
Secure Two-Party Computation with Fairness –
A Necessary Design Principle

Yehuda Lindell and Tal Rabin

1 Dept. of Computer Science, Bar-Ilan University, Israel. lindell@biu.ac.il
2 IBM T.J. Watson Research Center, New York, USA. talr@us.ibm.com

Abstract. Protocols for secure two-party computation enable a pair of
mutually distrustful parties to carry out a joint computation of their
private inputs without revealing anything but the output. One impor-
tant security property that has been considered is that of fairness which
guarantees that if one party learns the output then so does the other.
In the case of two-party computation, fairness is not always possible,
and in particular two parties cannot fairly toss a coin (Cleve, 1986). De-
spite this, it is actually possible to securely compute many two-party
functions with fairness (Gordon et al., 2008 and follow-up work). How-
ever, all known two-party protocols that achieve fairness have the unique
property that the effective input of the corrupted party is determined at
an arbitrary point in the protocol. This is in stark contrast to almost
all other known protocols that have an explicit fixed round at which the
inputs are committed.
In this paper, we ask whether or not the property of not having an input
committal round is inherent for achieving fairness for two parties. In or-
der to do so, we revisit the definition of security of Micali and Rogaway
(Technical report, 1992), that explicitly requires the existence of such a
committal round. We adapt the definition of Canetti in the two-party
setting to incorporate the spirit of a committal round, and show that
under such a definition, it is impossible to achieve fairness for any non-
constant two-party function. This result deepens our understanding as to
the type of protocol construction that is needed for achieving fairness. In
addition, our result discovers a fundamental difference between the def-
inition of security of Micali and Rogaway and that of Canetti (Journal
of Cryptology, 2000) which has become the standard today. Specifically,
many functions can be securely computed with fairness under the defini-
tion of Canetti but no non-constant function can be securely computed
with fairness under the definition of Micali and Rogaway.

Keywords: secure two-party computation, fairness, definitions of security

1 Introduction

In the setting of secure two-party computation, a pair of parties P1 and P2 wish
to compute a joint function of their private inputs in a secure manner. The



2 Yehuda Lindell and Tal Rabin

standard requirements for security are privacy (meaning that nothing but the
output is revealed), correctness (meaning that the output is correctly computed)
and independence of inputs (meaning that a corrupted party cannot make its
input dependent on the honest party’s input). An additional property that is
highly desired in many applications is that of fairness, which guarantees that
corrupted parties cannot receive output without the honest parties also receiving
output. The fundamental question regarding the feasibility of achieving fairness
has been studied since the late 1980s starting with the seminal work of Cleve [14]
who showed that it is impossible for two parties to securely toss an unbiased coin.
Following this work, a folklore arose that assumed that essentially no interesting
function can be securely computed with fairness. Intuitively, this makes sense
since in order for two parties to compute the function by exchanging messages
in turn, one must at some stage know more information than the other. As a
result, partial notions of fairness were introduced, including gradual release [7]
and the optimistic model that utilizes a trusted third party [2, 22] (these models
are not relevant to our work here that focuses on achieving full fairness).

However, over two decades later, it was shown by Gordon et al. [20] that
it is in fact possible to securely compute some specific functions with (full)
fairness. Later, it was shown that it is actually possible to compute many finite-
domain Boolean functions securely with fairness in the presence of malicious
adversaries [5, 3, 4, 21]. These positive results demonstrate a specific methodol-
ogy for protocol construction that achieves fair secure two-party computation.
In contrast to these positive constructions, there has been very little work re-
garding necessary conditions for achieving fair secure two-party computation. In
particular, there is no proof whether this methodology is in fact needed. In this
paper, we prove that the central design principle used in all of [20, 5, 3, 4, 21] is
in fact necessary.

Background. As we have mentioned, the classic definition of security for two-
party computation guarantees central properties like privacy, correctness and
independence of inputs. The actual security definition formalizes these security
properties by comparing a real protocol execution to an ideal world in which
an incorruptible trusted party computes the function for the parties [18, 19, 6,
23, 9]. In more detail, a protocol is proven secure by presenting an ideal-world
simulator machine that interacts with a trusted party, sending the corrupted
parties’ inputs and receiving back their outputs. The requirement is then that
for every real adversary attacking the protocol, the outputs of the adversary and
honest parties in a real protocol execution is computationally indistinguishable
from the output of the simulator and honest parties in the ideal model. Note
that in the ideal model, the honest parties simply send their prescribed inputs to
the trusted party and output whatever they receive back. This guarantees all the
aforementioned security properties since the only thing that the simulator can
do in the ideal model is modify the corrupted parties’ inputs. Since the outputs
in the real and ideal executions are indistinguishable, the same holds also for
the real secure protocol. Definitions of this type are said to follow the ideal-real
model paradigm.



Secure Two-Party Computation with Fairness, Design Principle 3

Classically, the literature considers two types of adversaries; semi-honest ad-
versaries who follow the protocol specification but try to learn more than allowed
by inspecting the transcript, and malicious adversaries who may follow any ar-
bitrary polynomial-time attack strategy. In this paper, we consider the setting
of malicious adversaries.

In the case of secure multiparty computation with an honest majority, the
additional property of fairness is typically also required. This property guar-
antees that if the corrupted party receives an output then so does the honest
party. However, in the case of two-party computation – where there is no honest
majority and malicious adversaries – fairness is usually not required, since it has
been shown that fairness cannot always be achieved. In particular, it was shown
in [14] that it is impossible for two parties to securely toss an unbiased coin.

The protocol of Gordon et al. [20]. The protocol of [20] and its extensions
in [3, 4, 21] have a very unique property that there is no specific round at which
the parties’ inputs are “determined”. In order to explain this, let us consider
for a moment the GMW protocol [18, 17]. The GMW protocol begins with the
parties running an “input commitment” phase, and then forcing the parties to
use these inputs using zero-knowledge proofs. This paradigm of construction is
not unique to [18], but rather is the norm in all known protocols.3 In contrast,
in the protocols of [20, 3, 4, 21] which are the only protocols that achieve fairness
without an honest majority, the corrupted parties’ input is essentially determined
by the point at which they halt, if they halt before the end. As a result, there
is no input-commitment phase, and indeed no point whereby the input of a
corrupted party is explicitly fixed. A very interesting question that arises from
this is whether or not protocols that achieve fairness must work in this way, or
if this is just one possible approach.

The Micali-Rogaway (MR) definition of security. The definition of security for
multiparty computation, formulated by Micali and Rogaway in [23], is based
on the same ideal/real paradigm described above. One of the central differences
between the definition of MR and Canetti [9] is the requirement that there exist
an explicit committal round, which defines all parties’ inputs. In order to un-
derstand why this requirement was included, we look back at the motivation
provided by Micali and Rogaway for their definition. Micali and Rogaway ar-
ticulate a number of key ideas for their notion of security (called “key choices”
in [23, Section 1.6]). The three key choices are blending privacy and correctness,
adversarial awareness and tight mimicry. The first two choices are common
with the definition of Canetti (that also follows the ideal-real model paradigm),
which has today become the standard for secure computation in the stand-alone
model. The requirement of blending privacy and correctness is important since
there are examples showing that they cannot actually be separated (an attack on
correctness can result in a breach of privacy), and the requirement of adversarial

3 In some cases, it is more subtle and the inputs are more implicitly committed; e.g.,
via oblivious transfer. However, this is still input commitment.



4 Yehuda Lindell and Tal Rabin

awareness means that the adversary’s input is explicitly known (formulated by
the simulator explicitly providing this input to the trusted party).

In contrast, the requirement of tight mimicry was not adopted by others to
the same extent. This requirement is that the ideal-model simulation tightly
mimics a real protocol execution. Micali-Rogaway observed that in all existing
secure protocols, at the time, there was an explicit round whereby the parties
commit to their inputs. This was true of the protocols of [18, 8, 13, 24] and almost
all protocols known today (with the exception of the fair protocols of [20, 3, 4,
21] and the protocol of [1]), and they mimicked that. As a result they stated
that it should be possible to know what inputs the adversary is using for the
corrupted parties, when these inputs are determined , and what output
is received by the corrupted parties. The first and third of these requirements
of “tight mimicry” do appear in [9, 17], but the second does not. The second
requirement is formalized in [23] by requiring the existence of a committal round
so that the corrupted parties’ inputs are fully determined by this round.

In order to understand the committal round requirement in more depth,
we informally describe how it is formulated. The MR definition formalizes two
different phases of simulation. In the first phase, the simulator simulates up
to the committal round and then outputs the inputs of the corrupted parties,
supposedly as would be used by the corrupted parties in a real execution. Next,
the function is computed on the corrupted parties’ inputs as output by the
simulator and the honest parties’ prescribed inputs. The simulator receives this
function’s output and continues in the simulation to the end. Note that the
simulator interacts with the real adversary as one interacts with an external real
party; in particular, this means that the simulator has only black-box access
to the adversary and also cannot rewind it. Observe that the aforementioned
phases are distinct since the simulation is “straight line”.4 We refer the reader
to [23] for more details, and to [15] for a more concise version of the definition.

Importantly, Dodis and Micali [15] inherently utilize the existence of a com-
mittal round in order to prove their concurrent composition theorem. Thus, be-
yond accurately mimicking the way protocols work, this feature of the definition
also has technical advantages in the context of composition.

Our results – fairness and committal rounds. Interestingly, the requirement of a
committal round rules out the fair protocols of [20, 3, 4, 21], and these protocols
cannot be proven secure under any definition with such a requirement, like the
MR definition. As we have stated, these are the only protocols that achieve
fairness and they all do not have a committal round. A very natural question
that arises is therefore whether fair protocols must be designed so that there is
no fixed point at which inputs are committed. In particular, we ask:

4 This makes some aspects of the definition reminiscent of the much-later UC frame-
work [10]; in particular, in [10] the adversarial environment is external to the simu-
lator and the simulator can interact with it as with a real party (meaning, black box
and no rewinding). Indeed, in [15] it was shown that protocols proven secure under
the MR definition are secure under concurrent composition.



Secure Two-Party Computation with Fairness, Design Principle 5

Is it possible to construct two-party protocols with fairness, with the prop-
erty that the parties’ inputs are committed at a fixed committal round?

Answering this question will also shed light on whether the definition of Canetti
is fundamentally different to the MR definition with respect to fairness.

In this paper, we show that the existence of a committal round does indeed
result in a qualitatively different notion of security. In particular, it is impossible
to securely compute any non-constant function in the two-party setting with
fairness when there is a committal round. We prove the following theorem:

Theorem 1 (Main theorem – informally stated:). If f is a non-constant
function, then it cannot be securely computed in the two-party setting with fair-
ness using a definition that requires a committal round.

In order to prove the theorem, we adapt the definition of Canetti in a seem-
ingly minimal way, to include a committal round conceptually similar to that
of MR (with two distinct phases of simulation). Our definition enables rewind-
ing the adversary like Canetti, since otherwise security is not possible without
an honest majority (or some secure setup).5 Our definition suffices for defining
security without fairness, and as evidence, all non-fair protocols that we know
of can be securely computed under our adapted definition.

Our proof of the theorem demonstrates that the effective input of a corrupted
party must depend on when it halts. In addition, we show that in a definition with
a committal round, the simulator must determine the corrupted party’s input
at some point before the end of the protocol. This implies that the simulator
must determine the corrupted party’s input before knowing when it will halt,
preventing it from correctly determining the effective input. Thus, simulation is
not possible.

Conclusions. Our result deepens our understanding of the type of protocol design
needed in order to obtain fairness. Specifically, it is essential that in any fair
protocol the input of the corrupted party not be determined at any fixed point.
Thus, any protocol that achieves fairness in secure two-party computation must
follow the same construction paradigm as [20], at least with respect to the fact
that a party’s input is not committed at any fixed point.

In addition, our results show that the existence or non-existence of a required
committal round is not at all inconsequential, and has actual ramifications on
the feasibility of achieving security, particularly fairness. This in turn implies
that there is actually a fundamental difference between the definitions of Micali-
Rogaway and Canetti.

5 The fact that no rewinding results in impossibility was shown in the framework of
universal composability [10] which does not allow rewinding; see [11, 12].



6 Yehuda Lindell and Tal Rabin

2 Defining Secure Two-Party Computation with a
Committal Round

In this section, we present a version of the definition of Canetti [9, 17] for the
two-party case that is minimally adapted to include a committal round like that
of MR. As in MR, we formalize the committal round by mandating two distinct
phases for the simulation, but we allow rewinding in each phase (as needed for
proving the security of two-party protocols). The first phase until the simulator
provides the input of the corrupted party, and the second phase from the point
that the simulator receives the output to the end of the protocol. As will become
clear in the definition below, the simulator may rewind the adversary within each
phase but not beyond it, in order to ensure that the phases are indeed distinct.

Our definition below requires fairness, since we aim to show impossibility of
fairness when a committal round is included. However, as we will explain at the
end of this section, an analogous definition which includes a committal round
but not fairness is satisfied by almost all protocols that we are aware of; see
Theorem 2. Thus, the existence of a committal round alone is not a barrier to
achieving security (without fairness).

Preliminaries. We denote the security parameter by n. A function µ(·) is negligi-
ble in n, or just negligible, if for every positive polynomial p(·) and all sufficiently
large n’s it holds that µ(n) < 1

p(n) . We say that two distribution ensembles

X = {X(a, n)}a∈{0,1}∗;n∈N and Y = {Y (a, n)}a∈{0,1}∗;n∈N are computationally
indistinguishable if for every non-uniform probabilistic polynomial-time distin-
guisher D there exists a negligible function µ(·) such that for every a ∈ {0, 1}∗
and every n ∈ N,∣∣Pr[D(X(a, n) = 1)]− Pr[D(Y (a, n) = 1)]

∣∣ ≤ µ(n).

The real model. In the real model, the two parties P1 and P2 interact directly
running protocol π, exchanging messages with each other. To be concrete, we
assume that in each round of the protocol, one party sends a message to the other
party who waits to receive the message (this is the least restrictive and most
general model). Each party Pi is given its input xi and the security parameter n
in unary form. We consider a malicious static adversary, A, that controls one
of the parties. We denote the corrupted party by Pi (i ∈ {1, 2}) and denote
the honest party by Pj (j ∈ {1, 2} with j 6= i). The adversary A is given the
corrupted party’s input xi, an auxiliary input z, and the value 1n (the security
parameter in unary) and interacts directly with the honest party Pj . The honest
party outputs whatever is prescribed by the protocol, and the corrupted party
outputs its view in the execution. We denote by realπ,i,A(x1, x2, z, n) the output
of the honest party and the view of the adversary in a real execution, where P1

has input x1, P2 has input x2, the security parameter is n, and the adversary is
given auxiliary input z and controls party Pi.



Secure Two-Party Computation with Fairness, Design Principle 7

The ideal model. In the ideal model, the parties do not interact with each other
at all. Rather, they just send their input to an incorruptible trusted party who
computes the output for them. We consider fairness and therefore the trusted
party always sends output to both parties (if the corrupted party does not pro-
vide an input, then a default input is taken by the trusted party).6 The honest
party Pj always sends its prescribed input to the trusted party, whereas the
corrupted party can send any input it desires or none at all. We denote the
ideal-model adversary by S.

Following the MR definition, we define a committal round, which we view
as a “break point” in the simulation. Let CR be an integer that denotes the
committal round. Our definition is black-box, and so the simulator S is given
black-box (oracle) access to the real adversary A with its input xi, auxiliary in-
put z and uniformly-distributed random tape r. As formalized in [16, Sec. 4.5],
such black-box access is modeled by S sending oracle queries of the form q =
(m1, . . . ,m`) and receiving back A(xi, z, r;m1, . . . ,m`), where xi, z, r are as
stated and m1, . . . ,m` is a series of incoming messages (we assume unique de-
limiters between each item in the query and so it is unambiguous). The response
from A is its outgoing message (or output) when invoked on this input, random-
tape and series of messages. We say that an oracle query q is of length ` if it
contains ` incoming messages.

In our definition, A controls party Pi (i ∈ {1, 2}) and works in two distinct
phases:

1. Phase 1 – up to and including the committal round: In this phase, S is
allowed to send oracle queries of length at most CR only. At the end of this
phase, S outputs a partial view of A up to and including CR – denoted by
view1

SA(xi, z, n) – and also A’s input x′i to be sent to the trusted party.
The trusted party computes the function output from x′i and the input re-
ceived from the honest party, and sends the honest party its specified output.

2. Phase 2 – post-committal round: In this phase, S receives the corrupted
party’s output from the trusted party, and generates a partial view of A from
the round after CR to the end of the protocol, denoted view2

SA(xi, z, n).

Note that the “break point” of the simulation is the point between the committal
round and the round following it. As we have mentioned, the definition of security
is black-box (as is the original definition of MR); this seems inherent when
formalizing a committal round and break-point.

The output of the ideal execution is the concatenation of view1
SA(xi, z, n)

with view2
SA(xi, z, n), and the honest party’s output. We stress that view1

SA(xi, z, n)

6 Our definition requires guaranteed output delivery (meaning that both parties always
receive output), and not just fairness (meaning that if one receives an output then
so does the other but it’s possible that neither receive). In the setting of two-party
computation, these properties are equivalent, since in the case of abort the honest
party can compute the function on its own input and on a default input for the
other party. We therefore arbitrarily chose the definition where parties always receive
output.



8 Yehuda Lindell and Tal Rabin

must contain exactly CR incoming messages; otherwise the output of the ideal
execution will be ⊥. We denote this output by idealCRf,i,SA(x1, x2, z, n).

We are now ready to define security:

Definition 1. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a two-party func-
tionality. A protocol π securely computes f with a committal round and fairness
if there exists a specific round CR and a probabilistic non-uniform polynomial-
time simulator S for the ideal model such that for every probabilistic non-uniform
polynomial-time real adversary A controlling party Pi with i ∈ {1, 2}:{
idealCRf,i,SA(x1, x2, z, n)

}
x1,x2,z∈{0,1}∗;n∈N

c≡
{
realπ,i,A(x1, x2, z, n)

}
x1,x2,z∈{0,1}∗;n∈N

Feasibility of achieving an analogous definition without fairness. We conclude
this section by showing that a committal round in itself is not a barrier to
achieving security, even for the case of no honest majority, as long as fairness is
not also required. In order to see this, consider a modified version of Definition 1
which is exactly the same except that fairness is not guaranteed. In particular,
the only difference is that in phase 2, S receives the corrupted party’s output
first. Then, if S sends abort to the trusted party, then the honest party does
not receive the output (but rather ⊥). In contrast, if S sends continue to the
trusted party, then the honest party does receive the actual output. We say
that a protocol that achieves this definition is secure with a committal round but
without fairness.

By observation of the simulator of the GMW two-party protocol [18] as de-
scribed in [17, Ch. 7], we have that the simulator indeed can be separated into
working in these two different phases. The first simulator works in the “input
commitment” phase which essentially consists of each party committing to its
input and proving a zero-knowledge proof of knowledge of the committed value.
The simulator in this phase extracts the corrupted party’s input from the proof
of knowledge. Then, the second simulator simulates the rest of the protocol. We
therefore have:

Theorem 2. For every probabilistic polynomial-time two-party functionality f ,
there exists a protocol π that securely computes f with a committal round but
without fairness. In particular, π can be taken as the protocol of [18, 17].

We remark that the protocol of [18, 17] is the rule and not the exception.
Indeed, we do not know of any protocol that is not secure under this analogous
definition that requires a committal round but does not require fairness (with
the exception of the fair protocols of [20] and its extensions in [3, 4, 21] since
they do not meet the committal round requirement).

3 Proof of Impossibility of Fairness

Theorem 3. Let f be a non-constant two-party function with a finite domain.
Then there does not exist a protocol that securely computes f with a committal
round and fairness, as in Definition 1.



Secure Two-Party Computation with Fairness, Design Principle 9

Proof. We will use the notion of a protocol being “honest-correct” in the proof.
We stress that this definition of correctness is very different to – and much
weaker than – the standard notion. Specifically, when we say that a protocol is
honest-correct, we mean that two honest parties running the protocol receive
the correct output (the function computed on their prescribed inputs), and this
does not say anything about the output of the honest party when one of the
parties is malicious or halts before the end of the protocol.

Definition 2. A protocol π for computing a function f is honest-correct if for
every two inputs x1, x2 written on the input tapes of P1 and P2, respectively, the
output of honest P1 and honest P2 running π is f(x1, x2), except with negligible
probability.

The proof of the theorem follows immediately from the following two lemmas.
The first lemma states that in order to correctly compute the function, then
there must be at least one round of communication after the committal round
(formally, if there is no round after the committal round, then the protocol
cannot be honest-correct). In contrast, the second lemma states that any protocol
that is secure with a committal round and fairness can be truncated to the
committal round and will still maintain honest-correctness. We therefore derive
a contradiction.

Lemma 1. Let f be a non-constant two-party function, let π be a protocol that
securely computes f with a committal round and fairness, and let CR be the
index of the committal round. Then, the protocol obtained by truncating π to
exactly CR rounds is not honest-correct.

Proof. This lemma relies on the assumption that f is non-constant, since a
constant function can be securely computed without any interaction. We prove
the lemma by showing that since the simulator S receives the output only in
the post-committal round phase, and after it outputs the view of A up to round
CR, the view of the adversary in all rounds up to and including the CR is
independent of the output. Thus, there must be at least one additional round
in the protocol beyond the CR in order to obtain the correct output. Since the
function being computed is non-constant, this implies either that the simulation
is distinguishable from a real execution (which contradicts the assumed security)
or that the protocol is not honest-correct (does not always provide even honest
parties with the correct output based on their input). We now prove this formally.

Let π′ be the protocol π truncated to round CR (and including round CR).
Assume, by contradiction, that π′ is honest-correct, as in Definition 2. If f is non-
constant then either there exist inputs x1, x2, x̃2 such that f(x1, x2) 6= f(x1, x̃2),
or there exist inputs x1, x̃1, x2 such that f(x1, x2) 6= f(x̃1, x2). This holds since if
f is non-constant then there must be either a “row” or “column” in its function
matrix with different values. Without loss of generality, assume that there exist
x1, x2, x̃2 such that f(x1, x2) 6= f(x1, x̃2). Let A be an adversary attacking the
non-truncated protocol π, who controls P1 and runs P1 honestly on input x1,



10 Yehuda Lindell and Tal Rabin

with the exception that it halts at round CR and outputs whatever the pro-
tocol specifies it to output (as if the other party halted). By the contradicting
assumption, A receives correct output by this round (where correct is defined by
the honest party’s input and by A’s input; this is well defined since A behaves
like an honest party in the truncated protocol π′).

Consider a real execution between A and P2, where P2 has input x2. By the
security of the non-truncated protocol π, we have{

idealCRf,1,SA(x1, x2, z, n)
}
n∈N

c≡
{
realπ,1,A(x1, x2, z, n)

}
n∈N

.

Likewise, in a real execution where P2 has input x̃2, the security of the protocol
guarantees that{

idealCRf,1,SA(x1, x̃2, z, n)
}
n∈N

c≡
{
realπ,1,A(x1, x̃2, z, n)

}
n∈N

.

Consider now the truncation of the above distributions to include only the view
of the adversary up until and including round CR. The truncation of these ideal
distributions yields view1

SA(x1, z, n) in both cases, and so are identical. This is
due to the fact that S’s view is identical in both cases because the output is
received only after this part of the view is fixed. Denote by viewA,π(x1, x2, z, n)
the view of A alone in the execution. Since A halts at round CR, we have{

view1
SA(x1, z, n)

}
n∈N

c≡
{
viewA,π(x1, x2, z, n)

}
n∈N

and {
view1

SA(x1, z, n)
}
n∈N

c≡
{
viewA,π(x1, x̃2, z, n)

}
n∈N

.

Combining the above, we have{
viewA,π(x1, x2, z, n)

}
n∈N

c≡
{
viewA,π(x1, x̃2, z, n)

}
n∈N

.

However, by the contradicting assumption, A receives correct output by round
CR, and its view defines its output. Thus, the view with input x1, x2 defines
the output f(x1, x2) for A, while the view with input x1, x̃2 defines the output
f(x1, x̃2) for A. Since f(x1, x2) 6= f(x1, x̃2), the distributions are easily distin-
guishable, in contradiction. This completes the proof.

We now proceed to prove the second lemma that states that a protocol that
is secure with a committal round and fairness can actually be truncated to the
committal round and remain honest-correct. Intuitively, this holds since in the
ideal model the simulator must provide the input used by the corrupted party
by the committal round. Now, since the output is determined at this point
and cannot change, this implies that the honest party must always output the
function computed on its own input and the input provided by the simulator (it
can also never abort since the corrupted party already learned the output at the
committal round). This in turn implies that the honest party must always output



Secure Two-Party Computation with Fairness, Design Principle 11

the same correct output in a real protocol execution, irrespective of where the
corrupted party halts. In particular, it must hold even if the corrupted party halts
immediately after the committal round. Formally, we prove this by showing that
if correctness does not hold at the committal round, then there exists a specific
round where it transitions from not holding to holding (clearly correctness holds
for the full protocol π). Then, we show that a distinguisher can distinguish the
real and ideal executions with an adversary that halts either at the round before
the transition or at the transition. Note that the lemma does not hold for the
case of multiparty computation with an honest majority; this is explained after
the proof of the lemma.

Lemma 2. Let f be a two-party function with a finite domain, let π be a protocol
that securely computes f with a committal round and fairness, and let CR be
the index of the committal round. Then, the protocol obtained by truncating π to
exactly CR rounds is honest-correct.

Proof. Denote by π0 the protocol π truncated to round CR, and denote by π`
the protocol π truncated to ` rounds after round CR. Let m be the number
of rounds in π after the committal round and so πm = π (note that the total
number of rounds in the protocol equals CR + m); clearly, m is polynomial in
the security parameter n. Recall that by our definition of the real model, in
each round of interaction, exactly one party sends a message and the other waits
to receive it. Without loss of generality, we assume that the first message after
round CR is from P1 to P2 (likewise all odd messages), and the second message
after round CR is from P2 to P1 (likewise all even messages). In addition, we
assume that m is even (if this is not true then just add a dummy message to
π). In more detail, in protocol π`, the parties output what π specifies them to
output in the event that the other party halts at this point. For example, if P1

sends the last message in π`, then P2’s output in π` is the same as it would in
π in the case of an adversarial P1 who halts after sending the `th message after
CR. Observe that in this example, P1’s output is the same in π` and π`−1 since
in both cases its last message received is from P2 in the (` − 1)th round after
CR. In contrast, P2’s output may be different in these cases since its view is
different.

Recall that by Definition 2, a protocol is honest-correct, if for every pair
of inputs x1, x2 written on the parties’ input tapes, their output when honestly
running the protocol is f(x1, x2), except with negligible probability. Observe that
protocols π0, . . . , πm are fully specified and that we only consider executions of
pairs of honest parties in these protocols. Thus, the notion of honest-correctness
is well defined with respect to each π` (meaning that each of these protocols is
either honest-correct or not honest-correct, and this is a property of the protocol
alone).

We prove that π0 is honest-correct. In order to see this, observe that πm
is honest-correct since πm = π and π is a secure protocol (since we consider
here the case that both parties behave honestly, security in Definition 1 implies
honest-correctness as in Definition 2). By contradiction, assume that π0 is not



12 Yehuda Lindell and Tal Rabin

honest-correct, meaning that there exist inputs so that at least one of the parties
outputs an incorrect output in π0 with non-negligible probability. Then, there
exists a maximal index ` (1 ≤ ` ≤ m) such that π` is honest-correct, but π`−1 is
not honest-correct.

Without loss of generality, let P1 be the party who sends the message in the
`th round. This implies that P1’s view in π` and π`−1 is identical, and thus its
output is identical. However, since the protocol π`−1 is not honest-correct, this in
turn implies that P2’s output is correct in π` (except with negligible probability)
but incorrect in π`−1 with non-negligible probability. By definition, π`−1 being
incorrect means that there exist some inputs x1, x2 such that in an execution
of π`−1 on these inputs, P2 receives some output value y′ 6= f(x1, x2) with
non-negligible probability. Recall that honest-correctness applies to all inputs,
and thus its negation may apply only to a specific pair of inputs. Let x1, x2
be inputs for which π`−1 is not honest-correct; concretely, this means that with
non-negligible probability P2 outputs y′ 6= f(x1, x2).

We first prove that in π`−1, except with negligible probability, the output
received by P2 must be f(x̃1, x2) for some x̃1, where x2 is the input written on
P2’s input tape. Intuitively this follows from the standard correctness property
of secure protocols. Formally, in order to see this, we construct an adversary
A who controls P1 and interacts with an honest P2 running π. A runs the
protocol honestly with the exception that it halts after the (`− 1)th round, and
in particular, does not send its message in the `th round. By the security of
π, simulator S1 when run on adversary A outputs some x̃1 as P1’s input and
it holds that the honest party’s output in a real execution is indistinguishable
from f(x̃1, x2). Thus, P2 must output f(x̃1, x2) for some x̃1.7 (If this does not
hold then the distinguisher can always distinguish since the function has a finite
domain and so it can try all possible inputs for P1 and see if P2’s output is
f(x̃1, x2) for some x̃1.)

By what we have shown so far, when P1 and P2 run on inputs x1 and x2,
respectively, we have that P2 outputs f(x1, x2) in π`, but with non-negligible
probability outputs f(x̃1, x2) 6= f(x1, x2) for some x̃1 6= x1 in π`−1. In contrast,
in both π` and π`−1, party P1 has an identical view and thus has the same output.
Since we know that π` is honest-correct, this implies that P1 outputs f(x1, x2)
in both π` and π`−1. We now show that this yields a contradiction. Before
proceeding, we claim that there exist specific x∗1, x

∗
2, x̃
∗
1 for which the above holds

for infinitely many n’s. That is, we claim that there exist x∗1, x
∗
2, x̃
∗
1, an infinite

set of integers N ⊆ N and a polynomial p(·), such that when given inputs x∗1, x
∗
2,

respectively, P1 and P2 output f(x∗1, x
∗
2) in π` except with negligible probability

and in particular with probability greater than 1− 1
2p(n) . In contrast, P2 outputs

f(x̃∗1, x
∗
2) 6= f(x∗1, x

∗
2) in π`−1 with probability at least 1

p(n) . This holds since f

7 Note that this actually implies that f is non-constant, since f(x̃1, x2) = y′ 6=
f(x1, x2). Nevertheless, we do not need to assume this to prove this lemma (un-
like Lemma 1), since this follows from the contradicting assumption.



Secure Two-Party Computation with Fairness, Design Principle 13

has a finite domain: if f had an infinite domain then it would be possible that for
every n there would exist a different pair of inputs for which the claim holds.8

Let A′ be an adversary who controls P1 and interacts with an honest P2

with input x∗2 in a real protocol execution of (the untruncated) protocol π. A′
runs the honest party’s instructions with input x∗1 until the (` − 1)th round
after CR. Then, A′ applies a pseudorandom function (with a randomly chosen
key taken from its random tape) to its view up to round CR to determine if
it sends the `th message. If the pseudorandom function’s output is 0, then A′
sends the (CR + `)th message to P2 and halts; if the pseudorandom function’s
output is 1 then A′ halts immediately in round CR + `− 1 and before it sends
the (CR+ `)th message. We stress that S has only black-box access to A′, and
so cannot influence its input, auxiliary input and random-tape.9

We claim that S fails in the simulation of A′. In order to see this, we first
replace the pseudorandom function used by A′ by a truly random function.
By a straightforward reduction, the output of S with A′ using a truly random
function is computationally indistinguishable from whenA′ uses a pseudorandom
function.

Next, observe that S must send the corrupted P1’s input to the trusted
party in round CR and thus before it can see whether A′ sends its message
in the (CR + `)th round or not. However, this determines whether P2 outputs
f(x∗1, x

∗
2) or f(x̃∗1, x

∗
2) in the real model. Thus, S cannot know whether it should

send x∗1 or x̃∗1 to the trusted party. We now formally prove this argument.
Let D be a distinguisher who receives the output (including A′’s view and

P2’s output) and runs A′ on its view to see if A′ aborts at round CR + ` or
CR + ` − 1. If A′ aborts at round CR + ` and P2’s output is f(x∗1, x

∗
2) or if

A′ aborts at round CR + ` − 1 and P2’s output is f(x̃∗1, x
∗
2) then D outputs 1.

Else, D outputs 0. We now analyze the probability that D outputs 1 in the real
and ideal executions. Fix n ∈ N , where N is the infinite set of integers specified
above.

– Real execution: Recall that if A′ proceeds to round CR+ ` then P2 outputs
f(x∗1, x

∗
2) with probability greater than 1 − 1/2p(n), whereas if A′ halts at

round CR+ `−1 then P2 outputs f(x̃∗1, x
∗
2) with probability at least 1/p(n).

Furthermore, A′ proceeds with probability 1/2. We therefore have that for
every n ∈ N :

Pr[D outputs 1] ≥ 1

2
·
(

1− 1

2p(n)

)
+

1

2
· 1

p(n)
=

1

2
+

1

4p(n)
.

– Ideal execution: The main observation here is that the probability that P2

outputs f(x∗1, x
∗
2) or f(x̃∗1, x

∗
2) is independent of whether or not A′ proceeds

8 We believe that the proof would still hold for the case of infinite domain by providing
the inputs for which the claim holds as non-uniform advice to the adversary and
distinguisher. However, this would needlessly complicate things.

9 One could define a weaker type of black-box access where the simulator can provide
these values as part of its query. However, this would make no difference since we
would then define A’ to ignore the input, auxiliary input and randomness and use
hardwired values only.



14 Yehuda Lindell and Tal Rabin

to round CR + ` or halts at CR + ` − 1. This holds because P2’s output is
defined by the input provided by S and this is provided before S can know if
A′ halts in round CR+` or CR+`−1 since S can only send queries of length
CR to A′ before sending the input. (Note that if P2 outputs anything else
then D will output 0 and so this is not included in the calculation below.)
Thus:

Pr[D outputs 1] = Pr[A′ halts at CR+ ` and P2 outputs f(x∗1, x
∗
2)]

+ Pr[A′ halts at CR+ `− 1 and P2 outputs f(x̃∗1, x
∗
2)]

= Pr[A′ halts at CR+ `] · Pr[P2 outputs f(x∗1, x
∗
2)]

+ Pr[A′ halts at CR+ `− 1] · Pr[P2 outputs f(x̃∗1, x
∗
2)]

=
1

2
· Pr[P2 outputs f(x∗1, x

∗
2)] +

1

2
· Pr[P2 outputs f(x̃∗1, x

∗
2)]

=
1

2
·
(

Pr[P2 outputs f(x∗1, x
∗
2)] + Pr[P2 outputs f(x̃∗1, x

∗
2)]
)

≤ 1

2

where the second equality is by the independence of probabilities explained
above. We remark that in the last step, it is not equality since P2 may output
something else.

We have shown that for infinitely many n’s (for every n ∈ N), distinguisher
D distinguishes between the real and ideal executions with probability at least
1/4p(n). Thus, D distinguishes with non-negligible probability, in contradiction
to the assumed security of the protocol.

Lemmas 1 and 2 contradict each other therefore completing the proof of
Theorem 3.

The case of an honest majority. In the setting of multiparty computation with
an honest majority, our proof does not hold. This is due to the fact that our proof
relies inherently on the fact that when the adversary halts, the honest party can
receive no more information towards obtaining its output. Rather, its view until
that halting point is all that it receives. (Formally, this can be seen in the proof
of Lemma 2 where we say that P2’s output changes if A halts in round CR+`−1
or halts in round CR + `.) In contrast, when there is an honest majority, the
honest parties may continue to exchange messages even if all corrupted parties
halt.

Semi-trivial functions. Our proof holds for all non-constant functions, including
functions f that can be singlehandedly determined by one of the parties. In
particular, consider a function f such that for every x1 and all x2, x̃2 it holds that
f(x1, x2) = f(x1, x̃2), meaning that P2’s input is meaningless. Such a function
cannot be securely computed with fairness under our definition with a committal
round. However, observe that all such functions (with a polynomial-size domain)



Secure Two-Party Computation with Fairness, Design Principle 15

can be securely computed with fairness under Canetti’s definition using a trivial
protocol (in particular, the protocol of [20] is not required). Specifically, party
P1 can simply compute the output itself and send it to P2. This protocol is
fair since if P1 does not send the output then P2 can compute the function on
its real input and a default input for P1. (Note that P2 must also check that
the output is valid in that there exists such a value in the domain of f , and
otherwise should also compute a default output. Since we consider finite-domain
functions only here, P2 can always do this.) More formally, a simulator under
the definition of Canetti can obtain the value sent by a corrupted P1 and simply
find an input that leads to such an output (this is possible since the domain is
polynomial-size). Furthermore, when P2 is corrupted, the simulator just receives
the output and simulates P1 sending that value. Note that this protocol is not
secure under our definition with a committal round: if the committal round is
before P1 sends the message then the simulator in the case that P1 is corrupted
cannot send the input to the trusted party, and if the committal round is after
P1 sends the message then the simulator in the case that P2 is corrupted cannot
simulate the first phase.

References

1. G. Aggarwal, N. Mishra and B. Pinkas. Secure Computation of the kth-Ranked
Element. In EUROCRYPT 2004, Springer (LNCS 3027), pages 40–55, 2004.

2. N. Asokan, M. Schunter, and M. Waidner. Optimistic Protocols for Fair Ex-
change. In the 4th ACM Conference on Computer and Communications Secu-
rity, pages 8-17, 1997.

3. G. Asharov. Towards Characterizing Complete Fairness in Secure Two-Party
Computation. In TCC 2014, Springer (LNCS 8349), pages 291–316, 2014.

4. G. Asharov, A. Beimel, N. Makriyannis and E. Omri: Complete Characterization
of Fairness in Secure Two-Party Computation of Boolean Functions. In TCC
2015, Springer (LNCS 9014), pages 199–228, 2015.

5. G. Asharov, Y. Lindell and T. Rabin. A Full Characterization of Functions that
Imply Fair Coin Tossing and Ramifications to Fairness. In TCC 2013, Springer
(LNCS 7785), pages 243–262, 2013.

6. D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91,
Springer-Verlag (LNCS 576), pages 377–391, 1991.

7. D. Beaver and S. Goldwasser. Multiparty Computation with Faulty Majority.
In 30th FOCS, pages 468–473, 1989.

8. M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th STOC, pages
1–10, 1988.

9. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

10. R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 42nd FOCS, pages 136–145, 2001. Full version available
at http://eprint.iacr.org/2000/067.

11. R. Canetti and M. Fischlin. Universally Composable Commitments. In
CRYPTO 2001, Springer-Verlag (LNCS 2139), pages 19–40, 2001.



16 Yehuda Lindell and Tal Rabin

12. R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of Universal
Composable Two-Party Computation Without Set-Up Assumptions. Journal
of Cryptology, 19(2):135-167, 2006.

13. D. Chaum, C. Crépeau and I. Damg̊ard. Multi-party Unconditionally Secure
Protocols. In 20th STOC, pages 11–19, 1988.

14. R. Cleve. Limits on the Security of Coin Flips when Half the Processors are
Faulty. In 18th STOC, pages 364–369, 1986.

15. Y. Dodis and S. Micali. Parallel Reducibility for Information-Theoretically Se-
cure Computation. In CRYPTO 2000, Springer-Verlag (LNCS 1880), pages
74–92, 2000.

16. O. Goldreich. Foundations of Cryptography: Volume 1 – Basic Tools. Cambridge
University Press, 2001.

17. O. Goldreich. Foundations of Cryptography Vol. II – Basic Applications. Cam-
bridge University Press, 2004.

18. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game –
A Completeness Theorem for Protocols with Honest Majority. In 19th STOC,
pages 218–229, 1987. For details see [17, Ch. 7].

19. S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence
of Immoral Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77–
93, 1990.

20. S.D. Gordon, C. Hazay, J. Katz and Y. Lindell. Complete Fairness in Secure
Two-Party Computation. In the Journal of the ACM, 58(6):24, 2011. An ex-
tended abstract appeared at the 40th STOC, pages 413–422, 2008.

21. S.. Gordon and J. Katz. Complete Fairness in Multi-party Computation without
an Honest Majority. In TCC 2009, Springer (LNCS 5444), pages 19–35, 2009.

22. S. Micali. Simple and Fast Optimistic Protocols for Fair Electronic Exchange.
In the 22nd PODC, pages 12–19, 2003.

23. S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992.
Preliminary version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392–
404, 1991. (All references within refer to the unpublished manuscript.)

24. T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Protocols
with Honest Majority. In the 21st STOC, pages 73–85, 1989.


