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Abstract. Ed25519 is an instance of the Elliptic Curve based signature
scheme EdDSA that was recently introduced to solve an inconvenience
of the more established ECDSA. Namely, both schemes require the gen-
eration of a random value (scalar of the ephemeral key pair) during the
signature generation process and the secrecy of this random value is
critical for security: knowledge of one such a random value, or partial
knowledge of a series of them, allows reconstructing the signer’s private
key. In ECDSA it is not specified how to generate this random value and
hence implementations critically rely on the quality of random number
generators and are challenging to implement securely. EdDSA removes
this dependence by deriving the secret deterministically from the mes-
sage and a long-term auxiliary key using a cryptographic hash function.
The feature of determinism has received wide support as enabling secure
implementations and in particular deployment of Ed25519 is spectac-
ular. Today Ed25519 is used in numerous security protocols, networks
and both software and hardware security products e.g. OpenSSH, Tor,
GnuPG etc.
In this paper we show that in use cases where power or electromagnetic
leakage can be exploited, exactly the mechanism that makes EdDSA
deterministic complicates its secure implementation. In particular, we
break an Ed25519 implementation in WolfSSL, which is a suitable use
case for IoT applications. We apply differential power analysis (DPA) on
the underlying hash function, SHA-512, requiring only 4 000 traces.
Finally, we present a tweak to the EdDSA protocol that is cheap and
effective against the described attack while keeping the claimed advan-
tage of EdDSA over ECDSA in terms of featuring less things that can
go wrong e.g. the required high-quality randomness. However, we do ar-
gue with our countermeasure that some randomness (that need not be
perfect) might be hard to avoid.
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1 Introduction

Since its invention in the late 80’s independently by Koblitz [15] and Miller [19]
Elliptic Curve Cryptography (ECC) has established itself as the default choice



for classical public-key cryptography, in particular for constrained environments.
Especially lightweight Internet of Things (IoT) applications and resources sparse
platforms such as RFID tags and sensor nodes consider ECC exclusively for their
(exceptional) public-key requirements. This does not come as surprise knowing
that working in fields with size 160 bits or so is considered to be at least as secure
as RSA using around 1200 bits [1]. This property often results in implementations
of smaller memory/area footprints, lower power/energy consumption etc.

A recent initiative is to seriously consider and consequently standardize some
post-quantum cryptosystems, i.e., those that could survive a prospect of having a
quantum computer that (if built) would break all classical public-key cryptosys-
tems. However, this does not (yet) makes research on ECC obsolete as there
is still a number of years to go, before the actual transition to post-quantum
cryptography might occur.

Research on ECC has evolved from the first proposals to numerous works
on protocols, algorithms, arithmetic, implementations aspects including side-
channel security etc. Especially, looking into different curves and representations
has become a resourceful topic for various optimizations. Edwards curves were
proposed by Bernstein and Lange [8] featuring a complete point operation for-
mulae that is proven to be more efficient and secure with respect to side-channel
leakages.

All together, the easiness of constant-time implementations and performance
boost, together with somewhat reduced confidence in NIST-standardized curves
have made many users transitioning to Edwards curve based protocols including
OpenSSH, Tor, TLS, Apple AirPlay, DNS protocols etc [3].

In particular, Edwards-Curve Digital Signature Algorithm (EdDSA) is very
popular in real-world application of cryptography. An instance of EdDSA using
Edwards Curve25519 called Ed25519 is used among others, in Signal protocol
(for mobile phones), Tor, SSL, voting machines in Brazil etc. There is an ongoing
effort to standardize the scheme, known as RFC 8032.

EdDSA including Ed25519 is claimed to be more side-channel resistant than
ECDSA [7], not just in terms of resisting software side-channels i.e. featuring
constant timing. The authors rely on the idea to “generate random signatures
in a secretly deterministic way” such that “different messages lead to different,
hard-to-predict values of ephemeral key r”. This aims at the known algorithms
using lattice methods to compute the long-term ECDSA key from the knowl-
edge of as few as 3 bits of the ephemeral key r for a few hundred of signatures.
This knowledge can be typically obtained from side-channel attacks or from non-
uniformity of the distribution from which r is taken, so the authors of EdDSA
rightfully point at the fact that the “deterministic feature” results in no obvious
side-channel leakage exploits. They also state that “no per-message randomness
is consumed”, making this additionally attractive due to the notoriously expen-
sive generation of random numbers.

In this work we show that, although expensive, one should possibly retreat
to randomness as we are able to break Ed25519 by using 1st order differential
power analysis. Actually, the combination of the key and the message in the



hash computation (without randomness) makes it a classic scenario for DPA as
proposed in the seminal paper of Kocher et. al [16]. More in detail, although we
exploit the non-linearity of modular addition in the hash computation, EdDSA
is a perfect target for this kind of attack as it fully breaks the scheme after
collecting as few as 4 000 power or EM traces. We give all the details of the
attack later in this paper, including a simple fix that would render the attack
infeasible.

The rest of the paper is organized as follows. First, we mention related pre-
vious work and specify our contributions. In Sect. 2, we provide background
information required for the remainder of the paper. Section 3 gives the ingre-
dients of our attack and dissect the methodology from attacking the signature
scheme down to DPA on modular addition. In Sect. 4 we present the practical
attack on a 32-bit ARM architecture running WolfSSL and some caveats that
had to be overcome before turning the idea into a practical attack. We present
the results of the attack with a technique to reduce the number of traces. In
Sect. 5 we present a countermeasure and Sect. 6 concludes the paper.

1.1 Related Work

Ed25519 uses SHA-512, a member of the SHA-2 family, for hashing. SHA-512 is
used in many applications, often in HMAC mode. Namely, as SHA-1 collisions
were expected for years up to now many implementers started already upgrading
to alternatives. As a matter of fact, due to the recently found collisions in SHA-1
it is strongly recommended to immediately migrate to SHA-2 or SHA-3.

Several works looked into side-channel vulnerabilities in SHA-1 and SHA-
2 hash functions or other symmetric-key primitives using modular addition.
McEvoy et al. [18] presented an attack on the compression function of SHA-
2. Basically, they present the theory of an attack on an HMAC construction
using DPA but a full attack on real traces was not executed. The authors also
presented a countermeasure against DPA using masking.

In another attack on the compression function of SHA-2, Belaid et al. [4]
target other steps (than McEvoy et al.) and they provide results on simulated
traces. The authors also suggest a countermeasure for their specific attack.

In Seuschek et al. [22] the authors discuss an attack on EdDSA. They apply
the attack as described in [18, 4]. However, they do not execute the attack on
either simulated or real traces.

In this work we exploit another aspect of SHA-512. Namely, our attack is the
first one to exploit leakage in the computation of the message schedule of SHA-
512 (in contrast to the previous paper where they target the addition of part
of the message in the round function). More specifically, we target the modular
addition operation and exploit the non-linearity of it to attack EdDSA.

Attacking modular addition is done before by several authors. Zohner et
al. [23] attack the modular addition in the hash function Skein using real traces.
The authors discuss issues regarding a certain symmetry in the results of an
attack on modular addition and present a solution. Namely, the correct result
value modified by flipping the most significant bit also shows a correlation. This



result is called the symmetric counterpart of the correct result. Lemke et al. [17]
and Benôıt et al. [5] also attack modular addition in other symmetric ciphers on
simulated traces. A similar symmetry in the results was observed.

In our work we actually use the symmetry in the results of the attack in a
different manner. More precisely, we use it to reduce the number of traces until
the key recovery. Additionally, we provide results of our attack on real traces
supporting the hypotheses from the theoretical attack considerations. Except
for [23] the previous works only support their theory with simulations.

1.2 Contributions

Here we summarize the main contributions of this paper:

– We present the first side-channel attack on Ed25519 using real traces. To this
end, we extract secret information i.e. a key that allows us to forge signatures
on any message using the key obtained. The key recovery is successful after
collecting a few thousands of power consumption traces corresponding to
signature generation.

– We present the first side-channel attack on the message schedule of SHA-512
targeting the modular addition operation within. The ideas are extendable
to other similar constructions. In contrast to previous attacks on SHA-512
we target the extension of the message schedule instead of the addition of a
message in the round function.

– Our attack breaks a real-world implementation. The traces were generated
by an implementation of Ed25519 from the lightweight cryptographic library
WolfSSL on a 32-bit ARM based micro-controller. This kind of implementa-
tion particularly targets low-cost and/or resource-constrained environments
as in the IoT use cases and similar.

– Finally, we present a countermeasure against this attack. The countermea-
sure is a result of a small tweak in EdDSA that would not just make the
attack infeasible but also does not add much overhead to implementations.
A similar countermeasure where randomness is added was presented in the
XEdDSA and VXEdDSA Signature Schemes [2] (more details in Sect. 5).

2 Background

2.1 EdDSA

EdDSA [7] is a digital signature scheme. The signature scheme is a variant of
the Schnorr signature algorithm [21] that makes use of Twisted Edwards Curves.
The security of ECDSA depends heavily of a good quality randomness of the
ephemeral key, which has to be truly random for each signature. Compared
to ECDSA, EdDSA does not need new randomness for each signature as the
ephemeral key is computed deterministically using the message and the auxiliary
key that is part of the private key. The security depends on the secrecy of the



auxiliary key and the private scalar. This does not create a new requirement as
we need to keep a private key secret anyway.

When using Curve25519 [6] for signatures we get Ed25519. Ed25519 sets
several domain parameters of EdDSA such as:

– Finite field Fq, where q = 2255 − 19
– Elliptic curve E(Fq), Curve25519
– Base point B
– Order of the point B, l
– Hash function H, SHA-512 [20]
– Key length b = 256 (also length of the prime)

For more details on other parameters of Curve25519 and the corresponding
curve equations we refer to Bernstein [6].

Table 1. Our Notations for EdDSA

Name Symbol

Private key k
Private scalar a (first part of H(k))
Auxiliary key b (last part of H(k))
Ephemeral scalar of private key r

To sign a message, the signer has a private key k and message M . Algorithm
1 shows the steps to generate an EdDSA signature.

Algorithm 1 EdDSA key setup and signature generation

Key setup.
1: Hash k such that H(k) = (h0, h1, . . . , h2b−1) = (a, b)
2: a = (h0, . . . , hb−1), interpret as integer in little-endian notation
3: b = (hb, . . . , h2b−1)
4: Compute public key: A = aB.

Signature generation.
5: Compute ephemeral private key: r = H(b,M).
6: Compute ephemeral public key: R = rB.
7: Compute h = H(R,A,M) and convert to integer.
8: Compute: S = (r + ha) mod l.
9: Signature pair: (R,S).

The first four steps belong to the key setup and are only applied the first time
a private key is used. Notation (x, . . . , y) denotes concatenation of the elements.
We call a the private scalar and b = (h0, h1, . . . , h2b−1) the auxiliary key (see
Table 1). In Step 5 the ephemeral key r is deterministically generated.

To verify a signature (R,S) on a message M with public key A a verifier
follows the procedure described in Algorithm 2.



Algorithm 2 EdDSA signature verification

1: Compute h = H(R,A,M) and convert to integer.
2: Check if group equation 8SB = 8R+ 8hA in E holds.
3: If group the equation holds, the signature is correct.

2.2 SHA-512

SHA-512 is a member of the SHA-2 hashing family, designed by the NSA. The
hash functions from the SHA-2 family are named after their digest length. SHA-
512 is used several times in the Ed25519 signature scheme. SHA-2 is based on
its predecessor SHA-1 and with SHA-1 being broken, implementations change
in their usage of hash function from SHA-1 to SHA-2 or SHA-3 [9].

SHA-2 is a Merkle-Damg̊ard construction that uses a compression function
based on a block cipher by adding a feed-forward according to Davies-Meyer, see
Algorithm 3. Merkle-Damg̊ard iteratively updates a chaining value (CV), this
value is initialized to a fixed initial value (IV). The message is padded and split
up into blocks. In each iteration a message block is processed. The digest is the
value of the CV after all message blocks have been processed. Figure 1 shows
an overview of the generation of the ephemeral scalar where the auxiliary key
and the message are hashed. The letter K denotes the auxiliary key b, Mi the
input message, w the remaining message schedule words and R the compression
function. M0 is the fragment of the message that is in the same block as the
key and M1 a fragment in the second block. We assume here a relatively short
message.

IV R

K M0 w

CV R

M1 w

CV

Fig. 1. SHA-512 hashing of K and M .

The compression function has two inputs, the chaining value CVi and mes-
sage block Mi. The compression function produces an updated chaining value
CVi+1. All the variables in SHA-512 are 64-bit unsigned integers (words). The
additions are computed modulo 264. The algorithm consists of a data path and
a message schedule. The data path transforms the CV by iteratively applying 80
rounds on it. The message expansion takes a 16× 64 = 1024-bit message block



and expands it to a series of 80 message schedule words wi, each of 64 bits. Each
message block consists of 16 64-bit words, that are the first 16 message sched-
ule words. Next, the remaining message schedule words are generated using the
1024-bit message block so there is a word for each round. On a message block
80 rounds are applied, in each round a round constant and a message schedule
word is added. As a result a 512-bit message digest is produced.

The compression function of SHA-512 is explained in detail in Algorithm 4
using the notation described in Table 2.

Table 2. Notation for SHA-512

Name Symbol

Bitwise right rotate ≫
Bitwise right shift �
Bitwise and ∧
Bitwise xor ⊕
Bitwise not ¬
Addition modulo 264 +
Message schedule word w[i]
Message word m[i]
Message block M [i]
State of the data path Hi

Compression function CF

Algorithm 3 Merkle Damg̊ard

Input: 0 ≤ bit-length(M) < 2128

Output: output = hash value
1: Pad message M by appending an encoding of the message length
2: Initialize chaining value CV with constant IV
3: Split padded message M into blocks
4: for all blocks Mi do
5: CVi+1 ← CF(CVi,Mi)
6: end for
7: return H ← CV

2.3 Differential Power Analysis

There are different categories of side-channel attacks such as timing attacks,
electromagnetic emissions attacks and power attacks, i.e. exploiting different
physical information. In this paper we perform a power attack. Power analysis
attacks were introduced in 1999 by Kocher et al. [16]. Power attacks exploit the
dependency of the power consumption on the data that is processed by a device.



Algorithm 4 SHA-512 Compression function

Input: CVi, Mi

Output: CVi+1 = CF(CVi,Mi)
Message expansion

1: for i = 0; i < 16; i++ do
2: w[i]← m[i]
3: end for
4: for i = 16; i < 80; i++ do
5: σ0 ← (w[i-15] ≫ 1)⊕ (w[i-15] ≫ 8)⊕ (w[i-15]� 7)
6: σ1 ← (w[i-2] ≫ 19)⊕ (w[i-2] ≫ 61)⊕ (w[i-2]� 6)
7: w[i]← σ1 + w[i-7] + σ0 + w[i-16]
8: end for
9: H0, · · · , H7 ← CVi

Copy chaining value to data path
10: a← H0, . . . , h← H7

11: for i = 0; i < 80; i++ do
12: Σ1 ← (e≫ 14)⊕ (e≫ 18)⊕ (e≫ 41)
13: Σ0 ← (e≫ 28)⊕ (e≫ 34)⊕ (e≫ 39)
14: ch← (e ∧ f)⊕ ((¬e) ∧ g)
15: maj ← (a ∧ b)⊕ (a ∧ c)⊕ (b ∧ c)
16: T1 ← h+Σ1 + ch+ k[i] + w[i]
17: T2 ← Σ0 +maj
18: h← g
19: g ← f
20: f ← e
21: e← d+ T1

22: d← c
23: c← b
24: b← a
25: a← T1 + T2

26: end for
Davies-Meyer feed-forward

27: H0 ← H0 + a, . . . ,H7 ← H7 + h
28: return CVi+1 ← H0, . . . , H7



We use a CMOS based micro-controller, so we can model the power con-
sumption by computing the Hamming weight of the assumed intermediate values
processed in the device. In our attack, we predict the intermediate values using a
selection function. The selection function computes the intermediate value based
on a known input, i.e. part of the message and on a hypothesis of an unknown
input, part of the key.

In a side-channel attack the adversary typically has to make a hypothesis on
all possible candidate values of a subkey. As using the complete key results in an
unfeasible amount of key hypotheses, the adversary uses a divide-and-conquer
technique by recovering the key in smaller chunks. The size is determined so
it is possible to compute the selection function for all possible hypotheses, for
instance with a size of 8 bits. We correlate all the Hamming weights of the values
processed by the selection function with the traces using the Pearson correlation
coefficient. This distinguisher is called Correlation Power Analysis (CPA) [10].
The results are stored in a table. The columns correspond to the time samples,
the rows correspond to the key hypotheses. When enough traces are used, the
row containing highest absolute correlation value corresponds to the correct key
hypothesis.

3 The Attack Components

In this part we elaborate on our strategy and the hierarchy of the attack. Follow-
ing a top-down approach we examine the Ed25519 signature algorithm looking
for vulnerabilities. The way it is composed leads us to identifying the weakness
of the modular addition operation in the SHA-512 part.

We start off by explaining what value we need to recover from Ed25519 and
how to use it to generate forged signatures. Next, we explain how we recover
this value by attacking SHA-512. Finally, we apply DPA on modular addition.
To reduce the complexity of the attack we use a divide-and-conquer technique
to divide 64-bit key words into 8 bit substrings.

3.1 Attacking Ed25519

We describe a key-recovery attack on Ed25519 by measuring the power con-
sumption of 4 000 signature computations.

We attack the generation of the ephemeral key to retrieve the auxiliary key
b. This allows us to compute the ephemeral key r. Once we know the auxiliary
key, we extract the private scalar by applying the following computations on an
arbitrary signature performed with the key.

1. Compute r = H(b,M).
2. Compute h = H(R,A,M).
3. Compute a = (S − r)h−1 mod l.

We can use the private scalar a with any message and any auxiliary key b to
generate forged signatures.



3.2 Attack on SHA-512

The auxiliary key is prepended to the message and together this is hashed to
compute the ephemeral key. In our attack we assume the message has at least
length 512 bits. In this way the first 4 message schedule words contain the
constant auxiliary key, the next 8 words contain the variable message and the
remaining 4 words can contain more message words or constant padding.

To be able to attack the auxiliary key b, we are looking for steps in the
algorithm where a word that only depends on the message part of the input block
is added to a constant unknown key-dependent word. If we look at Algorithm 4,
we can see that elements from the message schedule are added in two places,
namely in message schedule line 7 and in data path line 16. The extending of the
message schedule in line 7 seemed like a viable option, as from round 16 to 19
unknown words are added to known words. It depends on the implementation
how this can be attacked.
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Fig. 2. Single step of message schedule SHA-512

The implementation that we attacked is in WolfSSL, which is a lightweight
C-based TLS/SSL library that targets IoT and embedded devices. To determine
how to attack the implementation and how to model the leakage we looked at
the computation of w[16] in the message schedule, see Fig.2. The figure shows
a single step to compute the message schedule that is applied recursively to the
remaining words.

w[16]← σ1(w[14]) + w[9] + σ0(w[1]) + w[0] (1)



σ0 and σ1 apply linear transformations that transform a word by taking a word,
shifting it over three different offsets and XOR’ing these. They do not play a
role in our attack. Of these four words on the right hand side of (1), word w[14]
and w[9] are part of the message therefore variable and known (green). Word
w[1] and w[0] are part of the auxiliary key value so constant and unknown (red).
With the attack we are able to recover σ0(w[1]) + w[0]. To be able to recover
the words separately, we introduce 4 auxiliary variables that represent the key-
dependent part of the message expansion word computation. Knowledge of these
four variables allows reconstructing the key.

w[17]← σ1(w[15]) + w[10] + σ0(w[2]) + w[1] (2)

w[18]← σ1(w[16]) + w[11] + σ0(w[3]) + w[2] (3)

w[19]← σ1(w[17]) + w[12] + σ0(w[4]) + w[3] (4)

We call the unknown parts k16, . . . , k19, corresponding to the message schedule
entries w[16], . . . , w[19] respectively.

k19 = w[3] (5)

k18 = σ0(w[3]) + w[2] (6)

k17 = σ0(w[2]) + w[1] (7)

k16 = σ0(w[1]) + w[0] (8)

Equation (3) uses the result of (1). Since we can obtain k16, we can compute
w[16] and consider it to be known. This also applies to (4). In (4), w[19] only
uses on a one unknown word as input, so k19 = w[3]. Once we know w[3], there
is only one unknown word in (7), word w[2]. Thus we can compute it. The re-
maining unknown words are computed in a similar way. The words w[0], . . . , w[3]
correspond to auxiliary key b = (hb, . . . , h2b−1).

3.3 DPA on Modular Addition

To attack a full addition we need to guess 64 unknown bits. This leaves us with
264 possible candidates. As it is not feasible to correlate the traces with this
number of key candidates, we apply a divide-and-conquer strategy similar to the
one in [23]. We pick an 8-bit part of the computation result called the sensitive
variable.

We start the attack on a 64-bit word with the least significant 8 bits of the
words. We craft the selection function S(M,k∗) as follows for k16, where M
is part of the input message (w[9], w[14]) and k∗ is the key byte we make a
hypothesis on.

S(M,k∗)k
16, bit 0−7

← ((σ1(w[14]) + w[9]) mod 28) + k∗ (9)

Next, we create the table V containing all possible intermediate values by adding
k∗ ∈ {0, . . . , 255} to each 8-bit message. The addition of k∗ is not reduced by 28,



that means the intermediate values have a length of at most 9 bits. The trace set
contains T traces, each trace consists of N time samples and there are 256 key
candidates. With table V we model the power consumption by computing the
Hamming Weight of each intermediate value and store them in table H = T×K.
To find the correct key candidate we compute the Pearson correlation of each
column of traces with each column of H. The result is stored in table R = K×N .
When a sufficient amount of traces is used, the row with the highest absolute
value corresponds to the correct key candidate. We store the value in k′16 (the
recovered key bits) with the remaining bits 0.

When we know the least significant byte of k16 by applying the attack, we
use it to obtain the next byte as follows.

S(M,K∗)k
16, bit 8−15

← (((σ1(w[14]) + w[9] + k′16)� 8) mod 28) + k∗

We add k′16 to the messages, shift the result 8 bits to the right and compute
modulo 28 such that the MSB of the previous result is taken into account. We
compute the previous steps again and store the key corresponding to the highest
correlation value in k′16. We repeat these steps to obtain the remaining 6 bytes
of k16. The remaining words of the auxiliary key, k17, k18 and k19 are obtained
in a similar way as k16.

4 Experimental Setup and Results

4.1 Setup

For our attack we use the Piñata3 development board by Riscure as our target.
The CPU on the board is a Cortex-M4F, working at a clock speed of 168MHz.
The CPU has a 32-bit Harvard architecture with a three-stage pipeline. The
board is programmed and modified such that it can be targeted for SCA.

The target is the Ed25519 code of WolfSSL 3.10.2.

The physical leakage of the device that we exploit is the dependency of the
current to the data it is processing. To measure this we use a device called the
Current Probe4 by Riscure. The Current Probe provides us with a clean signal
we can exploit.

The oscilloscope we use to measure the output of the Current Probe is a
Lecroy Waverunner z610i. The oscilloscope is triggered by an I/O pin on the
Piñata. We set the pin to a high signal just before SHA-512 is called and to a
low signal right after it finishes. Although the clock speed of the CPU is 168MHz,
the oscilloscope is set to sample at a rate of 250MS/s. With these settings we
captured the traces that we attacked. Figure 3 shows a photo of the setup.

3 Piñata board. Accessed: 18-04-2017. Url: https://www.riscure.com/

security-tools/hardware/pinata-training-target
4 Current Probe. Accessed: 18-04-2017. Url: https://www.riscure.com/benzine/

documents/CurrentProbe.pdf



Fig. 3. Setup

4.2 Input Correlation

To determine where the computations leak we compute the correlation of values
that we know and that are going to be used in the sensitive variable. If we look
at Fig. 4a, we see the correlation of the measured power consumption with the
Hamming weight of w[9]. The same approach was applied for σ1(w[14]). For w[9]
we observe peaks in the correlation and for σ1(w[14]) we only observe noise. The
value w[9] is directly loaded from the memory to a register while σ1(w[14]) is
not loaded from the memory, but w[14] is and has the linear computation σ1
applied afterwards. We only observe correlation with values directly loaded from
the memory. This lead us to the conclusion that the memory bus provided us
with the highest observed leakage.

If we look at Fig. 4b we see a power trace of the compression function com-
putation where the message expansion is computed. Each negative peak corre-
sponds to a round. The first 16 rounds are shorter as in WolfSSL the message
schedule does not happen before the compression rounds start, but on the fly.
The time samples in Fig. 4b correspond to time samples in Fig. 4a, thus we can
relate the peaks to the round where they appear. The first peak is when word
w[9] is used in the round function at round 9 and the second peak at round 24
when w[9] is used to compute σ0(w[9]). There is no input correlation at round
16. The value could be cached and therefore does not appear on the memory
bus.

Since the Hamming weight of values on the memory bus provide the best
leakage, we choose to attack values that are loaded or stored from a register to
the memory or visa versa. That means in (1), w[16] leaks and from that we can
recover k16.



0 2 4 6 8 10 12

Time samples 104

-0.5

0

0.5

C
or

re
la

tio
n 

va
lu

es Input correlation w[9]

0 2 4 6 8 10 12

Time samples 104

-0.5

0

0.5

C
or

re
la

tio
n 

va
lu

es Input correlation 
1
(w[14])

Round 9 Round 24

(a) Input correlation of σ1(w[14]) and
w[9].

0 2 4 6 8 10 12

Time samples 104

-150

-100

-50

0

50

100

150

D
is

cr
et

e 
po

w
er

 c
on

su
m

pt
io

n 
va

lu
es

Round 16

(b) Power trace of compression function
computation.

Fig. 4. Input correlation and power trace figures

4.3 Results of the attack

In Fig. 5 we see the correlation of correct key candidate with the traces. Peaks
are visible corresponding to the rounds when the value is stored and loaded. The
figure also shows the correlation result for an incorrect key candidate where no
correlation occurs.

When we plot the highest correlation value for each key candidate we see a
similar effect as in other attacks on modular addition where the Pearson correla-
tion is also used. We also see high correlation values for the symmetric counter-
part of the correct key candidate. In Fig. 6 we can observe this with high peaks
for the correct key candidate 68 and for its symmetric counter part key candidate
196. In the symmetric counterpart of the key candidate only the most significant
bit is different. As all papers describing an attack on modular addition mention
this symmetry it seems unavoidable. Compared to the work [23] we can clearly
distinguish the correct key candidate from the incorrect ones.

In Fig. 7 we see the success probabilities of the attack on the unknown words
k16, . . . , k19. For each data point in the figure we ran the attack 100 times with a
certain amount of traces. In Fig. 7, the attack was considered successful if all 64
bits of a word were recovered correctly by applying the attack on a byte 8 times.
The figure shows that the success probability of the attack rapidly increases when
more than 1000 traces are used. At around 4 000 traces the success probability
approaches one making this a practical attack.

4.4 Reducing the Number of Traces

Although we can clearly distinguish the correct key candidate from Fig. 6, we
use the symmetry of the result to increase the success probability of our attack
such that less traces are required for a successful attack. The most significant
bit is the hardest to attack and requires to most number of traces to distinguish.
If we overlap the bytes that we attack by one bit, the most significant bit in
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Fig. 7. Success probability of the attack

one attack will be the least significant bit in the next attack. Using this overlap
technique we find all bits of a word except for the most significant bit. In the
attack on Ed25519 we attack four words, that means we need to brute force four
bits, so 16 possibilities. We do this by recomputing a valid signature with each
possible key. We compare the computed signatures with the valid one we have,
the key corresponding to the valid signature is the correct one.

We also overlapped the result with more bits. With 2,3 and 4 bits overlap we
need to brute force four bits for each word. This means we need to brute force
216 possibilities.

Figure 8 shows the results of the different overlap sizes for the different word
that we need to attack to recover the key. As we can see, overlapping bits results
in a higher success probability. The difference between the amount of overlapped
bits seems minimal and not consistent for each word. We already saw that we
needed the highest amount of traces to distinguish the most significant bit cor-
rectly. Any amount of overlapping bits at least overlaps with the most significant
bit. This causes the largest increase of the success probability. Overlapping a
larger number of bits does not seem to affect the success probability relevantly.

5 Discussion and Countermeasure

With our presented attack, we are able to obtain the private scalar such that
we can forge signatures by collecting the power measurements of only 4 000
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signatures. This makes it a very practical attack and implementers of Ed25519
should take this into account.

The default protection would be the implementation of a protected version
of SHA-512. Due to the use of boolean and arithmetic operations, the protection
of SHA-1, SHA-2 and ARX algorithms in general is complex and could be quite
costly [13, 18]. We have an alternative proposal that requires dropping the deter-
ministic signature feature and add some randomness in the computation of the
ephemeral scalar. We need to create a scenario such that an attacker is not able
make a hypothesis on the constant key value. This can be achieved by padding
the key with fresh random bits such that the first 1024-bit block is composed
only by key and random value, without any bits known to the attacker. The
input message will be processed in blocks after that. Fig. 9 visualizes how the
input should look. The R0 block would be a random number of 768 bits. We
argue that is also possible to have an R0 block composed by 128 bits of random-
ness and pad the rest of the block with 640 bits with a constant value (e.g. all
zero).

The XEdDSA and VXEdDSA [2] signature schemes extend Ed25519 to gener-
ate a more robust ephemeral private scalar that is sufficiently random. Although
XEdDSA and VXEdDSA also add random values into the signature scheme,
XEdDSA is still vulnerable to our attack. As they append a random 64-byte
sequence to the key and the message, the vulnerability that we exploit remains
the same. VXEdDSA is not vulnerable to our attack but it requires several
additional scalar multiplications that add to the computation time.

Obviously, this countermeasure kills the deterministic signature properties,
but we do not see this as a dramatic problem. The main motivation for the pro-
posal of deterministic signature was to avoid a poor management of randomness
that can introduce security problems [12, 14]. The proposed countermeasure is
also not re-introducing the strong security requirement of randomness needed
by ECDSA. Basically, even if the same randomness is used to sign two different
messages, the attacker will not be able to recover the key as would it be possible
with ECDSA. Additionally we want to highlight that the signature verification
procedure remains as is.

As our final comment, in the recent developments of the IETF CFRG group
for TLS 1.3, the hash function adopted for Ed448 is SHAKE256. In this case the
protection against side-channel attacks such as power and EM based would be
easier and pretty robust as explained by Chari et al. [11].

6 Conclusion

In this work we presented a side-channel attack on the digital signature scheme
Ed25519. By measuring the power consumption of approximately 4 000 signa-
tures we were able to recover the auxiliary key of a signature. We can use the
auxiliary key to recover the private scalar that we can use to forge signatures.

We recover the auxiliary key by executing a side-channel attack on SHA-
512. We described an attack on the message schedule that is applicable to all
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Fig. 9. Generation of the ephemeral key with a countermeasure.

applications where a constant secret is hashed together with a variable known
input.

The attack we presented poses a real threat to implementation of the signa-
ture scheme such as on embedded devices or devices in IoT, if an attacker is able
to measure the power consumption. Additionally, we propose a countermeasure
to counteract against this attack.
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