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Abstract

Garbled circuits have been highly optimized for practice over the last several years. Today’s most

e�cient constructions treat di�erent types of gates (e.g., AND vs XOR) di�erently; as such, they leak

the type of each gate. In many applications of garbled circuits, the circuit itself is public, so such leakage

is tolerable. In other settings, however, it is desirable to hide the type of each gate.

In this paper we consider optimizing garbled circuits for the gate-hiding case. We observe that the

best state-of-the-art constructions support only a limited class of gate functions, which turns out to

undermine their improvements in several settings. These state-of-the-art constructions also require a

non-minimal hardness assumption.

We introduce two new gate-hiding constructions of garbled circuits. Both constructions achieve

the same communication complexity as the best state-of-the-art schemes, but support a more useful

class of boolean gates and use only the minimal assumption of a secure PRF.

1 Introduction

Garbled circuits were �rst proposed by Yao in the 1980s [Yao82] and have since become the target of many

improvements. Garbled circuits form the basis of secure two-party computation protocols and many other

applications in cryptography.

In a typical scenario involving two-party computation, both parties agree on some circuit f that they

wish to evaluate. Since f is public, the garbled circuits in these protocols do not need to hide anything about

f ; they need to hide only the inputs to f . However, in some applications like private function evaluation

(PFE) [AF90, KM11, MS13] it is useful for the garbled circuit to hide information about the circuit itself.

In this work, we study garbled circuit constructions that are gate-hiding — that is, they leak only the

topology of the circuit, while hiding the type of each gate (e.g., AND, XOR, NOR).

Comparing e�ciency of garbling schemes. With the ubiquity of native AES instructions on modern

CPUs, applications of garbled circuits are rarely CPU-bound but are usually network-bound (cf. [ZRE15]).

Hence, the most important metric for measuring the e�ciency of garbled circuits is their size (typically bits

per gate). In all of the schemes we will discuss, the di�erence in garbled circuit size is only in the constant

factors. All these schemes produce garbled gates with size cλ + d , where c and d are small constants and

λ is the computational security parameter.
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size (bits) gate basis garble cost eval. cost assump.

H interp H interp

Textbook Yao 4λ + 4 Gall 4 0 1 0 PRF

GRR3 [NPS99] 3λ + 4 Gall 4 0 1 0 PRF

KKS [KKS16] 2λ + 8 Gsymm 3 0 1 0 circ+RK

WM [WM17] 2λ + 2 Gsymm 3 1 1 1 circ+RK

KKS
+unary

(§3) 3λ + 8 Gall 5 0 2 0 circ+RK

WM
+unary

(§3) 3λ + 2 Gall 5 1 2 1 circ+RK

new (§4) 2λ + 4 Gnon-const 4 2 1 1 PRF

new (§5) 2λ + 8 Gnon-const 4 0 1 0 PRF

Figure 1: Comparison of gate-hiding garbling schemes. All costs are listed per-gate. “H” refers to calls to

a symmetric-key primitive (see Section 2.3 for the required primitive). “interp” refers to interpolations of

degree-2 polynomials over GF (2λ ). “circ+RK” refers to a circularity+related-key assumption on H .

1.1 State of the Art

It is folklore that the “textbook” Yao garbling scheme is gate-hiding. Indeed, in the security proof for Yao’s

protocol from [LP09], there is a hybrid in which each garbled gate is replaced by a garbled “always-zero”

gate. Since every garbled gate is indistinguishable from such a constant gate, the scheme hides the type of

gate. The same property holds for simple improvements like garbled row reduction (GRR3) [NPS99]; that

is, they hide the type of each gate. These two schemes garble each gate at a cost of 4λ + 4 and 3λ + 4 bits,

respectively.
1

The most e�cient constructions of garbled circuits are derived from the Free XOR optimization [KS08]

(including [KMR14, ZRE15, GLNP15]). These constructions arenot gate-hiding because the evaluator must

behave very di�erently for XOR gates vs. non-XOR gates. This is what allows XOR gates to be garbled

more e�ciently than other gates in these constructions. These schemes therefore leak whether a gate is

XOR or not, while typically hiding all further distinctions.

Two recent papers, one by Kempka, Kikuchi, & Suzuki [KKS16] (hereafter KKS) and one by Wang &

Malluhi [WM17] (hereafter WM), each describe a gate-hiding garbling scheme in which each garbled gate

costs only 2λ +O (1) bits. Both schemes use the same representation of truth values as garbled wire labels,

but otherwise use very di�erent techniques for garbled gates.
2

These two schemes are currently the most

lightweight gate-hiding schemes.
3

We discuss them in more detail in Section 3.

A summary of the state of the art for gate-hiding garbling schemes is given in Figure 1.

1.2 What Kinds of Gates are Supported, and Why Does It Matter?

Closer inspection of Figure 1 reveals that these constructions are not entirely interchangeable. In particular,

they support di�erent classes of gate functionalities. We identify three di�erent classes of gate functionalities

below:

1
The “extra” 4 bits come from using the point-permute optimization. In practice one would typically use the underlying

cryptographic primitive (e.g., AES) in a way that gives security λ = 127, and then the garbled gates become a clean multiple of

128 bits in length. All of the constructions in this work use the point-permute optimization, which we discuss in greater detail in

Section 2.4.

2
KKS also show how to reduce the size of garbled gates at the input layer of a circuit. In this work we focus on internal gates

of a circuit, and assume that the input gates represent only a small fraction of the circuit.

3
In this paper we restrict our attention to constructions based on symmetric-key primitives only. There exist garbled circuit

constructions based on very expensive primitives (functional encryption, FHE) where the cost of every garbled gate is constant.
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Gall: all gates д : {0,1}2 → {0,1}

Gsymm: all gates satisfying д(0,1) = д(1,0)

Gnon-const: all gates except for the degenerate ones (a,b) 7→ 0 and (a,b) 7→ 1

As mentioned above, it is not hard to see that textbook Yao and GRR3 support Gall-gates and are gate-

hiding with respect to this class. That is, they can garble literally any boolean gate functionality, in a way

that hides the choice of gate.

However, the KKS and WM schemes — the schemes with smallest garbled gate size — support only
Gsymm-gates. While this seems like a minor limitation, we point out two reasons it can be problematic:

NOT gates. When dealing with fan-in-2 gates, one can usually think of any unary NOT gates being

“absorbed” into all downstream (in the direction of evaluation) gates.
4

This leads to non-symmetric gates

like (a,b) 7→ a ∧ b. Almost all garbling schemes support “absorbed” negations at no additional cost, and

in a way that hides the presence of the negations. Unfortunately, the glaring exceptions to this rule are

in fact the KKS and WM schemes, which cannot garble these non-symmetric gates at all (we elaborate in

Section 3)!

This raises the question of how to deal with a circuit containing NOT gates. While it is possible to

express any circuit just in terms of NAND gates (which are symmetric), one will obtain smaller circuits by

using a larger class of gates. Indeed, most of the available boolean circuits used for MPC are expressed as

AND/XOR/NOT gates [TS, HS]. In Section 3 we argue that NOT gates inherently have extra cost in the

KKS & WM schemes, due to the structure of wire labels in these schemes. In contrast, a garbling scheme

that is gate-hiding for Gnon-const would not su�er from the same limitation, since this class of gates is closed

under “absorbed” NOT gates.

In short, closure under negating individual gate-inputs is a useful property, since it implies that NOT

gates will always be free. But schemes that support only Gsymm do not have this property.

Multiplexers, Pass-through gates. A multiplexer has three inputs and computes (x0,x1,s ) 7→ xs . A

pass-through gate is simply a multiplexer whose selection input s has been �xed, corresponding to either

(a,b) 7→ a or (a,b) 7→ b. These kinds of gates are clearly not in Gsymm, but are vital in most applications

of gate-hiding garbled circuits. Garbling a pass-through gate in a gate-hiding way is therefore equivalent

to garbling a multiplexer with its selection bit secretly �xed by the garbler. This is an approach used

by Paus et al. [PSS09] in an application to semi-private function evaluation, where the function being

evaluated is hidden within a known class of functions. Constructions of universal circuits [Val76, LMS16,

KS16, GAKS17] likewise use signi�cant amount of multiplexers, and when the garbler is the party who

programs the universal circuit, the multiplexer is meant to be replaced by a pass-through gate. Other

variants of universal circuits [KKW16] explicitly use pass-through gates as a fundamental concept in their

constructions.

1.3 Hardness Assumptions

In the non-gate-hiding setting, the best garbling schemes use the Free XOR optimization [KS08] to elim-

inate communication for XOR gates. Choi et al. [CKKZ12] showed that the Free XOR construction in-

herently relies on a nonstandard assumption: namely, that the underlying symmetric-key primitive have

circular security and related-key security. For comparison, the minimal hardness assumption for garbled

circuits is the existence of a PRF (equivalently, the existence of a one-way function). The best known way

4
Absorbing the NOT gate into its “upstream” gate may not always work, since the upstream gate may have multiple fan-out.
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for garbling XOR gates from standard assumptions is due to Gueron et al. [GLNP15], who garble XOR

gates at a cost of λ bits each, using a standard PRF.

It is reasonable to use a stronger assumption to achieve e�ciency that we do not know how to achieve

otherwise. In the case of non-gate-hiding garbled circuits, a nonstandard assumption allows XOR gates to

be garbled for free.

However, in the gate-hiding case we cannot expect to garble XOR gates for free, since we cannot expect

to garble all gates for free (for evidence, see the lower bound of Zahur et al. [ZRE15]). When XOR gates are

not free, it is not clear that a stronger hardness assumption is necessary. Yet the best existing gate-hiding

schemes (KKS and WM) both rely on a free-XOR-like hardness assumption that involves correlated keys

and circularity. A natural question is whether this �avor of assumption is necessary for highly e�cient,

gate-hiding garbled circuits.

1.4 Our Contributions

In this work we present three main results:

In Section 3 we show how to extend the KKS & WM constructions from a Gsymm-scheme to a Gall-

scheme. This comes at a price, however: the garbled gates must increase in size from 2λ+O (1) to 3λ+O (1),
and evaluation requires an extra cryptographic operation. We give evidence that this extra cost is inevitable

— i.e., the KKS & WM approaches cannot be extended beyond symmetric gates for free.

In Section 4 we revisit a scheme of Pinkas et al. [PSSW09] that garbles non-constant gates (Gnon-const)

for 2λ+ 4 bits. Their scheme, however, uses di�erent methods to garble gates of even vs. odd parity (a gate

has even parity if the number of 1’s in its truth table is even). That is, the construction leaks the parity of a

gate. We show that their odd-parity method can be adapted to work for even-parity gates as well, resulting

in a gate-hiding scheme for Gnon-const-gates with cost 2λ+4 bits per gate. While evaluation requires only a

single cryptographic operation, it requires an additional polynomial interpolation step overGF (2λ ), which

in practice can cost roughly half of an AES evaluation (cf. [GLNP15]).

In Section 5 we present a new and novel gate-hiding scheme, inspired by a garbling technique of

Gueron et al. [GLNP15]. This scheme supports Gnon-const-gates, and results in garbled gates of size 2λ + 8

bits. Evaluation involves just one cryptographic operation, and otherwise uses only XOR operations (in

particular, no interpolation or �nite �eld multiplications).

Our new constructions improve the concrete cost of applications of gate-hiding garbled circuits, by

supporting circuits expressed over a more natural class of gates. Additionally, our new constructions

require only the minimal hardness assumption of the existence of a PRF. As mentioned above, KKS & WM

require a circularity/related-key assumption.

2 Preliminaries

2.1 Circuits

We represent circuits in the following way. All wires in the circuit (including input wires) are indexed in

a topological ordering. For a circuit f , we de�ne:

• inputs( f ): the set of indices of input wires

• gates( f ): the set of indices of non-input wires (i.e., wires that emanate from some internal gate)

• outputs( f ): the set of indices of output wires (not necessarily disjoint from the other sets).

For each gate with index i ∈ gates( f ), we de�ne:
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• le�(i ): the index of the gate’s left input wire

• right(i ): the index of the gate’s right input wire

• type(i ): the functionality of the gate; i.e., a function д : {0,1}2 → {0,1}

For a circuit f , we let topo( f ) denote all of the above information except for type(i ).
Let G be a set of boolean gates (e.g., Gall, Gsymm). We say that a circuit f is a G-circuit if type(i ) ∈ G

for every i ∈ gates( f ).

2.2 Garbled Circuits

We use the security de�nitions of Bellare et al. [BHR12]. A garbling scheme is a collection of algorithms

(Garble,Encode,Eval,Decode), with the following semantics:

• Garble(1λ , f ) → (F ,e,d ), where f is a boolean circuit, F is a garbled circuit, e is input-encoding

information, andd is output-decoding information. Garble is a randomized algorithm, but the others

are deterministic.

• Encode(e,x ) → X , where x is a plaintext circuit input, and X is a corresponding garbled input.

• Eval(F ,X ) → Y , where Y is a garbled output.

• Decode(d ,Y ) → y, where y is a plaintext output.

We say that the garbling scheme is a G-scheme, if it supports f that are G-circuits.

Several properties are useful, and here we state the relevant security properties for the case of gate-
hiding G-schemes:

• Correctness: For all (F ,e,d ) ← Garble(1λ , f ), we have

Decode(d ,Eval(F ,Encode(e,x ))) = f (x ).

• Gate-Hiding Privacy: There exists a simulator S, such that for all G-circuits f and all inputs x ,

the following two distributions are indistinguishable:

PrivReal(1λ , f ,x ):

(F ,e,d ) ← Garble(1λ , f )
X := Encode(e,x )
return (F ,X ,d )

PrivSim
S (1λ , f ,x ):

return S (1λ , topo( f ), f (x ))

In other words, (F ,X ,d ) leaks no information beyond topo( f ) and f (x ).

• Gate-HidingObliviousness: There exists a simulatorS, such that for allG-circuits f and all inputs

x , the following two distributions are indistinguishable:

OblivReal(1λ , f ,x ):

(F ,e,d ) ← Garble(1λ , f )
X := Encode(e,x )
return (F ,X )

OblivSim
S (1λ , f ,x ):

return S (1λ , topo( f ))

In other words, (F ,X ) (without d) leaks no information beyond topo( f ).
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• Authenticity: For any G-circuit f , input x , and e�cient adversary A, the following game outputs

1 with negligible probability:

Auth
A (1λ , f ,x ):

(F ,e,d ) ← Garble(1λ , f )
X := Encode(e,x )
Ỹ ← A (F ,X )
if Decode(d ,Ỹ ) < { f (x ),⊥} then return 1 else return 0

2.3 Dual-key Hash

Our constructions require a function with typeH : {0,1}∗×{0,1}λ×{0,1}λ → {0,1}` . To de�ne the required

notion of security, we introduce a related function:

OK (t ,a,X ) =



H (t ;X ,K ) if a = 0

H (t ;K ,X ) if a = 1

We say that H is a dual-key hash if, for random choice of K ← {0,1}λ , oracle access to OK is indis-

tinguishable from oracle access to a random function, against distinguishers who query OK with distinct

t-values.

Intuitively, one can think of H as a PRF with two keys. The outputs of H look random as long as one

of the two keys is random and secret (the other key can be chosen by the adversary). This notion is similar

to the “dual PRF” de�nition in [BL15], however the additional and non-repeating t-input in our setting

makes realizing our notion easier.

One can instantiate H as a random oracle. In practice, one might simply use H = sha256. In the

standard model, one can use H (t ;A,B) = F (A,t ) ⊕ F (B,t ), where F is a secure PRF. The fastest garbling

schemes in practice use �xed-key AES as an ideal permutation, following [BHKR13], to take best advantage

of AES hardware support. We think it likely that the schemes in this work can be adapted naturally to this

setting. But since our focus is in part to minimize the hardness assumption of the schemes, we focus on

the dual-key hash abstraction which can be instantiated from a plain PRF.

2.4 Basics of Garbled Circuit Techniques

We review several basic and standard techniques for garbled circuits. Readers familiar with the internals

of recent garbled circuit constructions can skip this section.

Textbook Yao. Suppose a gate has input wire labels (A0,A1) and (B0,B1), and output wire labels (C0,C1).
Here the subscripts correspond to the truth value (so A0 is the wire label encoding false on that wire).

Suppose we wish to garble an AND gate as an example, then we generate the following encryptions:

G1 = Enc(A0,Enc(B0,C0)) G3 = Enc(A1,Enc(B0,C0))

G2 = Enc(A0,Enc(B1,C0)) G4 = Enc(A1,Enc(B1,C1))

However, position in this list clearly leaks the truth value on each wire. So the list is randomly permuted.

The evaluator, who receives just a single garbled input combination Aa ,Bb is expected to perform trial

decryption of each ciphertext. Hence, the encryption scheme must give some indication of whether de-

cryption is successful.
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Point-permute. Beaver, Micali, and Rogaway [BMR90] introduced a point-and-permute technique that

is now used in essentially every practical garbling scheme. The idea is to append to each wire label a color
bit. The two wire labels on each wire will have opposite color bits. The association between color bits and

truth values is random and known only to the garbler. The evaluator, who sees only one label per wire,

sees only a random color bit that is distributed independently of the truth value it represents.

As before, let a gate have input wire labels (A0,A1) and (B0,B1), and output wire labels (C0,C1). Unlike

before, let the subscript denote the color bit of the wire label. The evaluator holds one label from each wire,

and is allowed to use their (public) color bits to decide how to proceed. Suppose for example that A0, B1,

and C1 correspond to true on their respective wires. Then the garbled gate consists of four ciphertexts:

G1 = Enc(A0,Enc(B0,C0)) G3 = Enc(A1,Enc(B0,C0))

G2 = Enc(A0,Enc(B1,C1)) G4 = Enc(A1,Enc(B1,C0))

The ciphertexts can be arranged in precisely this order, since the order depends only on the (public) color

bits and not the (secret) truth values. The evaluator can use the color bits to identify exactly which ci-

phertext to decrypt. There is no need for the evaluator to perform trial decryption on each ciphertext,

and therefore no need to detect “correct decryption.” This allows the scheme to use a simple encryption,

namely:

G1 = H (A0,B0) ⊕ C0 G3 = H (A1,B0) ⊕ C0

G2 = H (A0,B1) ⊕ C1 G4 = H (A1,B1) ⊕ C0

Here H is a dual-key hash, de�ned in Section 2.3 (a unique nonce should also be given as input to each

invocation of H , but we have omitted it from the notation).

Simple garbled row reduction. Naor, Pinkas, and Sumner [NPS99] introduced a method to reduce the

size of garbled gates from 4 to 3 ciphertexts, called garbled row reduction (GRR). The idea is to exploit the

freedom in choosing the output wire labels C0,C1, which are not yet �xed at the time this gate is garbled.

In particular, we can always make the �rst ciphertext G1 equal to 0
λ
. In the example above, we do so by

choosing C0 = H (A0,B0). Since G1 is always 0
λ
, it does not need to be included in the garbled gate — the

evaluator can “imagine” G1 = 0
λ

and proceed as above.

3 Extending the KKS and WM Schemes

Kempka et al. [KKS16], and independently Wang & Malluhi [WM17], give constructions of a gate-hiding

garbling scheme for the class of symmetric gates. We now review their schemes and discuss in more

detail their limitation to the class of symmetric gates.

3.1 Overview of the Constructions

In a symmetric gate, we haveд(0,1) = д(1,0). The main idea in both KKS and WM is for the false wire label

A0 and true wire label A1 on a wire to satisfy the relationship A1 = A0 + ∆ (mod 2
λ ), where ∆ is a global

secret constant common to all wires. Suppose the evaluator has a wire label Aa and Bb , corresponding to

input combination (a,b) on some gate. Adding these wire labels mod 2
λ

results in one of {A0 + B0,A0 +

B0+∆,A0+B0+2∆}. Importantly, adding the wire labels “collapses” the two input combinations (0,1) and

(1,0) to the same value.

Both the KKS and WM construction use this idea. That is, the evaluator’s �rst step is to add the input

wire labels and use the result as input to a cryptographic hash, to obtain one of {H (A0 + B0),H (A0 + B0 +
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∆),H (A0 +B0 + 2∆)}. The corresponding result is used as a key that allow the receiver to learn the correct

output wire label. The two schemes diverge signi�cantly in their techniques at this point (speci�cally, WM

uses polynomial interpolations), but the most important idea is this method for encoding truth values as

wire labels with a global correlation by ∆.

In WM, each garbled gate requires 2λ + 2 bits. In the general case of KKS, each garbled gate requires

2λ + 8 bits (but see the note below about optimizations for some special cases).

Hardness assumptions. Because of the way truth values are encoded into wire labels, these schemes

require a non-standard assumption. To understand why, consider that an evaluator learns one of the keys

{H (A0+B0),H (A0+B0+∆),H (A0+B0+2∆)}. The security proof will have to argue that the other two keys

look random. Since for all gates, the keys are related by a common secret ∆, a related-key-type assumption

is used. Furthermore, since these keys are used to encrypt other wire labels in the system, which are also

related by the same ∆, a circularity assumption is necessary as well. We point the reader to the KKS/WM

papers for more details, and to [CKKZ12] who describe the analogous situation that occurs when using

Free-XOR.

Optimizations for input gates. The authors of KKS show further how to garble gates at the input level
of the circuit for just λ+8 bits, exploiting the extra freedom available for choosing input wire labels. In this

work we focus only on the general case of internal gates of the circuit, whose input labels will be already

�xed by the time the gate is being garbled. We justify this choice with the observation that the number of

input wires is typically an extremely small fraction of the total wires in a circuit (e.g., the SHA-256 circuit

has 256 inputs but over 130,000 gates [GLNP15]), so these optimizations have a relatively small e�ect.

Certainly the di�erence between internal gates costing 3λ vs. 2λ bits is signi�cantly more important.

3.2 The Limitation to Symmetric Gates, and How to Overcome It

As mentioned in Section 1.1, the KKS and WM schemes can garble only symmetric gates — those д where

д(0,1) = д(1,0). In contrast, our new constructions can garble any gate except for the two constant gates

(x ,y) 7→ 0 and (x ,y) 7→ 1.

Is there a trivial modi�cation to these schemes that avoids this limitation? We argue that the

limitation to Gsymm is inherent to these schemes, and cannot be avoided for free.

Consider an asymmetric gateд(a,b) = a∧b above. In order to express this gate in terms of a symmetric

gate, one needs to incorporate the logic of a NOT-gate somehow. But looking closely at the choice of

wire labels in KKS/WM, it seems that a NOT-gate can never be free. In particular, the wire labels satisfy

A1 = A0+∆ (mod 2
λ ) for a global ∆, and this relationship between wire labels isnot symmetric! Contrast

this with other garbling paradigms:

• In free-XOR [KS08] and its derivatives, the wire labels satisfy A1 = A0 ⊕ ∆, where ⊕ denotes bitwise

XOR. This relation is symmetric, so A0 = A1 ⊕ ∆ as well.

• In textbook Yao, the GRR3 scheme of [NPS99], and the GRR2 scheme of [PSSW09], wire labels are

unconstrained. A vacuous relation between wire labels is obviously symmetric.

In both of these cases, one can implement a NOT gate for free (obliviously) by simply having the garbler

change which label he/she considers as the false one.
5

5
This fact is explicitly mentioned in [GLNP15].
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With wire labels in the KKS/WM paradigm, however, the two wire labels simply have their truth values

“baked-in”, in a fundamental way. Their truth values cannot be swapped simply by the garbler changing

his/her internal perspective.

The garbler could consider (−∆ mod 2
λ ) to be the local wire-label-di�erence, just for this gate. But this

would invert the truth value on both input wires, leaving the resulting gate functionality still symmetric.

To realize a non-symmetric gates it must be necessary to negate only one of the two input wires.

Supporting non-symmetric gates via unary gates. We observe that every gate д ∈ Gall can be ex-

pressed as д(a,b) = f (h(a),b) where f is symmetric and h is a unary gate. For example, a non-symmetric

gate like д(a,b) = a ∧ b can be written using DeMorgan’s laws as д(a,b) = nor(not(a),b). Hence, an

obvious way to extend KKS/WM beyond Gsymm-gates is to incorporate unary gates.

Including unary gates in KKS/WM We show how to incorporate unary gates into KKS/WM, in a way

that hides the choice of unary gate and costs λ bits per gate. The idea is to start with the textbook Yao

construction and then apply a row-reduction in the style of [NPS99]. Let A0 and A1 = A0 + ∆ be the input

wire labels, and let B0 and B1 = B0 + ∆ be the output wire labels (yet to be determined). In the textbook

Yao scheme, the garbled gate will include two ciphertexts:

H (A0) ⊕ B; H (A1) ⊕ B′

where B,B′ ∈ {B0,B1}, depending on which unary gate we are garbling. These two ciphertexts will be

permuted according to the color bits (see Section 2.4) of A0/A1.

Suppose after permuting, the ciphertext H (A0) ⊕ B is �rst. Then the row-reduction idea is to choose

B = H (A0) so that this ciphertext is always all zeroes. Having �xed one of the output wire labels B in

this way, the garbler can solve for the other wire label {B0,B1} \ B so that the labels satisfy the relation

B1 = B0 + ∆.

Since the �rst of the two ciphertexts is always all zeroes, it does not need to be sent. The evaluator

will simply hash its input wire label in the case it has color bit 0; otherwise it will hash its wire label and

XOR with the ciphertext. So the garbled gate consists of a single λ-bit ciphertext.

Now, one can garble every Gall-gate using a gadget combining a unary gate and symmetric gate, in

the manner just described. Standard techniques can be used to show that this unary gate construction is

secure and hides the choice of unary gate. Hence:

Claim 1. Using the above modi�cation of the KKS (resp. WM) constructions, a Gall-circuit can be garbled in
a gate-hiding way, with cost 3λ + 8 (resp. 3λ + 2) per gate.

Dealing with Gall-gates in KKS/WM. Suppose we want to garble a circuit expressed in terms of Gall

(or even Gnon-const) gates. When using the KKS/WM paradigm, we see the following possibilities, all of

which involve extra costs (either in size of the garbled circuit or in leaking more information):

1. Leak the distinction between symmetric & non-symmetric gates (but leak nothing else about the

gate type), resulting in 2λ +O (1) bits for symmetric and 3λ +O (1) bits for non-symmetric. In some

cases, like the semi-private function evaluation protocol of [PSS09], all parties know that certain

gates will be non-symmetric (pass-through gates / multiplexers with the selection bit �xed).
6

6
When discussing this scenario, Kempka et al. acknowledge that their scheme cannot readily garble a multiplexer. They

suggest to use a traditional GRR3 garbling scheme for these gates. Both their suggestion and ours in this section would require

3λ +O (1) bits per non-symmetric gate.
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2. Hide the distinction between symmetric & non-symmetric gates by garbling every gate as a gadget

of the form f (h(a),b), where f is symmetric and h is unary. Such a gadget is necessary since non-

symmetric gates require it for functionality, and we want all gates to use the same garbling technique.

This results in a cost of 3λ +O (1) bigs for all gates.

3. In the case of a NOT gate, we can “absorb” it into the upstream gate that feeds into it. However,

because the upstream gate may have high fan-out, this requires duplicating the upstream gate. If

the upstream gate д(a,b) is symmetric, then the clone ¬д(a,b) is also symmetric. This increases the

number of gates in the circuit and leaves noticeable artifacts in the circuit topology (even if the gate

types are hidden, it is evident from the topology that the two gates take the same inputs). Whether

these artifacts are problematic depends on the speci�c application of garbled circuits.

д  д

д

4 Construction based on Polynomial Interpolation

We review a garbling scheme of Pinkas et al. [PSSW09] (hereafter PSSW), that results in garbled gates of

2λ + 4 bits. The scheme uses di�erent garbling/evaluation approaches depending on whether the gate has

even/odd parity (the parity of a gate is even if its truth table contains an even number of 1s). We then show

that a simple modi�cation allows the scheme to be gate-hiding for all Gnon-const-gates (i.e., gates of either

parity).

4.1 Overview of PSSW Garbling Scheme

The PSSW approach is based on polynomial interpolation. We describe only the method they propose for

odd-parity gates, since that is the method we will extend to the even-parity case as well.

Suppose a gate has input wire labels (A0,A1) and (B0,B1). Here, the subscripts will denote the color bits
(see Section 2.4) of the wires. This means that the evaluator will be able to behave di�erently depending

on the subscripts of the input wire labels he/she has.

For each input combination, we de�ne an associated “key” value:

K1 = H (A0,B0); K3 = H (A1,B0);

K2 = H (A0,B1); K4 = H (A1,B1).

The evaluator learns only one combination of input wire labels, and hence learns one of the Ki values (and

knows the subscript of this Ki value, as it is determined by the input wires’ color bits). The property we

require of H is that the other three Ki values look random.

For an AND gate, we want to arrange things so that learning Ki allows the evaluator to learn the

corresponding output wire label of the gate. For instance, depending on the color bits, we might need to

arrange for the evaluator to learn the following:

knowing K1 lets you learn C0 knowing K3 lets you learn C0

knowing K2 lets you learn C1 knowing K4 lets you learn C0

For this example, the garbler can proceed as follows. First, use polynomial interpolation to �nd the unique

degree-2 polynomial P passing through the points {(1,K1), (3,K3), (4,K4)}. These are the cases for which

10



the evaluator should learn C0. Here we take the Ki values to live in Zp for some prime p, and P is a

polynomial over Zp . In practice, one would instead use a �nite �eld GF (2λ ), but a prime �eld makes the

notation a little simpler.

Now the garbler �nds the unique degree-2 polynomialQ passing through the points {(2,K2), (5,P (5)), (6,P (6))}.
Hence, we have:

• interpolating a polynomial through (1,K1), (5,P (5)), (6,P (6)) results in P

• interpolating a polynomial through (2,K2), (5,P (5)), (6,P (6)) results in Q

• interpolating a polynomial through (3,K3), (5,P (5)), (6,P (6)) results in P

• interpolating a polynomial through (4,K4), (5,P (5)), (6,P (6)) results in P

This suggests to make the garbled gate consist of values P (5),P (6) and to set P (0) and Q (0) to be the

false/true output wire labels. The evaluator will compute Ki , interpolate a polynomial using the garbled

gate values, and then evaluate that polynomial at point 0.

Dealing with color bits. Recall that each wire label is associated with an additional color bit. The

garbled gate must also contain information that tells the evaluator the color bit of the output wire label.

To do so, we interpret H as a function of the form H : {0,1}∗ → {0,1}λ+1
, and write Ki ‖κi = H (A,B),

where Ki ∈ {0,1}
λ

and κi ∈ {0,1}. The garbler can choose random color bits for the output wire labels.

Then for each i , he/she can encrypt the color bit of the appropriate output wire label, usingκi as a one-time

pad. This adds an additional 4 bits to the garbled gate. The evaluator will choose which 1-bit ciphertext to

decrypt based on the color bits of the input wires.

4.2 Modi�cation to Support Both Even/Odd Gates

Our main contribution in this section is to simply point out that the PSSW technique for odd gates can be

extended to work for even gates as well.

We keep the same evaluation algorithm as in PSSW. Recall that the evaluator interpolates a polynomial

through points P (5) and P (6) (which comprise the garbled gate information) and evaluates that polynomial

at point 0 to obtain the output wire label. In order for this same evaluation procedure to work for an even

gate, it su�ces to arrange the polynomials so that 2 of the points are on P and 2 are on Q . As an

example, suppose we want K1,K2 to lie on P and K3,K4 to lie on Q . Then we require polynomials that

satisfy:




P (1) = K1

P (2) = K2

Q (3) = K3

Q (4) = K4

P (5) −Q (5) = 0

P (6) −Q (6) = 0




⇐⇒



1
0

1
1

1
2

2
0

2
1

2
2

3
0

3
1

3
2

4
0

4
1

4
2

5
0

5
1

5
2 −5

0 −5
1 −5

2

6
0

6
1

6
2 −6

0 −6
1 −6

2





p0

p1

p2

q0

q1

q2



=



K1

K2

K3

K4

0

0


where we write P (x ) = p0 + p1x + p2x

2
and Q (x ) = q0 + q1x + q2x

2
.

Note that the Ki values are �xed (the generator has no control over them, since the input wire labels

are already �xed). Hence, the generator will compute the Ki values and solve for polynomials P and Q
using the above linear equation. Clearly it su�ces for the 6 × 6 matrix to be invertible.
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In the general case, the garbler will consider the following 6 × 6 matrix:



τ001
0 τ001

1 τ001
2 τ001

0 τ001
1 τ001

2

τ012
0 τ012

1 τ012
2 τ012

0 τ012
1 τ012

2

τ103
0 τ103

1 τ103
2 τ103

0 τ103
1 τ103

2

τ114
0 τ114

1 τ114
2 τ114

0 τ114
1 τ114

2

5
0

5
1

5
2 −5

0 −5
1 −5

2

6
0

6
1

6
2 −6

0 −6
1 −6

2



(1)

for some (τ00,τ01,τ10,τ11) ∈ {0,1}
4 \ {0000,1111} (corresponding to a non-constant gate). One can verify

by hand that the above matrix is invertible in all cases. This is also true in GF (2λ ) if we replace integers

{1, . . . ,6} with �nite �eld elements whose representations in hex are {0x1, . . . ,0x6}.

4.3 Details

In Figure 2 we give a generic template for a garbling scheme. Both of our new constructions will instantiate

this template. In the template for the garbler, we useW b
i as the wire label representing truth valueb on wire

i , and σi to denote the color bit onW 0

i . For the evaluator, we useW ∗
i as the “active” wire label (representing

unknown truth value) on wire i , and χi to denote its color bit (known to the evaluator).

We give the speci�c procedure for garbling & evaluating gates of this scheme in Figure 3. Depart-

ing from the (simpli�ed) discussion above, we include the color bits in the input to H to ensure that all

“nonce” arguments to H are globally unique (as required by the dual-key hash de�nition); e.g., Kab ‖κab :=

H (idx,a,b; · · · ).
The scheme is written to involve an explicit matrix inverse, as in Equation 1 above. In practice, there

are only 16−2 = 14 possible matrices (one for each non-constant setting of the τab bits), and their inverses

would all be easily hard-coded into a lookup table.

4.4 Security

Theorem 2. The construction in Figures 2+3 satis�es the gate-hiding privacy, obliviousness (both with respect
to Gnon-const), and authenticity properties (Section 2.2), if H is a dual-key hash.

Proof. We start with the proof of the privacy property. The proof uses the following sequence of hybrids.

Hybrid (0,1): corresponds to the real interaction. The game obtains f ,x , and runs (F ,e,d ) ← Garble(1λ , f );
X := Encode(e,x ) and returns (F ,X ,d ).

Hybrid (0,2): Let vi denote the truth value on wire i when the input to the circuit is x . Instead of

choosing random σi for each wire, we choose random χi ← {0,1} and set σi = χi ⊕ vi . Although this has

no e�ect on the adversary’s view, it helps to put the garbling process in the “frame of reference” of the

evaluator (i.e., in terms of the “active” wire label’s color bit χi ) instead of the garbler’s (in terms of the false

label’s color bit σi ).

We next proceed in a sequence of hybrids, several for each gate i ∈ wires( f ). We assume the wires of

the circuit gates( f ) are ordered topologically.
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Garble(1λ , f ):
for i ∈ inputs( f ):
σi ← {0,1} // color bit representing false on this wire
W 0

i ← ({0,1}λ ‖σi )
W 1

i ← ({0,1}λ ‖σi )

e :=

(
(W 0

i ,W
1

i )
)
i ∈inputs(f )

for i ∈ gates( f ):
(W 0

i ,W
1

i ,Fi ) ← GbGate (type(i ),i;W 0

le�(i ) ,W
1

le�(i ) ,W
0

right(i ) ,W
1

right(i ) )

F = (Fi )i ∈gates(f )

for i ∈ outputs( f ):
d0

i := H (i,out, lsb(W 0

i );W
0

i ,0
λ )

d1

i := H (i,out, lsb(W 1

i );W
1

i ,0
λ )

d :=

(
(d0

i ,d
1

i )
)
i ∈outputs(f )

return (F ,e,d )

Encode(e,x ):

parse e as

(
(W 0

i ,W
1

i )
)
i ∈inputs(f )

return (W xi
i )i ∈inputs(f )

Eval(F ,X ):

parse X as (W ∗
i )i ∈inputs(f )

parse F as (Fi )i ∈gates(f )
for i ∈ gates( f ):
W ∗

i ← EvGate (i;W ∗
le�(i ) ,W

∗
right(i ) ,Fi )

return

(
H (i,out, lsb(W ∗

i );W
∗
i ,0

λ )
)
i ∈outputs(f )

Decode(d ,Y ):

parse d as

(
(d0

i ,d
1

i )
)
i ∈outputs(f )

parse Y as (Yi )i ∈[ |Y |]

for i ∈ [|Y |]:
if Yi = d

0

i then yi := 0

else if Yi = d
1

i then yi := 1

else return ⊥

return y = y1 · · ·y |Y |

Figure 2: Generic template for garbling scheme. GbGate and EvGate subroutines to be speci�ed later.

Notation type(i ) (used in Garble) refers to the gate functionality of the gate with index i (see Section 2.1).

Hybrid (i,0): Rename {W ∗
i ,W

∗

i } = {W
0

i ,W
1

i }, whereW ∗
i is the label whose color bit is χi (i.e.,W ∗

i is the

“active” label that we expect the evaluator to hold for this wire).

Our invariant will be that in the hybrid (i − 1,2), label W
∗

i is chosen uniformly at random (this is

certainly true for input wires by construction, and will be established inductively for internal wires). In

this hybrid, instead of choosingW
∗

i explicitly, we play as an adversary in the dual-key security game, and

implicitly setW
∗

i to be the value K chosen by the dual-key oracle OK . The distribution will be the same,

it merely su�ces to show we can simulate all the uses of W
∗

i while acting as adversary in the dual-key

experiment.

If i ∈ inputs( f ), then by construction onlyW ∗
i (notW

∗

i ) is given explicitly to the distinguisher as part

of garbled input X . The only other placeW
∗

i might be used is in a call to H , where the simulation knows

the other arguments to H . These outputs of H can be computed as a dual-key adversary.
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// INPUT: gate with functionality д and index idx;
left wire labels (A0,A1); right wire labels (B0,B1)

// OUTPUT: output wire labels (C0,C1); garbled gate information

GbGate(д, idx;A0,A1,B0,B1):

σA := lsb(A0)
σB := lsb(B0)
σC ← {0,1}

for a,b ∈ {0,1}2: // each combination of visible color bits:
τab := д(σA ⊕ a,σB ⊕ b) // gate output truth value
Kab ‖κab := H (idx,a,b;AσA⊕a ,BσB ⊕b )



p0

p1

p2

q0

q1

q2



:=



τ00 τ00 0x1 τ00 0x1
2 τ00 τ00 0x1 τ00 0x1

2

τ01 τ01 0x2 τ01 0x2
2 τ01 τ01 0x2 τ01 0x2

2

τ10 τ10 0x3 τ10 0x3
2 τ10 τ10 0x3 τ10 0x3

2

τ11 τ11 0x4 τ11 0x4
2 τ11 τ11 0x4 τ11 0x4

2

1 0x5 0x52
1 0x5 0x52

1 0x6 0x62
1 0x6 0x62



−1 

K00

K01

K10

K11

0

0



// GF (2λ )

C0 := p0‖σC
C1 := q0‖σC

G := p0 + p1 · 0x5 + p2 · 0x5
2 // GF (2λ )

G ′ := p0 + p1 · 0x6 + p2 · 0x6
2 // GF (2λ )

for a,b ∈ {0,1}2:

set cab := κab ⊕ σC ⊕ τab // encrypted output wire label color bit

return (C0,C1, (G,G
′,c00,c01,c10,c11))

// INPUT: gate index idx; left wire label A∗; right wire label B∗; garbled gate info
// OUTPUT: output wire label C∗

EvGate(idx;A∗,B∗, (G,G ′,c00,c01,c10,c11)):

χA := lsb(A∗)
χB := lsb(B∗)
K∗‖κ∗ := H (idx, χA, χB ;A∗,B∗)
R := unique degree-2 polynomial in GF (2λ ) passing through

{(2χA + χB + 1,K∗), (5,G ), (6,G ′)}
χC := cχA,χB ⊕ κ

∗

return C∗ = R (0)‖χC

Figure 3: Our gate-hiding garbling scheme based on polynomial evaluation.

Hybrid (i,1): We replace the dual-key oracle OK with a random function. The change is indistinguish-

able from the previous hybrid by the dual-key security property. As a result, every call to H that involved

W
∗

i is replaced with a uniformly chosen value.
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Hybrid (i,2): For every gate j > i such that max{le�(j ), right(j )} = i , we make the following change in

the call to GbGate(·, j; · · · ):
Within this call to GbGate, three of theKab ‖κab values are now being chosen uniformly at random. By

construction, the one that is not being chosen uniformly at random corresponds to (a,b) = (χle�(i ) , χright(i ) ).
Observe that (p0,q0,G,G

′) are all linear combinations of (K00, . . . ,K11). In particular,



p0

q0

G
G ′



=



1 0 0 0 0 0

0 0 0 1 0 0

1 0x5 0x52
0 0 0

1 0x6 0x62
0 0 0



×M−1 ×



K00

K01

K10

K11

0

0



where M is the matrix shown in Figure 3. Since M is invertible, the terms on the left-hand-side are linearly
independent linear combinations of (K00, . . . ,K11).

So instead of �xing the 4 Kab values (setting 3 of them uniformly at random) and solving for the left-

hand side, we instead choose randomly G, G ′, and whichever of {p0,q0} is associated with W
∗

j . Then we

solve for the remaining value (W ∗
j ) by doing whatever the evaluator would do withG,G ′ and Kχle�(i ),χright(i ) .

Similarly, note that 3 of the 4 cab values are uniformly random because the corresponding one-time pad

mask κab is uniform. The other cab is uniform because it is a one-time pad encryption of χj , which is also

being chosen uniformly. It makes no change in the distributions to generate all the cab values uniformly

at random, and then set χj := cχle�(i ),χright(i ) ⊕ κχle�(i ),χright(i ) .

After these changes, the distribution over all values is the same as before, but now the entire gar-

bled gate (G,G ′,c00, . . . ,c11) andW
∗

j are explicitly being chosen uniformly at random. This maintains the

invariant of “inactive” wire labels being chosen uniformly.

Wrapping it up. We have argued that the hybrids are indistinguishable in the following sequence:

(0,1) ≡ (0,2) ≡ (1,0) ≈ (1,1) ≡ (1,2)

≡ (2,0) ≈ (2,1) ≡ (2,2)

...

≡ (n,0) ≈ (n,1) ≡ (n,2)

where n is the number of wires in the circuit.

Let us summarize what is happening in the �nal hybrid. The simulator �rst chooses random wire labels

for all of the garbled input X . It then chooses the entire garbled circuit to be uniformly random. Note that

the truth values vi on the wires are not needed for any of this, nor are the types of the gates. The only

place vi values are being used is to compute d : it is implicitly being used to determine which of d0

i ,d
1

i is

the uniform value and which is the one obtained by calling H . But for an output wire i ∈ outputs( f ), the

value vi on the wire is just a bit of the circuit output.

This shows that the simulator in the �nal hybrid requires only f (x ) and topo( f ) to operate. This

completes the proof of the privacy property.

Obliviousness & Authenticity The proofs of obliviousness and authenticity follow easily from the

proof of privacy.

• In the last hybrid in the proof of privacy, the only place the circuit output is used by the simulator is in

the computation of decoding information d . In the obliviousness security experiment, the simulator
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does not need to provide d . The simulation of (F ,X ) can be done without knowing circuit output

f (x ). This shows that the scheme satis�es the obliviousness property.

• The security game that de�nes authenticity only requires (F ,X ,d ) values. Hence, we can apply the

same sequence of hybrids to that security game. In the last hybrid, the “inactive” garbled outputs

d1−vi
i are chosen uniformly at random. It is therefore with negligible probability that the adversary

will guess one of them and succeed in the game. �

5 Construction that avoids Polynomial Interpolation

5.1 Overview of GLNP Garbling Scheme

In [GLNP15], Gueron et al. describe a di�erent way to garble gates (in their case, odd-parity gates only)

at a cost of 2 ciphertexts. While the construction of [PSSW09] involves polynomial interpolation, the

construction of [GLNP15] involves only cheap XOR operations, making it preferable both in performance

and ease of implementation.

The main idea is to start with the classical point-and-permute Yao scheme, in which the garbled gate

consists of 4 ciphertexts. Suppose a gate has input wire labels (A0,A1) and (B0,B1), and output wire labels

(C0,C1). As before, the subscripts correspond to the visible color bits. Consider the following example

odd-parity gate in the textbook Yao scheme:

G1 = H (A0,B0) ⊕ C0 G3 = H (A1,B0) ⊕ C0

G2 = H (A0,B1) ⊕ C1 G4 = H (A1,B1) ⊕ C0

The high level idea is to exploit the two degrees of freedom in the choice of output labelsC0 andC1, which

are not yet chosen at the time this gate will be garbled. The �rst step is to apply the GRR3 row reduction of

[NPS99], setting G1 = 0
λ
. In this example, we can do so by choosing C0 in a special way: C0 = H (A0,B0).

After �xing one of the output wire labels, the next step is to �x the other output label so thatG2 ⊕G3 ⊕

G4 = 0
λ
. In this example, we can do so by choosing C1 = H (A0,B1) ⊕ H (A1,B0) ⊕ H (A1,B1).

By choosing C0 and C1 in this way, the garbler has guaranteed that G1 = G2 ⊕ G3 ⊕ G4 = 0
λ
. Hence,

G1 does not need to be sent (it is always all zeroes), and neither does G4 (it can always be reconstructed

by the receiver as G2 ⊕ G3). In this way, only two ciphertexts actually need to be sent.

The problem of even-parity gates. One can check that the GLNP technique works for any odd-parity

gate, but does not work when the gate has even parity. We illustrate with an example. Consider the

following classical-Yao garbled gate for an even-parity truth table:

G1 = H (A0,B0) ⊕ C0 G3 = H (A1,B0) ⊕ C1

G2 = H (A0,B1) ⊕ C1 G4 = H (A1,B1) ⊕ C0

To achieveG1 = 0
λ

we must setC0 = H (A0,B0) as before. But now observe thatG2⊕G3⊕G4 = H (A0,B1)⊕
H (A1,B0) ⊕ H (A1,B1) ⊕ C0, a value that is already �xed! Because of the even parity of the gate, the C1

terms cancel out in this expression. There is no way to choose C1 so that G2 ⊕ G3 ⊕ G4 = 0
λ

as before.

5.2 Our Construction

Let us look a little more abstractly at the GLNP scheme. The evaluator computes K (the hash of the two

wire labels) and then obtains the �nal wire label asK ⊕αG ⊕ βG ′, whereG andG ′ are the two “ciphertexts”
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in the garbled gate, and α and β are bits that depend on color bits of the wire labels. The mapping between

color bits and α ,β coe�cients is �xed for the entire scheme.

Our approach is to randomize and partially hide this mapping of color bits to α ,β coe�cients. In our

scheme, evaluation works as follows:

• The evaluator hashes the input wire labels to compute a key K .

• The evaluator uses K to decrypt a 2-bit ciphertext containing α ‖β . There are four such 2-bit ci-

phertexts, arranged according to color bits. The evaluator uses the color bits of the input labels to

determine which of these 2-bit ciphertexts to decrypt.

• Having obtained the appropriate α ,β , the evaluator computes the output wire label as K ⊕αG ⊕ βG ′.

So each garbled gate consists of the following:

• G and G ′ (2λ bits)

• four 2-bit ciphertexts that encrypt α ,β values (8 bits total)

• four 1-bit ciphertexts that encrypt the color bit of the output wire label (4 bits total)

The real power of the scheme comes from the indirection in conveying the evaluator’s �nal linear combi-

nation. The evaluator uses his/her color bits to decrypt a constant-sized ciphertext, which tells him/her

what linear combination to �nally apply. A similar kind of indirection also appears in the construction of

[KKS16], where they use it to circumvent a lower bound for “linear garbling” from [ZRE15] (the model for

the lower bound implicitly assumes a direct, �xed correspondence between color bits and the evaluator’s

�nal linear combination).

Now let us consider how the garbler can arrange for all of this to happen. Let C0 and C1 denote the

false/true output wire labels (yet to be determined). Let K1, . . . ,K4 be the four possible input hashes, as

before. Let αi ,βi denote the coe�cients that the evaluator will use when he/she has Ki . Below is an

example of the correctness conditions required for an example gate:

C0 = K1 ⊕ α1G ⊕ β1G
′

C0 = K2 ⊕ α2G ⊕ β2G
′

C1 = K3 ⊕ α3G ⊕ β3G
′

C0 = K4 ⊕ α4G ⊕ β4G
′

⇐⇒



K1

K2

K3

K4



=



1 0 α1 β1

1 0 α2 β2

0 1 α3 β3

1 0 α4 β4





C0

C1

G
G ′



(2)

We let the garbler choose {αi ,βi } values uniformly subject to the matrix in Equation 2 being invertible.

Importantly, for di�erent gate types, this is a di�erent distribution over the αi ,βi values! In particular,

when the gate has odd parity (i.e., the parity of the �rst column is odd), there are 96 ways to choose αi ,βi
coe�cients to make the matrix invertible. When the gate has even parity, there are 104 ways. Beyond that,

the distributions are di�erent even for di�erent gates of the same parity. Below we discuss in more detail

how this di�erence a�ects security.

In summary, the garbler computes K1, . . . ,K4 (these are �xed by the choice of the input wire labels),

chooses random αi ,βi values that make the appropriate matrix invertible, and �nally solves for consistent

C0,C1,G,G
′

according to Equation 2. The C0,C1 values will be the output wire labels and (G,G ′) will be

the garbled gate (along with the 12 bits of encryptions mentioned above).

17



Why it hides the gate type. From the evaluator’s perspective, every kind of gate is handled the same

way — decrypt the correct α ,β and output K ⊕ αG ⊕ βG ′.
However, the garbler’s behavior depends on the choice of gate. In particular, he/she uses a di�erent

distribution over theαi ,βi values for di�erent gates. We must ensure that this di�erence is not noticeable to

the evaluator. The key point is that the evaluator sees only a single αi ,βi pair while the other coe�cients

remain encrypted.
7

Furthermore, all possible garbling distributions have the property that for every i , the

marginal distribution of (αi ,βi ) is uniform. Hence, the evaluator sees only a uniform αi ,βi , regardless of

the gate type.

To see why this is true, take any vector v ∈ {0,1}4 \ {0000,1111} and consider any invertible matrix

(over Z2) of the following form:



v1 v1 α1 β1

v2 v2 α2 β2

v3 v3 α3 β3

v4 v4 α4 β4



(3)

Note that �ipping every bit in the 3rd column is an elementary matrix operation, since the �rst two columns

sum to the all-ones vector. Hence this modi�cation has no e�ect on the determinant. This modi�cation is

also invertible. Thus, for any i , we have an 1-to-1 correspondence between the set of invertible matrices

with (αi ,βi ) and those with (αi ,βi ). Of course, the same can be said for the mappings that �ip every bit in

the 4th column, or in both the 3rd and 4th columns. Hence, after �xingv , the number of ways to complete

the matrix in an invertible way does not depend on the choice of a particular (αi ,βi ).

More details about evaluation. Similar to the previous construction, we assume a cryptographic hash

function of the form H : {0,1}∗ → {0,1}λ+3
. When the evaluator has input wire labels A and B, he/she

evaluates K ‖κ‖κ̂ ← H (A,B), where K ∈ {0,1}λ , κ ∈ {0,1}, and κ̂ ∈ {0,1}2. Then:

• κ̂ is used as a one-time pad key to decrypt the α ,β coe�cients.

• K is used to compute the output wire label as K ⊕ αG ⊕ βG ′.

• κ is used as a one-time pad key to decrypt the output wire label’s color bit.

As in the previous scheme, some of the garbler’s computations can be hard-coded into lookup tables

in an implementation. Each possible value of τ00 · · · τ11 (14 choices) can index a list of valid αab ,βab values

along with the inverse of the appropriate matrix from Equation 3. These lookup tables will clearly be more

extensive for this scheme than for the previous one, but overall have reasonable constant size.

5.3 Formal Details & Security

In Figure 4 we give the formal details of the construction. It follows the high-level discussion above.

Theorem 3. The construction in Figures 2+4 satis�es the gate-hiding privacy, obliviousness (both with respect
to Gnon-const), and authenticity properties (Section 2.2), if H is a dual-key hash.

Proof. The proof follows the overall structure of the proof of Theorem 2. Hence, we concentrate on the

di�erences.

As in the previous proof, we change perspective so that the garbling process is expressed in the eval-

uator’s point of view. For each wire, W ∗
i denotes the anticipated “active” wire label and W

∗

i denotes the

“inactive” one.

7
If all the coe�cients were to be made public, then we are back in the original situation of [GLNP15], and leaking the parity

of the gate seems inevitable for this choice of evaluation equation.
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// INPUT: gate with functionality д and index idx;
left wire labels (A0,A1); right wire labels (B0,B1)

// OUTPUT: output wire labels (C0,C1); garbled gate information

GbGate(д;A0,A1,B0,B1):

σA := lsb(A0)
σB := lsb(B0)
σC ← {0,1}

for a,b ∈ {0,1}2: // each combination of visible color bits:
τab := д(σA ⊕ a,σB ⊕ b) // gate output truth value
Kab ‖κab ‖κ̂ab := H (idx,a,b;AσA⊕a ,BσB ⊕b )

sample {αab ,βab | a,b ∈ {0,1}} uniformly s.t. the matrix below is invertible



C̃0

C̃1

G
G ′



:=



τ00 τ00 α00 β00

τ01 τ01 α01 β01

τ10 τ10 α10 β10

τ11 τ11 α11 β11



−1

×



K00

K01

K10

K11


C0 := C̃0‖σC
C1 := C̃1‖σC

for a,b ∈ {0,1}2:

cab := κab ⊕ σC ⊕ τab // encrypted output wire label color bit
dab := κ̂ab ⊕ (αab ‖βab ) // encrypted α ,β coe�cients

return (C0,C1, (G,G
′,c00, . . . ,c11,d00, . . . ,d11))

// INPUT: gate index idx; left wire label A∗; right wire label B∗; garbled gate info
// OUTPUT: output wire label C∗

EvGate(A∗,B∗, (G,G ′,c00, . . . ,c11,d00, . . . ,d11)):

χA := lsb(A∗)
χB := lsb(B∗)
K∗‖κ∗‖κ̂∗ := H (idx, χA, χB ;A∗,B∗)
α∗‖β∗ := dχA,χB ⊕ κ̂

∗

C := K∗ ⊕ α∗G ⊕ β∗G ′

χC := cχA,χB ⊕ κ
∗

return C‖χC

Figure 4: Our gate-hiding garbling scheme that uses only XOR

We reach a hybrid in which we have just changed any value of the form H (· · ·W
∗

i · · · ) to be chosen

uniformly. We consider a call to GbGate(·, j; · · · ) for a downstream gate j such that max{le�(j ), right(j )} =
i . As before, we will argue that both the garbled gate and the inactive wire label W

∗

j are being chosen

uniformly at random.

In this call to GbGate, (C0,C1,G,G
′) are all being assigned as linearly independent linear combinations

of (K00, . . . ,K11). Three of the four Kab values are being chosen uniformly at random, so it makes no

di�erence to choose G, G ′, and one of the Cz values (whichever one corresponds to W
∗

j ) uniformly, then
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solve for the other Cz value (the one that corresponds toW ∗
j ) by the honest evaluation process. Note that

the honest evaluation process requires knowledge of coe�cients αχle�(i ),χright(i ) ,βχle�(i ),χright(i ) . These changes

cause G, G ′, andW
∗

j to be chosen uniformly.

We can argue that the cab values of the garbled gate are chosen uniformly. The reasoning is the same

as in the previous proof.

Finally, we consider the dab values of the garbled gate. Three of them are uniform because their corre-

sponding masks κ̂ab values are being chosen uniformly. Changing them to be chosen explicitly at random

means that the simulation no longer uses the associated αab ,βab coe�cients. Now the simulation only

uses (αab ,βab ) for a single a,b. By our reasoning in Section 5, the marginal distribution of these (αab ,βab )
values is uniform. By this reasoning, the distribution of the fourthdab value is uniform. It makes no change

to the distribution to choose this dab value �rst and then solve for (αab ,βab ).
After all these changes, the entire garbled gate (G,G ′,c00, · · · ,c11,d00, · · · ,d11) and the inactive wire

labelW
∗

j are explicitly being chosen uniformly.

The rest of the proof follows exactly the same reasoning as in the previous proof. �

5.4 Saving 4 Bits

As described, this construction requires 2λ + 12 bits per gate. In this section we describe how it can be

modi�ed modi�ed to require only 2λ + 8 bits (conveniently making garbled gates a multiple of bytes in

practice). The modi�cation involves the distribution of αi ,βi coe�cients chosen by the garbler.

For a matrix like that in Equation 2, let v ∈ {0,1}4 \ {0000,1111} denote its �rst column (the second

column will always be its complement,v). LetDv denote the distribution over {αi ,βi } coe�cients used by

the garbler. As discussed earlier, this distribution is expected to depend onv . For the scheme as described,

the Dv distributions have support of 96 or 104 outcomes, depending on the parity of v .

It turns out that these distributions are “overkill” in some sense. The only properties we need are: (1)

for every v , every outcome ofDv makes the corresponding matrix invertible, (2) for every i , the marginal

distribution of (αi ,βi ) does not depend on v .

Later in Appendix A we describe a family of distributions with the following properties:

1. For all v , the distribution Dv assigns (α1,β1) = (0,0) with probability 1.

2. For every v and every i ∈ {2,3,4}, the marginal distribution on (αi ,βi ) induced by Dv is uniform in

{01,10,11}.

Suppose we agree that the garbler will use these distributions. Then, because of the �rst property, there is

no need for the garbler to send a ciphertext encrypting α1,β1. This saves a 2-bit ciphertext.

Then, since (α2,β2) are distributed uniformly over a set of 3 outcomes, we can use a row-reduction trick

([NPS99]) to remove the one-time-pad encryptions of α2,β2. The idea is to consider the cryptographic hash

to have the form H : {0,1}∗ → {0,1}λ+1 × Z3, so that H (A,B) = K ‖κ‖κ̂, where K ∈ {0,1}λ , κ ∈ {0,1}, and

κ̂ ∈ Z3.

Now suppose we identify the set {01,10,11} with Z3 and encrypt (αi ,βi ) via addition mod-3 with κ̂i . If

instead of choosing (α2,β2) uniformly, the garbler chooses (α2,β2) = −κ̂2, the resulting ciphertext would

always be the zero ciphertext. The garbler can compute (α2,β2) in this way and then sample α3,β3,α4,β4

consistently — the result will be indistinguishable from before since κ̂2 is pseudorandom as an output of

H . Hence, there is again no need for the garbler to send anything for the encryption of (α2,β2). This saves

the other two bits.

In summary,

• If the receiver is in case 1, then he/she uses coe�cients (α1,β1) = (0,0)
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• If the receiver is in case 2, then he/she uses coe�cients (α2,β2) = −κ̂2, where κ̂2 is the one-time pad

key obtained by calling H , interpreted as an element of Z3 � {01,10,11}.

• Otherwise, the receiver obtains (αi ,βi ) by decrypting the appropriate 2-bit ciphertext. In this case,

we can encrypt the values with one-time pad in {0,1}2.

The total size of the garbled gate becomes 2λ + 8 (4 bits for the αi ,βi coe�cients and 4 bits for the output

wire label’s color bit).
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A Optimized Coe�cients

Below is a description of coe�cient distributions used in Section 5.4. These distributions were found using

a brute-force search. For each v , we specify the distribution Dv over αi ,βi values used in garbling. One

can verify by inspection that these distributions satisfy the following properties:

• For all v ∈ {0,1}4 \ {0000,1111}, and all (α2,β2, . . . ,α4,β4) ← Dv , the following matrix is invertible

in Z2:



v1 v1 0 0

v2 v2 α2 β2

v3 v3 α3 β3

v4 v4 α4 β4



• For every v and every i ∈ {2,3,4}, the marginal distribution on (αi ,βi ) induced by Dv is uniform in

{01,10,11}.

For v ∈ {0110,1001}:



α2 β2

α3 β3

α4 β4


←






0 1

1 0

0 1


,



0 1

1 0

1 0


,



0 1

1 1

0 1


,



0 1

1 1

1 1


,



1 0

0 1

0 1


,



1 0

0 1

1 0


,



1 0

1 1

1 0


,



1 0

1 1

1 1


,



1 1

0 1

0 1


,



1 1

0 1

1 1


,



1 1

1 0

1 0


,



1 1

1 0

1 1






For v ∈ {0011,1100}:



α2 β2

α3 β3

α4 β4


←






0 1

0 1

1 0


,



0 1

0 1

1 1


,



0 1

1 0

0 1


,



0 1

1 1

0 1


,



1 0

0 1

1 0


,



1 0

1 0

0 1


,



1 0

1 0

1 1


,



1 0

1 1

1 0


,



1 1

0 1

1 1


,



1 1

1 0

1 1


,



1 1

1 1

0 1


,



1 1

1 1

1 0






For v ∈ {0101,1010}:



α2 β2

α3 β3

α4 β4


←






0 1

0 1

1 0


,



0 1

0 1

1 1


,



0 1

1 0

1 0


,



0 1

1 1

1 1


,



1 0

0 1

0 1


,



1 0

1 0

0 1


,



1 0

1 0

1 1


,



1 0

1 1

1 1


,



1 1

0 1

0 1


,



1 1

1 0

1 0


,



1 1

1 1

0 1


,



1 1

1 1

1 0





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For v ∈ {0100,1011}:



α2 β2

α3 β3

α4 β4


←






0 1

0 1

1 0


,



0 1

0 1

1 1


,



0 1

1 0

0 1


,



0 1

1 0

1 1


,



0 1

1 1

0 1


,



0 1

1 1

1 0


,



1 0

0 1

1 0


,



1 0

0 1

1 1


,



1 0

1 0

0 1


,



1 0

1 0

1 1


,



1 0

1 1

0 1


,



1 0

1 1

1 0


,



1 1

0 1

1 0


,



1 1

0 1

1 1


,



1 1

1 0

0 1


,



1 1

1 0

1 1


,



1 1

1 1

0 1


,



1 1

1 1

1 0






For v ∈ {0010,1101}:



α2 β2

α3 β3

α4 β4


←






0 1

0 1

1 0


,



0 1

0 1

1 1


,



0 1

1 0

1 0


,



0 1

1 0

1 1


,



0 1

1 1

1 0


,



0 1

1 1

1 1


,



1 0

0 1

0 1


,



1 0

0 1

1 1


,



1 0

1 0

0 1


,



1 0

1 0

1 1


,



1 0

1 1

0 1


,



1 0

1 1

1 1


,



1 1

0 1

0 1


,



1 1

0 1

1 0


,



1 1

1 0

0 1


,



1 1

1 0

1 0


,



1 1

1 1

0 1


,



1 1

1 1

1 0






For v ∈ {0001,1110}:



α2 β2

α3 β3

α4 β4


←






0 1

1 0

0 1


,



0 1

1 0

1 0


,



0 1

1 0

1 1


,



0 1

1 1

0 1


,



0 1

1 1

1 0


,



0 1

1 1

1 1


,



1 0

0 1

0 1


,



1 0

0 1

1 0


,



1 0

0 1

1 1


,



1 0

1 1

0 1


,



1 0

1 1

1 0


,



1 0

1 1

1 1


,



1 1

0 1

0 1


,



1 1

0 1

1 0


,



1 1

0 1

1 1


,



1 1

1 0

0 1


,



1 1

1 0

1 0


,



1 1

1 0

1 1






For v ∈ {0111,1000}:



α2 β2

α3 β3

α4 β4


←






0 1

1 0

1 1


,



0 1

1 1

1 0


,



1 0

0 1

1 1


,



1 0

1 1

0 1


,



1 1

0 1

1 0


,



1 1

1 0

0 1





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