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Abstract

We present Recursive Square Root ORAM (R-SQRT), a simple and flexible ORAM that can be
instantiated for different client storage requirements. R-SQRT requires significantly less bandwidth than
Ring and Partition ORAM, the previous two best practical constructions in their respective classes of
ORAM according to client storage requirements. Specifically, R-SQRT is a 4x improvement in amortized
bandwidth over Ring ORAM for similar server storage. R-SQRT is also a 1.33-1.5x improvement over
Partition ORAM under the same memory restrictions. R-SQRT-AHE, a variant of R-SQRT, is a 1.67-
1.75x improvement over the reported Partition ORAM results in the same settings. All the while,
R-SQRT maintains a single data roundtrip per query. We emphasize the simplicity of R-SQRT which
uses straightforward security and performance proofs.

Additionally, we present Twice-Recursive Square Root ORAM (TR-SQRT) with smaller client stor-
age requirements. Due to its flexibility, we construct several instantiations under different memory
requirements. TR-SQRT is asymptotically competitive with previous results, yet remarkably simple.
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1 Introduction

The concept of an Oblivious RAM (or, simply, ORAM) was introduced by Goldreich [9] and consists of a
protocol between a client and a server. The client has N data blocks each of size B remotely stored on
the server. The client wants to be able to access the data blocks in an oblivious manner. That is, while
hiding the access pattern. This can be easily achieved if every time the client wishes to access one block,
all N blocks are downloaded (in a streaming fashion) from the server, thus incurring in a linear bandwidth
overhead and requiring constant memory on the client side. The construction proposed by [10, 19], Square
Root ORAM (SQRT ORAM), introduced the first construction with bandwidth O(

√
N logN) blocks per

ORAM access. Since then, several other constructions have been presented trying to reduce the bandwidth
overhead as it is the main measure of efficiency along with client storage.

In this paper, we present constructions that recursively apply the ideas of SQRT ORAM with a focus on
simple and practical constructions. Our constructions should be flexible to handle different constraints in
real-world scenarios.

The idea of recursively applying ORAM schemes was presented as soon as the first non-trivial ORAM
construction was shown [10] and various other hierarchical constructions have been proposed [11,13,20] since
(see Section 2.1 for a discussion). Roughly speaking, the server storage of a recursive ORAM is partitioned
into l levels, for some integer l, and each level must be periodically shuffled into a higher level in an oblivious
manner. The need for oblivious shuffling was the main impediment to an efficient recursive ORAM with
low bandwidth overhead. This motivated the study of tree-based ORAMs, most notably the very elegant
Path ORAM [27] that dispenses with the need for an oblivious shuffle by instead continuously reshuffling
carefully chosen small portions of the server storage by entirely downloading to client memory. Tree-based
constructions though tend to be more complex to analyse and require sophisticated probabilistic arguments
to bound client memory usage (see Section 2.2).

In this work, we stay in the recursive field and present recursive ORAMs that are more efficient than
previous constructions. Early constructions employed sorting networks for oblivious shuffling (with total
bandwidth Ω(N logN)) and the first linear oblivious shuffling was given in [18]. We observe though that
known oblivious shuffling algorithms (including the ones based on sorting networks) protect from adversaries
that are much more powerful than the ones we have to deal with in ORAMs. Indeed, typically in a recursive
ORAM, the adversarial server learns the current position of a subset of the blocks (the ones that were
involved in client accesses performed since the previous reshuffle) and has no information on the remaining
untouched blocks. As a consequence, the untouched blocks need not to be “completely” re-shuffled and
this allows for a substantial saving in bandwidth, as shown in [21]. Further optimization can be made by
observing that a fraction of the blocks in each level are dummies. Dummy blocks do not contain any data
and are used only to hide which block the client really meant to download. Upload bandwidth optimization
for shuffling with dummies are also shown in [21].

Tree-based and recursive constructions share the need of downloading several blocks for each client access.
Indeed, recursive ORAMs download a block from each level of the server storage where at most one block is
real. Similarly, tree-based constructions download an entire path. The XOR technique [6] reduces the online
bandwidth in tree-based constructions. Unfortunately, this does not interact well with the optimization
regarding dummy blocks. Instead, we employ an oblivious selection technique using additive homomorphic
encryption to reduce the number of blocks transferred for each client access (see Section 7.3).

Our Contributions. Next, we outline our constructions and compare them to the current, state-of-the-art
constructions in various classes. All our constructions are conceptually simple and their analysis does not
require complex probabilistic arguments.

In Section 5, we present Recursive SQRT ORAM (R-SQRT) a construction that is parametrized by two
integers c and l that, roughly speaking, determine the degree and the depth of the recursion, respectively.
The client of R-SQRT stores a position map of size O(N/B) blocks which keeps track of the location of the
current version of each block. We give a detailed analysis of the hidden constants of R-SQRT in Section 7
showing that R-SQRT can be instantiated to use less bandwidth than previous state-of-the-art ORAMs with
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position maps. Specifically, we consider online bandwidth that is the number of blocks that are transferred
for each block access and amortized bandwidth that takes into account the blocks transferred to periodically
re-adjust the server storage (that is, to obliviously shuffle the blocks). In Section 6, we present a version of
R-SQRT, denoted R-D-SQRT, where the worst case and amortized bandwidth are equal while maintaining
small online bandwidth.

Our second construction, Twice Recursive SQRT ORAM (TR-SQRT), is shown in Section 8. TR-SQRT
derives from recursive storing the position map of R-SQRT and thus it removes the requirement of a client-
stored position map. By using different shuffling algorithms, we construct several variations of TR-SQRT
with different client memory sizes. The asymptotic results of TR-SQRT are competitive with previous works.
We also construct TR-D-SQRT that, using techniques similar to the ones in Section 6, reduces the worst
case bandwidth requirement of each client access.

Comparisons with Previous Constructions. In evaluating ORAM constructions, we look at band-
width, client memory and server memory. Throughout the rest of the paper, we refer to bandwidth as
the number of blocks transmitted between the client and the server (in either direction). For example, a
bandwidth cost of 5 means 5 blocks of data are being transmitted for each client block access. Bandwidth
is the most expensive resource and in this work we try to minimize it by keeping the server storage to be at
most c ·N , for some small constant c. To compare our result, we consider five classes of ORAMs according
to different client memory requirements. Thanks to the simplicity and flexibility of our constructions, we
present competitive ORAM constructions in each of the five classes.

First, we discuss two classes with focus on practical real-world constructions. The two classes require
storage of a position map of O(N/B) blocks and ω(logN) or O(

√
N) additional blocks, respectively. A

position map keeps track of the position of the current version of each block and, while asymptotically
inefficient, they are small enough to be practical in most real-world situations and they have been employed
in several practical ORAMs (most notably, Partition and Ring ORAM). For example, the position map of a
4 GB of memory consisting of N = 220 blocks of size B = 4 KB can be stored using only 256 blocks.

The first class of constructions requires ω(logN) blocks and a position map on the client. The best
construction in this class is Ring ORAM [22]. When instantiated to use 8N blocks of server memory,
Ring ORAM requires 6 log2N blocks of amortized bandwidth. Pushing server memory to an impractical
100N blocks reduces Ring ORAM’s amortized bandwidth to 2.5 log2N . When instantiated with depth
l = log2N − log2 log2N − 1 and c = 2, R-SQRT achieves 1.5(log2N − log2 log2N) blocks of amortized
bandwidth using 4N blocks of server memory. So, R-SQRT is a 4x improvement for practical server memory
sizes. In the table below we also mention R-D-SQRT whose worst case bandwidth is equal to the amortized
bandwidth (whereas R-SQRT has a much higher worst case).

Table 1: ORAMs with O(N/B) + ω(logN) Client Storage
Online Bandwidth Amortized Bandwidth Server Storage

Path [27] 4 log2N 8 log2N 8N
Ring [22] 1 6 log2N 8N
Ring [22] 1 2.5 log2N > 100N

R-SQRT 1 1.5 log2
N

log2N
4N

R-D-SQRT 1 1.5 log2
N

log2N
4N

Constructions in the second class require O(
√
N) blocks in addition to the position map in client memory.

Partition ORAM [26] is the best construction in this class and uses a little over log2N blocks of amortized
bandwidth with 4N blocks of server storage. When instantiated with depth l = 0.5 log2N − 1 and c = 2, R-
SQRT achieves 0.75 log2N blocks of amortized bandwidth with an identical 4N blocks of server storage thus
yielding a 1.33-1.5x improvement over Partition ORAM. By using dummy block optimization, we obtain
a variant of R-SQRT, R-SQRT-AHE, which is a 1.67-1.75x improvement over reported Partition ORAM
performance in the same settings.
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Table 2: ORAMs with O(N/B) +O(
√
N) Client Storage

Online Bandwidth Amortized Bandwidth Server Storage
Partition [26] log2N > log2N 4N
Path [27] 2 log2N 4 log2N 4N
Ring [22] 1 3 log2N 4N
Ring [22] 1 1.25 log2N > 50N

R-SQRT 1 0.75 log2N 4N
R-D-SQRT 1 0.75 log2N 4N

The ORAMs in the remaining three classes do not store a position map in the client. They are more
theoretical with a focus on asymptotics. The three classes are parametrized by available client storage of
O(N ε), ω(logN) and O(1) respectively. For each class, we construct a variant of TR-SQRT with different
oblivious shuffling algorithms. We remark that for the case of O(1) client memory, we use the AKS sorting
sorting network as the shuffling algorithm which is only of interest for large values of N . Nonetheless, the
asymptotic performance of TR-SQRT is competitive with previous best results in each class. We also remark
that TR-SQRT is the first hierarchical ORAM in the ω(logN) class with better performance from among
those that only need O(1) client storage. For comparison, we use TR-D-SQRT, the version of TR-SQRT
that reduces the worst case bandwidth, and we refer to the construction from Theorems 9, 10 and 11.

Table 3: ORAMs with O(N ε) Client Storage
Amortized Bandwidth Worst Case Bandwidth Client Storage

GMOT [12] O(logN) O(logN) O(N ε)

Partition [26] O
(

log2N
logB

)
O(
√
N) O(

√
N)

TR-D-SQRT O
(

log2N
logB

)
O
(

log2N
logB

)
O(N ε)

Table 4: ORAMs with ω(logN) Client Storage
Amortized Bandwidth Worst Case Bandwidth

Path [27] O
(

log2N
logB

)
O
(

log2N
logB

)
Ring [22] O

(
log2N
logB

)
O
(

log2N
logB

)
TR-D-SQRT O

(
log3N

log logN logB

)
O
(

log3N
log logN logB

)
Table 5: ORAMs with O(1) Client Storage

Amortized Bandwidth Worst Case Bandwidth Server Storage

Square Root [10] O(
√
N logN) O(N logN) O(N)

Hierarchical [10] O(log3N) O(N logN) O(N logN)

OS [20] O(log3N) O(log3N) O(N logN)

GMOT [11] O(log2N) O(log2N) O(N)

KLO [15] O( log2N
log logN ) O( log2N

log logN ) O(N)

TR-D-SQRT O
(

log3N
logB

)
O
(

log3N
logB

)
O(N)

2 Related Work

ORAMs have been previously applied to several scenarios. Wang et al. [30] used ORAMs to construct
oblivious versions of common data structures such as maps, sets, stacks and queues. In addition, oblivious
versions of common algorithms such as shortest-path are presented. Zahur et al. [31] investigated secure
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computation in the RAM model with the original SQRT ORAM of Goldreich and Ostrovsky. In this model,
ORAM is a primary building block as it provides a memory abstraction that can obliviously read and write
to arbitrary memory locations.

Previous ORAM protocols can be roughly divided into two classes: hierarchical and tree constructions.
We outline the best results in both classes.

2.1 Hierarchical Constructions

One class of ORAM constructions are called Hierarchical ORAMs. In general, Hierarchical constructions are
divided into several levels of memory, decreasing in size. After a query occurs, the retrieved data block is
stored in the level with the smallest memory. As levels fill, data blocks are oblivious moved to larger memory
levels.

The first Hierarchical construction was described in [10] by Goldreich and Ostrovsky, which required
O(log3N) amortized query bandwidth. However, the proposal required the use of expensive sorting networks
(either Batcher’s Sort [2] or AKS [1]) and O(N logN) server storage preventing it from being practical.
Further work done by Ostrovsky and Shoup [20] lowered the worst case to O(log3N).

More recently, work by Stefanov et al. [26] removed the use of expensive sorting networks by introducing
a clever partition framework. Each partition consisted of ORAMs with O(

√
N) blocks of capacity. All the

data blocks within a partition fit into a client memory. The oblivious sorting algorithms could be replaced
with a simple download and upload of partitions. Their construction required O(logN) amortized query
bandwidth and O(N/B) client memory. A second recursive construction reduced client memory to O(

√
N)

but O(log2N/ logB) amortized query bandwidth. Oblivistore [25] is implemented using partioning.
The best asymptotic results for ORAM have been shown by Goodrich et al. [11]. Using Cuckoo Hashing,

they present two constructions. The first construction required only O(logN) amortized query bandwidth
while using only O(N ε) client memory. Further work in [12] reduced the worst case to O(logN) for the first
construction. In their other construction, they reduced the client memory to O(1) but increased amortized
query bandwidth to O(log2N). Work done in [13] allows multiple stateless users to access the second
construction. Kushilevitz et al. [15], improved the bandwidth to O(log2N/ log logN) in the O(1) client
storage model. Unfortunately, these constructions have large hidden constants. While this class provides
the best asymptotic results, the constants prevent their use on a practical number of data blocks.

2.2 Tree Constructions

Shi et. al introduced tree-based ORAM constructions in [24]. In the elegant work of Stefanov et. al in [27], the
simple Path ORAM was proposed. Path ORAM has one of the best asymptotic and practical performances
obtained amongst tree constructions. Path ORAM required O(logN) worst case query bandwidth using
O(N/B) client memory. By recursively applying their ideas, a construction with O(log2N/ logB) worst case
query bandwidth, but only ω(logN) client memory is required.

Work done by Ren et. al introduced Ring ORAM [22], which improved the practicality of Path ORAM.
Online query bandwidth was decreased to O(1) using an XOR technique, first described in [6]. The overall
amortized bandwidth was decreased by 2.5x - 4x.

Two recent constructions have appeared using Garbled Circuits. In general, circuits are built to handle
the eviction process in the tree-based constructions. Wang et al. show that there exists a small circuit to
perform eviction in Path ORAM [28]. Garg et al. show that garbled circuits can reduce the number of
rounds in ORAM to exactly two [8]. SCORAM [29] was designed for small circuit complexity, for use in
secure computation. Unfortunately, garbled circuits still remain expensive for practical use.

Another ORAM construction using Homomorphic Encryption was introduced by Devadas et al. [7].
Using either the Damgard-Jurik cryptosystem or BGV somewhat homomorphic encryption without boot-
strapping [4], Onion ORAM only requires O(1) query bandwidth in the worst case with polylogarithmic
server computation. However, Onion ORAM requires block sizes of Ω(log5N) identifiers. For example,
when N = 220, blocks must be at least 8 MB.
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3 Problem Definition

We formally define the Oblivious RAM problem. The storage model and its assumptions are explained in
detail as well as the proper security definitions of obliviousness. We recall that RAM protocols store N data
blocks and allow clients to request any single block in a query.

3.1 Memory Model

Throughout this work, we assume that both the client and server have their own separate memory. Any
operations that are performed in the client’s memory is private and completely hidden from the server. The
server observes information data transmission between the client and server and all operations performed on
server memory.

The data is divided into N data blocks, each exactly size of B words. In addition to storing the B words,
each data block may store metadata. The metadata can include timestamps, indexes, positions, etc. When
we refer to performing an operation on the data block, we also perform the operation on the metadata. For
example, encrypting the data block means also encrypting the metadata.

3.2 Security

From a high level, ORAM protocols should guarantee two properties:

1. The server does not learn information about the contents of the N data blocks.

2. The server cannot distinguish any two access patterns to data blocks of the same length.

The first property is guaranteed by ensuring all data blocks are IND-CPA encrypted before being uploaded
to the server. Furthermore, all data blocks are re-encrypted when downloaded and re-uploaded. With fresh
randomness, the server is unable to link information between two different encryptions of the same block.
Therefore, the goal of ORAM protocols focus on the second property.

4 Tools

In this section, we discuss the main building blocks to our constructions. We specify the shuffling algorithms
which rearrange data blocks on the server in an oblivious manner. Next, we describe Square Root ORAM [10]
in detail, which is the basis of our constructions.

4.1 Oblivious Shuffling

The Oblivious Shuffle problem was first introduced in [18]. Suppose that an untrusted adversarial server
is currently storing N data blocks in the source array A. The N blocks are stored according to some
permutation π, that is block i is stored at A[π(i)]. The goal of shuffling is to move all N data blocks in
A to a destination array D according to some new permutation σ. Formally, after the shuffle algorithm
terminates, block i should be located at D[σ(i)]. For a shuffling algorithm to be oblivious, the server should
not learn about σ or data block contents.

Ohrimenko et al. [18] proposed the first O(N) oblivious shuffling using only O(N ε) client memory, named
the MelbourneShuffle. Previously, oblivious shuffling had been performed using Ω(N logN) oblivious sorting
algorithms like Batcher’s Sort or AKS.

Patel et al. [21] introduced the notion of a K-Oblivious Shuffle, a variant of the Oblivious Shuffle al-
gorithm. In Oblivious Shuffling it is implicitly assumed that permutation π is entirely revealed to the
adversarial server. This is rarely the case when Oblivious Shuffle is used as a component in a larger ORAM
construction. Indeed, in our constructions everytime (a level of) the server memory is to be reshuffled, it is
well known the number K of the values of π known to the server and the actual values (as they correspond
to client accesses that have taken place between two consecutive reshuffles). In the same work, the first
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K-Oblivious Shuffle algorithm, CacheShuffle, is presented. With O(K) blocks of client storage, CacheShuffle
requires exactly 2N blocks of bandwidth to shuffle. Note that nothing is gained asymptotically but, as we
are interested in concrete construction, the small constant 2 allows us to construct a more efficient ORAM.
Additional optimizations are shown for handling dummy blocks using polynomial interpolation.

4.2 Revisiting Square Root ORAM

We revisit the first ORAM by Goldreich and Ostrovsky [10], that we refer to as the SQRT ORAM. We
present a variation, which we call GO. GO consists of a shelter Sh stored in client memory and of a server
storage denoted by M. GO is parametrized by S, the number of data blocks stored in the shelter Sh. We
note GO uses more client memory than the original SQRT ORAM but it is a more intuitive building block
for the rest of our work.

For N data blocks, B = B1, . . . , BN , the server storage M is of size N + S; N of the data blocks are real
and S are dummy data blocks. We use the notation GO(B, S) to denote an instantiation on the N blocks of
B using a shelter, Sh, with S blocks. We will assume that M[q] and Sh[q] refers to access of array location
q of M and Sh respectively. In the original Square Root ORAM, the shelter is stored on the server and
downloaded before each query. In GO, instead, Sh always stays on the client.

Additionally, the client stores a position map, PM. PM keeps essential information to help query data
blocks. Specifically, for all block Bi, PM[i] = (levi, posi) stores a level and a position. The level levi ∈
{Sh,M}, denotes whether Bi is currently in the shelter or main. The position, posi, specifies the location of
Bi within the structure. Note, the position map is not explicit in the original construction, but is useful for
our future protocols.

The system is initialized by the client by randomly selecting a permutation π of [N + S] and by storing
data block i, for i = 1, . . . , N , in encrypted form at location π(i) in M on the server. We note that i is the
virtual location of Bi and π(i) is the physical location of Bi. The dummy data blocks, found at locations
π(N + 1), . . . , π(N + S) in M, contain encryptions of arbitrary plaintexts of size B. For all blocks Bi where
i ∈ {1, . . . , N}, PM is initialized such that PM[i] = (M, π(i)). The protocol proceeds in two alternating
phases: the query phase and the oblivious shuffle phase.

A query phase consists of S queries and the client keeps counters dCnt and nSh initialized to N + 1
and 1, respectively. These counters keep track of the next unqueried dummy block and of the next empty
location in Sh. A read query for data block q ∈ [N ] is executed in the following way. First, the client
retrieves PM[q] = (levq, posq). If levq = M then Bq is stored as M[posq]. The client then queries the server
for data block in position posq of M; the block received is decrypted and returned; and a copy is stored in
Sh[nSh]. The position map is updated by setting PM[q] = (Sh, nSh) and nSh is incremented. This implies
that during the execution of the algorithm, there could be two copies of the same block, one on M and one
in Sh. The block in M is considered obsolete and does not affect subsequent reads. Contrarily, the block in
Sh is considered fresh. If instead, levq = Sh, then Bq is stored as Sh[posq] and the data block in Sh[posq]
is returned. The client also queries the server for data block in physical location π(dCnt) of M which is
immediately discarded. Finally, dCnt is incremented. The dummy data block is retrieved to hide that the
requested data block exists in Sh. The counter dCnt is incremented to guarantee that no dummy data block
is retrieved twice.

A write query for data block q is executed exactly like a read query. However, instead of writing the
original block Bq into Sh, the new block is written instead. The algorithm never writes any data block to M
on the server and any updates to data blocks will be reflected in Sh on client memory. Also, no block of M
is accessed more than once and exactly S different blocks are accessed.

After S queries, the protocol shifts to the oblivious shuffle phase. In the original protocol of [10], oblivious
sorting algorithms are used. To modernize the construction, we use a S-Oblivious Shuffle algorithm on the
N + S data blocks of M according to a new pseudorandomly generated permutation σ. We assume the S
accessed blocks of M are the S revealed indices of π. All obsolete data blocks on M will be replaced by their
fresh version in Sh during the shuffle. After shuffling, Sh is emptied, as all of its data blocks have been moved
back to M. Both dCnt and nSh are initialized to N + 1 and 1 respectively. Finally, π is replaced by σ and
the protocol returns to the query phase.
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(a) Querying for a data block which is in Shl. (b) Querying for a data block which is on the server.

Figure 1: Diagrams of Query Algorithm for R-SQRT.

5 The R-SQRT ORAM

We present Recursive SQRT ORAM (R-SQRT) obtained by recursively applying SQRT ORAM on the shelter
data blocks. At a high level, we are increasing the server storage cost to lower the amortized query cost
compared to GO arising from shuffles.

5.1 Warm Up: Two Levels

We first describe a two-level version of our first construction. This will be extended to an arbitrary number
of levels later.

Suppose that we are given N data blocks, B = B1, . . . , BN . Fix a constant c > 1. We consider a first
instance Ram1 := GO(B, N/c), which we will denote as the first level of the construction. Recall, Ram1

provides an ORAM for the N1 := N data blocks of B using S1 := N/c data blocks of client memory. Ram1

stores N1 + S1 data blocks on the server in M1, where N1 of the data blocks are real (from B) and the
remaining S1 are dummy. Ram1 stores S1 data blocks on the client in Sh1.

We recursively apply the GO construction on Sh1. Specifically, we construct Ram2 := GO(Sh1, S1/c),
which is the second level. Ram2 provides oblivious queries to the N2 := S1 data blocks of Sh1 using S2 := S1/c
data blocks on the client. Again, Ram2 consists of server storage, M2, of N2 + S2 data blocks and client
storage, Sh2, of S2 data blocks. We stop the recursion at Ram2. As we shall see in the next section, we can
proceed for O(logN) steps to achieve better performance.

Since Sh2 is completely stored on the client storage, we may obliviously access blocks of Sh2. For
convenience, we can imagine that Ram3 := Sh2. We note that Sh2 is not constructed using the GO protocol,
but is just stored in the client. Similarly, it turns out that nSh1 is not needed in this construction since Sh1

is stored using Ram2. For simplicity, we will define nSh := nSh2.
Taking a look at the entire memory organization, the server currently stores M1 and M2, using a total of

N1 + S1 +N2 + S2 = N(1 + 1/c+ 1/c+ 1/c2).

For simplicity, it is useful to imagine Sh0 := B. We note that Sh0 and Sh1 are virtual. To access Sh0 and
Sh1, we use Ram1 and Ram2 respectively. Recall that each Rami uses a permutation πi, which maps virtual
locations to physical locations. Therefore, virtual location p of Rami currently stored physically in πi(p).
For the client storage, we observe that, since we stopped at Ram2, the N/c2 data blocks of Sh2 (= Ram3) are
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physically stored on the client. In addition, the client will also store a position map, PM, which maps each
to the level where that block is available for querying. Formally, for every block Bi, PM[i] = (levi, posi),
which means that Bi is currently stored at Ramlevi at virtual location posi. Before any queries, the position
map is initialized such that PM[i] = (1, π1(i)) for all blocks i ∈ [N ]. We stress that there is only one PM for
the entire construction.

Recall, the query algorithm for GO consists of searching in Sh and M. We slightly modify the query
algorithm for our new construction. For Ram1 (Ram2), searching in Sh1 (Sh2) will now be handled by a
query to Ram2 (Ram3). Therefore, a query to Rami will now only search Mi. Formally, a query to Rami for
virtual location p will consist of retrieving Mi[posp], where the physical location posp is stored at PM[p]. A
query to the entire protocol will be broken down to exactly one search to each level. In this case, there will
be one query to each of Ram1,Ram2 and Ram3.

Before the query phase, all N items of Sh0 are stored in Ram1, while Ram2 is empty (since Sh1 is also
empty). To query for block Bq, first look into the position map, PM[q], to retrieve (levq, posq). We now
break up the algorithm into the different possible values of levq.

If levq = 3, we send a query for physical location posq to Ram3. We will send queries to dummy blocks
to each of Ram1 and Ram2. Formally, we query for virtual locations dCnt1 and dCnt2 (which translates to
physical locations π1(dCnt1) and π2(dCnt2)) to Ram1 and Ram2 respectively. Finally, the counters dCnt1
and dCnt2 are incremented by 1 so that we do not query the same dummy block twice. For write queries, the
new block is uploaded Ram3[nSh] and PM is updated such that PM[q] = (3, nSh). Finally, nSh is incremented
for both read and write queries.

If levq = 2, then the desired block is stored in Ram2 at physical location posq. Note, since Ram3 is stored
on the client, we do not need to send a dummy query. We send a query to posq for Ram2 and a dummy
query to π1(dCnt1) to Ram1. We then increment dCnt1 to ensure we do not query the same dummy block
twice. Now, we move Bq to physical location nSh of Ram3 and update PM[q] = (3, nSh). For write queries,
we write the new block instead of Bq to Ram3[nSh]. The update to the position map reflects that Bq is only
available from Ram3 now instead of Ram2. Next, we increment nSh to represent the next empty location
in Ram3. The algorithm is identical for levq = 1, by sending a dummy query to Ram2 and a real query to
Ram1 instead.

During the query algorithm, we note that blocks only travel down to Ram3. After S2 queries, Ram3 will
become full. At this point, we perform an oblivious shuffle to move all S2 data blocks of Ram3 into Ram2.
After shuffling, we must update PM so that queries know the correct location of all blocks. When a block
Bi is moved into physical location p of Ram2, we set PM[i] = (2, p). Additionally, dCnt2 and nSh are reset
to N + 1 and 1 respectively. Note, after another S2 queries, Ram3 will become full again. We can repeatedly
shuffle the S2 data blocks into Ram2. After c shuffles, Ram2 becomes full. At this point, we shuffle all S1 data
blocks of Ram2 into Ram1. Again, the position map entries for all S1 data blocks of Ram2 must be updated
accordingly and dCnt1 is reset. In general, Ram1 performs a shuffle every S1 queries and Ram2 performs a
shuffle every S2 queries.

5.1.1 Modified Oblivious Shuffle

In this section, we discuss the details of the K-Oblivious Shuffle algorithm. Recall, that shuffles moves N
data blocks from the source array A to a destination array D. The N data blocks are arranged according
to π in A prior to the shuffle, where K entries of π are revealed. After the shuffle, the N data blocks are
arranged according to σ in D.

In the two level description, the shuffling algorithm is expected to update the position map PM as well
as replace obsolete data blocks. To ensure obliviousness, any algorithm must download all N data blocks at
least once. Note that if PM[i] = (levi, posi), then the fresh version of block Bi is found at physical location
posi in Ramlevi . Upon uploading a block Bi to physical location p in Ramj , we will append encrypted
metadata including the block’s identity i, its virtual location of insertion p and its level of insertion j. When
block B is downloaded for a shuffle, the client checks using PM if B is fresh. If B is obsolete, B will be
replaced with a dummy block. Otherwise, if B is fresh, we ensure to update PM to reflect the new level and
physical location of B after the shuffle.
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5.1.2 Reducing Online Query Bandwidth

In the two-level ORAM we have described, a query requires 2 blocks of bandwidth, one block from each
of GO1 and GO2. We can reduce the query bandwidth to exactly 1 data block using the XOR technique,
first introduced by Dautrich et al. [6] to reduce the bandwidth requirement of their proposed Burst ORAM
construction to 1 block per request. The technique was also used in the construction of Ring ORAM [22].
We will describe the general technique as well as its application to our constructions.

Suppose that the server holds N ciphertexts computed using a deterministic encryption scheme. The
client knows the keys used to compute the ciphertexts and the plaintexts of N − 1 ciphertexts. What is the
required bandwidth for the client to learn the one missing plaintext without leaking which ciphertext he is
learning? In the simplest protocol, the server could send all N ciphertexts to the client. The client would
decrypt the single ciphertext for which the plaintext is unknown. The XOR technique gives a more efficient
protocol in which the server sends the XOR of all N ciphertexts. The client recreates the ciphertexts of
the known N − 1 encryptions and XORs them out. The final result is the ciphertext of the only unknown
plaintext, which can be decrypted. The total bandwidth has been thus decreased to exactly one block.

To apply the XOR technique to in our two-level ORAM, we observe that at most one data block returned
from GO1 and GO2 is real. We thus modify our construction so that all all dummy blocks are 0 and use
a different key for each data block based on their level and physical location. This is needed to avoid that
all dummy blocks being equal and being deterministically encrypted using the same key would result in the
same ciphertext. Specifically, we will store two keys K1 and K2, for Ram1 and Ram2, respectively. The
key for encrypting data block at physical location p in Rami will be F (Ki, p), where F is a pseudorandom
function. After shuffling, the keys K1 and K2 will be selected again uniformly at random. We stress
that in our construction, each physical position of Rami holds at most one encrypted data block between
two consecutive oblivious shuffles. Since keys are refreshed during shuffles, each key of the deterministic
encryption scheme is used to encrypt at most one block. For a concrete instantiation, we can use AES
encryption under Galois Counter Mode (GCM).

5.2 The Full Construction

We now describe the Recursive Square Root ORAM, R-SQRT for short. Diagrams of R-SQRT can be seen
in Figure 1. The construction is parameterized by a constant c > 1 and integer l ≥ 1. The parameter l
represents the number of levels of recursion applied. Given input B = B1, . . . , BN of N data blocks each
of size B, R-SQRT(B, c, l) provides oblivious access to B. The construction from the previous section is
obtained from R-SQRT(B, c, 2), by setting l = 2. As done previously, we will define Sh0 := B for simplicity.

Identical to before, Ram1 := GO(Sh0, N/c), which consists of M1 on the server and Sh1 on the client, is
the first level. We apply this recursion l times. So, Ram2 := GO(Sh1, N/c

2), . . . ,Raml := GO(Shl−1, N/c
l)

are levels 2, . . . , l respectively. Finally, Shl is stored completely on the client allowing for oblivious access to
Shl. Therefore, for simplicity, we denote Raml+1 := Shl as level l+ 1. Similar to previous section, we denote
Ni := N/c(i−1) to be the number of data blocks that are stored in Rami. Also, Si := N/ci is the size of the
shelter of Rami (except Raml+1, which has no shelter).

As previous, R-SQRT(B, c, l) will store a position map, PM, on the client. For each block Bq, PM[i] =
(levq, posq) represents that block Bq can be retrieved from Ramlevq at physical location posq.

In the exact manner as the previous section, we modify the queries of each instance of Rami. Each
query of GO performs a search in the shelter Sh and M. We let queries to Rami+1 handle the search to Shi.
Therefore, each query to Rami for virtual position p consists of retrieving Mi[posp], where posp is stored at
PM[p]. A query to R-SQRT(B, c, l) consists of exactly one query to each of Ram1, . . . ,Raml+1.

Suppose that a query to Bq is requested. First, a lookup to the position map occurs to retrieve PM[q] =
(levq, posq). For each level i 6= levq, a query to dummy block at physical location πi(dCnti) is sent and
dCnti is incremented. Note, no dummy queries need to be sent to Raml+1. One real query is performed
to Ramlevq for physical location posq. Since, at most one real data block is queried, the XOR technique
still applies. That is, the server retrieved blocks for Ram1, . . . ,Raml can be XOR’d together before being
returned. We ensure that each Rami will have have their own key Ki like in the previous construction.
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Using the same logic from the previous section, we see that a shuffle occurs for Ram1 every O(S1) queries.
In general, every Rami must shuffle every O(Si), except for Raml+1 that never shuffles. During each shuffle,
we ensure to re-initialized dCnti, nSh to Ni + 1 and 1 respectively as well as refresh Ki. Pseudocode is
provided in Appendix C.

5.2.1 Reducing the Number of Oblivious Shuffles

To further improve practical performance, we generalize the oblivious shuffle algorithm beyond a single input
array. Consider an l-level construction after exactly Si queries have been performed. In the description, we
shuffle Sl blocks from Raml+1 into Raml. Then, we move Sl−1 blocks from Raml into Raml−1. In general,
we sequentially shuffle Sj blocks from Ramj+1 into Ramj for all j = l, l − 1, . . . , i + 1, i, requiring l − i + 1
oblivious shuffles.

We show that this movement can be achieved with exactly one shuffle. Note that all the blocks currently
stored in Raml+1, . . . ,Rami+1 will be moved into Rami. Conceptually, we can concatenate the current
blocks of Raml+1, . . . ,Rami to be a single input array and construct a super permutation over the combined
input array using πl+1, . . . , πi. Note, the input array will be larger than the output array as a result of the
accumulated dummy blocks from the higher levels. We can ensure to remove all dummies and only introduce
exactly Si to Rami.

The decrease in the number of total shuffles does not affect the asymptotic behavior. Note, Rami still
shuffles every O(Si) queries. However, the performance improvements in practice are significant as will be
shown later.

5.2.2 Analysis of R-SQRT

Theorem 1. R-SQRT is an ORAM.

Proof. For each query q, exactly one query is issued to each of Ram1, . . . ,Raml. Also, for each Rami, exactly
Si queries are performed to Si distinct array locations between oblivious shuffles. Furthemore, the Si chosen
locations are generated completely at random and independent from the data and access sequence. Therefore,
R-SQRT is an ORAM protocol.

For the rest of this section, we will assume that R-SQRT uses the CacheShuffle [21] version requiring
O(N ε) blocks of client memory, O(N) blocks of server memory and O(N) total bandwidth. The Melbour-
neShuffle [18] could also be used.

Theorem 2. R-SQRT with l levels of recursion has amortized query bandwidth of O(l), online query band-
width of O(1) using O

(
N
B + N

cl
+N ε

)
data blocks of client storage and O(N) blocks of server storage.

Proof. Note, every Rami stores Ni+Si = N
c(i−1) +N

ci blocks on the server in Mi. Additionally, the CacheShuffle

requires O(N) server memory. Therefore, the total server storage is
l∑
i=1

(
N

c(i−1) + N
ci

)
+O(N) = O(N). The

PM stores O(1) number of words for each block. So, PM uses O(N) words or O(N/B) blocks of client
storage. Raml+1 requires O(Sl) = O(N/cl) blocks of client storage. Note, Ram1, . . . ,Raml do not require any
client storage. Also, the CacheShuffle requires O(N ε) blocks of client memory. So, the total client storage is
O(N/B +N/cl +N ε) data blocks.

Due to the XOR technique, our construction only requires O(1) data blocks of bandwidth for online
queries. The remaining bandwidth come from shuffling. It suffices to compute the amortized bandwidth in
the period between shuffles of Ram1. This period consists of S1 = N/c queries. Note, Rami shuffles every
Si = N/ci queries. Thus, Rami requires c(i−1) shuffles in this period. Recall that the CacheShuffle requires

O(N) bandwidth. Therefore, the total shuffling bandwidth of this period is
l∑
i=1

c(i−1) ·O
(
N
ci

)
= O(l ·N). So,

the amortized bandwidth is O(l), since c is constant.
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Theorem 3. There exists an ORAM construction that has O(1) online query bandwidth and O(logN)
amortized query bandwidth using O(N/B) blocks of client storage and O(N) blocks of server storage.

Proof. By Theorem 2 for c = Θ(1) and l = Θ(logN).

6 Lowering Worst Case Bandwidth

We note that, in the worst case, R-SQRT requires Θ(N) bandwidth to satisfy a client access and this happens
when Ram1 is being shuffled. We show that a slight modification to the previous construction gives a new
construction, that we call R-D-SQRT, with an O(l) worst case bandwidth overhead. To achieve this, we
perform the oblivious shuffle slowly over time. Specifically, at each level, we will perform some constant
number of steps of the shuffle algorithm with each query. With this approach, we design the algorithm to
ensure that the oblivious shuffling will be complete before the shuffled data is required.

6.1 Query Distributed Oblivious Shuffling

In this section, we describe how to distribute the operations of shuffling algorithms over many queries. We
explain the protocol for a single level, Rami but all levels are performing steps of the oblivious shuffle with
each query.

The algorithm consists of two phases: a Collection and Work phase. The Collection phase collects data
blocks that require shuffling. Once all data blocks have been collected, the Work phase performs the necessary
steps of the oblivious shuffle algorithm. Both the Collection and Work phase for Rami occur over exactly
Si/2 queries.

The basic intuition of our algorithm is that the shuffle of Rami is essentially moving the previously Si
queried data blocks into Rami. We double the number of shuffles occurring by forcing a shuffle every Si/2
queries. The goal of the Collection phase is simply collect the last Si/2 queries, which need to be shuffled
into Rami. The client will upload an encryption of the queried data block, which will be stored in a queue
Ci of Si/2 size. The blocks placed in Ci are not involved in querying (or XOR technique), so they can be
probabilistically encrypted using a single key.

After Si/2 queries, the Work phase begins. The Work phase will perform the oblivious shuffle on input
Ci concatenated with the Ni + Si data blocks of Rami. As mentioned previously, intermediate encryptions
can be done using any probabilistic scheme and a single key. The final encryption before a block is placed
into its correct location must be done using the properly derived key outlined in the XOR technique. We
divide the necessary operations over Si/2 queries to ensure well-distributed performance.

Note, during the Work phase, queries are still occurring that need to be collected for the next oblivious
shuffle. Therefore, a Collection phase must be simultaneously occurring. In general, at any point, exactly one
Work and Collection phase will be executing. Thus, exactly two oblivious shuffles are always simultaneously
running.

We can further optimize the Collection phase by taking a look at the collective behaviour of all levels. In
general, all levels are collecting the same data blocks. Therefore, we could instead keep a single queue C,
which is global to all levels, of size S1. C will store the last S1 queried data blocks. The Work phase of any
level may perform the oblivious shuffle over the correct subarray.

Theorem 4. If the underlying shuffle algorithm is oblivious, the query distributed shuffle algortihm is also
oblivious.

Proof. The only difference between the underlying shuffle algorithm and the query distributed shuffle algo-
rithm is the number of steps performed at each query. Since, the number of steps performed at each query
is independent of the input, the query distributed shuffle algorithm is also oblivious.
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6.2 The R-D-SQRT ORAM

We now combined the above query distributed oblivious shuffling algorithms with an l-level construction
to get a worst case O(l) query cost. We will denote this construction as the Recursive Distributed Square
Root (R-D-SQRT, for short). Unfortunately, we have to slighlty alter R-SQRT to use the query distribution
shuffle.

Consider the shuffle algorithm after exactly Si queries. For simplicity, we will refer queries indexed in
their order. For example, q1 will be the first query issued by the client. Only the first Si/2 data blocks of
queries, q1, . . . , qSi/2 have been shuffled and are ready for use in Rami. The last Si/2 queried blocks are not
available yet in Rami. However, the blocks of queries qSi/2+1, . . . , qSi/2+Si+1/2 are available in Rami+1, which
is Si/4 of the last queried blocks. Similarly, Si/8 of the last queried blocks are available in Rami+2, Si/16 in
Rami+3 and so forth. By our design, each of the last Si queries are available in Rami, . . . ,Raml+1, where the
most recent queries appear in higher levels. Note, this is slightly different from the previous construction,
which guaranteed that all previous Si queries would be available at Rami.

Theorem 5. R-D-SQRT has worst case query bandwidth O(l) using O
(
N
B + N

cl

)
data blocks of client storage

and O(N) blocks of server storage.

Proof. Note, we only increased the number of shuffles by a factor of two. Therefore, the total query bandwidth
remains the same as R-SQRT. On the other hand, the worst case query bandwidth becomes the same as the
amortized query bandwidth of R-SQRT, which is O(l).

The only increases in memory are incurred by the Collection and Work phases. For the Collection phase, we
only require an extra O(N) data block of storage. Similarly, for each Rami, the Work phase requires O(Ni) =

O(N/c(i−1)) extra blocks of storage. Therefore, the total increase in server storage is
l∑
i=1

O(N/c(i−1)) =

O(N). Finally, note the client storage does not change.

6.2.1 Number of Server-Client Online Rounds

The number of data transmission rounds between the server and client is important for practical performance.
Due to the possible physical distance between the server and client, a large number of rounds potentially
increases overhead. Therefore, we wish to keep the number of rounds to be exactly one. We show this is
possible for R-D-SQRT.

During the Collection phase, queried data blocks need to be encrypted and uploaded to the server. The
most naive way to upload the queried data block would be to first query for the block and upload it. However,
that requires two rounds of data exchange. Instead, the queried data block may be uploaded with the next
query request.

Similarly, the steps of a Work phase can be split into download and upload requests. Note, these can
also be done with just a single round of data transmission. Data blocks to be uploaded can be sent with
the original query request. Download requests can also be sent with the original query request and the data
blocks can be sent back with the original query response. Note, simultaneously running Work and Collection
phase are independent so they may be combined with the original query request.

6.2.2 Flexibility of Bandwidth Distribution

In this section, we discuss the flexibility of the query distributed shuffling algorithm. The description of the
query distributed algorithm describes a protocol that ensures all queries uses almost identical amounts of
bandwidth. However, there is no reason that bandwidth costs could be distributed in other manners.

As an example, suppose that clients distinguishes queries as high and low priority. High priority queries
should happen as quickly as possible, while low priority queries can incur larger overheads. Then, high
priority queries could skip performing the steps of oblivious shuffling. Low priority queues could become
slightly slower by executing all the steps that were skipped by the previous high priority requests. In fact,
there is no reason that shuffling steps have to be even performed with a query. At any point in time, the
client could perform the oblivious shuffle operations that were skipped by previous queries.
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In general, all types of bandwidth cost distribution can be constructed. For example, queries can parti-
tioned into a larger number of priority classes, each incurring the different bandwidth costs. Some clients
might wish for extremely fast queries and perform all the shuffling costs during downtime (at night). The
original R-SQRT construction suffices for this case. We could also distribute costs like Ring ORAM [22],
where almost every query is extremely fast. However, every Q-th query incurs a larger overhead, where Q
is small (for example, Q = 8). We use this cost distribution when comparing with Ring ORAM in a later
section.

7 Practical Instantiations of R-SQRT

In this section, we provide a detailed analysis of the constants for R-SQRT and describe some techniques
and tuning that yield practical instantiations.

7.1 CacheShuffle for R-SQRT

Throughout this section, our constructions will use CacheShuffle [21], specifically CacheShuffleKK (CSK
K). CSK

K

assumes that K indices of the input permutation π are revealed and O(K) blocks of client memory. Suppose
CSK

K is shuffling N blocks and outputting M blocks. Note, M ≥ N due to dummy blocks. CSK
K requires N

and M blocks of download and upload. When applying to R-SQRT, it turns out the K revealed blocks are
in client memory before CSK

K starts. So, only N −K blocks of download are required.
Let us consider the R-SQRT construction with c = 2 without a set value for l yet. Then, R-SQRT consists

of Ram1, . . . ,Raml+1. In the table below, we outline the number of real and dummy blocks available at each
level. Additionally, for each Rami, we determine the times and frequency of shuffles that move blocks into
Rami. Therefore, the entries of Raml+1 for shuffling are not relevant since no blocks are ever moved into
Raml+1 by a shuffle.

Real
Blocks

Dummy
Blocks

Shuffle Times Shuffle
Frequency

Ram1 N N N, 2N, 3N, . . . N

Ram2
N
2

N
2

N
2 ,

3N
2 ,

5N
2 , . . . N

Ram3
N
4

N
4

N
4 ,

3N
4 ,

5N
4 , . . .

N
2

. . . . . . . . . . . . . . .

Raml−1
N

2(l−2)
N

2(l−2)
N

2(l−2) ,
3N

2(l−2) , . . .
N

2(l−3)

Raml
N

2(l−1)
N

2(l−1)
N

2(l−1) ,
3N

2(l−1) , . . .
N

2(l−2)

Raml+1
N

2(l−1) 0 N/A N/A

Before any queries have arrived, Ram1 is filled withN real blocks andN dummy block. All of Ram2, . . . ,Raml+1

are empty. As blocks are queried, resulting data blocks are stored in Raml+1. Note, that Raml+1 stores
N/2(l−1) data blocks on the client. For convenience, suppose that K := N/2(l−1). These K blocks will be
the revealed indices of π and exist in client memory before CSK

K is executed. After K queries, CSK
K moves

all blocks from Raml+1 into Raml. Note, that Raml+1 is emptied immediately afterwards. In general, when
shuffling into Rami, the levels Raml+1,Raml, . . . ,Rami+1, are emptied.

We note that when CSK
K moves blocks into Rami, Rami will always be empty (with the only exception

being Ram1). Suppose that Rami is not empty, which means the since the last shuffle into Rami, only higher
levels have been shuffled into. If a level lower than Rami was shuffled, all the blocks of Rami would have been
moved and Rami would be emptied. However, blocks will be shuffled into Rami+1 before the next shuffle
moves blocks into Rami. Thus, when CSK

K shuffles into Rami, Rami will be empty.
Suppose that CSK

K is moving blocks into Rami from Raml+1, . . . ,Rami+1 where i 6= 1. Raml+1 is currently
filled with the K last queried data blocks, all of which are stored on the client. Furthermore, Raml stores K
real and dummy blocks respectively and K of these blocks were touched during queries. Our key observation
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is that touched blocks do not need to partake in shuffles. If the touched block was a dummy, then CSK
K can

ignore as we can always create new dummy blocks easily. For all touched real blocks, their fresh decrypted
version exist in Raml+1. So all touched blocks can be ignored. Generalizing, it turns out half of the blocks
of each of Raml, . . . ,Rami+1 have been touched. The source array of CSK

K will be the untouched data blocks
of each of Raml, . . . ,Rami+1. All queried data blocks are in Raml+1 and already available on the client. So,
we may use CSK

K without downloading the K touched blocks first.
When CSK

K shuffles into Rami, CSK
K will get K queried data blocks already on the client and N/2(l−1) +

N/2(l−2) + . . . + N/2i = N/2(i−1) − N/2(l−1) untouched data blocks from Raml, . . . ,Rami+1. CSK
K must

output N/2(i−2) data blocks. Acute readers might notice that the number of output data blocks is larger
than the number of total input blocks. However, half the output data blocks will be dummy blocks. To send
a dummy block, the client will simply encrypt 0 and upload it to the server. So, the cost of CSK

K is simply
downloading the untouched data blocks and uploading the total number of output blocks since all queried
data blocks are already on the client, which is N/2(i−1) −N/2(l−1) +N/2(i−2) = 3N/2(i−1) −N/2(l−1). We
now look at the total cost of shuffling into Rami over N queries. Over N queries, blocks are moved into
Rami at most N

(N/2(i−2))
times. Therefore, the total cost is(

3N

2(i−1)
− N

2(l−1)

)
(2(i−2)) = N

(
3

2
− 2(i−l−1)

)
.

The total cost of shuffling into Ram2, . . . ,Raml is

l∑
i=2

N

(
3

2
− 2(i−l−1)

)
=

3N(l − 1)

2
− N

2l

l∑
i=2

2(i−1)

=
3Nl

2
− 3.5N +

N

2(l−1)
.

Note, Ram1 is slightly different since it is not empty when being shuffled. There are N untouched blocks in
Ram1 in addition to the N/2 + . . . + N/2(l−1) ≤ N untouched blocks of Ram2, . . . ,Raml. Finally, 2N data
blocks must be placed into Ram1 giving a total cost of 4N . Noting that the online bandwidth of any single
query is exactly one data block because of the XOR technique, we get the total amortized cost becomes
1.5l − 3.5 + 1

2(l−1) + 5 ≈ 1.5(l + 1).

7.2 CacheShuffle for R-D-SQRT

If we focus on using CSK
K, it turns out query distributing the shuffle is easier. In the previous section, we

generalized the paradigm for all oblivious shuffling algorithms. Both the Collection and Work phases will
occur over K/2 queries. Collection stores the previous K/2 queries into Raml+1. The Work phase downloads
all untouched blocks in lower levels and uploads all needed blocks to the correct level.

It turns out the total amortized cost remains the same for R-SQRT and R-D-SQRT. R-D-SQRT requires
twice as many shuffles in the same period for each level. But, each shuffle uses half as many untouched
blocks as input and outputs half as many blocks.

To ensure uniform costs in R-D-SQRT, we either have to sacrifice one roundtrip per query or exactly one
block of online bandwidth per query. However, we take the paradigm of Ring ORAM [22]. In Ring ORAM,
most queries require exactly one block of bandwidth. Every Q (such as Q = 4) queries, an extra amount of
bandwidth is required. So, we will ensure exactly one block of bandwidth for Q − 1 out of Q queries. The
remaining query will perform the shuffling operations required for all Q queries. We note this trick is not
necessary and we could always ensure a uniform cost of computation for each query.

7.3 Saving on Dummy Blocks: R-SQRT-AHE

Dummy blocks are a potential source of bandwidth saving in shuffling. Optimization for dummies have
been used in Partition ORAM [26]. For a simple example, consider the case in which we have three blocks,
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numbered 1, 2 and 3. Suppose one of the three blocks is dummy and the other two are real. It is possible
to upload all three blocks by using bandwidth equal to the size of only two blocks and still hide which block
is dummy in the following way. The blocks (or actually their encryptions) can be seen as elements in a field
F. We compute the degree-one univariate polynomial P with coefficients in F that, when evaluated at the
points in {1, 2, 3} corresponding to the two real blocks, gives the correct value for the two real blocks. Then
it is enough to upload the two coefficients of P and ask the server to evaluate P at {1, 2, 3} to obtain the
three blocks. We note that half of the blocks in each level of server storage in R-SQRT are dummy and
thus there is a considerable gain in not having to upload all of them. This approach unfortunately does
not interact well with the XOR technique since the value of the dummy blocks depend on the real blocks
whereas the XOR technique relies on the value of the dummy blocks to be easily computable by the client.

We resort to a technique presented in [21] for dummy optimization in combination with Additively
Homomorphic Encryption. Thus, we call the resulting construction R-SQRT-AHE. Specifically, we consider
algorithm DCSK

K from [21] that performs oblivious shuffle when a constant fraction of the output blocks are
dummy. For 0 < ρ < 1, if we are uploading M blocks with R := ρM real blocks, then DCSK

K requires (1+ε)N
blocks of upload bandwidth where ε decreases with N . So, DCSK

K has smaller constants for larger N . Recall
that CSK

K required M blocks of upload bandwidth, meaning DCSK
K is ≈ 1/2 the cost of CSK

K since ρ = 1/2 for
R-SQRT.

Our AHE instantiation will be the Damg̊ard-Jurik cryptosystem [5] using two primes of 1024 bits and
an additive 1/10 ciphertext expansion rate on homomorphic operations. This results in ciphertexts of
2048 bits ∗ 10 ≈ 2.56 KB. Instead of the XOR trick, we use AHE to select the one block the client is
interested in from the l blocks that are touched for each client access. More precisely, we consider blocks
as consisting of C parts where each part is encrypted individually and has size about 2.56 KB. We send l
ciphertexts, one for each block, at most one of which is the encryption of a 1 and the other are encryptions
of 0. All C block parts are scalar multiplied with the ciphertext associated with the block. All resulting
ciphertexts for each part are then added and the resulting C ciphertexts are returned to the client. Therefore,
the total online bandwidth becomes 2.56l KB + 1.1Bs where Bs is the block size. Using the same analysis
from above, we get the amortized bandwidth cost for each block is ≈ ((1 + ε/2)l + 3.1 + ε/2)Bs + 2.56l KB
and therefore the overhead decreases with larger block sizes.

8 The TR-SQRT ORAM

In this section, we present the Twice-Recursive Square Root ORAM (or TR-SQRT, for short), which uses a
second recursion to store the position map of size O(N/B). Specifically, consider an instance of the Recursive
Square Root ORAM protocol R-SQRT(B, c, l) on N input blocks B = B1, . . . , BN . The client stores O(N/B)
blocks for PM. Instead, the client could instead store PM in another R-SQRT protocol leading to our next
construction.

8.1 Modifying the Position Map

Before we can place the position map PM into R-SQRT, we must modify the R-SQRT construction slightly.
In the original R-SQRT construction, the new physical locations of all moved blocks must be recorded in
PM. Since PM was stored on the client, there was no bandwidth cost to reading or updating an entry in
PM. If PM is stored in another R-SQRT construction, the cost becomes larger. We devise a new scheme
that avoids updating entries in PM during shuffles, which is the basis of our next recursive solution.

Suppose that we index all incoming queries. The first queried block will have index 1, the second queried
block will have index 2 and so on. We use counter qCnt to keep track of the total number of queries. Denote
previ as the previous or latest query index for block Bi. It turns out that previ is extremely powerful. Note,
Bi was not been queried since previ (or previ would be updated). Using previ and the total number of
queries qCnt, we can determine the level where the fresh version of Bi currently exists, denoted lev(previ).
We can also determine the number of data blocks that were queried before Bi and moved into Ramlev(previ)

during the same shuffle, which we denote pos(previ). Therefore, it suffices for the position map to only
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store the latest query index for Bi, that is PM[i] = previ. We modify the invariances of R-SQRT so block
Bi is now stored at physical location Mlev(previ)

[πlev(previ)(pos(previ))]. For convenience, we denote this the
virtual location of pos(previ) for Ramlev(previ)

. Note that explicitly storing πj for all levels would result in
O(N/B) client storage again. Instead, we can use the pseudorandom permutations described in Appendix A,
which can succinctly store πj using little memory.

This modification ensures that PM does not require updating during an oblivious shuffle. However, the
shuffle needs to determine previ of all data blocks Bi that are being shuffled. To avoid reading PM[i], we
instead append an encryption of previ to the metadata of each block Bi. Now, oblivious shuffling algorithms
can read the index directly from the block without PM.

For concreteness, we will now fully define the modified R-SQRT protocol and how queries would be
performed. We initialize the position map such that PM[i] = i for all data blocks Bi. Equivalently, we may
assume that the blocks B1, . . . , BN are inserted sequentially. For convenience, we initialize qCnt to N + 1.
The counters dCnti are still initialized to Ni+1. Similarly, nSh is initialized to 1. Block Bi is initially stored
at M1[π1(i)].

Suppose a client queries for virtual location i, that is Bi. As usual, we retrieve PM[i] = previ. We
compute lev(previ) and pos(previ). For all levels j 6= lev(previ), a dummy query to physical location
πj(dCntj) in Mj is given (except Raml+1) and dCntj is incremented by 1. Finally, a real query to the virtual
location pos(previ) of Mlev(previ,qCnt)

is performed. The position map is updated so PM[i] = qCnt and qCnt

is incremented by 1. Throughout the rest of this section, we will assume R-SQRT uses these modifications.
We note the XOR technique may still be used.

8.2 Warm Up: Two Levels

Like the previous section, we will briefly describe a two level construction. For convenience, denote R-SQRT1 :=
R-SQRT(B, c, l). We note that R-SQRT1 requires storing PM1 on the client using O(N/B) data blocks. In-
stead, we define R-SQRT2 := R-SQRT(PM1, c, l), which requires a position map of O(N/B2) data blocks on
the client.

A query to R-SQRT1 forBi involves reading the value at PM1[i] followed by updating PM1[i] to the current
query index, qCnt. We slightly modify the write operation to handle this in a single query. Previously, we
expected the new block as an argument B′q along with its virtual location, q. Instead, the client may only
send q. The current block Bq will be returned to the client, which the server can use to construct B′q.
Therefore, the client can read the old value while overwriting in a single query. We first read virtual location
di/Be of R-SQRT2 for previ. We update the block such that PM1[i] = qCnt and write the updated block
back to virtual location di/Be in R-SQRT2. Note, since PM2 is stored on the client, queries to R-SQRT2

remain the same. Using previ, queries to R-SQRT1 continue identically as before without any interaction
with PM1.

8.3 The Full Construction

We extend the previous construction to l′ levels. Formally, we describe TR-SQRT protocol, which is param-
eterized by a constant c > 1 and integers l, l′ ≥ 1. The parameter c and l becomes the parameters of the
basis R-SQRT protocol. The value l′ represents the number of recursion levels performed on the position
map.

On input B = B1, . . . , BN , TR-SQRT(B, c, l, l′) constructs R-SQRT1 := R-SQRT(B, c, l). R-SQRT1

produces PM1. For i ∈ {2, . . . , l′}, we construct R-SQRTi := R-SQRT(PMi−1, c, l). Therefore, PMl′ , which
consists of O(N/Bl

′
) data blocks will be stored on the client.

Queries to TR-SQRT(B, c, l, l′) are surprisingly simple. Suppose we query for virtual location q. We
first start running a query to R-SQRT1 until we require reading from PM1[q]. In a single query, we read
PM1[q] and update the position map such that PM1[q] = qCnt using a query to virtual location dq/Be to
R-SQRT2. In general, there will be a single query to each R-SQRTi to virtual location dq/Bi−1e to read
and update PMi+1. The highest level results in a simple read to PMl′ which is on the client.
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As previously shown, shuffles of R-SQRTi no longer require interaction with PMi. Therefore, there is no
extra cost of bandwidth outside the shuffling algorithm itself. Furthermore, the query distributed shuffling
techniques may still be applied in the TR-SQRT construction.

Theorem 6. TR-SQRT is an ORAM protocol.

Proof. Note that each query to R-SQRTi is oblivious by Theorem 1 since none of the changes to the PM
affect obliviousness. Furthermore, each query to TR-SQRT(B, c, l, l′) performs exactly one query to each
R-SQRT1, . . . ,R-SQRTl′ . Therefore, the TR-SQRT construction is also an ORAM.

In a somewhat different approach from R-SQRT, we will suppose the use of a general oblivious shuffling
algorithm, S. Suppose that on N data blocks, S requires St ·N data blocks of bandwidth using Sc blocks of
client memory and Ss blocks of server memory.

Theorem 7. TR-SQRT has amortized query bandwidth O(St · l · l′), online query bandwidth of O(l′) using
O(N/Bl

′
+ Sc) blocks of client storage and O(N + Ss) blocks of server storage.

Proof. Each R-SQRTi requires O(St · l) amortized query bandwidth and O(1) online query bandwidth.
Therefore, TR-SQRT requires O(St · l · l′) and O(l′) amortized and online query bandwidth respectively.
The only client memory is stored using PMl′ and S. So, the total client memory is O(N/Bl

′
+ Sc). Finally,

each R-SQRTi requires O(N/B(i−1)) blocks of server storage. Additionally, S requires O(Ss) server blocks.

Altogether, the total server storage is
l′∑
i=1

(
O(N/B(i−1))

)
+O(Ss) = O(N + Ss).

We will denote protocol using distributed shuffling algorithms as TR-D-SQRT. Using the techniques of
Section 6, we arrive at the following theorem.

Theorem 8. TR-D-SQRT has worst case query bandwidth O(St · l · l′) using O(N/Bl
′
+Sc) blocks of client

storage and O(N + Ss) blocks of server storage.

8.4 Instantiations

To show the versatility of our ORAM construction, we provide a concrete example for the three classes of
constructions that do not require the client to store a position map. Each construction is simply derived
from TR-SQRT with the parameters c = Θ(1), l = Θ(logN) and l′ = Θ(logN/ logB) and by employing
CacheShuffle with O(N ε) and ω(logN) client storage and the AKS sorting network, respectively. We note
that in each case, the oblivious shuffling algorithm can also be query distributed.

Theorem 9. TR-D-SQRT with CacheShuffle using O(N ε) blocks of client storage requires O
(

log2N
logB

)
worst

case bandwidth using O(N ε) blocks of client storage and O(N) blocks of server storage.

Theorem 10. TR-D-SQRT with CacheShuffle using ω(logN) blocks of client storage requires O
(

log3N
log logN logB

)
worst case bandwidth using ω(logN) blocks of client storage and O(N) blocks of server storage.

Theorem 11. TR-D-SQRT with AKS requires O
(

log3N
logB

)
worst case bandwidth using O(1) blocks of client

storage and O(N) blocks of server storage.

9 Experimental Results

We report on our experiments in comparing R-SQRT and R-SQRT-AHE with the current ORAMs with the
best bandwidth overhead from among those of practical interest: Ring ORAM and Partition ORAM. The
two constructions differ in the client memory requirement with Ring ORAM requiring the client to store
ω(logN) blocks and Partition ORAM requiring Θ(

√
(N)) blocks. In addition, both constructions require

the client to store the position map.
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(a) Comparisons with ω(logN) client storage. (b) Comparisons with O(
√
N) client storage.

Figure 2: ORAM Comparisons.

All experiments are conducted on two identical machines, one for the server and one for the client. The
machine used is a Ubuntu PC with Intel Xeon CPU (12 cores, 3.50 GHz). Each machine has 32 GB RAM
with 1 TB hard disk. Our experiments will measure the time required on the client and server for each
query (both online and amortized costs). Additionally, we will measure the bandwidth sent between the
two machines on each query. All associated ORAM programs are implemented in C++. We use AES under
GCM mode for encryption and decryption. The cryptographic functions are used from the BoringSSL library
(a fork of OpenSSL 1.0.2). The length of keys used are 128 bits.

9.1 Comparing with Ring ORAM

We note that Ring ORAM [22] requires ω(logN) blocks of client memory. We instantiate R-SQRT by picking
c = 2 and l = log2N − log2 log2N − 1. This choice of parameters requires client memory O(logN), which is
smaller than Ring ORAM and gives amortized bandwidth overhead 1.5(log2N − log2 log2N). On the other
hand, Ring ORAM is able to achieve 2.5 log2N using at least 100N blocks of server storage. The authors
of Ring ORAM note that performance approaches 2 log2N for larger server storage. However, since 100N
blocks of server storage is prohibitive, we do not consider such an overhead for Ring ORAM. Using 8N blocks
of server storage, Ring ORAM achieves 6 log2N blocks of amortized bandwidth. Our experiments use 4 KB
block sizes, the suggested reasonable size in [22].

Furthermore, Ring ORAM can decrease the amortized bandwidth by a factor of 2 at the cost of increasing
client storage to 2

√
N . However, when allowed to use more client storage, Ring ORAM requires more

bandwidth than Partition ORAM (with which we compare to in the next section).
Comparing to the Ring ORAM instantiation with at least 100N blocks of server storage, R-SQRT and

R-D-SQRT require half the bandwidth overhead of Ring ORAM with only 4N blocks of server storage. Using
the more realistic instantiation of Ring ORAM with 8N blocks of storage, R-SQRT and R-D-SQRT show
a 4x improvement in blocks of bandwidth while only using half the server storage. Results can be seen in
Figure 2a with server storage in parenthesis.

9.2 Comparing with Partition ORAM

To compare with Partition ORAM [22], we pick the parameter l to ensure the same amount of client memory
as Partition ORAM. Partition ORAM requires O(N/B) + O(

√
N) client memory. In the experiments of

Partition ORAM, the authors consider their system with 4
√
N blocks of client memory and 64 KB blocks.

We will use the same setting for all experiments. Therefore, we choose l = log2N
2 − 1 to also get 4

√
N

client memory for both R-SQRT and R-SQRT-AHE. All of Partition, R-SQRT and R-SQRT-AHE require
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Figure 3: Bandwidth vs. Server Storage Tradeoff.

approximately 4N blocks of server storage. The bandwidth cost of R-SQRT is 0.75 log2N , while R-SQRT-
AHE requires 0.6 log2N . On the other hand, the experimental results in Partition ORAM show that their
systems require at least log2N . R-SQRT uses 25% less bandwidth than Partition ORAM. R-SQRT-AHE
uses at least 40% less bandwidth than Partition ORAM, but achieves better gains as N increases (such as
45% when N = 234). The results can be seen in Figure 2b.

9.3 R-SQRT Bandwidth vs. Server Storage

We investigate the effect of parameters c and l on the bandwidth of R-SQRT. For a fixed constant c > 1,
l controls the amount of client storage required. Fixing l = logcN

2 − 1, we ensure 4
√
N blocks of client

storage is sufficient. Furthermore, we note that c controls the amount of server storage required. As c grows,
server storage decreases. We run experiments for varying c using N = 220 blocks. We see that bandwidth
increases as server storage decreases. To match the bandwidth cost of Partition ORAM (which uses 4N
server storage), only ≈ 1.3N blocks of server storage is required using R-SQRT. The results can be seen in
Figure 3.

9.4 The Power of Recursion

In this section, we demonstrate the power of recursion. We consider R-SQRT using a very small number of
levels and compare with the original Square Root ORAM. Intuitively, the results should not be extremely
different since three levels is not much more than the one level structure of the Square Root ORAM. However,
experiments show huge improvements in just a three level construction.

To mirror the requirements of Square Root ORAM, we consider a three level variation of R-SQRT that
uses O(N) blocks of server storage and O(

√
N) blocks of client storage. We call this the 3-Level-R-SQRT

construction. Using basic algebra, we see that c = O(N1/6) satisfies these requirements. Note, to isolate the
power of recursion, we do not use the XOR technique. Both constructions use CSK

K with K =
√
N . In the

experiments, we use blocks of size 1 KB. The results are shown in Figure 4. We see that 3-Level-R-SQRT
has bandwidth costs that are significantly better than SQRT. Even with a couple extra levels, the power of
recursion improves performance dramatically.
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Figure 4: 3-Level R-SQRT and SQRT ORAM Comparison.
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A Pseudorandom Permutations

Permutations are an important primitive for Oblivious RAM constructions that have been used in many
previous protocols [10,26]. The naive approach to storing a permutation over N elements is very expensive, as
it requires an array of N words. By information theoretical lower bounds, storing a true random permutation
does require N words. These lower bounds can be avoided by generating pseudorandom permutations.

Black and Rogaway [3] present a pseudorandom permutation requiring only three stored keys. However,
their approach only provided security guarantees for up to N1/4 queries. A series of results [14, 17, 23] were
able to push the security guarantees for up to N queries. Finally, the Sometimes-Recurse Shuffle by Morris
and Rogaway [16] allowed accessing any permuted value using O(logN) AES evaluations by storing exactly
one AES key. Throughout the rest of this work, we will assume that random permutations are generated
using the Sometimes-Recurse Shuffle.

B Oblivious Shuffling

In this section we describe the K-Oblivious Shuffling algorithm that uses bandwidth 2N to shuffle, according
to permutation σ, N data blocks B1, . . . , BN originally stored according to permutation π. We assume that
the adversary knows the value of π for K touched blocks. We assume that K is smaller than the number of
blocks that can be stored in client memory.

More precisely, we assume that array sServer of length N holds the data blocks stored according to π;
that is, sServer[π(i)] hosts an encryption of block Bi. Similarly, we denote by dServer the array of length N
that, at the end of the algorithm, will hold the N data blocks stored according to σ; that is, dServer[σ(i)]
hosts an encryption of block Bi.

The algorithm takes as input the initial permutation π, the set Touched of indices of touched blocks, and
their positions π(Touched) in sServer and the new permutation σ. The algorithm works into two phases.

In the first phase, algorithm CacheShuffle downloads the encryptions of the touched blocks from server
memory; that is, the encryptions of Bi stored as sServer(π(i)), for all i ∈ Touched. Each block is decrypted,
re-encrypted using fresh randomness and stored in client memory. Throughout its execution, the CacheShuffle
maintains the set tbDown of indices of data blocks that have not been downloaded yet. The set tbDown is
initialized to [N ] \ Touched.

The second phase consists of N steps, for i = 1, . . . , N . At the end of the i-th step, dServer[i] contains
an encryption of block Bσ−1(i). Let us use s as a shorthand for σ−1(i). Three cases are possible. In the
first case, an encryption of Bs is not in client memory, that is s ∈ tbDown; then the algorithm sets r = s. If
instead, an encryption of Bs is already in client memory, that is s 6∈ tbDown, and tbDown 6= ∅, the algorithm
randomly selects r ∈ tbDown. In both cases, the algorithm downloads an encryption of block Br found at
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sServer[π(r)], decrypts it and re-encrypts it using fresh randomness, stores it in client memory and updates
tbDown by setting tbDown = tbDown \ {r}. In the third case in which s 6∈ tbDown and tbDown = ∅, no
block is downloaded. Then, an encryption of Bs is uploaded to dServer[i]. Note that at this point, the client
memory certainly contains an encryption of Bs.

B.1 Analysis

Theorem 12. CacheShuffle uses K blocks of client memory, 2N blocks of server memory and 2N blocks of
bandwidth.

Proof. Initially the client downloads exactly K blocks and then at each step exactly one block is uploaded
and at most one is downloaded. Therefore, client memory never exceeds K.

Each block is downloaded exactly once and uploaded exactly once. So bandwidth is exactly 2N blocks.

Theorem 13. CacheShuffle is a K-Oblivious Shuffling.

Proof. We prove the theorem by showing that the accesses of CacheShuffle to server memory are independent
from σ, for randomly chosen π, given the sets Touched and π(Touched). This is certainly true for the
downloads of the first phase as they correspond to π(Touched). For the second phase, we observe that at the
i-th step an upload is made to dServer[i], which is clearly independent from σ. Regarding the downloads,
we observe that the set tbDown initially contains N −K elements and it decrease by one at each step until
its empty. Therefore, it will be empty for the last K steps and thus no download will be performed. For
i ≤ N −K, the download of the i-th step is from sServer[π(r)]. In the first case r is a random element of
tbDown and thus independent from σ; in the second case, r = s and thus the download is from sServer[π(s)],
with s = σ−1(i). Since s 6∈ Touched, for otherwise an encryption Bs would have been in client memory, the
value π(s) is independent from σ.
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C Pseudocode

Init 1 Initialize R-SQRT protocol.

Input: λ, c, l, B1, . . . , BN
for i := 1, . . . , l do

Generate Ki randomly as key of length λ.
Initialize ci = 0.
Initialize dCnti = N

c(i−1) + 1.
Initialize nSh = 1.
Generate πi randomly.
Initialize Mi on the server as array of size N

c(i−1) .
end for
for i := 1, . . . , N do

Initialize PM[i] = (1, π1(i)).
end for
for i := 1, . . . , N + S do

Compute j = π−11 (i).
if j ≤ N then

Initialize M1[i] = Enc(F (K1, j), Bj).
else

Initialize M1[i] = Enc(F (K1, j),0).
end if

end for
for i := 2, . . . , l do

for j := 1, . . . , N(1/c(i−1) + 1/ci) do
Initialize Mi[j] = Enc(F (Ki, j),0).

end for
end for
Initialize Raml+1 = ∅.
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Query 2 Query to R-SQRT protocol.

Input: q, op, B′q
Retrieve (levq, posq) = PM[q].
Update PM[q] = (l + 1, nSh).
Initialize qList = ∅.
for i := 1, . . . , l do

Increment ci by 1 modulo N
c(i−1) .

if i 6= levq then
qList[i] = πi(dCnti).

else
qList[i] = posq.

end if
end for
Send qList to the server.

Initialize R = M1[qList[1]].
for i := 2, . . . , l do
R = R⊕Mi[qList[i]].

end for
Return R to the client.

for i := 1, . . . , l do
if i 6= lq then
R = R⊕ Enc(F (Ki, πi(dCnti)),0).
Increment dCnti by 1.

end if
end for
if levq = l + 1 then
R = Raml+1[posq].

end if
X = Dec(F (Klevq , posq), R).
if op = write then

Raml+1[nSh] = B′q.
else

Raml+1[nSh] = X.
end if
Increment nSh by 1.
for i := 1, . . . , l do

if ci = 0 then
Run ModifiedObliviousShuffle(Rami, . . . ,Raml+1).
Set nSh = 0.
for j := i+ 1, . . . , l do

Generate Kj randomly as key of length λ.
Set dCntj = 0.

end for
break

end if
end for
Return X.
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