to bound |I|. By our definition of π-secure POW schemes, we know that
any PPT prover succeeds only with negligible probability in computing identities
outside of I. Let δ = 4κ2∆ be the time to compute a POW and δ′ = κ log (δπ)

π be
the POW verification time. Then the total time T of the protocol is computed
as

T = (δ + 2∆+ 2(∆+ θδ′)) = δ(1 + 4∆/δ + θδ′/δ) = δ(1 + ε(κ)).

From the values of δ and δ′ it is clear that the term ε(κ) := 4∆/δ+θδ′/δ vanishes
for large enough κ. Note that we have |I|π ≤ T

δ πA = (1 + ε(κ))πA. This is true
since the (minimal) number of random oracle calls |I|π that the adversary can
use to compute keys within I is bounded from above by the total number of
calls the adversary can make during time T . Since it can make at most πA calls
to the random oracle during any δ time steps, it can make at most T

δ πA calls to
the random oracle in total over the duration of the protocol. Thus we have

|I| ≤ (1 + ε(κ))πA/π.

Since ε(κ) vanishes for suitably large κ, we have that

|I| ≤ πA/π < d
n

2
e

and so the number of identities that the adversary can create is bounded in
particular by dn2 e − 1.

B.2 Proof of Lemma 3

In Lemma 3 we claim that given a graded PKI, ΠGC is a constant round protocol
achieving graded broadcast if at least n

2 parties are honest. We will show this by
proving that ΠGC satisfies graded validity and graded consistency.

First we show the graded validity property.
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Proof. Let Pi and Pj be honest parties. Suppose PD is honest. In round 2, all
honest parties Pi received the same message/signature pair mi = m,σi = σ from
PD where gi(pkD) = 2 by graded validity of the PKI. Additionally, since PD is
honest Ver(pkD,m, σ) = 1. Therefore, Pi sends (m,σ) to every other party in
round 2. Since signatures cannot be forged, no honest party could have received
two different valid signatures (on distinct messages) under pkD. In round 3, every
honest party Pj sends message (m,σ′j) where σ′j = Sign(skj ,m). This means in
round 4, Pi received l ≥ n

2 message/signature tuples (m,σ′1,i), . . . , (m,σ′l,i) from
at least every honest party Pj with gi(pkj) = 2. This means that Pi outputs m
with grade 2.

Next, we show the graded consistency property. We first argue that Pi, Pj ,
either send the respective messages (m∗, σ′i), (m∗, σ′j) in round 3, or at least one
of them does not send a message, i.e., sets mj = ⊥ or mi = ⊥. To see this, we
perform a case distinction over the possible misbehavior of the adversary.

– In round one, the adversary can send a message m with an invalid signature
under pkD to Pi (or with gi(pkD) = 0). In this case, Pi sets mi = ⊥ in round
2 and thus sends no message in round 3.

– In round one or two, the adversary can send messages mi 6= mj to parties
Pi, Pj , respectively, with valid signatures under public key pkD. If so, then
at least one of these parties will set mi = ⊥ or mj = ⊥.

From this we argue that

6 ∃ m̃ : gi(m̃) = gj(m
∗) = 2 ∧ m̃ 6= m∗.

This is true, since there cannot be a message m̃ 6= m∗ in round 4, which is
received by a Pi along with n

2 or more valid signatures under distinct public
keys. This follows from the bounded number of identities property of the graded
PKI and the fact that at least n

2 parties are honest. Therefore, there cannot be
m̃ 6= m∗ such that gi(m̃) = gj(m

∗) = 2 in round 4. Now suppose Pi accepts m∗
with grade 2 in round 4. This means that Pi received l ≥ n

2 messages of the form
(m∗, σ′k,i), k ∈ [n] from Pk with gi(pkk) = 2 and Ver(pkk,m

∗, σ′k,i) = 1. Then it
sends (m∗, σ∗1,i, pk1, ..., σ

∗
l,i, pkl) to Pj in round 4. Suppose Pj has not decided

yet on an output. From the graded consistency of the graded PKI we know that
∀r ∈ [l] : gj(pkr) ≥ 1. Therefore, Pj outputs m∗ with grade 1 in round 5. Note,
that m∗ is the only possible message that Pj accepts in round 5. This follows
from the above equation and the fact that the adversary cannot come up with
n
2 valid signatures on m̃ 6= m∗.

C Oblivious Leader Election via Verifiable Secret Sharing

In this section we show how to construct a protocol for Oblivious Leader Elec-
tion using Gradecast (c.f. 3.2) and Verifiable Secret Sharing. For this we adapt
the protocol of [19] which originally works in a setting with a public key infras-
tructure to work in a setting with a graded PKI.
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C.1 Moderated Verifiable Secret Sharing

One important building block for this scheme is Verifiable Secret Sharing (VSS)
in which a dealer (denoted as PD) distributes shares of his secret s to all partic-
ipating parties P1, . . . , Pn, whenever at most t parties are dishonest.

Definition 9. (Verifiable Secret Sharing/VSS). Let ΠV SS be a 2-phase protocol
run among n parties and some dealer PD with input s. In the first phase, the
Sharing Phase, shares of s are distributed to all parties and at the end of the
Reconstruction Phase all parties Pi output a reconstructed secret si. ΠV SS is
called VSS secure for t < n malicious parties if the following conditions holds
for all honest parties Pi, Pj:

– Validity: If PD is honest, si = s.
– Secrecy: If PD is honest during the Sharing Phase, then the joint view of

all malicious parties is independent of s at the end of the Sharing Phase.
– Reconstruction: All honest parties Pi, Pj will output si = sj.

We require an adaption of the VSS scheme which is called Moderated VSS in
which we have not just a designated dealer PD, but also a party which acts as
a moderator PM and relays the messages of the dealer. Formally a moderated
VSS scheme is defined as:

Definition 10. (Moderated VSS) In a moderated VSS protocol ΠmV SS which
is run among n parties and some dealer PD with input s and a moderator PM ,
each party Pi outputs a bit fi at the end of the Sharing Phase and si at the end of
the Reconstruction Phase. Let Pi, Pj be two honest parties. We say that ΠmV SS

is moderated VSS secure for t < n malicious parties if the following conditions
hold whenever at most t parties are malicious.

– Graded Sharing: If PM is honest, then Pi outputs fi = 1.
– Graded Validity: If PD is honest and Pi outputs fi = 1, then Pj will output
sj = s.

– Graded Secrecy: If PD is honest during the Sharing Phase and Pi outputs
fi = 1, then the joint view of all malicious parties is independent of s at the
end of the Sharing Phase.

– Graded Reconstruction: If Pi outputs fi = 1 then Pi, Pj output si = sj.

We use the moderated VSS in a setting where each honest party Pi ∈
{P1, . . . , Pn} in parallel acts as dealer and distributes one distinct secret for
every one of all n̂ parties known to Pi. To share these n̂ secrets, Pi will choose
each known party (including itself) as the moderator exactly once; thereby shar-
ing each of its secret using a different moderator. To allow this parallel invocation
of n2 VSS schemes, we will beforehand execute a few steps in the setup phase
to assign moderators to secrets. Let (α1, ..., αn̂) denote some public evaluation
points from a finite field F where λ is the size of a field element.
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Setup protocol for moderated VSS ΠmV SS
setup

The protocol has 5 rounds, each lasting a time interval ∆. The message complexity
is O(1), the bit complexity is O(n(|σ| + λ)). Every honest party Pi runs ΠmV SS

setup in
parallel.

Step 1: Every honest party Pi sets fi = 1
Step 2: Pi assigns a field element to every known public key and gradecasts the

resulting tuples m = (α1, pk1), ..., (αn̂, pkn̂).
Step 3: Let m′ be the message that Pi receives from Pj in the previous gradecast.

Pi sets fj = 0 if gi(m′) < 2, if m′ contained more than n tuples or if Pi knows
an identity of grade 2 which is not included in m′. Otherwise, we say that Pi
accepts the identities from message m′ for Pj . This set of identities is denoted as
IDji with size nij := |IDij |.

We will refer to the execution of the moderated VSS in which Pi is the
dealer and Pj is the moderator, as ΠmV SS

i,j or run (i, j) of the moderated VSS
interchangeably.

Lemma 15. If at least one honest party Pi has accepted IDij in the above pro-
tocol, then every other honest party Pk obtained the same set of identities, i.e.,
IDkj = IDij and nij = nkj ≤ n as well as the same set of evaluation points
αij = αkj . Furthermore, IDkj contains the identities of all honest parties and if
Pj is honest, then every honest party accepts the message received by Pj.

Proof. If Pk, has accepted IDkj , then gk = 2 and nkj ≤ n. This means that any
honest party Pi has received the same set of identities, by the properties of
gradecast, and in particular that nij ≤ n. Furthermore, all honest identities have
grade 2 for Pk, so since it accepted IDkj , all of them must be included in this set,
and therefore also in IDij . Finally, note that if Pj is honest, all the conditions
for acceptance are satisfied, because every identity of grade 2 from P ′ks view has
grade at least 1 for Pj and will thus be included in mj . The statement follows
in a similar way for the set of evaluation points, αlj = αkj = αj .

Lemma 15 allows us to omit the super index from the set of accepted identities
for run (i, j) as long as an honest party has accepted this set (which is the only
relevant case). We henceforth refer to the set of identities chosen by party Pj in
the above protocol as IDj and say that this set is accepted. This set allows all
parties in the system to check which moderator was assigned to moderate every
share.

Next, we show how adapt any existing VSS protocol ΠV SS as defined in [19]
to meet the requirements for our protocol. Let ΠV SS be a constant round pro-
tocol that tolerates t < n

2 parties and that uses a broadcast channel only during
the Sharing Phase. The number of broadcasts that any honest party has to per-
form in the worst case is O(1), the message complexity per party is O(n) and
he bit complexity is O(n(λ+ |σ|)). We show how to replace some steps in ΠV SS
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to arrive at ΠmV SS
i,j . Then the following protocol shows an emulation of ΠV SS

for dealer Pi and moderator Pj .

Moderated VSS Protocol ΠmV SS
D,M

Whenever some dealer PD broadcasts a messagem in ΠV SS , we perform the following
10-round subprotocol, each lasting a time interval ∆. For every such broadcast we will
use a moderator PM which has been assigned in the setup phase.

Step 1: PD gradecasts m.
Step 2: PM gradecasts the message it received from PD if its public key pkD ∈ IDM .
Step 3: Letm andm′ be the output of party Pi from the two gradecasts, respectively,

then Pi will consider m′ as the broadcast message from PD. It sets fi = 0 if
gi(m

′) < 2, if both m′ 6= m and gi(m) = 2 holds or if the moderator PM has
relayed a message from an identity outside of IDi.

Whenever Pj sends a message m to Pi in ΠV SS , Pi accepts m iff pkj ∈ IDi and it is
sent along with a valid signature σj under pkj .
Each party Pi outputs fi at the end of the Sharing Phase. The message complexity
is O(n2). The bit complexity is O(n2(λ+ |σ|)) per party.

Lemma 16. Let IDM be an accepted set of identities. Let ΠV SS be a constant
round secure VSS that relies on a PKI, uses a broadcast channel only in the
Sharing Phase and tolerates t < n

2 malicious parties. Then there exists a constant
round moderated VSS ΠmV SS

D,M tolerating t < n
2 malicious parties in which each

honest party Pk uses the set IDj as its set of identities.

Proof. Let i, j ∈ [n] be fixed. Clearly, if ΠV SS is a constant round protocol,
then so is ΠmV SS

D,M . We proceed by showing that ΠmV SS
D,M satisfies the properties

of graded VSS.
Assume that PM is honest and that Pi receives the gradecast message m

from PD in step 1 of the protocol. Let m′ be the message that Pi receives from
PM in the first round of the gradecast (step 2). By the validity property of
gradecast, gi(m′) = 2. Now, say that Pi outputs gi = 2 in step 1. From the
graded consistency property, we know that the moderator PM receives the same
message m as Pi in the first gradecast. Because PM is honest, it will correctly
moderate this exact message and we have m′ = m. Therefore, Pi does not set
fi = 0 at the end of this invocation. Repeating this argument over all invocations
of this protocol, fi = 1 for any honest party Pi at the end of the Sharing Phase.

Now we consider the case where PM might not be honest. We show that
whenever a honest party Pi sets fi = 1, then broadcast was achieved for this
emulation and ΠmV SS

D,M achieves all the guarantees of ‘regular’ VSS. If fi =
1 at the end of an emulation, then gi(m

′) = 2. From the graded consistency
of gradecast we know that every honest party received m′ and considers this
message as the broadcast message by PD. This proves the consistency property
needed for broadcast. If additionally PD is honest, then in step 1, every honest
party Pi receives the same message m with gi(m) = 2. Because fi = 1, it must
be that m = m′ and thus, the validity property of this broadcast is also met.
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Consider now private messages sent between parties. As we argue about an
accepted set of identities ID·, each honest party accepts private messages from
the same identities. Finally, as all honest identities are included in ID· and there
can be at most t malicious parties in ID·, secrecy is preserved just as in ΠV SS

and the honest parties can execute the reconstruction phase as specified. This
completes the proof.

To make the n2 runs of the moderated VSS run in parallel, assume that each
party includes a session identifier in its messages containing the public key of
the dealer and the moderator.

C.2 From Moderated VSS to Oblivious Leader Election

Now that we can utilize the ΠmV SS protocol defined above, we will show how
to construct a leader election protocol from it.

Lemma 17. Given a constant round secure moderated VSS protocol ΠmV SS

tolerating at most t < n
2 malicious parties, then there exists an OLE protocol

ΠOLE with fairness δ = n−t
n −

1
n2 tolerating t malicious parties.

Oblivious Leader Election Protocol ΠOLE

The protocol exhibits the same (constant) running time as ΠmV SS and has to-
tal message complexity O(n3) per party. The total bit complexity per party is
O(n4(logn+ |σ|)).
Proof. Phase 1: Each party Pi chooses random ci,j ∈ [n̂4], j ∈ [n̂] and sets trusti,j =

1, j ∈ [n̂]. The parties now run the Sharing Phase of a moderated VSS with each
party Pi using ci,1, ..., ci,n̂ as its secrets. To share ci,j , Pi uses Pj as the moderator.
If Pk outputs fk = 0, it sets trustk,j = 0. Once the Sharing Phase is over, each
party Pk sets trustk := {j : trustk,j = 1} .

Phase 2: The parties now run the Reconstruction Phase of the moderated VSS.
Let cki,j denote P ′ks view of ci,j (if this lies outside of [n4], Pk uses a default
value). Each party Pk sets ckj :=

∑n
i=1 c

k
i,j (mod n4). It then outputs a j ∈ trustk

minimizing ckj .

Let trusted:= {k|∃i : k ∈ trusti and Pi was honest at the end of phase 1}.
We prove that the above protocol satisfies consistency and validity. Clearly, if Pi
was honest up to the end of Phase 1, then i ∈ trusted. Also, if k ∈ trusted, then,
using the properties of moderated VSS we have for 1 ≤ l ≤ n that

cil,k = cjl,k,

for any honest Pi, Pj . This means that cik = cjk = ck. As

ck =

n∑
i

ci,k (mod n4),
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ck for k ∈ trusted is uniformly distributed in [n4], since all honest parties Pi
have picked ci,k uniformly at random from [n4]. Now, assume that all the coins
ck, k ∈ trusted are distinct. As |trusted| ≤ n and using the union bound, this is
true with probability at least 1− 1

n2 . The are n−t values in trusted corresponding
to honest parties. Thus the probability that the unique, random, and minimal
value ck, k ∈ trusted, corresponds to an honest party Pk, is at least n−t

n . Note
that k ∈ trusti, whenever Pk is honest and thus the view among all honest parties
on the elected leader will also be consistent with at least this probability.

D Proof of Lemma 5

Proof. Consider the function f(n) := (1− 1
n )
n and its derivative

f ′(n) =
(1− 1

n )
n · ((n− 1) · ln n−1

n + 1)

n− 1
.

We will show that f ′(n) > 0 for all n > 2 and thus f(n) is monotonically
increasing in this range. It is well known that limn→∞ f(n) = 1

e . Since f(2) =
1
4 <

1
e , it follows that f(n) must be upper bounded by 1

e for all n > 2.

Since (1− 1
n )n

n−1 > 0 for all n > 1, it is enough to show that g(n) := ln(n−1n )(n−
1) ≥ −1 for all n > 2. The Taylor Series expansion yields g(n) = ln(n−1n )(n−1) =
−
(
1
n + 1

2n2 +O( 1
n3 )
)
(n − 1). Taking the limit of n to infinity, we obtain −1.

We show that g(n) is monotonically decreasing for all n > 2. Since g(2) < 0,
it then follows that g(n) must be lower bounded by −1. Thus, we consider
g′(n) =

(
ln(n−1n )(n− 1)

)′
= 1

n+ln(n−1n ) and g′′(n) = −1
n2 +

1
n−n2 . Since g′′(n) < 0

for n > 2, g′(n) is monotonically decreasing for n > 2. Furthermore, g′(2) =
1
2 + ln( 12 ) < 0 and so for all n > 2, g′(n) < 0. This proves that also g(n) is
monotonically decreasing in this range.

E From Leader Election to Byzantine Agreement and
Broadcast

We will show this by proving lemma 12, which states that an OLE protocol can
be used to construct a constant round protocol for byzantine agreement and
thus broadcast. To prove this statement, we will proceed similar to the authors
of [19] who show that in a PKI setting OLE can be used to achieve byzantine
agreement, which itself implies broadcast.

Proof. We describe a protocol similar to [19] which achieves byzantine agreement
for messages of message space M using internally a OLE protocol tolerating t
malicious parties. LetM be the set of possible input values and ⊥. Let further
locki := ∞ for each Pi and let mi ∈ M be P ′is input. The parties execute the
following round in parallel.
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Byzantine Agreement Protocol ΠBA

Step 1: Each party Pi gradecasts mi. Let (mj,i, gj,i) be the message/grade that Pi
received from Pj .

Step 2: For all m that it received Pi sets Smi := {j : mj,i = m ∧ gj,i = 2} and S̃mi :=
{j : mj,i = m ∧ gj,i ≥ 1} . If locki := ∞, then set mi := m if there exists m s.t.
|S̃mi | ≥ n

2
. Otherwise, set mi := Φ. If |Smi | ≥ n

2
, set locki := 1.

Step 3: Each party Pi gradecasts mi. Let (mj,i, gj,i) be the message/grade that Pi
received from Pj .

Step 4: For all m that it received Pi sets Smi := {j : mj,i = m ∧ gj,i = 2} and S̃mi :=
{j : mj,i = m ∧ gj,i ≥ 1} . If locki := ∞, then set mi := m if there exists m s.t.
|S̃mi | ≥ n

2
. Pi sends mi to all parties. mj,i be the message that party Pi receives

from Pj . A message is only accetped if it comes from an identity with grade at
least one.

Step 5: The parties run the OLE protocol. Let `i be the leader as chosen by Pi.
Step 6: If locki :=∞ and |S̃mii | ≤ n

2
, then Pi sets mi := m`i,i.

Step 7: If locki = 0, Pi outputs mi and terminates. If locki := 1, then Pi sets
locki := 0 and goes to step 1. If locki :=∞, Pi goes to step 1.

Let Pi be an honest party and let us refer to an execution of the above
seven-round protocol as an iteration. It is easy to see that locki is a monotonically
decreasing value. Moreover, once Pi has set locki 6=∞, it terminates the protocol
by the end of the next iteration and the value which was held by mi at the
point in time where locki 6= ∞ was set, remains unchanged until the protocol
terminates. Suppose that immediately prior to a parallel iteration, each honest
party Pi holds the same value mi = m. Then, each party gradecasts m in Round
1. This means that |S̃mi | ≥ |Smi | ≥ n

2 in Round 2 and therefore each honest Pi
sets locki = 1 (unless of course, it has already set locki = 0) and mi = m. By
the above argumentation, each honest party terminates outputs m by the end
of the following iteration at the latest.

Next, we argue that if an honest Pi sets locki = 1 in Round 2 of iteration
I, then each honest party Pj terminates at the end of iteration I + 2, at the
latest, with output mj = mi = m. Consider the first iteration I in which some
honest Pi sets locki = 1 in Round 2. This means that |S̃mii | ≥ |S

mi
i | ≥ n

2 . By the
properties of gradecast, Smii ⊆ S̃mjj , and therefore also |S̃mjj | ≥ n

2 , so mj = m.
Therefore, every honest Pj gradecasts m in Round 3 and in Round 4, each party
receives m at least n

2 and so sets mj = m in Round 4. Also, because I is the first
such iteration, no honest party will terminate at the end of I. Observe now that
each honest party holds the same value mi = m immediately prior to iteration
I + 1. By what we have argued above, each honest party will terminate at the
latest at the end of iteration I + 2.

Now, consider the scenario where an honest leader P` is elected an each honest
Pi has still set locki =∞ in some iteration I. If all honest parties have |Smi | ≤ n

2
in step 6, then each party Pi holds the same value mi = m`i,i = m`,i = m` = m
at the end of iteration I, because P` was honest in Round 4. So suppose instead
that for at least one honest Pi, |Smii | > n

2 in step 6 and let Pj be another honest
party. Either |Smjj | > n

2 or |Smjj | ≤ n
2 . In the former case, Smjj ∩S

mi
i 6= ∅ and thus

46



by the properties of gradecast, mi = mj (no honest party may gradecast distinct
messages to parties Pi, Pj both with grade 2). In the latter case, |Smjj | ≤ n

2 , and
Pj sets mj := m`,j . Since P` was honest in Round 4 and because

Smii ⊆ S̃mi` =⇒ S̃mi` >
n

2
,

P` set m` := mi in Round 4. For this reason, Pj sets mj := m`,j = m` = mi.
Thus, by the end of iteration I, each honest party Pi has set mi = m` = m and
by the above argumentation, this concludes the proof.

F Formal Discussion of Clique Protocol

We show in this section how to build the clique-based protocol described infor-
mally in the main body of the paper.

F.1 The Clique Protocol ΠCP

Let ΠOLE be a an oblivious leader protocol ΠBC be a broadcast protocol.

Protocol ΠCP

Setup Phase

This phase consists of 3 rounds and lasts time 2∆+ δ with message
complexity O(θ) and bit complexity O(θκ). All parties run the Challenge and
Proof of Work Phase of ΠKG with a slight modification in the Proof of Work
Phase: Every party Pi samples a clique identifier Γi ← [k] and adds it to the

puzzle pi.

Clique Phase

This phase lasts time 3∆+ tOLE with message complexity O(θ+msgOLE) and
bit complexity O(θ(log(θ) + κ+ `) + bitOLE).

Key Ranking All parties run the Key Ranking Phase of ΠKG but append Γi
in the first message of this phase. The rest of ΠKG is executed between
parties with the same identifier Γi.

Elect Leader All parties within one clique run ΠOLE and elect one member
PLi per clique Γi. Then, all parties in the clique sign pkLi and send it all
other parties.

A party accepts PLi as leader for Γi if it received valid signatures from the
majority of Γi’s members on pkLi and if PLi committed to Γi with a correct

Proof of Work.
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Broadcast Phase

This phase lasts time 2∆+ tBC with message complexity O(n+msgBC) and
bit complexity O(n(κ+ |σ|+ λ) + bitBC) for a leader.

– If Pj wants to broadcast message m ∈ {0, 1}λ it sends (pkj ,m, σ) to all
leaders, where pkj is its own public key and σ = Sign(skj,m).

– Upon receiving message (pkj ,mj , σj) every leader PLi , i ∈ [k] checks if
Ver(pkj ,mj , σj) = 1 and gLi (pkj) ≥ 1. If these checks pass, it broadcasts
(pkj ,mj , σj) to all other leaders.

– For every distinct message (pkj ,m
′
j , σ
′) that an honest leader PLi , i ∈ [k]

received at in this phase with Ver(pkj ,m
′
j , σ
′
j) = 1 and gLi (pkj) ≥ 1 it

checks, if it also received another message (pkj ,m
′′
j , σ
′′
j ) such thatm′′j 6= m′j ,

Ver(pkj ,m
′
j , σ
′
j) = 1 and Ver(pkj ,m

′′
j , σ
′′
j ) = 1. If this is the case, PLi does

nothing. Otherwise, it creates a signature σLi = Sign(skiL,m′j) and sends
(pkj ,m

′
j , σ

L
i ) to every party.

Every party P` that received a message (pkj ,m
∗, σLi,j) from at least k

2
distinct

leaders PLi (that P` accepted at the end of the Clique Phase) where
Ver(pkLi ,m∗, σLi,j) = 1, outputs m∗ as the message of pkj .

We describe the above protocol built on a ΠOLE with run time tOLE, message
complexitymsgOLE, and bit complexity bitOLE when run in the largest clique. Let
ΠBC have run time tBC, message complexity msgBC, and bit complexity bitBC

for messages of length λ when run with k players. The total message complexity
of the protocol is O(θ + msgOLE + n + msgBC) and the total bit complexity of
the protocol is O(θ(log(θ) + κ+ `) + bitOLE + n(κ+ |σ|+ λ) + bitBC) per party.
The total round complexity is 7∆+ tOLE + tBC.

F.2 Proof for Theorem 2

Theorem 2 states that the above protocol ΠCP achieves broadcast. Let n be the
number of parties, t the number of malicious parties, k the number of cliques and
β > 0. We structure our proof in the following three statements (Lemma 18, 19,
21).

Lemma 18. With probability at least k2e−(n−t)
β2

3k , each clique Cj contains Xj ∈
[µ(1− β), µ(1 + β)] honest parties.

Proof. For this proof we will need the Chernoff bound:
Chernoff’s Inequality. Let X1, ..., Xn be i.i.d. Bernoulli variables with prob-
ability parameter p and let X =

∑
iXi, β ∈ [0, 1]. Then, Pr[|X − pn| ≥ β] ≤

2e−
β2

3 pn.
Since the honest parties choose their clique membership at random, µ =

n−t
k is the expected number of honest parties in every clique. Let Xj

i be the
indicator variable that equals one whenever party Pi chooses clique Cj and zero
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otherwise. Clearly, for any honest party Pi, E[Xj
i ] = Pr[Xj

i = 1] = 1
k . Now, let

Xj =
∑
iX

j
i . By linearity of expectation ∀j : µ = µj := E[Xj ] = n−t

k . By the
Chernoff bound, for any β > 0 we have that

∀j : Pr[|Xj − µ| ≥ βµ] = Pr[|Xj − µ| ≥ (n− t)β
k
] ≤ 2e−(n−t)

β2

3k .

The probability that ∃j : |Xj−µ| ≥ (n−t)β is thus bounded by k2e−(n−t)
β2

3k .

Some simplifying assumptions. Using Lemma 18, we make some mild as-
sumptions that will greatly simplify the rest of the argumentation for this chap-
ter. First, we assume that each clique contains the same number µ′ = (1− β)µ
of honest parties. Clearly, this is a lower bound on the number of honest parties
in each clique, as was shown in Lemma 18 to be true with high probability. Ad-
ditionally, we assume that the adversary’s computational power is sufficient to
take over exactly s cliques. It is not hard to generalize the argumentation to the
case where the adversary can additionally corrupt a fraction of another clique,
but we feel that this would deter from the main arguments in the proof below.
For an example of such a situation, see Figure F.2. Note that in this example,
any s ≥ 4 would already be enough to take over 4 cliques and therefore the ma-
jority of the elected leaders. Lastly, let us assume that the number µ′ of honest

parties in every clique is sufficiently large such that
(

1
µ′

)2
≈ 0. This assumption

is also without much loss of generality, since for this entire section we assume
that the number of parties is very large. The fairness of the ΠOLE protocol then
becomes µ′−t′

µ′ rather than µ′−t′
µ′ − 1

(µ′+t′)2 for any number t′ > 0 of corrupted
parties within some clique, where for simplicity, we also assume that the parties
run ΠOLE for sufficiently many rounds r to ensure that 1− er/2 ≈ 1.

µ′

C1

µ′

C2

µ′

C3

µ′

C4

µ′

C5

µ′

C6

µ′

C7

µ′

C8

k = 8

leader controlled
by adversary

Honest Parties
control kµ′

Adversary
controls sµ′

Fig. 6. Proof model for n = µ′(k + s) = 11µ′ parties, where sµ′ parties are controlled
by the adversary and kµ′ parties are honest.
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Let us provide some intuition on the number of corrupted parties that we
can possibly tolerate. As corrupting k

2 of the cliques would require

k

2
(1− β)µ =

k(n− t)
2k

(1− β) = n− t
2

(1− β)

corrupted parties, i.e., exactly half as many corrupt parties as there are honest
parties, we require that the adversary corrupts strictly less than 1−β

3 n parties.
We prove that under these assumptions, the majority of the cliques will elect an
honest leader with high probability.

Lemma 19. Let s < k
2 and let µ′s be the number of parties controlled by the

adversary. With probability at least 1 − e− 2w2

k , the number of dishonest leaders
which are elected is at most s+ w.

Proof. Let s = s̃ + ŝ. Suppose that the adversary corrupts exactly µ′ parties
in s̃ cliques and spreads the remaining µ′ŝ parties which it controls arbitrarily
among the the remaining l = k− s̃ cliques. Let Xi,∈ [l] be the indicator variable
that is 1 iff a malicious leader is elected in clique Ci and let X :=

∑
iXi. As

none of the resulting l cliques elects an honest leader with probability 0, clique
Ci elects a dishonest leader with probability

Pr[Xi = 1] =
ki

µ′ + ki
,

where ki, i ∈ [l] is the number of corrupted parties that Ci contains. We first show
that the expected number E[X] =

∑
iE[Xi] of cliques in which the adversary

elects a leader using the µ′ŝ parties is at most ŝ. Clearly,

E[X] =

l∑
i=1

ki
µ′ + ki

.

Using the method of Lagrange multipliers we maximize this sum via the expres-
sion

l∑
i=1

ki
µ′ + ki

− λ(ŝµ′ −
∑
i

ki).

Calculating the derivatives, we obtain the equations

∀i ∈ [l] : − µ′

(µ+ ki)2
⇔ ki = µ′ ±

√
µ′

λ

and ŝµ′ =
∑
i ki. Combining this yields Let s = s̃+ŝ. Suppose that the adversary

corrupts exactly µ′ parties in s̃ cliques and spreads the remaining µ′ŝ parties
which it controls arbitrarily among the the remaining l = k − s̃ cliques. Let
Xi,∈ [l] be the indicator variable that is 1 iff a malicious leader is elected in
clique Ci and letX :=

∑
iXi. Clique Ci elects a dishonest leader with probability

Pr[Xi = 1] = ki
µ′+ki

, where ki, i ∈ [l] is the number of corrupted parties that Ci
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contains. We first show that the expected number E[X] =
∑
iE[Xi] of cliques

in which the adversary elects a leader using the µ′ŝ parties is at most ŝ. Clearly,
E[X] =

∑l
i=1

ki
µ′+ki

. It is well known that this sum is maximized when k1 =

... = kl =
ŝµ′

l . In other words, the best strategy to maximize this expectation is
to distribute the µ′ŝ parties as evenly as possible among the l cliques. The sum
then becomes

ŝµ′ = l(µ′ ±
√
µ′

λ
)⇔ ŝ = l(1±

√
1

µ′λ
) (1)

⇔ λ = (
ŝ

l
− 1)−2

1

µ′
(2)

and thus ∀i ∈ [l] : ki =
√

(µ′( ŝl − 1))2 + µ′ = µ′( ŝl − 1) + µ′ = ŝµ′

l . E[X] is
maximal when the µ′ŝ parties are distributed evenly among the l cliques. The
sum then becomes

l ŝµ
′

l

µ′(1 + ŝ
l )

=
l ŝl

(1 + ŝ
l )

=
l ŝl

( ŝ+ll )
=

lŝ

ŝ+ l
(3)

Thus, the following statement holds E[X] ≤ lŝ
ŝ+l ≤ ŝ which can be seen as

follows.

lŝ

ŝ+ l
− ŝ = lŝ− ŝ2 − ŝl

ŝ+ l
− ŝ = − ŝ2

ŝ+ l
≤ 0,∀ŝ > 0. (4)

We remind the reader of the Hoeffing bound:

Lemma 20. (Hoeffding’s Inequality). Let X1, . . . , Xn be independent Bernoulli
variables and let X =

∑
iXi, t > 0. Then, Pr[X − E[X] ≥ t] ≤ e−2 t

2

n .

As the variables Xi, i ∈ [l] are independent, we apply the Hoeffding bound
to obtain

Pr[E[X]−X ≥ w] ≤ e−w
2

l ≤ e−w
2

k ,

i.e., with probability at least 1 − e−
w2

k , X ≤ ŝ + w. Thus, with at least this
probability, the number X+ s̃ of dishonest leaders elected in all cliques is smaller
than s̃+ ŝ+ w = s+ w.

Theorem 2 states that the above protocol ΠCP achieves broadcast with
probability (1 − α)(1 − k2e−(n−t)

β2

3k ) when using k cliques. We will now show

that this holds when ε > 2

√
ln( 1

α )

k and t = (1−β)(n−nε)
3 .

Proof. By Lemma 18 we have that with probability at least k2e−(n−t)
β2

3k each
clique contains at least µ′ = (1 − β) 2n3k honest parties. By Lemma 19, with

51



probability at most e−
w2

k = α ⇔ w =
√
ln( 1

α )k the adversary can get a leader

elected in more than s+ w cliques, where s = t
µ′ =

(1−ε)k
2 . As we require that

s+ w <
k

2
⇔ s <

k

2
−
√
ln(

1

α
)k ⇔ (1− ε)k

2
<
k

2
−
√
ln(

1

α
)k,

we obtain that ε > 2

√
ln( 1

α )

k . It is now easy to see that with probability at least

(1−α)(1−k2e−(n−t)
β2

3k ) we can apply Lemma 21, which concludes the proof.

What remains to show is, that any party in the protocol can broadcast when
following this protocol.

Lemma 21. Let Π be the protocol described above and assume that a majority of
the elected leaders are honest. Assume that there exist an authenticated broadcast
protocol BC which tolerates strictly less than half of the parties to be corrupted.
Then Π achieves broadcast.

Proof. We only sketch how to prove the statement under the above assumptions;
indeed, it is not hard to see that Π achieves consistency and validity in this case.
We first show consistency. Suppose that Pi is an honest party and outputs m
at the end of the protocol. In this case, it has received at least k

2 signatures
from the elected leaders. As we have assumed that the majority of the leaders
is honest, this means that the honest leaders have signed the same message at
the end of Round 10 of Π. But this means that the majority of the leaders
also send the same message along with a signature to every other honest party
Pj (note that all honest parties see pkj with grade 2 by the properties of the
key Ranking Phase). Thus Pj also outputs m at the end of Π. We now show
validity of Π. Assume that Pi is honest and sends m to all leaders that it knows
along with a valid signature on m. The leaders now all broadcast m to each
other. Since signatures are unforgeable, none of the leaders receives conflicting
messages m 6= m′ along with valid signatures in this step. Therefore, at the
end of Round 10, all honest leaders send m to every honest party Pj . As Pj
receives at least k

2 valid signatures on m at the end of Round 10, it outputs
m, thus satisfying validity. Note that the communication complexity complexity
in Π only depends on bitBC and msgBC rather than k · bitBC and k · msgBC.
Informally, this improvement can be achieved by electing only a single leader for
the k parallel broadcasts, rather than k leaders. See [19] for further details.
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