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Abstract. Cryptosystems based on supersingular isogenies have been proposed recently
for use in post-quantum cryptography. Three problems have emerged related to their hard-
ness: computing an isogeny between two curves, computing the endomorphism ring of a
curve, and computing a maximal order associated to it. While some of these problems
are believed to be polynomial-time equivalent based on heuristics, their relationship is still
unknown. We give the first reduction between these problems, with the aid of one more
problem which we call Action-on-`-Torsion. We show that computing `-power isogenies
reduces to computing maximal orders and Action-on-`-Torsion.

We also define the notion of a compact representation of an endomorphism, and use this to
show that endomorphism rings always have polynomial representation size. We then reduce
the endomorphism ring problem to computing maximal orders and Action-on-`-Torsion,
thus laying the foundation for analysis of the hardness of endomorphism ring computation.
This identifies these last two problems as one possible way to attack some systems, such
as hash functions based on the `-isogeny graph of supersingular elliptic curves. This gives
the potential to use algebraic tools in quaternion algebras to solve the problems. We also
discuss how these reductions apply to attacks on a hash function of Charles, Goren, and
Lauter.

1. Introduction

Cryptosystems based on the hardness of computing isogenies between elliptic curves have
received a lot of attention recently because of their potential to be resistant against quan-
tum computers. The first systems proposed were based on ordinary elliptic curves. Stol-
bunov [Sto10] proposed a new Diffie-Hellman type system, with the goal of obtaining a
quantum resistant cryptographic protocol. This system was based on the difficulty of com-
puting isogenies between ordinary elliptic curves. The fastest classical algorithm for solving
this problem is exponential, but recently Childs, Jao, and Soukharev [CJS14] showed that
on a quantum computer, the private keys in this system can be recovered in sub-exponential
time.

The focus has shifted to systems based on supersingular isogenies, and that will also be
the focus of this paper. Cryptographic applications based on the hardness of computing
isogenies between supersingular elliptic curves were first given in [CGL09] which constructed
a hash function from the `-isogeny graph of supersingular elliptic curves. In the construction
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of their hash function, finding preimages is connected to finding certain `-power isogenies
(for ` a small prime) between supersingular elliptic curves.

Proposals for post-quantum key-exchange, signature and encryption schemes based on
computing isogenies of supersingular elliptic curves were given by De Feo, Jao and Plût
in [DFJP14], and for these systems there are currently no subexponential quantum attacks.
Another signature scheme based on endomorphism ring computation is given in [GPS16,
Section 4], where the secret key is a maximal order isomorphic to the endomorphism ring of
a supersingular elliptic curve. While the original scheme in [DFJP14] had to reveal auxiliary
points, this is not necessary in this scheme. There are some partial attacks on cryptosystems
based on supersingular isogenies described in [GPST16, Ti17, Pet17].

In the supersingular case three problems have emerged as potential computational hard-
ness assumptions related to the above systems. The first is computing isogenies between
supersingular elliptic curves, the second one is computing the endomorphism ring of a su-
persingular elliptic curve, and the third is to compute a maximal order isomorphic to the
endomorphism ring of a supersingular elliptic curve. In order to develop confidence that
these new systems are secure against quantum computers, it is important to understand
these problems, their relationships, and how they relate to the cryptosystems. The natural
way to do this is to give polynomial-time reductions between the problems when possible,
and there are heuristics for doing this [Koh96],[KLPT14]. However, one quickly runs into
problems when attempting to find efficient reductions. For example, the main parameter for
these problems is a large prime p, and it is not obvious that the endomorphism ring of an
elliptic curve even has a basis with a representation size that is polynomial in log(p). The
same problem exists for maximal orders.

Deuring’s correspondence between maximal orders in a quaternion algebra and super-
singular elliptic curves over Fp2 gives a problem which is categorically equivalent to the `-
PowerIsogeny problem, which is: given two maximal orders, compute an ideal which “links”
them and has norm `e for some e. This problem is solved in [KLPT14] with an algorithm
which the authors claim to run heuristically in polynomial time in log(p). They do not give
a precise complexity analysis, but if one assumes that outputs of some quadratic forms are
approximately uniformly randomly distributed and independent of the splitting behavior of
the numbers represented, one can show that it is a polynomial time probabilistic algorithm.
There is an analysis of a related algorithm in [GPS16], but only the powersmooth case is
analyzed, while we need to use the original prime-power algorithm. We need to use the
algorithm of [KLPT14] in our reductions, but not in our analysis of the representation size
of any of the objects.

The problems of computing isogenies, endomorphism rings, and maximal orders have
been studied and it is believed that they, or some subset of them, are equivalent. In fact,
many authors do not distinguish between computing a basis of maps generating End(E) and
identifying a maximal order isomorphic to it, a distinction made in this paper. To make
progress we identify a fourth problem, which links the maximal order problem and a very
restricted case of the endomorphism ring problem, called Action-on-`-Torsion. This problem
takes a basis of the maximal order and asks how the associated endomorphism ring acts on a
constant number of curve points. In Section 4, we give an efficient reduction from computing
`-power isogenies to computing a maximal order and to the Action-on-`-Torsion problem.
In the reduction we need both problems because we need information from the algebraic
side, about the maximal order, and also a small piece of information from the geometric
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side, namely knowing how certain endomorphisms act on the `-torsion. This shows that to
construct `-power isogenies, knowing the whole endomorphism ring is not necessary when the
maximal order is known and one has information about how certain endomorphisms act on
a few points. It was known before how to get a connecting ideal I between two supersingular
elliptic curves E and E ′. However, this is only the beginning step in our reduction, and the
hard part is to obtain from the ideal I the desired isogeny as a composition of rational maps
of degree ` in polynomial time. This was not done before.

In the reduction we find the quaternion analogue of a factorization of an isogeny of degree
`k, prove it exists, and show that it can be computed in polynomial time. For a reduction
between these problems to be meaningful, we must first prove that every isomorphism class
of maximal orders contains one representative which has a representation that is of polyno-
mial size, which we do in Section 3. In any case, our reductions identify the subroutine of
computing the `-power ideal as the last remaining piece to have a complete polynomial-time
reduction.

We next address the endomorphism ring problem in Section 5. As mentioned, it is not
obvious how to define the problem in a way so that reductions can be polynomial-time. We
start by defining the notion of a compact representation of an endomorphism, which has as
a requirement that it has size polynomial in O(log p). We prove that every endomorphism
ring has a basis specified by compact representations. We then show that the endomorphism
problem reduces to computing a maximal order and the Action-on-`-Torsion problem.

The analysis we give of the representation size of the basic objects used, along with the
reductions, provide a firm ground for someone from quantum computing to look for quantum
algorithms. In particular, while our results will show that breaking the systems reduces to
a potentially harder problem, the new problem will be on the algebraic side of quaternion
algebras. Finally in Section 6, we relate these problems to attacking the hash function of
[CGL09].

Related Work. Computing the endomorphism ring of a supersingular elliptic curve was
first studied by Kohel [Koh96, Theorem 75], who gave an approach for finding four linearly
independent endomorphisms, generating a finite-index subring of End(E). The algorithm
was based on finding loops in the `-isogeny graph of supersingular elliptic curves, and the
running time of the probabilistic algorithm is O(p1+ε). Another problem that has been
considered is that of listing all isomorphism classes of supersingular elliptic curves together
with a description of the maximal order in a quaternion algebra that is isomorphic to End(E).
This was done in [Cer04] and improved in [CG14, Section 5.2]. However, this approach is
necessarily exponential in log p because there are roughly bp/12c isomorphism classes of
supersingular elliptic curves.

The problem of computing isogenies between supersingular elliptic curves has also been
studied, both in the classical setting [DG16, Section 4] where the complexity of the algorithm
is Õ(p1/2), and in the quantum setting [BJS14], where the complexity is Õ(p1/4).

Several papers observe that computing isogenies between given supersingular elliptic curves
and computing endomorphism ring the endomorphism ring of a supersingular elliptic curve
are deeply connected, as was first shown by Kohel. Statements appear in several papers that
heuristically, these two problems should be equivalent [GPS16], [KLPT14, Section 5], but no
concrete statements or proofs are given.
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Algorithms for related problems appear in other work. In [GPS16] there is an algorithm
for finding powersmooth degree isogenies. In [LP17], algorithms for related problems are
given.

2. Background on Elliptic Curves

2.1. Isogenies, Endomorphism Rings, and Supersingular Elliptic Curves.

2.1.1. Elliptic Curves and Isogenies. By an elliptic curve E over a field k of characteristic
p > 3 we mean a curve with equation E : y2 = x3 + Ax+ B for some A,B ∈ k. The points
of E are the points (x, y) satisfying the curve equation, together with the point at infinity.
These points form an abelian group. The j-invariant of an elliptic curve given as above is
j(E) = 256·27·A3

4A3+27B2 . Two elliptic curves E,E ′ defined over a field k have the same j-invariant
if and only if they are isomorphic over the algebraic closure of k.

Let E1 and E2 be elliptic curves defined over a field k of positive characteristic p. An
isogeny ϕ : E1 → E2 defined over k is a non-constant rational map defined over k which is
also a group homomorphism from E1(k) to E2(k) [Sil09, III.4]. The degree of an isogeny is
its degree as a rational map. When the degree d of the isogeny ϕ is coprime to p, then ϕ is
separable and the kernel of ϕ is a subgroup of the points on E1 of size d. Every isogeny of
degree n greater than one can be factored into a composition of isogenies of prime degrees
such that the product of the degrees equals n. If ψ : E1 → E2 is an isogeny of degree d, the

dual isogeny of ψ is the unique isogeny ψ̂ : E2 → E1 satisfying ψψ̂ = [d], where [d] : E1 → E1

is the multiplication-by-d map.
We can describe an isogeny via its kernel. Given an elliptic curve E and a finite subgroup

H of E, there is, up to isomorphism a unique isogeny ϕ : E → E ′ having kernel H (see
[Sil09, III.4.12]). Hence we can describe an isogeny of E to some other elliptic curve by
giving its kernel. We can compute equations for the isogeny from its kernel by using Vélu’s
formula [Vél71].

2.1.2. Endomorphisms and Supersingular versus Ordinary Curves. An isogeny of an elliptic
curve E to itself is called an endomorphism of E. If E is defined over some finite field
Fq, then an endomorphism of E will be defined over a finite extension of Fq. The set

of endomorphisms of E defined over Fq together with the zero map form a ring under the
operations addition and composition. It is called the endomorphism ring of E, and is denoted
by End(E). When E is defined over a finite field, then End(E) is isomorphic either to an
order in a quadratic imaginary field or to an order in a quaternion algebra. In the first case
we call E an ordinary elliptic curve. An elliptic curve whose endomorphism is isomorphic to
an order in a quaternion algebra is called a supersingular elliptic curve. Every supersingular
elliptic curve over a field of characteristic p has a model that is defined over Fp2 because the
j-invariant of such a curve is in Fp2 .

2.1.3. `-power Isogenies between Supersingular Elliptic Curves. Let E,E ′ be two supersin-
gular elliptic curves defined over Fp2 . It is a fact that for each prime ` 6= p, E and E ′ are
connected by a chain of isogenies of degree ` [Mes86]. By [Koh96, Theorem79], E and E ′

can be connected by m isogenies of degree `, where m = O(log p). So any two supersingular
elliptic curves can be connected by an isogeny of degree `m with m = O(log p). If ` is a fixed
prime < log p, then any `-isogeny in the chain above can either be specified by rational maps
or by giving the kernel of the isogeny, and both of these representations will have polynomial
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size. By Vélu’s formula, and since ` < log p, there is an efficient way to go back and forth
between these two representations.

2.2. Quaternion Algebras, Bp,∞ and the Deuring Correspondence.

2.2.1. Quaternion Algebras. For a, b ∈ Q×, let H(a, b) denote the quaternion algebra over Q
with basis 1, i, j, ij such that i2 = a, j2 = b and ij = −ji. That is,

H(a, b) = Q + Q i+ Q j + Q ij.

It is a fact that any quaternion algebra over Q can be written in this form. Now let Bp,∞
be the unique quaternion algebra over Q that is ramified exactly at p and ∞. Then Bp,∞
is a definite quaternion algebra, so Bp,∞ = H(a, b) for some a, b ∈ Q×, and one can show
a and b can be chosen to be negative integers. For example, when p ≡ 3 (mod 4), then
Bp,∞ = H(−p,−1).

There is a canonical involution on Bp,∞ which sends an element α = a1 +a2i+a3j+a4ij
to α := a1 − a2i− a3j − a4ij. Define the reduced trace of an element α as above to be

Trd(α) = α + α = 2a1,

and the reduced norm to be

Nrd(α) = αα = a21 − aa22 − ba23 + aba24.

We say that Λ is a lattice in Bp,∞ if Λ = Zx1 + · · ·+ Zx4 and the elements x1, . . . , x4 are
a vector space basis for Bp,∞.

If I ⊆ Bp,∞ is a lattice, the reduced norm of I, Nrd(I), is the positive generator of the
fractional Z-ideal generated by {Nrd(α) : α ∈ I}. The quaternion algebra Bp,∞ is an inner
product space with respect to the bilinear form

〈x, y〉 =
Nrd(x+ y)− Nrd(x)− Nrd(y)

2
.

The basis {1, i, j, ij} is an orthogonal basis with respect to this inner product.

2.2.2. Orders in Bp,∞ and Representation of Elements in Bp,∞. A subset I ⊆ Bp,∞ is a
lattice if I is finitely generated as a Z-module and I ⊗ Q ' Bp,∞. An order O of Bp,∞ is a
subring of Bp,∞ which is also a lattice, and if O is not properly contained in any other order,
we call it a maximal order. Define

OR(I) := {x ∈ Bp,∞ : Ix ⊆ I}

to be the right order of the lattice I, and we similarly define its left order OL(I). If O is a
maximal order in Bp,∞ and I ⊆ O is a left ideal of O, then OR(I) is also a maximal order.
Given any two maximal orders O,O′, there is a lattice I ⊆ Bp,∞ such that OL(I) = O and
OR(I) = O′; we say that I connects O and O′.

An element β ∈ Bp,∞ is represented as a coefficient vector (a1, a2, a3, a4) in Q4 such that
β = a1 + a2i + a3j + a4ij in terms of the basis {1, i, j, ij} for Bp,∞. This will be used for
specifying basis elements of maximal orders O and elements of left ideals I of O.
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2.2.3. The Deuring Correspondence and Describing Isogenies via Kernel Ideals. For a de-
tailed overview of the information in this section, see Chapter 42 in [Voi]. Let E be a
supersingular elliptic curve defined over Fp2 . In [Deu41] Deuring proved that the endomor-
phism ring of E is isomorphic to a maximal order in Bp,∞. Under this isomorphism, degrees
and traces of endomorphisms correspond to norms and traces of quaternions.

Fix E, a supersingular elliptic curve over Fp2 . We can associate to each pair (E ′, φ) with
φ an isogeny E → E ′ of degree n a left End(E)-ideal I = Hom(E ′, E)φ of norm n, and it
was shown in [Koh96, Section 5.3] that every left End(E)-ideal arises in this way. We now
describe how to construct an isogeny from a left End(E)-ideal.

Let I be a nonzero integral left ideal of End(E). Define E[I] to be the scheme-theoretic
intersection

E[I] =
⋂
α∈I

ker(α).

Thus to each left ideal I of End(E) there is an associated isogeny φI : E → E/E[I]. If
Nrd(I) is coprime to p, then

E[I] = {P ∈ E(Fp2) : α(P ) = 0 ∀α ∈ I}.

3. Efficient Computations with Maximal Orders and Their Ideals

The main problem we consider in this paper is computing a maximal order associated
with an elliptic curve E. In the following sections will show that computing isogenies and
computing endomorphisms reduces to computing maximal orders, together with a problem
about `-torsion action. In this section we define the maximal order problem and show that
maximal orders have polynomial-representation size, so that the reductions are meaningful.
We will also show that the representation size of ideals inside these orders is related to their
norms. Maximal orders are inside the algebra Bp,∞, so we start with that.

Let p be a prime. In Proposition 5.1 of [Piz80] it is shown that Bp,∞ = H(−1,−1) if
p = 2, Bp,∞ = H(−1,−p) if p ≡ 3 (mod 4), Bp,∞ = H(−2,−p) if p ≡ 5 (mod 8), and
Bp,∞ = H(−q,−p) if p ≡ 1 (mod 8), where q ≡ 3 (mod 4) and p is not a square modulo q.
In the last case, assuming GRH, such a prime q exists where q = O(log(p)2); see [Ank52].

So given p, we choose a and b as above (depending on the congruence class of p) such that
Bp,∞ = H(a, b). We obtain a basis 1, i, j, ij for Bp,∞ such that i2 = a and j2 = b. We refer
to this as the standard basis of Bp,∞. As stated in Section 2.2.2, we represent elements of
Bp,∞ as their coefficient vectors in Q4 with respect to the standard basis.

Problem 1 (MaxOrder). Given p, the standard basis for Bp,∞, and a supersingular elliptic
curve E defined over Fp2, output vectors β1, β2, β3, β4 ∈ Bp,∞ that form a Z-basis of a
maximal order O in Bp,∞ such that End(E) ∼= O. In addition, the output basis is required
to have representation size polynomial in log p.

To reduce problems to this problem in polynomial time, one requirement is that every
maximal order has a basis with representation size that is polynomial in log(p). Since a
prime p is given, and E is given as y2 = x3 + ax + b with a, b ∈ Fp2 , the input size for this
problem is O(log p).

To show that every maximal order has a polynomial representation size, we first show this
is true for a special maximal order O0 and then express all other classes of maximal orders
as right orders OR(I) for I a left ideal class of O0. Since every left ideal class of O0 contains
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an ideal whose reduced norm is O(p2), it will follow that in each conjugacy class of maximal
orders, there is one with polynomial representation size.

Lemma 3.1. Given a prime p and the standard basis for Bp,∞ there is a maximal order
O0 ⊆ Bp,∞ containing the order generated by 〈1, i, j, ij〉. The maximal order O0 has a basis
of size polynomial in log(p).

Proof. Proposition 5.2 of [Piz80] gives a basis {b1, b2, b3, b4} for a maximal order O0 inside
Bp,∞ that contains the order 〈1, i, j, ij〉. Specifically, it is shown that the coefficients of each
bk in terms of the standard basis are bounded as follows. When p = 2 or p ≡ 3 (mod 4) or
5 (mod 8), the numerators are at most 2 and the denominators are either 2 or 4. If p ≡ 1
(mod 8), then the numerators and denominators are at most q. �

For the remainder of this section, fix such an order O0 together with the small basis
{b1, . . . , b4} as in Lemma 3.1. We will now show that ideals of O0 of norm N have represen-
tations of size polynomial in log(N) in terms of the basis {b1, . . . , b4}.

Lemma 3.2. Let I be a left ideal of O0. Then there is a Z-basis 〈α1, . . . , α4〉 of I, consisting
of elements αi ∈ O0, such that the coefficients of the αi expressed, in terms of the basis
{b1, b2, b3, b4} of O0, are bounded by Nrd(I)2.

Proof. Let {γ1, . . . , γ4} be a Z-basis of I and write γi as γi =
∑

j aijbj. Let A = (aij) be the

matrix whose rows are the coefficients of γi. Let H = UA where H is the (row-)Hermite
normal form of A and U ∈ SL4(Z). Then the rows of H also generate I as a Z-basis, H is
upper triangular, 0 < hii, and hij < hjj for i < j. We have Nrd(I)2 = det(A) =

∏
hii and

hence all hij < Nrd(I)2. This gives us the desired basis α1, . . . , α4. �

We will now prove that every conjugacy class of maximal orders has a representative whose
basis has representation size O(log(p)) when written in terms of the standard basis 1, i, j, ij
for Bp,∞.

For this, we will show that the reduced norm Nrd is the Euclidean norm on Bp,∞ =
H(−q,−p) considered as a lattice in R4. (Here q = 1, 2 or a prime ≡ 3 (mod 4) that is not
a square modulo p, depending on the congruence class of p.) We can view orders O in Bp,∞
as lattices in R4, and we will relate the covolume of a lattice to its discriminant. This is
similar to the number field case. Together with Minkowski’s Theorem, this will give us the
desired result.

Note that Bp,∞ ⊗ R is isomorphic to H, the Hamiltonians. Let 1, i′, j′, i′j′ be the basis of
H with i′2 = j′2 = −1. Let

f : Bp,∞ ⊗ R '→ H,
and let the isomorphism be given by i 7→ √qi′, j 7→ √pj′. Then the norm on H, which is the
(square of) the standard Euclidean norm on R4, is just the reduced norm on the image of
Bp,∞ in H under the isomorphism f . Let Λ ⊆ Rn be a lattice. Define its covolume, denoted

Covol(Λ), to be
√

det(LTL) for any matrix L consisting of a basis for Λ. If O ⊆ Bp,∞ is a
lattice, define its covolume to be Covol(f(O)).

If a lattice O ⊆ Bp,∞ has generators β1, . . . , β4, its discriminant, denoted Disc(O), is

det((Trd(βiβj))). If a lattice O is a maximal order in Bp,∞, then Disc(O) = p2.

Proposition 3.3. Let O be a lattice in Bp,∞. Then Covol(O)2 = 1
16

Disc(O).
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Proof. First, we claim that if x, y ∈ Bp,∞, then f(x) · f(y) = 1
2

Trd(xy). Here · means the
dot product in R4. Indeed, writing x = x0 + x1i + x2j + x3ij, y = y0 + y1i + y2j + y3ij, we
have

f(x) · f(y) =(x0 + x1
√
qi′ + x2

√
pj′ + x3

√
qpi′j′)·

(y0 + y1
√
qi′ + y2

√
pj′ + y3

√
qpi′j′)

=x0y0 + qx1y1 + px2y2 + qpx3y3

=
1

2
Trd(xy)

From this, the result follows: let β1, . . . , β4 be a basis of O, let M be the matrix with ith
column f(βi). Then

Covol(O) := det(MTM)1/2

= det((f(βi) · f(βj))i,j)
1/2

= det(
1

2
(Trd(βiβj)))

1/2

=
1

4
det(Trd(βiβj))

1/2

=
1

4
Disc(O)1/2.

�

We need the notion of a Minkowski-reduced basis of a lattice. A basis {v1, . . . , vn} of a
lattice Λ ⊆ Rn is Minkowski-reduced if for 1 ≤ k ≤ n,

||vk||2 ≤
n∑
i=1

xi||vi||2,

whenever x1, . . . , xn are coprime integers. Here || · ||2 denotes the Euclidean norm. Given a
lattice Λ in Rn, define the ith successive minimum of Λ, λi(Λ), to be the smallest nonnegative,
real number r such that there are i linearly independent lattice vectors of Λ contained in the
closed ball of radius r centered at the origin. So λ1(Λ) is the length of a shortest nonzero
vector of Λ. For n ≤ 4, there is a basis v1, . . . , vn of Λ such that ||vi||2 = λi(Λ); see [NS09].
Such a basis is Minkowski-reduced. When we refer to a Minkowski-reduced basis, we will
always assume we choose such a basis.

Theorem 3.4 (Minkowski’s second theorem). Let V denote the volume of the n-dimensional
unit ball of Rn. Then

2n

n!

Covol(Λ)

V
≤

n∏
i=1

λi(Λ) ≤ 2n

V
Covol(Λ).

Corollary 3.5. Let p be a prime, and let O0 be the maximal order of Bp,∞ as above. Let
I ⊆ O0 be a left-ideal and let O := OR(I). Let α1, . . . , α4 be a basis of O such that ||αi||2 =
λi(O) for i = 1, . . . , 4. Then

4∏
i=1

Nrd(αi) ≤ Disc(O) = p2.
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Proof. We use Minkowski’s second theorem applied to O, and the fact that by Proposi-
tion 3.3, Covol(O)2 = Disc(O)/16. These two facts, together with Nrd(α) = ||f(α)||22 give
us that ∏

Nrd(αi) =
∏

λi(O)2 ≤ 16

π4/4
Disc(O) ≤ p2.

�

Now we prove the main theorem on representation sizes of maximal orders:

Theorem 3.6. Every conjugacy class of maximal orders in Bp,∞ has a Z-basis x1, . . . , x4
with Nrd(xi) ∈ O(p2). If we express xr (for 1 ≤ r ≤ 4) as a coefficient vector in terms
of 1, i, j, ij, then the rational numbers appearing have numerators and denominators whose
representation size are polynomial in log(p).

Proof. The map [I] → [OR(I)] is a surjection from left-ideal classes of O0 to isomorphism
classes of maximal orders of Bp,∞; see [Gro87], page 116. Every left ideal class of O0 contains
an ideal I with Nrd(I) ∈ O(p2); see [Vig80, Proposition 17.5.6]. Set O = OR(I) and let
〈1, x2, x3, x4〉 be a Minkowski-reduced Z-basis of O. By Corollary 3.5, Nrd(xi) ≤ p2, since
each xi is integral. Since O = OR(I), it follows that xi Nrd(I) ∈ I. This implies that if
we express xi as a Q-linear combination of the elements 1, i, j, ij, then the denominators
of the coefficients are divisors of Nrd(I) · 4q where q = Nrd(j). The numerator of each
coefficient is then bounded by 8pqNrd(I): indeed, if a/b is a coefficient of xr, (1 ≤ r ≤ 4),
then (a/b)2 ≤ Nrd(xr) ≤ p2. Then

|a| ≤ pb ≤ 4pqNrd(I).

�

4. `-PowerIsogeny Reduces to MaxOrder and Action-on-`-Torsion

In this section we show that computing an `-isogeny between two supersingular elliptic
curves reduces to computing maximal orders of elliptic curves and solving the Action-on-`-
Torsion Problem.

Problem 2 (Action-on-`-Torsion). Given p, a supersingular elliptic curve E defined over
Fp2, and four elements {β1, β2, β3, β4} in a maximal order O of Bp,∞ such that there exists
an isomorphism ι : End(E) → O, output eight pairs of points on E, (P1, Q1r), (P2, Q2r)
(r = 1, . . . , 4) such that P1, P2 form a basis for the `-torsion E[`] of E, and such that
Q1r = ι−1(βr)(P1) and Q2r = ι−1(βr)(P2) for r = 1, . . . , 4.

The curve E is given as y2 = x3 + ax + b with a, b ∈ Fp2 . In our applications, the βi will
be a Minkowski-reduced basis of a maximal order, so their representation size is bounded
by a polynomial in log p by the result in the previous section. Also, ` will be chosen to be
O(log p), and therefore the representation sizes of the input and output of the elements for
Problem 2 are polynomial in log p.

Problem 3 (`-PowerIsogeny). Given a prime p, along with two supersingular elliptic curves
E and E ′ over Fp2, output an isogeny from E to E ′ represented as a chain of k many isogenies
whose degrees are `.
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Since E is given as y2 = x3 + ax + b with a, b ∈ Fp2 , the input size for this problem is
O(log p). By Section 2.1.3, the representation size of the output is also polynomial in log p,
if ` ∈ O(log p) and the isogenies are represented by rational maps.

4.1. Outline of Reduction. Given two supersingular elliptic curves E,E ′ over Fp2 , and
oracles for the problems Action-on-`-Torsion and MaxOrder, we will construct an `-power
isogeny E → E ′ by constructing a chain of `-isogenies through intermediate curves. First,
the oracle will give us two maximal orders O,O′ ⊆ Bp,∞ with O ' End(E) and O′ '
End(E ′). We then compute what is called a connecting ideal, meaning a left ideal of O,
whose left order is O and right order is O′. Next we use the main algorithm of [KLPT14]
to compute an equivalent ideal I whose norm is `e for some e = O(log(p)). The isogeny
φI : E → E ′ corresponding to I has degree `e, so the representation size of the isogeny is
exponential. To remedy this we will, given I, compute a chain of `-isogenies ψ1, . . . , ψe such
that φI = ψe ◦ · · · ◦ψ1. Since ψ1, . . . , ψe have degree `, they are of polynomial representation
size as rational maps. To obtain the ψi we will first show that there is a factorization of the
ideal I. The proper notion here is that of a filtration of ideals, namely a sequence

I = Ie ⊆ Ie−1 ⊆ · · · ⊆ I1 ⊆ I0 = O

such that the isogeny corresponding to Ik is a map φk from E to some intermediate curve
Ek. The factorization of φI gives us a path starting at E and ending at E ′ of length e in
the graph of isogenies of degree `, and the filtration of I leads to a corresponding “path”
between maximal orders in Bp,∞. The maximal orders that appear in this path are OR(Ik)
and the ideal connecting OR(Ik) to OR(Ik+1) is Jk := I−1k−1Ik. These paths are given in the
following diagrams:

E

E1 E2 · · · Ee = E ′

φ1=ψ1
φ2

φ3
φe

ψ2 ψ3 ψe

O

OR(I1) OR(I2) · · · OR(Ie) = O′

I1=J1
I2

I3
Ie

J2 J3 Je

For each k, the isogeny φk : E0 → Ek has degree `k, and so corresponds to a left O-ideal
Ik of norm `k. We will show that Ik = I +O`k is the desired ideal. As k grows, these ideals
will have norms which are too big to find the corresponding isogenies, so we will compute the
maps ψk : Ek−1 → Ek which correspond to left ideals Jk of OR(Ik−1) of norm `. Suppose we
have computed ψk, the curve Ek, and Jk+1 as above. We can use the oracle for MaxOrder to
identify generators of Jk+1 with endomorphisms of Ek. On the other hand, Jk+1 corresponds
to the isogeny ψk+1, whose kernel we compute using the information from the oracle Action-
on-`-Torsion. Using Vélu’s formula, we can compute ψk+1 from its kernel. This procedure
iteratively computes the desired maps ψ1, ψ2, . . . , ψe.
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4.2. Reduction from `-PowerIsogeny to MaxOrder and Action-on-`-Torsion. In
this section, we give the reduction from `-Power Isogeny to the problems MaxOrder and
Action-on-`-Torsion.

Algorithm 4.1. Reduction from `-PowerIsogeny to MaxOrder and Action-on-`-Torsion
Input: E,E ′ supersingular elliptic curves over Fp2, a prime ` 6= p.
Output: a chain of `-isogenies connecting E and E ′.

1. Compute a basis 〈1, i, j, ij〉 for Bp,∞.
2. Call oracle MaxOrder on p, 〈1, i, j, ij〉, E, resulting in α1, α2, α3, α4 where End(E) ' O :=
〈α1, α2, α3, α4〉 ⊆ Bp,∞.

3. Call oracle MaxOrder on p, 〈1, i, j, ij〉, E ′, resulting in α′1, α
′
2, α

′
3, α

′
4 where End(E ′) '

O′ := 〈α′1, α′2, α′3, α′4〉 ⊆ Bp,∞.
4. Compute connecting ideal: use α1, . . . , α4 and α′1, . . . , α

′
4 to compute a left ideal I of O

such that OR(I) = O′ and Nrd(I) = `e with e = O(log(p)). Adjust I so that I 6⊆ `k · O
for any positive integer k.

5. For 0 ≤ k ≤ e :
(a) Compute Ik := I +O`k. This is a left ideal of O of norm `k. Also compute its right

order OR(Ik).
(b) Compute a Z-basis γ1, γ2, γ3, γ4 for the ideal Jk+1 := I−1k Ik+1 of OR(Ik).

6. Set E0 := E.
7. For 0 ≤ k ≤ e− 1:

(a) Compute a basis {P1, P2} for Ek[`].
(b) Call oracle MaxOrder with p, 〈1, i, j, ij〉, Ek, resulting in β1, β2, β3, β4 that generate
Ok ⊆ Bp,∞.

(c) Call oracle Action-on-`-Torsion with parameters p, P1, P2, 〈1, i, j, ij〉, Ek, β1, β2, β3,
β4 resulting in Qst = ι−1k (βs)(Pt) for s = 1, . . . , 4, t = 1, 2.
Here, ιk : End(Ek)→ 〈β1, . . . , β4〉 is an isomorphism.

(d) Compute v ∈ Bp,∞ such that vOR(Ik)v
−1 = Ok.

(e) Compute crs such that vγrv
−1 =

∑
s crsβs.

(f) Find x, y ∈ Z/`Z, not both 0, such that
∑

s crs(xQs1 + yQs2) = 0 for r = 1, . . . , 4.
(g) Compute ψk+1 and its image Ek+1 with kernel 〈xP1 + yP2〉 = Ek[ι

−1
k (Jk+1)] using

Vélu’s formula
8. Return ψ1, ψ2, . . . , ψe.

Theorem 4.2. `-PowerIsogeny efficiently reduces to MaxOrder and Action-on-`-Torsion.
In particular, given a prime p, a prime ` 6= p, and supersingular elliptic curves E, E ′ over
Fp2, Algorithm 4.1 returns isogenies ψ1, . . . , ψe of degree ` whose composition is an isogeny
ψ := ψe ◦ · · · ◦ ψ1 of degree `e from E to E ′. Assuming ` is of size O(log(p)), Algorithm 4.1
runs in time polynomial in log(p) and makes O(log(p)) queries of MaxOrder and Action-on-
`-Torsion.

Proof. By Theorem 3.6, the oracle returns a basis for O and for O′ of polynomial size. To do
Step 4, we first compute an arbitrary connecting ideal for O and O′ in polynomial time using
Algorithm 3.5 of [KV10]. An equivalent connecting ideal of norm `e, where e = O(log(p)),
can be computed in polynomial time as claimed in [KLPT14].

Define Ek := E/E[Ik] (here by E[Ik] we mean E[ι−1(Ik)], where ι : End(E) → O is an
isomorphism). We need to show that Ik has norm `k and that the left OR(Ik)-ideal Jk+1

corresponds to the isogeny ψk+1 : Ek → Ek+1 in the factorization φk = ψk ◦ φk−1; this is
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proved in Theorem 4.9. Right orders and products of ideals can be computed efficiently with
linear algebra over Z, hence Step 4 is efficient; see [Rón92], Theorem 3.2 for the statement
on right orders. Inverses can be computed from the formula I−1 = 1

Nrd(I)
I. We make e calls

to the oracle for generators of End(Ek) and their action on `-torsion. If O ' Ok, we can
compute v such that vOkv−1 = O in polynomial time by Lemma 2.5, Corollary 3.6, and
Proposition 6.9 of [KV10]. By Theorem 4.9, the isogeny corresponding to I factors as the
product of the isogenies corresponding to Jk, k = 1, . . . , e, all of which have degree `. Now
compute the kernel of ψk using Jk and the action of End(Ek−1) on the `-torsion of Ek−1; see
Proposition 4.10. Since ` is O(log(p)), rational maps for ψk from its kernel can be efficiently
computed. �

4.3. Filtrations of Left-Ideals and Corresponding Isogeny Paths. Let E/Fp2 be a
supersingular elliptic curve and let I be a left ideal of End(E) of norm `e such that I 6⊆
End(E) · `m for any positive integer m. In this section, we prove that for k = 0, . . . , e,
Ik = I + End(E) · `k is an ideal of norm `k and that

I = Ie ⊆ Ie−1 ⊆ · · · ⊆ I1 ⊆ I0 = End(E).

Let φk be the isogeny corresponding to Ik. We want to show that φk : E → Ek := E/E[Ik]
is an isogeny of degree `k.

We first establish when an ideal corresponds to an isogeny with cyclic kernel.

Proposition 4.3. Suppose I ⊆ End(E) is a left ideal with Nrd(I) coprime to p. Then I is
not contained in End(E) ·m for any m ∈ N if and only if E[I] is cyclic.

Proof. Suppose that I ⊆ End(E) · m. Then E[I] ⊃ E[End(E) · m] = E[m] and thus
m| deg(φI). Since p does not divide deg(φI), it also does not divide m, so E[m] 6= 0 and has
rank two as a Z/mZ-module. Hence E[I] is not cyclic. For the other direction, suppose that
E[I] is not cyclic. Then, by the structure theorem of abelian groups,

E[I] '
j⊕
i=1

Z/kiZ

and we can choose the ki uniquely such that ki|ki+1. Since E[I] is not cyclic, j 6= 1 and
hence E[I] has two elements of order k1 which are linearly independent. Thus E[k1] ⊆ E[I]
and hence I ⊃ End(E) · k1. �

Proposition 4.4. Suppose I ⊆ End(E) and N := Nrd(I) is coprime to p. Also suppose
M |N , and that I is not contained in End(E) ·m for any m ∈ N. Then I + End(E) ·M has
norm M .

Proof. We claim that

E[I +MO] = E[I] ∩ E[M ].

Indeed, for an arbitrary left ideal J of End(E) with Nrd(J) coprime to p, E[J ] is the
intersection of the kernels of a generating set of J , and for two left End(E)-ideals J, J ′,
J+J ′ is generated by J ∪J ′. Since E[I] is cyclic by Proposition 4.3, there is some Q ∈ E[N ]
so that E[I] = 〈Q〉. Then E[I] ∩ E[M ] = 〈[N/M ]Q〉, a group of order M as desired. �
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4.4. Matching up a Filtration of an Ideal with a Factorization of an Isogeny. In
this section, we show that the definition of Jk in Algorithm 4.1 gives us the ideal which
corresponds to the isogeny Ek−1 → Ek of degree `. To do this, it suffices to understand the
horizontal isogeny and corresponding ideal in the following diagram:

E

Ek−1 := E/E[Ik−1] Ek := E/E[Ik]

Ik−1

Ik

Jk

We will describe the relationship between the horizontal isogeny and its kernel ideal for two
arbitrary left ideals I, I ′ of End(E) satisfying I ′ ⊆ I, so in the above picture, we replace Ik−1
with I and Ik with I ′. The goal is to find, given I ′ ⊆ I, the horizontal isogeny EI → EI′ by
first computing its corresponding ideal J̃ in the following diagram:

E

EI := E/E[I] EI′ := E/E[I ′]

I
I′

J̃

Let φI : E → EI := E/E[I] and φI′ : E → EI′ := E/E[I ′] be the corresponding isogenies;
then E[I] ⊆ E[I ′] and hence φI′ factors as φI′ = ψφI for some isogeny ψ : EI → EI′ . We
wish to view the kernel of ψ as EI [J̃ ] for some left ideal J̃ of End(EI). We make this idea
precise in the following proposition.

Proposition 4.5. Let I ′ ⊆ I be two left End(E)-ideals whose norms are coprime to p. Then
there exists a separable isogeny ψ : EI → EI′ such that φI = ψ ◦ φI′, and a left ideal J̃ of
End(EI) with EI [J̃ ] = ker(ψ) such that J = ι(J̃) = I−1I ′, where ι : End(EI)→ End(E)⊗Q
is the map in Lemma 4.7 below.

To prove this, we need the following three lemmas:

Lemma 4.6. For a left ideal I of End(E), the map

φ∗I : Hom(EI , E)→ I

ψ 7→ ψφI

is an isomorphism of left End(E)-modules.

Proof. This is Lemma 42.2.6 of [Voi]. It also follows from Proposition 48 of [Koh96]. �

Lemma 4.7. Set B = End(E)⊗Q. The map

ι : End(EI)→ B

β 7→ 1

deg(φI)
φ̂IβφI

is injective, and its image is OR(I).

Proof. This is Lemma 42.2.8 of [Voi] or Proposition 3.9 of [Wat69]. �



14 KIRSTEN EISENTRÄGER, SEAN HALLGREN, AND TRAVIS MORRISON

Lemma 4.8. We have a bijection

g : Hom(EI′ , EI)→ I−1I ′

ψ 7→ 1

deg(φI)
φ̂IψφI′ .

Proof. This is Lemma 42.2.19 of [Voi]. �

Now we can prove the proposition.

Proof of Proposition 4.5. We have that I−1 = 1
Nrd(I)

I. Consider an element x ∈ I−1I ′ of the

form

x =
1

deg(φI)
α̂′β′,

where α′ ∈ I, β′ ∈ I ′. Then by Lemma 4.6, there exists α ∈ Hom(EI , E) and β ∈
Hom(EI′ , E) with

α′ = αφI , β
′ = βφI′ .

Thus

x =
1

deg(φI)
φ̂I α̂βφI′ = g(α̂β),

where g : Hom(EI′ , EI)→ I−1I ′ is the map in Lemma 4.8. Since E[I] ⊆ E[I ′], and φI , φI′ are
separable, by Corollary III.4.11 of [Sil09] there exists a unique separable isogeny ψ : EI → EI′
such that φI′ = ψ ◦ φI . Then define

J̃ := {α ∈ End(E1) : α(P ) = 0 ∀P ∈ ker(ψ)}.
Now map g−1(x) = α̂β ∈ Hom(EI′ , EI) to an element of J̃ using ψ∗: α̂βψ = ψ∗(α̂β) ∈ J̃ .
Finally, compute

x =
1

deg(φI)
φ̂I α̂βφI′

=
1

deg(φI)
φ̂I α̂βψφI

= ι(α̂βψ)

= ι(ψ∗(α̂β))

= (ι ◦ ψ∗ ◦ g−1)(x).

In other words, we have
g = ι ◦ ψ∗.

From this, we conclude that the left ideal of OR(I1) corresponding to J̃ indeed is I−1I ′. �

Combining the above results, we have our main theorem on matching up filtrations of
ideals with factorizations of isogenies:

Theorem 4.9. Suppose that I ⊆ End(E) satisfies Nrd(I) = `e where ` 6= p is a prime and
I 6⊂ End(E) · `k for any k ∈ N. Then there exists a filtration

I = Ie ( Ie−1 ( . . . ( I1 ( I0 = End(E)

and a chain of isogenies

E = E0 E1 · · · Ee−1 Ee = E ′
ψ1 ψ2 ψe−2 ψe
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such that if we set φk : E → E/E[Ik], then φk+1 = ψkφk. Moreover, for k = 0, . . . , e − 1,
the map ψk+1 : Ek → Ek+1 has degree `, and its kernel ideal in End(Ek) is isomorphic to
I−1k Ik+1 ⊆ OR(Ik) under the map

ιk : End(Ek)→ OR(Ik)

ρ 7→ 1

deg(φk)
φ̂kρφ.

Proof. For k = 0, 1, . . . , e, define Ik := I + End(E) · `k. By Proposition 4.4, Nrd(Ik) = `k.
Let φI : E → Ee := E/E[Ie] = E/E[I] be the isogeny corresponding to I = Ie. Set
Ok := OR(Ik) ⊆ End(E) ⊗ Q, and Jk := I−1k−1Ik. Then Nrd(Jk) = `. Let Ek := E/E[Ik].
From the ideals Jk, we have isogenies ψk : Ek−1 → Ek such that

φ = ψe ◦ · · · ◦ ψ1

by Proposition 4.5 applied inductively to the ideals Ik+1 ( Ik. �

4.5. Going From an Ideal of Norm ` to a Corresponding Subgroup of Order `. At
the beginning of Step 7 of the algorithm, we have an isogeny Ek−1 → Ek represented by a
left OR(Ik−1)-ideal Jk. We wish to specify the subgroup of Ek−1 which is the kernel of this

isogeny. If J̃k ⊆ End(Ek−1) is the ideal isomorphic to Jk, recall from Section 2.2.3 that

Ek−1[J̃k] =
⋂
γ∈J̃k

ker(γk),

and it suffices to compute ker(γ1) ∩ · · · ∩ ker(γ4), where γ1, . . . , γ4 are a Z-basis of J̃k. Once

we have Ek−1[J̃k], we can use Vélu’s formula to compute ψk.
Step 7 in our algorithm computes Ek−1[J̃k] and is similar to Algorithm 2 in [GPS16]. In

our version, we are working with ideals in consecutive endomorphism rings, rather than in
the endomorphism ring of the starting curve, and we give proofs of correctness along with
analysis of input size of left ideals of a maximal order.

Proposition 4.10. Let E be a supersingular elliptic curve over Fp2, and assume ι : End(E)→
O ⊆ Bp,∞ is an isomorphism, where O has a basis of size polynomial in log p. Let I ⊆ O
be an ideal of norm `e for a prime ` 6= p with ` = O(log(p)). For k = 1, . . . , e, define
Ik := I + O · `k and Jk = I−1k−1Ik ⊆ OR(Ik−1) and Ek := E/E[ι−1(Ik)] as in Theorem 4.9.
Then if we are given ιk−1(End(Ek−1)) in Bp,∞ where ιk−1 : End(Ek−1) ⊗ Q → Bp,∞ is an
isomorphism of quaternion algebras, along with the action of End(Ek−1) on Ek−1[`], we can
compute the kernel of the isogeny corresponding to ι−1k−1(Jk) in time polynomial in log p.

Proof. We wish to determine Ek−1[ι
−1
k−1(Jk)] so that we can compute the corresponding

isogeny ψk : Ek−1 → Ek. If Jk has a Z-basis γ1, . . . , γ4 ∈ OR(Ik−1), we need to un-
derstand how the γi act as endomorphisms of Ek−1. Suppose we are given the action
of generators φ1, . . . , φ4 of End(Ek−1) on Ek−1[`] and the image of an embedding ιk−1 :
End(Ek−1) → Bp,∞. Set Ok−1 := ιk−1(End(Ek−1)); then we can compute v ∈ B×p,∞ such

that Ok−1 = vOR(Ik−1)v
−1 in polynomial time by [KV10]. By expressing vγiv

−1 in terms of
ιk−1(φj), say

vγrv
−1 =

∑
s

crsιk−1(φs),
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we discern the kernel of the isogeny corresponding to of Jk as follows. We require a nonzero
point P ∈ Ek−1[`] such that for all r = 1, . . . , 4,∑

s

crsφs(P ) = 0.

Because we assume that we are given φs(P ) for s = 1, . . . , 4 and P ∈ Ek−1[`], we can find
such a P by just calculating the sum for all r = 1, . . . , 4 and P 6= 0 ∈ Ek−1[`]. �

5. The EndomorphismRing Problem

In this section we study the computational hardness of computing endomorphism rings
of supersingular elliptic curves. Kohel began the study of this problem in [Koh96], but our
focus will be on polynomial-time reductions between problems connected to endomorphism
rings. The inputs are p and the curve, and so the running time must be polynomial in
log p. This brings up two important questions: 1) does the endomorphism ring of an elliptic
curve have a polynomial representation size? And 2) If it does, can the endomorphisms be
evaluated in polynomial time? Answering these two questions is very important in order to
have a meaningful definition of the endomorphism ring problem. In this section, we lay the
framework for reductions involving endomorphism rings. To have any meaningful efficient
reduction, or to analyze how hard it is to compute the endomorphism ring, we need to know
what the representation size of an endomorphism ring is. In particular, we need to discuss
what we mean by computing the endomorphism ring.

We will define a compact representation of endomorphisms which has polynomial size,
and show that the endomorphism ring of any supersingular elliptic curve has a basis of such
representations. This answers question 1. We also show that these representations can be
evaluated efficiently at arbitrary points, answering question 2. We then define the problem
EndomorphismRing in terms of this new definition, and show that it efficiently reduces to
MaximalOrder and Action-on-`-Torsion for ` = 2, 3. We also identify another problem that
it reduces to, which is related to computing isogenies.

5.1. Representation Size of Endomorphism Rings. There are two typical ways to
represent the endomorphism ring of E. The first is to give rational functions F1(x, y), . . . ,
F4(x, y) and G1(x, y), . . . , G4(x, y) such that φi : (x, y) 7→ (Fi(x, y), Gi(x, y)) (i = 1, . . . , 4)
are endomorphisms of E that form a basis for End(E). The second is to give the kernel of
the maps φi, which in general is not good enough for computations. However, it is not known
if a basis for End(E) exists in either representation that is of polynomial size. For example,
the basis may contain an endomorphism of exponential degree, where exponentially many
coefficients would be needed to describe it in general. For the case of using the kernel, the
generators may lie in a finite field of exponential degree over the base field, and there will
be exponentially many points in the kernel.

5.2. Compact Representations of Endomorphisms. We will now show that the endo-
morphism ring End(E) of any supersingular elliptic curve E/Fp2 has compact representations
if p ≡ 3 (mod 4). The proof will require a special curve E0 for which a basis of the endo-
morphism ring is known; such a curve exists if p 6≡ 1 (mod 12).

For simplicity, we will focus on the case where p ≡ 3 (mod 4) is a prime and let E0 :
y2 = x3 + x. Let π : E0 → E0 denote the Frobenius map, and let φ : E0 → E0 be the map
(x, y) 7→ (−x,

√
−1y). The maps 1 + φπ and φ + π both have kernels containing E[2], so
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they factor through the map [2] : E0 → E0. Let (1 + φπ)/2 and (φ + π)/2 represent the
maps in these factorizations. It can be shown that 1, φ, (1 + φπ)/2, (φ + π)/2 form a basis
for End(E0), see [GPS16]. As rational maps, the size of this basis may not be polynomial
in log p, but the description as rational linear combinations of 1, φ, π, φπ uniquely identifies
them, and so it is enough that φ and π have polynomial size. This representation allows
for efficient evaluation at points P of E0 by writing P = [2]Q and then evaluating linear
combinations of 1, φ, π, φπ at Q. Define [β1, β2, β3, β4] := [1, φ, (1 + φπ)/2, (φ + π)/2]. We
will use β1, β2, β3, β4 in our definition of compact representatives of endomorphisms for all
other supersingular elliptic curves E/Fp2 .

Definition 5.1 (Compact representation of an endomorphism). Let p ≡ 3 (mod 4) be a
prime, let E0 : y2 = x3+x, and β1, . . . , β4 := 1, φ, (1+φπ)/2, (φ+π)/2 be the endomorphisms
of E0 as above. Let E/Fp2 be another supersingular elliptic curve, and let ρ ∈ End(E). Define
a compact representation of ρ to be a list

[d, [c1, . . . , c4], [φ1, . . . , φm], [φ̂1, . . . , φ̂m]],

where c1, . . . , c4, d ∈ Z, φi are isogenies on a path from E0 to E, and the total size of the list

log(|d|) + log(|c1|) + · · ·+ log(|c4|) +
m∑
i=1

log(deg(φm))

is at most polynomial in log(p), and

ρ =
1

d

(
φm ◦ · · · ◦ φ1 ◦

(
4∑
i=1

ciβi

)
◦ φ̂1 ◦ · · · ◦ φ̂m

)
.

Theorem 5.2. Let p ≡ 3 (mod 4) and let E/Fp2 be a supersingular elliptic curve. Then
there exist two lists of four compact representatives of endomorphisms of E, such that each
list represents a Z-basis of End(E).

Moreover, assume ρ ∈ End(E) is a linear combination of the endomorphisms correspond-
ing to one such basis, and assume that its coefficient vector in terms of this basis is of size
polynomial in log(p). Using the two lists, we can evaluate ρ at arbitrary points of E in time
polynomial in log(p) and the size of the point P .

Proof. Let O0 be the maximal order in Bp,∞ with basis

b1, . . . , b4 := 1, i, (1 + ij)/2, (i+ j)/2.

Then O0
∼= End(E0) and b1, . . . , b4 correspond to β1, . . . , β4 under an isomorphism. There

exist chains of isogenies φ1, . . . , φm and ψ1, . . . , ψn between E0 and E with deg(φk) = 2 and
deg(ψk) = 3, and with m,n = O(log(p)). Set φ = φm ◦ · · · ◦ φ1 and ψ = ψn ◦ · · · ◦ ψ1. Let
I ⊆ O0 and J ⊆ O0 be the left O0-ideals corresponding to φ and ψ respectively.

There exist rational numbers cIrs whose denominators are divisors of 2 Nrd(I) and rational
numbers cJrs whose denominators are divisors of 2 Nrd(J) such that

γIr :=
∑
s

cIrsbs, 1 ≤ r ≤ 4

is a a Minkowski-reduced basis of OR(I), and

γJr :=
∑
s

cJrsbs, 1 ≤ r ≤ 4



18 KIRSTEN EISENTRÄGER, SEAN HALLGREN, AND TRAVIS MORRISON

is a Minkowski-reduced basis of OR(J). This follows from Theorem 3.6 and its proof. We
can also efficiently find v ∈ Bp,∞ such that vOR(I)v−1 = OR(J) [KV10].

Then ρJr := 1
2m
φγIr φ̂ and ρIr := 1

3n
ψγJr ψ̂ (r = 1, . . . , 4) each form a basis for End(E). Then

our compact representations are, for r = 1, . . . , 4,

[Nrd(I), cIr1, . . . , c
I
r4, [φ1, . . . , φm, ], [φ̂1, . . . , φ̂m]],

[Nrd(J), cJr1, . . . , c
J
r4, [ψ1, . . . , ψn], [ψ̂1, . . . , ψ̂n]].

Observe that we can efficiently evaluate ρJr at any point P of E whose order is coprime to

2. This is because [2m]ρIr can be evaluated at P as it is a composition of the φ̂k, an integer
linear combination of the βk and then φk, all of which we can efficiently evaluate in terms of
the size of P . Set Q = [2m]ρIr(P ). Let N be the inverse of 2m modulo the order of P . Then
[N ]Q = ρIr(P ).

If we want to evaluate ρIr at a point P with P ∈ E[2f ], we will instead express vρIrv
−1 as

an integral linear combination of ρJ1 , . . . ρ
J
4 . We can evaluate each ρJ1 , . . . , ρ

J
4 at any point of

order coprime to 3 by the same argument.
Thus we can evaluate at arbitrary points P : if P has order 2fM with (2,M) = 1, then we

can write P as a sum of a point P2 of order 2f and PM of order M . We can then evaluate
at P by evaluating it at each summand with the two above strategies. �

Computing compact representations of endomorphisms which can be evaluated at points
of E and which generate End(E) is a natural interpretation of the problem of computing
endomorphism rings, so we formally state it here before relating it to other isogeny problems.

Problem 4 (EndomorphismRing). Given a prime p and a supersingular elliptic curve E/Fp2,
find a list of total length bounded by O(log(p)) of compact representations of endomorphisms
of E such that using this list, we can evaluate the corresponding endomorphisms at points of
E, and such that the corresponding endomorphisms generate End(E) as a Z-module.

In the next section, we will discuss two reductions from EndomorphismRing.

5.3. EndomorphismRing Reduces to MaxOrder and Action-on-2-Torsion and Ac-
tion-on-3-Torsion. In Algorithm 4.1, we used embeddings of endomorphism rings in Bp,∞,
together with their action on `-torsion, to construct an `-isogeny.

Theorem 5.3. If p ≡ 3 (mod 4), EndomorphismRing reduces to MaxOrder and Action-on-
`-Torsion for ` = 2 and 3.

Proof. Let E be a supersingular elliptic curve. Let E0 be the curve y2 = x3 + x and let O0

be the order isomorphic to End(E0). By Theorem 5.2, the necessary data to give compact
representations of generators of End(E) is a 2-power and 3-power isogeny from E0 to E,
and a basis for the right orders of the ideals which correspond to these isogenies in Bp,∞.
In the proof of Theorem 4.2, note that all of this data is constructed using the oracles for
MaxOrder, and Problems Action-on-2-Torsion and Action-on-3-Torsion. �

5.4. EndomorphismRing Reduces to an Isogeny Problem. We can also reduce the
problem EndomorphismRing to a variant of the `-Isogeny Problem, where we require the
`-power isogeny to be represented both by a chain of `-isogenies and by a left ideal in a
maximal order.
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Problem 5 (FindKernelIdeal). Given a prime p and a sequence of supersingular elliptic
curves E0, . . . , Em−1 and `-isogenies φk : Ek−1 → Ek, k = 1, . . . ,m, with m = O(log(p)),
along with a maximal order O0 ⊆ Bp,∞ isomorphic to End(E0), compute the ideal I of
O0 ⊆ Bp,∞ corresponding to φm ◦ · · · ◦ φ1 : E0 → Em.

Theorem 5.4. EndomorphismRing reduces to `-PowerIsogeny and FindKernelIdeal.

Proof. Let E be a supersingular elliptic curve. Assume we are given φ1, . . . , φm and ψ1, . . . , ψn
whose compositions are 2m- and 3n-isogenies E0 → E and m,n are O(log(p)). Also assume
we are given ideals A and B of O0 such that A is the kernel ideal of φ := φm◦· · ·φ1 : E0 → E
and B is the kernel ideal of ψ := ψm ◦ · · · ◦ ψ1. Then we can compute Z-bases of OR(A)
and OR(B). The sequences {φr} and {ψs} for r = 1, . . . ,m and s = 1, . . . , n, along with
Z-bases of OR(A) and OR(B), gives us the compact representations of generators of End(E)
constructed in the proof of Theorem 5.2. �

6. Applications to the CGL Hash Function

For the hash function in [CGL09] constructed from Pizer’s Ramanujan graphs, there is a
hash function associated to each supersingular elliptic curve Ẽ (specified, up to isomorphism,
by its j-invariant). Fix such a hash function corresponding to Ẽ. The input to the hash
function is a binary number of k digits, and from this one computes a sequence of k 2-
isogenies, starting at Ẽ, whose composition maps to some other supersingular curve E ′. The
j-invariant of E ′ is the output of the hash function.

Under this construction, preimage resistance of this function corresponds exactly to the
problem of finding a 2-power isogeny between Ẽ and E ′ of a specified degree. So given our
reduction in Section 4 we have the following theorem.

Theorem 6.1. Finding preimages (of unspecified length) for the hash function constructed
in [CGL09] reduces to Problem MaxOrder and Problem Action-on-2-Torsion.

The problem of finding collisions also reduces to these two problems and we have the
following theorem.

Theorem 6.2. Finding collisions (of unspecified length) for the hash function constructed
in [CGL09] reduces to Problem MaxOrder and Problem Action-on-2-Torsion.

Proof. Finding a collision just amounts to finding two different 2-power isogenies between Ẽ
and E ′. This can be done as follows. First, use Algorithm 4.1 to find one 2-power isogeny
between Ẽ and E ′, given as a list of isogenies of degree 2. Look at the first 2-isogeny starting
at Ẽ. For the second part, choose a different 2-isogeny from Ẽ to another curve E1 in the first
step, and then use Algorithm 4.1 to find a 2-power isogeny from E1 to E ′. Concatenating the
two-isogeny from Ẽ to E1 with the 2-power isogeny from E1 to E ′ gives a second different
2-power isogeny from Ẽ to E ′. �

Remark 6.3. This produces a collision for the hash, but not of a specified degree.
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in Mathematics. Springer, Berlin, 1980.

[Voi] John Voight. Quaternion Algebras. Version v0.9.7, September 3, 2017.

[Wat69] William C. Waterhouse. Abelian varieties over finite fields. Ann. Sci. École Norm. Sup. (4),
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