
W-OTS+– Shorter Signatures for Hash-Based
Signature Schemes

Andreas Hülsing?

huelsing@cdc.informatik.tu-darmstadt.de

Cryptography and Computeralgebra
Department of Computer Science

TU Darmstadt

Abstract. We present W-OTS+, a Winternitz type one-time signature
scheme (W-OTS). We prove that W-OTS+ is strongly unforgeable under
chosen message attacks in the standard model. Our proof is exact and
tight. The first property allows us to compute the security of the scheme
for given parameters. The second property allows for shorter signatures
than previous proposals without lowering the security. This improvement
in signature size directly carries over to all recent hash-based signature
schemes. I.e. we can reduce the signature size by more than 50% for
XMSS+ at a security level of 80 bits. As the main drawback of hash-
based signature schemes is assumed to be the signature size, this is a
further step in making hash-based signatures practical.

Keywords digital signatures, one-time signature schemes, hash-based
signatures, provable security, hash functions

1 Introduction

Digital signatures are among the most important cryptographic primitives
in practice. They have many applications, including the use in SSL/TLS
and securing software updates. Hash-based or Merkle signature schemes
(MSS) are an interesting alternative to the signature schemes used today,
not only because they are assumed to resist quantum computer aided
attacks, but also because of their fast signature generation and verification
times as well as their strong security guarantees. Most MSS come with
a standard model security proof and outperform RSA in many settings
regarding runtimes. The main drawback of MSS is the signature size which
to a large extent depends on the used one-time signature scheme (OTS).

? Supported by grant no. BU 630/19-1 of the German Research Foundation
(www.dfg.de). An extended abstract of this work appeared in the proceedings of
Africacrypt 2013

Recent MSS proposals [BDH11,HBB13] use a variant of the Winternitz
OTS (W-OTS) introduced in [BDE+11]. The main reason for this choice
is the reduced signature size. Using W-OTS, a MSS signature does not
have to contain the OTS public key as it can be computed given the
W-OTS signature. Moreover, W-OTS type signature schemes allow for a
trade-off between signature size and runtime.

In this work we introduce W-OTS+, a W-OTS type OTS that allows
to reduce the signature size more than previous W-OTS variants and
reaches a higher level of security. We prove that W-OTS+ is strongly un-
forgeable under adaptive chosen message attacks (SU-CMA) in the stan-
dard model, if the used hash function is second-preimage resistant, unde-
tectable and one-way (Indeed, we only present the proof for EU-CMA se-
curity in this extended abstract). Previous proposals require non-standard
assumptions to achieve SU-CMA security (i.e.

”
key-collision resistance“

in case of [BDE+11]). Besides the SU-CMA secure variants there exist
W-OTS that achieve EU-CMA security, either using a collision resistant,
undetectable hash function [HM02,DSS05] or a pseudorandom function
family [BDE+11]. The first security requirement is strictly stronger than
that of W-OTS+. While the second is comparable, the corresponding
proof is less tight. However, both cases result in larger signatures.

Besides provable security we are also concerned with the practical
performance of the scheme. We show how to use the exact security proof
to compute the security level of W-OTS+ for a given set of parameters.
Moreover we discuss how to instantiate W-OTS+ in practice and present
parameter sizes for recent MSS (XMSS [BDH11], XMSS+ [HBB13]) when
instantiated with W-OTS+.

Organization. We start by introducing W-OTS+ in Section 2. Afterwards
we state our main result about the security of W-OTS+ and prove it in
Section 3. In Section 4 we discuss possible instantiations and compare
W-OTS+ with previous proposals. Finally, we conclude in Section 5.

2 The Winternitz One-Time Signature Scheme

In this section we describe W-OTS+. The core idea of all W-OTS is to use
a certain number of function chains starting from random inputs. These
random inputs are the secret key. The public key consists of the final
outputs of the chains, i.e. the end of each chain. A signature is computed
by mapping the message to one intermediate value of each function chain.
All previous variants of W-OTS constructed the function chains as plain

iteration of the used function (or function family in case of [BDE+11]). In
contrast, for W-OTS+ we use a special mode of iteration which enables
the tight security proof without requiring the used hash function family
to be collision resistant. We start with some preliminaries. Afterwards we
present W-OTS+.

2.1 Signature Schemes

We now fix some notation and define digital signature schemes and exis-
tential unforgeability under adaptive chosen message attacks (EU-CMA).

Through out the paper we write x
$←− X if x is randomly chosen from

the set X using the uniform distribution. We further write log for log2.

Digital signature schemes LetM be the message space. A digital sig-
nature scheme Dss = (Kg,Sign,Vf) is a triple of probabilistic polynomial
time algorithms:

– Kg(1n) on input of a security parameter 1n outputs a private signing
key sk and a public verification key pk;

– Sign(sk,M) outputs a signature σ under sk for message M , if M ∈M;

– Vf(pk, σ,M) outputs 1 iff σ is a valid signature on M under pk;

such that ∀(pk, sk)←− Kg(1n),∀(M ∈M) : Vf(pk, Sign(sk,M),M) = 1.

EU-CMA Security The standard security notion for digital signature
schemes is existential unforgeability under adaptive chosen message at-
tacks (EU-CMA), which is defined using the following experiment. By
Dss(1n) we denote a signature scheme with security parameter n.

Experiment ExpEU-CMA
Dss(1n) (A)

(sk, pk)←− Kg(1n)

(M?, σ?)←− ASign(sk,·)(pk)
Let {(Mi, σi)}q1 be the query-answer pairs of Sign(sk, ·).
Return 1 iff Vf(pk,M?, σ?) = 1 and M? 6∈ {Mi}q1.

For the success probability of an adversary A in the above experiment we
write

Succeu-cmaDss(1n) (A) = Pr
[
ExpEU-CMA

Dss(1n) (A) = 1
]
.

Using this, we define EU-CMA the following way.

Definition 1 (EU-CMA). Let n, t, q ∈ N, t, q = poly(n), Dss a dig-
ital signature scheme. We call Dss EU-CMA-secure, if the maximum
success probability InSeceu-cma (Dss(1n); t, q) of all possibly probabilistic
adversaries A, running in time ≤ t, making at most q queries to Sign in
the above experiment, is negligible in n:

InSeceu-cma (Dss(1n); t, q)
def
= max

A
{Succeu-cmaDss(1n) (A)} = negl(n) .

An EU-CMA secure one-time signature scheme (OTS) is a Dss that is
EU-CMA secure as long as the number of oracle queries of the adversary
is limited to one, i.e. q = 1.

2.2 W-OTS+

Now we present W-OTS+. Like all previous variants of W-OTS, W-OTS+

is parameterized by security parameter n ∈ N, the message length m and
the Winternitz parameter w ∈ N, w > 1, which determines the time-
memory trade-off. The last two parameters are used to compute

`1 =

⌈
m

log(w)

⌉
, `2 =

⌊
log(`1(w − 1))

log(w)

⌋
+ 1, ` = `1 + `2.

Furthermore, W-OTS+ uses a family of functions Fn : {fk : {0, 1}n →
{0, 1}n|k ∈ Kn} with key space Kn. The reader might think of it as a
cryptographic hash function family that is non-compressing. Using Fn
we define the following chaining function.

cik(x, r): On input of value x ∈ {0, 1}n, iteration counter i ∈ N, key k ∈ K
and randomization elements r = (r1, . . . , rj) ∈ {0, 1}n×j with j ≥ i, the
chaining function works the following way. In case i = 0, c returns x
(c0k(x, r) = x). For i > 0 we define c recursively as

cik(x, r) = fk(c
i−1
k (x, r)⊕ ri),

i.e. in every round, the function first takes the bitwise xor of the interme-
diate value and bitmask r and evaluates fk on the result afterwards. We
write ra,b for the subset ra, . . . , rb of r. In case b < a we define ra,b to be
the empty string. We assume that the parameters m, w and the function
family Fn are publicly known. Now we describe the three algorithms of
W-OTS+:

Key Generation Algorithm (Kg(1n)): On input of security parameter n
in unary the key generation algorithm choses ` + w − 1 n-bit strings
uniformly at random. The secret key sk = (sk1, . . . , sk`) consists of the
first ` random bit strings. The remaining w − 1 bit strings are used as
the randomization elements r = (r1, . . . , rw−1) for c. Next, Kg chooses a

function key k
$←− K uniformly at random. The public verification key

pk is computed as

pk = (pk0, pk1, . . . , pk`) = ((r, k), cw−1k (sk1, r), . . . , cw−1k (sk`, r)).

Signature Algorithm (Sign(M, sk, r)): On input of a m bit message M ,
secret signing key sk and the randomization elements r, the signature
algorithm first computes a base w representation ofM :M = (M1 . . .M`1),
Mi ∈ {0, . . . , w− 1}. Therefor, M is treated as the binary representation
of a natural number x and then the w-ary representation of x is computed.
Next it computes the checksum

C =

`1∑
i=1

(w − 1−Mi)

and its base w representation C = (C1, . . . , C`2). The length of the base
w representation of C is at most `2 since C ≤ `1(w − 1). We set B =
(b1, . . . , b`) = M ‖ C, the concatenation of the base w representations of
M and C. The signature is computed as

σ = (σ1, . . . , σ`) = (cb1k (sk1, r), . . . , cb`k (sk`, r)).

Please note that the checksum guarantees that given the bi, 0 < i ≤ `
corresponding to one message, the b′i corresponding to any other message
include at least one b′i < bi.

Verification Algorithm (Vf(1n,M, σ, pk)): On input of message M of bi-
nary length m, a signature σ and a public verification key pk, the ver-
ification algorithm first computes the bi, 1 ≤ i ≤ ` as described above.
Then it does the following comparison:

pk = (pk0, pk1, . . . , pk`)

?
= ((r, k), cw−1−b1k (σ1, rb1+1,w−1), . . . , c

w−1−b`
k (σ`, rb`+1,w−1))

If the comparison holds, it returns true and false otherwise.
The runtime of all three algorithms is bounded by `w evaluations of

fk. The size of a signature and the secret key is |σ| = |sk| = `n bits. The
public key size is (`+w− 1)n+ |k| bits, where |k| denotes the number of
bits required to represent any element of K.

3 Security of W-OTS+

In this section we analyze the security of W-OTS+. We prove W-OTS+ is
existentially unforgeable under chosen message attacks, if the used func-
tion family is a second-preimage resistant family of undetectable one-way
functions. More precisely, we prove the following theorem:

Theorem 1. Let n,w,m ∈ N, w,m = poly(n), Fn : {fk : {0, 1}n →
{0, 1}n|k ∈ Kn} a second preimage resistant, undetectable one-way func-
tion family. Then, InSeceu-cma

(
W-OTS+(1n, w,m); t, 1

)
, the insecurity of

W-OTS+ against an EU-CMA attack is bounded by

InSeceu-cma
(
W-OTS+(1n, w,m); t, 1

)
≤ w · InSecud (Fn; t?) + w` ·max

{
InSecow

(
Fn; t′

)
, w · InSecspr

(
Fn; t′

)}
with t′ = t+ 3`w and t? = t+ 3`w + w − 1.

It seems natural to assume that the existence of a function that combines
these properties is equivalent to the existence of a one-way function. As
the function has to be one-way itself, the one direction is trivial. On the
other hand, we know that second-preimage resistant functions exist if a
one-way function exists [Rom90] and we know the same for undetectable
functions, i.e. pseudorandom generators [HILL99]. We leave the question
if this also implies the existence of a function family that combines all
three properties for future work. If this was the case, it would mean that
W-OTS+ has minimal security requirements. The practical implications
of the proof are discussed in the next section.

In this extended abstract we only prove that W-OTS+ is EU-CMA
secure. In fact it also fulfills the stronger notion of SU-CMA, where the
adversary is also allowed to return a new signature on the message send
to the signature oracle. The claimed bound in Theorem 1 holds for the
SU-CMA case, too. We present the EU-CMA proof, because it contains
all important ideas but has less different cases to handle. Before we present
the proof we give some preliminaries. At the end of this sections we show
how to compute the security level of W-OTS+.

3.1 Preliminaries

In this subsection we provide some more notation and formal definitions.
We denote the uniform distribution over bit strings of length n by Un.
In our proofs, we measure all runtimes counting the evaluations of ele-
ments from Fn. In some proofs and definitions we use the (distinguishing)
advantage of an adversary which we now define.

Definition 2 (Advantage). Given two distributions X and Y, we define
the advantage AdvX ,Y (A) of an adversary A in distinguishing between
these two distributions as

AdvX ,Y (A) = |Pr [1←− A(X)]− Pr [1←− A(Y)]| .

Functions We now define three properties for families of functions that
we use. In what follows, we only consider families Fn as defined in the
last section.We require that it is possible given n ∈ N to sample a key
k from key space Kn using the uniform distribution in polynomial time.
Furthermore we require that all functions from Fn can be evaluated in
polynomial time. We first recall the definitions of one-wayness (ow) and
second preimage resistance (spr).

The success probability of an adversary against the one-wayness of
Fn is:

SuccowFn (A) =Pr [k
$←− Kn;x

$←− {0, 1}n, y ←− fk(x),

x′
$←− A(k, y) : y = fk(x

′)
]

(1)

The success probability of an adversary against the second preimage re-
sistance of Fn is:

SuccsprFn (A) =Pr [k
$←− Kn;x

$←− {0, 1}n, x′ ←− A(k, x) :

(x 6= x′) ∧ (fk(x) = fk(x
′))
]

(2)

We call a function family Fn one-way (second preimage resistant, resp.)
if the respective success probability given above of any PPT adversary is
negligible in n.

Besides spr and ow, we require Fn to provide another property called
undetectability to proof W-OTS+ secure. Intuitively, a function family
is undetectable if its outputs can not be distinguished from uniformly
random values. This is what we require from a pseudorandom generator,
which in contrast to Fn has to be length expanding.

To define undetectability, assume the following two distributions over
{0, 1}n×K. A sample (u, k) from the first distributionDud,U is obtained by

sampling u←− Un and k
$←− K uniformly at random from the respective

domain. A sample (u, k) from the second distribution Dud,F is obtained

by sampling k
$←− K and then evaluating fk on a uniformly random bit

string, i.e. u ←− fk(Un). The advantage of an adversary A against the

undetectability of Fn is simply the distinguishing advantage for these two
distributions:

Advud
Fn (A) = AdvDud,U ,Dud,F (A)

Using this we define undetectability as:

Definition 3 (Undetectability (UD)). Let n ∈ N, Fn a family of
functions as described above. We call Fn undetectable, if InSecud (Fn; t)
the advantage of any adversary A against the undetectability of Fn run-
ning in time less or equal t is negligible:

InSecud (Fn; t)
def
= max

A
{Advud

Fn (A)} = negl(n) .

Undetectability was already used by Dods et al. [DSS05] to prove a former
version of W-OTS secure.

3.2 Security proof

We now present the proof of Theorem 1. The general idea is, that because
of the checksum, a successful forgery must contain at least one interme-
diate value x for one chain α, that is closer to the start value of chain
α than the value σα contained in the answer to the signature query. We
try to guess the position of σα and place our preimage challenge yc there.
So we can answer the signature query and hopefully extract a preimage
given x. We also include a second preimage challenge in the same chain
α, manipulating the randomization elements. This is necessary, as x must
lead to the same public key value pkα than yc but the chain continued
from x does not need to contain yc as an intermediate value. But in this
case it contains a second preimage which we try to extract.

Manipulating the public key to place our challenges, we slightly change
the distribution of the key. In the second part of the proof we show that
this does not significantly change the success probability of the adversary
using the undetectability of Fn.

Proof (of Theorem 1). For the sake of contradiction assume there exists an
adversary A that can produce existential forgeries for W-OTS+(1n, w,m)
running an adaptive chosen message attack in time ≤ t and with success
probability εA = Succeu-cmaW-OTS(1n,w,m) (A) greater than the claimed bound

InSeceu-cma
(
W-OTS+(1n, w,m); t, 1

)
. We first show how to construct an

oracle machineMA that either breaks the second preimage resistance or

Algorithm 1 MA
Input: Security parameter n, function key k, one-way challenge yc and second preimage
resistance challenge xc.
Output: A value x that is either a preimage of yc or a second preimage for xc under
fk or fail.

1. Run Kg(1n) to generate W-OTS+ key pair (sk, pk)

2. Choose indices α
$←− {1, ..., `}, β $←− {1, . . . , w − 1} uniformly at random

3. If β = w − 1 then set r′ = r
4. Else

(a) Choose index γ
$←− {β + 1, . . . , w − 1} uniformly at random

(b) Obtain r′ from r, replacing rγ by cγ−β−1
k (yc, rβ+1,l)⊕ xc.

5. Obtain pk′ by setting pk′i = cw−1
k (ski, r

′), 0 < i ≤ `, i 6= α,

pk′α = cw−1−β
k (yc, r

′
β+1,w−1) and pk0 = (r′, k)

6. Run ASign(sk,·)(pk′)
7. If ASign(sk,·)(pk′) queries Sign with message M then

(a) compute B = (b1, ..., b`)
(b) If bα < β then return fail
(c) Generate signature σ of M :

i. Run σ = (σ1, . . . , σ`)←− Sign(M, sk, r′)
ii. Set σα = cbα−βk (yc, r

′
β+1,w−1)

(d) Reply to query using σ
8. If ASign(sk,·)(pk) returns valid (σ′,M ′) then

(a) Compute B′ = (b′1, ..., b
′
`)

(b) If b′α ≥ β return fail
(c) If β = w − 1

i. Return preimage c
w−1−b′α−1

k (σ′α, r
′
b′α+1,w−1)⊕ rw−1

(d) Else

i. If c
β−b′α
k (σ′α, r

′
b′α+1,w−1) = yc then

return preimage c
β−b′α−1

k (σ′α, r
′
b′α+1,w−1)⊕ rβ

ii. Else if x′ = c
γ−b′α−1

k (σ′α, rb′α+1,w−1)⊕rγ 6= xc and c
γ−b′α
k (σ′α, rb′α+1,w−1) =

cγ−βk (yc, rβ+1,w−1) return second preimage x′

9. In any other case return fail

one-wayness of Fn using A with a possibly different input distribution. A
pseudo-code description of MA is given as Algorithm 1.

The oracle machine MA first runs the W-OTS+ key generation to
obtain a key pair (sk, pk). Then, MA selects the positions to place its
challenges in the public key. Therefor it selects a random function chain
choosing the index α. Second it chooses an index β to select a random
intermediate value of this chain. MA places the preimage challenge at
this position. This is done, setting yc as the βth intermediate value of
the chain. If β < w − 1, i.e. MA did not sample the last position in the
chain, another intermediate value between β and the end of the chain is
selected, sampling γ. MA places the second preimage challenge at the
input of the γth evaluation of the chain continued from yc, replacing the
randomization element rγ (Line 4b). A manipulated public key pk′ is
computed using the new set of randomization elements. The αth value
of pk′ is computed continuing the chain from yc at position β (Line 5).
Then MA runs A on input pk’.

W.l.o.g. we assume that A asks for the signature on one message M
(Line 7). SoMA computes the bi as described in the signature algorithm.
MA knows the secret key value ski for all chains with exception of chain
α. For chain αMA only knows the βth intermediate value. Hence, MA
can answer the query if bα ≥ β as all intermediate values ≥ β of the αth
chain can be computed using yc. If this is not the case, MA aborts.

If A returns an existential forgery (σ′,M ′),MA computes the b′i. The
forgery is only useful if b′α < β. If this is not the case, MA returns fail.
Now, there are two mutually exclusive cases. If β = w−1, i.e. we selected
the end of chain α, the forgery contains a preimage of yc. This is the case
because σ′α is an intermediate value of chain alpha that ends in yc. So,
MA extracts the preimage and returns it (Line 8(c)i). Otherwise, there
are again two mutually exclusive cases. The chain continued from σ′α
either has yc as the βth intermediate value or it has not. In the first case,
again a preimage can be extracted (Line 8(d)i). In the second case, the
chains continued from yc and σ′α must collide at some position between
β + 1 and w − 1 according to the pigeonhole principle. If they collide at
position γ for the first time, a second preimage for xc can be extracted
(Line 8(d)ii). Otherwise MA aborts.

Now we compute the success probability ofMA. To make it easier, we
only compute the probability for a certain success case. We assume that
the bα obtained from A’s query equals β. This happens with probability
w−1 as β was chosen uniformly at random. As our modifications might
have changed the input distribution of A, it does not necessarily succeed

with probability εA. For the moment we only denote the probability that
A returns a valid forgery when run by MA as ε′A. Because of the con-
struction of the check sum, M ′ leads to at least one b′i < bi, 0 < i ≤ `.
With probability `−1 this happens for i = α and the condition in line 8b
is fulfilled. At this point there are two mutually exclusive cases, so one of
them occurs with probability p and the other one with probability (1−p).

Case 1: Either β = w−1 or the chain continued from σ′α has yc as the
βth intermediate value. In this case, MA returns a preimage for yc with
probability 1.

Case 2: β < w−1 and the chain continued from σ′α does not have yc as
the βth intermediate value. In this case, MA returns a second preimage
for xc if the two chains collide for the first time at position γ. This happens
with probability greater w−1 as gamma was chosen uniformly at random
from within the interval [β + 1, w − 1].

Using the assumptions about the one-wayness and second preimage
resistance of Fn we can bound the success probability of A if called by
MA:

ε′A ≤ w` ·max
{

InSecow
(
Fn; t′

)
, w · InSecspr

(
Fn; t′

)}
(3)

where the time t′ = t+ 3`w is an upper bound for the runtime of A plus
the time needed to run each algorithm of W-OTS+ once.

As the second step, we bound the difference between the success prob-
ability ε′A of A when called by MA and its success probability εA in
the original experiment. If the first is greater than the latter we al-
ready have a contradiction. Hence we assume εA ≥ ε′A in what fol-
lows. Please note, that among the elements of pk′ only the distribu-
tion of pk′α might differ from the distribution of a public key generated
by Kg. rγ is uniformly distributed in {0, 1}n, because xc is uniformly
distributed in {0, 1}n. We define two distributions DM and DKg over
{0, . . . , w− 1} × {0, 1}n × {0, 1}(n×w−1) ×K. A sample (β, u, r, k) follows

DM if the entries β
$←− {0, . . . , w − 1}, u $←− {0, 1}n, r

$←− {0, 1}n×w−1

and k
$←− K are chosen uniformly at random. A sample (β, u, r1,i, k) fol-

lows DKg if β
$←− {0, . . . , w − 1}, r

$←− {0, 1}n×w−1 and k
$←− K are

chosen uniformly at random and u = cβk(Un, r). So the two distributions
only differ in the way u is chosen. We now construct an oracle machine
M′A that uses the possibly different behavior of A when given differently
distributed inputs, to distinguish between DKg and DM. Using M′A we
can then upper bound εA by a function of the distinguishing advantage
of M′A and ε′A. Afterwards we use a hybrid argument to bound the dis-
tinguishing advantage of M′A using the undetectability of Fn.

The oracle machineM′A works the following way. On input of a sam-
ple (β, u, r, k) that is either chosen from DM or from DKg,M′A generates
a W-OTS+ key pair. Instead of using Kg, M′A samples a secret key

sk
$←− {0, 1}n×` and an index α

$←− {1, . . . , `} uniformly at random. It
computes the public key pk as pk0 = (r, k) and

pki =

{
cw−1k (ski, r) , if 1 ≤ i ≤ ` and i 6= α

cw−1−βk (u, rβ+1,w−1) , if i = α.

Then M′A runs A on input pk. If A queries M′A for the signature on a
message M , M′A behaves the same way as MA. If bα ≥ β, M′A uses sk
and u to compute the signature, otherwise it aborts. If A returns a valid
forgery,M′A returns 1 and otherwise 0. The runtime ofM′A is bounded
by the runtime of A plus one evaluation of each algorithm of W-OTS+.
So we get t′′ = t+ 3`w as an upper bound.

Now, we compute the distinguishing advantage AdvDM,DKg

(
M′A

)
of

M′A. If the sample is taken from DM, the distribution of the public keys
pk generated by M′A is the same as the distribution of the public keys
pk′ generated by MA. Hence M′A outputs 1 with probability

Pr
[
(β, u, r, k)←− DM : 1←−M′A(β, u, r, k)

]
= ε′A.

If the sample was taken from DKg, the public keys pk generated by
M′A follow the same distribution than those generated by Kg and soM′
outputs 1 with probability

Pr
[
(β, u, r, k)←− DKg : 1←−M′A(β, u, r, k)

]
= εA.

So the distinguishing advantage of M′A is

AdvDKg,DM
(
M′A

)
=
∣∣εA − ε′A∣∣ .

As mentioned above, we only have to consider the case εA ≥ ε′A. So we
obtain the following bound on εA:

εA = AdvDKg,DM
(
M′A

)
+ ε′A (4)

We now limit the distinguishing advantage of M′A in our last step. We
use a hybrid argument to show that this advantage is bound by the un-
detectability of Fn. For a given β ∈ {0, . . . , w− 1}, we define the hybrids

Hj = (β, cβ−jk (Un, rj+1,w−1), r, k) with r
$←− {0, 1}n×w−1, k $←− K for

0 ≤ j ≤ β. Given an adversary B that can distinguish between H0 and

Hβ with advantage εB, a hybrid argument leads that there must exist
two consecutive hybrids that B distinguishes with advantage ≥ εB/β. As-
sume these two hybrids are Hα and Hα+1. Then we can construct an
oracle machineM′′B that uses B to distinguish between Dud,U and Dud,F
as defined in the preliminaries and thereby attacking the undetectability
of Fn. Given a distinguishing challenge (u, k), M′′B selects r ←− Uw−1n ,
computes x = cβ−(α+1)(u, rα+2,w−1), runs b←− B(β, x, r, k) and outputs
b.

Let’s analyze the advantage Advud
Fn
(
M′′B

)
of M′′B. If the sample is

taken from Dud,U , u is uniformly random and x = cβ−(α+1)(u, rα+2,w−1)
is distributed exactly like the second element of Hα+1. Otherwise, if the
sample is taken from Dud,F , then u←− fk(Un) is an output of fk and we
get

x = cβ−(α+1)(fk(Un), rα+2,w−1) = cβ−(α+1)+1(Un ⊕ rα+1, rα+1,w−1)

= cβ−α(Un, rα+1,w−1) = Hα(2)

where Hα(2)
denotes the second element of Hα. Here we used the fact,

that the xor of a uniformly distributed variable and a fixed value leads
again to a uniformly distributed variable. Summing up, the input of B,
produced byM′′B is either distributed like Hα or like Hα+1, depending on
M′′Bs distinguishing challenge. Hence, the advantage of M′′B is exactly
that of B distinguishing between these two hybrids. So we get

Advud
Fn
(
M′′B

)
≥ εD/β.

As the advantage of M′′B is bounded by the undetectability of Fn per
assumption, M′A does exactly what we assume B to do and the runtime
of M′′B is that of B plus at most w− 1 evaluations of elements from Fn,
we get

InSecud (Fn; t?) ≥ Advud
Fn
(
M′′B

)
≥ εB

i
=

AdvDKg,DM
(
M′A

)
β

where t? = t′′ + w − 1 = t + 3`w + w − 1 is the runtime of M′′B. As
β ∈ {0, . . . , w − 1}, we obtain the following bound on the advantage of
M′A:

AdvDKg,DM
(
M′A

)
≤ w · InSecud (Fn; t?) . (5)

Putting equations (3), (4) and (5) together we obtain a final bound
on εA which leads the required contradiction:

εA ≤ w·InSecud (Fn; t?)+w`·max
{

InSecow
(
Fn; t′

)
, w · InSecspr

(
Fn; t′

)}
with t′ = t+ 3`w and t? = t+ 3`w + w − 1. ut

3.3 Security Level of W-OTS+

Given Theorem 1, we can compute the security level in the sense of
[Len04]. This allows a comparison of the security of W-OTS+ with the
security of a symmetric primitive like a block cipher for given security pa-
rameters. Following [Len04], we say that W-OTS+ has security level b if
a successful attack on the scheme can be expected to require 2b−1 evalua-
tions of functions from Fn on average. We can compute the security level,
finding a lower bound for t s.th. 1/2 ≤ InSeceu-cma (W-OTS(1n, w,m); t, 1).
According to the proof of Theorem 1, W-OTS+ can only be attacked by
either attacking the second preimage resistance, one-wayness or unde-
tectability of Fn. Following the reasoning in [Len04], we only take into
account generic attacks on Fn.

Regarding the insecurity of F(n) under generic attacks we assume
InSecspr (F(n); t) = InSecow (F(n); t) = t

2n which corresponds to a brute
force search for (second-)preimages. For the insecurity regarding unde-
tectability we assume InSecud (F(n); t) = t

2n following [DSS05]. In the
following we assume that the small additive increase of the attack run-
time coming from the reduction is negligible, compared to the value of t
for any practical attack. So we assume t = t′ = t?. We compute the lower
bound on t.

1

2
≤ InSeceu-cma (W-OTS(1n, w,m); t, 1)

≤ w t

2n
+ w` ·max

{
t

2n
, w · t

2n

}
=
tw

2n
+
tw2`

2n
=
t(w2`+ w)

2n

Solving this for t gives us

t ≥ 1

2
· 2n

w2`+ w
= 2n−1−log(w

2`+w).

So, for the security level b we obtain b ≥ n− log(w2`+ w).

4 W-OTS+ in Practice

In this section we discuss the practical implications of our result. We first
present practical instantiations of W-OTS+. Then we discuss the impli-
cations of the new security proof, comparing W-OTS+ to other W-OTS
type OTS and present results for XMSS and XMSS+ when instantiated
using W-OTS+.

4.1 Instantiations

To use W-OTS+ in practice Fn has to be instantiated. We propose two
different instantiations. The first and most obvious way to instantiate Fn
is to simply use a cryptographic hash function like SHA2 or SHA3. These
functions are assumed to fulfill all the properties we require Fn to provide.
In case the input length of the function is bigger then the output length,
we pad the inputs using the required number of zeros. As we do not allow
arbitrary length messages, we do not need a more involved padding.

Another way is to use a block cipher. It is well known that a crypto-
graphic hash function can be constructed using a block cipher. This is very
useful, as many smart cards and CPUs provide hardware acceleration for
AES. To construct Fn using a block cipher, we apply the Matyas-Meyer-
Oseas (MMO) construction [MMO85] in a manner similar to [BDH11].
The MMO construction was shown to be secure by Black et al. [BRS02].
Assume we have a block cipher En : {0, 1}n × {0, 1}n → {0, 1}n with
block and key size n. Then we construct Fn with key space K = {0, 1}n
defining the elements of Fn as fk(x) = Ek(x)⊕ x where EK(M) denotes
an evaluation of E using key K and message M . So, one evaluation of fk
takes either one evaluation of the used hash function or one evaluation of
the underlying block cipher.

4.2 Performance Comparison

We now compare the performance of W-OTS+ with that of the schemes
from [DSS05] and [BDE+11] which we call W-OTSCR and W-OTSPRF ,
respectively. Comparing W-OTS+ with W-OTSCR, the most important
point is, that W-OTSCR requires an undetectable collision resistant hash
function. While this is a strictly stronger security requirement, it also has
practical implications. Namely, collision resistance is threatened by birth-
day attacks. Hence, to achieve a security level of b bits, a hash function
with n = 2b bits output size is required. This leads to larger signatures
and slows down the scheme, as in general hash functions get slower with
increased output size. It is possible to reach the same signature size as for
W-OTS+ using a greater w, but this further slows down the scheme. On
the other hand, the W-OTS+ public key is bigger than that of W-OTSCR

which has only `n bits. This is because of the randomization elements. But
as we will show later, this is of no relevance in many practical scenarios
as we can reuse randomness.

Comparing W-OTS+ with W-OTSPRF , the differences are more sub-
tle. First, looking at the instantiations, when using a hash function H to

Table 1. Parameters for signatures below 1kB for message length m = 256 and security
level b ≥ 100. For W-OTSPRF this is impossible so we give the best possible signature
size for b ≥ 100. Runtime is given in number of evaluations of Fn. As key generation,
signature and verification times are the same, we only included the signature time tSign.

n w |σ| tSign b

W-OTS+ 128 21 992 1,302 113
W-OTSCR 256 455 992 14,105 128
W-OTSPRF 128 8 1,440 720 100

instantiate W-OTSPRF , two evaluations of H are needed per evaluation
of Fn (see [BDH11]) in contrast to one for W-OTS+. So the runtimes are
doubled in this case. For a block cipher based instantiation the runtimes
are the same. Second, at a first glance the sizes of both schemes are the
same, only the W-OTS+ public key contains the additional randomization
elements. But the bit security of W-OTSPRF is n−w− 1− 2 log(`w), i.e.
it contains w as a negative linear term while the bit security of W-OTS+

only looses a term logarithmic in w. In practice, the consequence of this
difference is that the possible choices for w are limited if we target a cer-
tain bit security. This is best illustrated in the following example. Table 1
shows sizes and runtimes for a signature size below 1kB at a security
level of 100 bit or more. Using W-OTSPRF it is simply impossible to
achieve a signature size below 1kB at 100 bit security. For W-OTSCR it
is theoretically possible, but one needs more than 10 times the number
of evaluations of Fn which are also slower because of the bigger n.

4.3 Impact on XMSS and XMSS+

OTS have numerous applications. The application that motivated this
work is usage in hash-based signature schemes. Current hash-based sig-
nature schemes like XMSS [BDH11] and XMSS+ [HBB13] are based
on W-OTSPRF which turned out to be the best choice for an OTS so
far. In the following we will shortly discuss what happens if we replace
W-OTSPRF by W-OTS+. We do not describe XMSS and XMSS+ in de-
tail due to the constrained space and refer the reader to the original
papers. Table 2 shows a table from [HBB13] where we recomputed the
results for the case that W-OTS+ is used. Where the values changed,
we included the old values for W-OTSPRF in brackets. The table shows,
that in most cases the public key of the overall scheme does not change.
The reason is that XMSS and XMSS+ public keys already contain public
randomization elements that can be reused. There is only one case where

Table 2. Results for XMSS and XMSS+ using W-OTS+ for message length m = 256
on an Infineon SLE78. We use the same k and w for both trees. b denotes the security
level in bits. The signature times are worst case times. Numbers in brackets are the
values when using W-OTSPRF .

Timings (ms) Sizes (byte)
Scheme h k w KeyGen Sign Verify Secret key Public key Signature b

XMSS+ 16 2 4 5,600 106 25 3,760 544 3,476 96 (85)
XMSS+ 16 2 8 5,800 105 21 3,376 512 2,436 95 (81)
XMSS+ 16 2 16 6,700 118 22 3,200 512 1,892 93 (71)
XMSS+ 16 2 32 10,500 173 28 3,056 544 (480) 1,588 92 (54)
XMSS+ 20 4 4 22,200 106 25 4,303 608 3,540 92 (81)
XMSS+ 20 4 8 22,800 105 21 3,920 576 2,500 91 (77)
XMSS+ 20 4 16 28,300 124 22 3,744 576 1,956 89 (67)
XMSS+ 20 4 32 41,500 176 28 3,600 544 1,652 88 (50)

XMSS 10 4 4 14,600 86 22 1,680 608 2,292 103 (92)
XMSS 10 4 16 18,800 100 17 1,648 576 1,236 100 (78)
XMSS 16 4 4 925,400 134 23 2,448 800 2,388 97 (86)
XMSS 16 4 16 1,199,100 159 18 2,416 768 1,332 94 (72)

randomization elements have to be added. We assume that the runtimes
do not change. The W-OTSPRF function chains were implemented us-
ing one AES encryption per iteration. As shown above the same can be
done for W-OTS+, requiring one additional xor operation per AES eval-
uation. This should not lead any recognizable overhead. Moreover, the
table shows that certain parameter sets — those with small signatures
— have a very low level of security when using W-OTSPRF . In practice
a scheme has to provide at least a security level of 80 bits. Hence, these
parameter sets could not be used before. Using W-OTS+, the same pa-
rameter sets now lead to a level of security above 80 bits. Hence, they can
now be used in practice.

5 Conclusion

In this work we introduced W-OTS+. We proved its security, showed how
to compute the security level of a given parameter set and discussed possi-
ble practical instantiations. As shown in the last section, W-OTS+ can be
used to decrease the signature size of hash-based signature schemes signif-
icantly without lowering the security of the scheme. I.e. we can decrease
the signature size by 50% for XMSS+ at a security level of 80 bits. Hope-
fully this leads to a broader acceptance of hash-based signature schemes,
as the signature size was so far assumed to be the main drawback of these

schemes. The only drawback of W-OTS+ compared to previous W-OTS
variants is the increased public key size. As for the case of hash-based
signature schemes, it might be possible to reuse public randomness in
other scenarios to mitigate this, too. An interesting question we left open
is whether the existance of a one-way function implies the existence of a
second-preimage resistant family of undetectable one-way functions.

References

[BDE+11] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and
Markus Rückert. On the security of the Winternitz one-time signature
scheme. In A. Nitaj and D. Pointcheval, editors, Africacrypt 2011, vol-
ume 6737 of Lecture Notes in Computer Science, pages 363–378. Springer
Berlin / Heidelberg, 2011.

[BDH11] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - a prac-
tical forward secure signature scheme based on minimal security assump-
tions. In Bo-Yin Yang, editor, Post-Quantum Cryptography, volume 7071
of Lecture Notes in Computer Science, pages 117–129. Springer Berlin /
Heidelberg, 2011.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis
of the block-cipher-based hash-function constructions from PGV. In Moti
Yung, editor, Advances in Cryptology — CRYPTO 2002, volume 2442 of
Lecture Notes in Computer Science, pages 103–118. Springer Berlin / Hei-
delberg, 2002.

[DSS05] Chris Dods, Nigel Smart, and Martijn Stam. Hash based digital signature
schemes. In Nigel Smart, editor, Cryptography and Coding, volume 3796 of
Lecture Notes in Computer Science, pages 96–115. Springer Berlin / Heidel-
berg, 2005.

[HBB13] Andreas Hülsing, Christoph Busold, and Johannes Buchmann. Forward
secure signatures on smart cards. In Lars R. Knudsen and Huapeng Wu,
editors, Selected Areas in Cryptography, volume 7707 of Lecture Notes in
Computer Science, pages 66–80. Springer Berlin Heidelberg, 2013.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A
pseudorandom generator from any one-way function. SIAM J. Comput.,
28:1364–1396, March 1999.

[HM02] Alejandro Hevia and Daniele Micciancio. The provable security of graph-
based one-time signatures and extensions to algebraic signature schemes.
In Yuliang Zheng, editor, Advances in Cryptology — ASIACRYPT 2002,
volume 2501 of Lecture Notes in Computer Science, pages 191–196. Springer
Berlin / Heidelberg, 2002.

[Len04] Arjen K. Lenstra. Key lengths. Contribution to The Handbook of Informa-
tion Security, 2004.

[MMO85] Stephen Matyas, Carl Meyer, and Jonathan Oseas. Generating strong one-
way functions with cryptographic algorithms. In IBM Technical Disclosure
Bulletin 27, pages 5658–5659. IBM, 1985.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure
signatures. In STOC ’90: Proceedings of the twenty-second annual ACM
symposium on Theory of computing, pages 387–394, New York, NY, USA,
1990. ACM Press.

