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Abstract. Nonlinear permutations (S-boxes) are key components in
block ciphers. The differential branch number measures the diffusion
power of a permutation, whereas the linear branch number measures
resistance against linear cryptanalysis. There has not been much anal-
ysis done on the differential branch number of nonlinear permutations
of Fn

2 , although it has been well studied in case of linear permutations.
Similarly upper bounds for the linear branch number have also not been
studied in general. In this paper we obtain bounds for both the differ-
ential and the linear branch number of permutations (both linear and
nonlinear) of Fn

2 . We also prove that in the case of F4
2, the maximum

differential branch number can be achieved only by affine permutations.

Keywords: Permutation, S-box, differential branch number, linear branch
number, block cipher, Griesmer bound.

1 Introduction

A basic design principle of a block cipher consists of confusion and diffusion as
suggested by Shannon [14]. Confusion layer makes the relation between key and
the ciphertext as complex as possible, whereas the diffusion layer spreads plain-
text statistics across the ciphertext. So far there have been several constructions
of block ciphers, and equal efforts have been made to break them. In the process
literature has been enriched by proposals of elegant cryptanalysis techniques, for
instance, differential cryptanalysis [3] and linear cryptanalysis [12]. The latter
two cryptanalysis methods led to the design known as wide-trail strategy [6].
This design constructs round transformations of block ciphers with efficiency
and provides resistance against the differential and the linear cryptanalysis. This
strategy also explains how the differential branch number is related to the num-
ber of active S-boxes.

Recently lightweight cryptography has gained huge attention from both the
industry and the academia. There have been several proposals of lightweight
ciphers so far, which are mostly based on symmetric cryptography. In this work
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we are interested in block ciphers. Some examples of lightweight block ciphers
are CLEFIA [15] and PRESENT [4]; both are included in the ISO/IEC 29192 stan-
dard. There are many block ciphers which follow the design of Substitution-
Permutation-Network (SPN), for example, AES [7]. In this model, S-boxes are
used to achieve the confusion property, whereas in general MDS matrices are
used as the diffusion layer of a block cipher. MDS matrices generate MDS codes
which achieve the highest possible minimum distance, thus MDS matrices have
the highest possible diffusion power. In the same note we find the design of
PRESENT very interesting. It has removed the usual diffusion layer that is nor-
mally implemented by an MDS matrix. Thus saving a considerable amount of
hardware cost. It uses a 4× 4 S-box that has the following properties:

• differential branch number is 3,
• differential uniformity is 4 (the highest possible),
• nonlinearity is 4 (the highest possible),
• algebraic degree is 3.

One round function of PRESENT is comprised of 16 such S-boxes followed by a
linear bit-wise permutation L : F64

2 → F64
2 . The role of this linear permutation is

to mix up the outputs of the S-boxes which become the input to the next round.
As bit-wise permutation can be implemented by wires only, so this reduces the
number of gates required for the whole design. Recently a lightweight block
cipher GIFT [2] has also appeared which relies on the same design principle as of
PRESENT.
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Fig. 1. Round function of PRESENT (image source: [9])

PRESENT (in 2007) used the diffusion property of an S-box. This construction
idea will succeed provided the S-box has high differential branch number along
with the other cryptographic properties. However after PRESENT, through the last
10 years, no attempt has been made to analyze how far an S-box can diffuse. We
consider this problem and provide an upper bound for the differential branch
number of permutations in general. To the best of our knowledge this is the first
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ever work which gives nontrivial bounds on diffusion power of S-boxes. On the
other hand it is also crucial to have S-boxes with high linear branch number
in order to resist the linear cryptanalysis. So we study the differential branch
number of permutations in conjunction with the linear branch number. Below
we summarize our contributions.

Our contributions

In Section 4, we present bounds on the differential branch number of any per-
mutation of Fn2 . We completely characterize permutations of F4

2 in terms of the
differential branch number. In [13] huge computational effort was made in order
to characterize cryptographic properties of 4 × 4 S-boxes. In their search they
considered 16 optimal 4×4 S-boxes from [10] and showed that the maximum pos-
sible differential branch number of such an S-box is 3. However, from this search
it is not clear whether 3 is the maximum for all 4 × 4 S-boxes. In Theorem 4,
we prove that if a permutation of F4

2 has differential branch number 4 then it is
affine, which shows (Theorem 5) that in fact for any 4× 4 S-box, the maximum
possible differential branch number is 3. Further in Theorem 6, we prove that
for any permutation over Fn2 , for n ≥ 5, its differential branch number is upper
bounded by

⌈
2n3
⌉
. There is a bound known as Griesmer bound [8] which applies

only to linear permutations, whereas our bound works on any permutation. We
compare these two bounds in Table 3, and observe that values are very close to
each other.

We also study bounds on the linear branch number of permutations of Fn2 .
It turns out that for a linear permutation of Fn2 , the maximum value of the
linear branch number matches with the maximum value of the differential branch
number (see Theorem 1). For any permutation of Fn2 , the linear branch number
is upper bounded by n (see Theorem 3).

2 Preliminaries

Denote by F2 the finite field of two elements {0, 1} and by Fn2 the n-dimensional
vector space over F2. For any x ∈ Fn2 the Hamming weight of x, denoted by wt(x)
is the number of 1’s in x. Bitwise XOR is denoted by ⊕ and for any x, y ∈ Fn2
their dot product xt · y is simply the usual inner product x0y0⊕ · · ·⊕xn−1yn−1.

We now bring in some notations which will be frequently used. For i =
0, . . . , n − 1 denote by ei, the element of Fn2 which has 1 in the i-th position,
and 0 elsewhere. Note that the set {e0, . . . , en−1} forms a basis of Fn2 . Further,
the element of Fn2 with all 1 is denoted by ē . To illustrate let n = 4, then we
have e0 = (1, 0, 0, 0), e1 = (0, 1, 0, 0), e2 = (0, 0, 1, 0), e3 = (0, 0, 0, 1), and ē =
(1, 1, 1, 1).

An n × n S-box is a permutation S : Fn2 → Fn2 which is (strictly) nonlinear.
We denote by GL(n,F2) (or simply by GL(n)) the set of linear permutations of
Fn2 . Clearly GL(n) is a proper subset of set of all permutations of Fn2 and by
definition an n × n S-box is a permutation of Fn2 which is not in GL(n). For a
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secure design, S-box needs to satisfy several properties such as high nonlinearity,
high differential uniformity, high algebraic degree, etc [5]. We now recall the
notions of correlation matrices, linear and differential branch numbers. See [7]
for detailed discussion on these.

Consider a permutation φ of Fn2 .
For any α, β ∈ Fn2 the correlation coefficient of φ with respect to (α, β) is

given by

Cφ(α, β) =
∑
x∈Fn2

(−1)α
t·x⊕βt·φ(x) (1)

It is easy to see that −2n ≤ Cφ(α, β) ≤ 2n. See [7, Ch 7] for detailed discussion
on correlation matrices of Boolean functions and their properties. We define the
correlation matrix Cφ of φ as the 2n × 2n matrix indexed by α, β ∈ Fn2 in which
the entry in the cell (α, β) is given by Cφ(α, β):

Cφ = [Cα,β ]2n×2n where Cα,β = Cφ(α, β) (2)

Next we recall some definitions related to branch numbers of permutations.

Definition 1. For any φ of Fn2 , its differential branch number (respectively lin-
ear branch number) is denoted by βd(φ) (respectively β`(φ)) and defined as

βd(φ) := min
x,x′∈Fn2 , x 6=x′

{wt(x⊕ x′) + wt(φ(x)⊕ φ(x′))},

and
β`(φ) := min

α,β∈Fn2 , Cφ(α,β) 6=0
{wt(α) + wt(β)}.

where Cφ(α, β) is the correlation coefficient as in (1).

If φ is a linear permutation of Fn2 , then there exists a binary n×n invertible
matrix M such that φ(x) = Mx for every x ∈ Fn2 . In this case βd(φ) and β`(φ)
can be simplified as in the following lemma [7, Ch 9].

Lemma 1. Let φ be a linear permutation of Fn2 given by M ∈ GL(n,F2). Then,

βd(φ) = min
α∈Fn2 ,α6=0

{wt(α) + wt(Mα)} (3)

β`(φ) = min
α∈Fn2 ,α 6=0

{wt(α) + wt(Mtα)}. (4)

For any φ ∈ Π(n) it is easy to see that βd(φ) is ≥ 2 and β`(φ) ≥ 2. Also,

βd(φ) = βd(φ
−1) and β`(φ) = β`(φ

−1).

It is interesting to note that the differential branch number is related to the
difference distribution table (DDT). DDT of a permutation φ of Fn2 denoted by
Dφ is a matrix of order 2n × 2n. Suppose for the input difference δ, the output
difference of the permutation φ is ∆, i.e., φ(x)⊕ φ(x⊕ δ) = ∆. Let Dφ(δ,∆) be
the number solutions of φ(x)⊕φ(x⊕ δ) = ∆, then the (δ,∆)-th element of DDT
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Table 1. DDT of S-Box 408235B719A6CDEF

@
@@δ
∆

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 4 0 0 2 0 2 0 2 0 2 0 4 0 0 0
2 0 0 8 0 0 0 0 0 2 0 0 2 2 0 0 2
3 0 0 0 6 2 0 2 2 2 0 0 0 0 0 2 0
4 0 0 0 2 4 4 0 2 0 2 0 0 0 2 0 0
5 0 2 0 2 0 4 0 0 2 2 0 0 2 0 0 2
6 0 0 0 0 0 0 4 4 0 0 0 4 0 0 0 4
7 0 2 0 2 0 0 0 4 0 0 2 2 0 2 2 0
8 0 0 2 0 2 4 0 0 4 2 0 0 0 0 0 2
9 0 2 0 0 2 0 0 0 2 4 0 0 0 2 4 0
A 0 0 0 0 0 0 2 2 0 2 4 2 0 2 2 0
B 0 2 2 2 0 0 2 0 0 0 2 4 2 0 0 0
C 0 4 2 0 0 0 2 0 2 0 0 0 2 4 0 0
D 0 0 0 0 2 0 0 2 0 2 2 0 4 4 0 0
E 0 0 0 2 2 0 0 0 0 2 4 0 0 0 2 4
F 0 0 2 0 0 4 2 0 0 0 0 2 0 0 4 2

is Dφ(δ,∆). In Table 1, we present the difference distribution table of the S-box
φ = 408235B719A6CDEF.

Then the differential branch number can be redefined as

βd(φ) := min
δ 6=0,∆6=0,Dφ(δ,∆)6=0

{wt(δ) + wt(∆)}.

For example, it is clear from the DDT of the differential branch number of
408235B719A6CDEF is 2.

One of the basic notion in the study of permutations is that of affine equiv-
alence. This equivalence preserves various cryptographic properties like nonlin-
earity, differential uniformity, algebraic degree (more than one), etc.

Definition 2 (Affine Equivalence). Let φ, φ′ be two permutations of Fn2 . We
say that φ is affine equivalent to φ′ if there exist A, B ∈ GL(n,F2), and c, d ∈ Fn2
such that

φ′(x) = B · φ[Ax⊕ c]⊕ d, for all x ∈ Fn2 . (5)

Affine equivalence preserves many properties of S-boxes, such as uniformity,
nonlinearity, degree, but it does not preserve branch number in general. For
instance, the following two affine equivalent S-boxes (in Table 2) have different
differential branch number. Here S and S′ are related as S′(x) = B S(x), where
B is a matrix with the rows {(1, 0, 0, 1), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. Note
that βd(S) = 3, whereas βd(S

′) = 2, although they are affine equivalent. The
S-box S is used in PRESENT.
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

S′(x) C D 6 3 1 0 A 5 B E 7 8 4 F 9 2

.

Table 2. Affine equivalent S-boxes with different differential branch numbers.

On the other hand, if A and B are permutation matrices1 then the corre-
sponding affine equivalence class preserves the branch number [13]. We state this
as the following lemma.

Lemma 2. If φ and φ1 are two affine equivalent permutations of Fn2 such that
φ1(x) = B φ[Ax⊕ c]⊕ d, for all x ∈ Fn2 , where A and B are n× n permutation
matrix, and c, d ∈ Fn2 , then βd(φ) = βd(φ1) and β`(φ) = β`(φ1).

3 Bounds on Linear Branch Number

First we consider the case of linear permutations of Fn2 . In this case we have the
following connection between the linear and the differential branch numbers of
such permutations.

Theorem 1. For linear permutations of Fn2 the maximum differential branch
number is equal to the maximum linear branch number.

Proof. Suppose φ be a linear permutation of Fn2 , then there exists a matrix
M ∈ GL(n,F2) such that φ(x) = Mx for every x ∈ Fn2 . Consider the permutation
φt defined as φt(x) = Mtx for x ∈ Fn2 . Using Lemma 1 we see that βd(φ) = β`(φ

t)
from which the result follows. ut

Remark 1. The best known bound for the differential branch number of a linear
permutation is Griesmer bound (see Section 4). Above theorem suggests that
this is also the best bound for the linear branch number of such permutations.
Later in Theorem 6 we present new a bound on the differential branch number of
more general permutations of Fn2 which is quite comparable to Griesmer bound
in case linear permutations.

It is pertinent to mention here some results similar to Theorem 1 in case of
permutations of Fnq when q = 2m for m > 1. These results along with proofs can
be found in [7]. We present some of them here for sake of completeness. In [7]
authors consider a permutation of Fnq as a “bundled” permutation of Fmn2 with
bundle size m, i.e., if ψ is such permutation then it is defined as

ψ(x0, . . . , xn−1) = (y0, . . . , yn−1) (6)

where (x0, . . . , xn−1), (y0, . . . , yn−1) ∈ Fn2m . The notion of branch numbers (lin-
ear and differential) are defined with respect to the bundle size. With these
authors prove the following theorem [7, Theorem B.1.2].

1 A matrix obtained by permuting rows (or columns) of an identity matrix.
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Theorem 2. Let ψ : Fmn2 −→ Fmn2 be a bundled permutation as in (6). Then
ψ has maximal differential branch number if and only if it has maximal linear
branch number.

If ψ is a linear permutation of Fnq given by n× n nonsingular matrix N over
Fq, i.e., ψ(x) = Nx, then Theorem 2 simply means that the matrix N is MDS if
and only if its transpose is also MDS. Note that Theorem 2 goes beyond linear
permutations and includes all permutation of Fnq . However, an important point
to be noted here is that Theorem 2 is applicable for bundled permutations of
Fmn2 of bundle size m > 1 and is not applicable to our results which involve
permutations of Fn2 . In the following we will see that such a nice connection is
elusive in case of permutations of Fn2 . To continue our results from Theorem 1
we now prove a bound on the linear branch number of general permutations.

To present our results we need some facts related to Boolean functions which
we recall here. A n variable Boolean function is map ϕ : Fn2 −→ F2. We say that
ϕ is balanced if

#{x ∈ Fn2 : ϕ(x) = 0} = #{x ∈ Fn2 : ϕ(x) = 1} = 2n−1.

The map ϕ is said to be rth order Correlation Immune (r-CI) if∑
x∈Fn2

(−1)α
t·x⊕ϕ(x) = 0, (7)

for all α ∈ Fn2 such that 1 ≤ wt(α) ≤ r. If ϕ is balanced and r-CI then it
said to be r−resilient Boolean function. In our study Boolean functions occur as
coordinate functions of a permutation φ of Fn2 . The linear branch number of φ
and the resiliency order of its coordinate functions is interconnected as follows.
Suppose that φ is a permutation of Fn2 given by φ(x) = (φ0(x), . . . , φn−1(x))
where x ∈ Fn2 and each of φ0, . . . , φn−1 is a coordinate Boolean function. If
β`(φ) = r then, by definition for any α, β ∈ Fn2

Cφ(α, β) = 0 whenever 2 ≤ wt(α) + wt(β) ≤ r − 1.

In particular if we choose β = ei ∈ Bn, then the above equation implies that

Cφ(α, ei) =
∑
x∈Fn2

(−1)α
t·x⊕φi(x) = 0 whenever 1 ≤ wt(α) ≤ r − 2, (8)

which means that φi is (r− 2)− CI Boolean function. Also, φi is balanced since
it is a coordinate function of a permutation. Thus we see that each φi is a r− 2
resilient Boolean function. In a nutshell this is our observation:

Lemma 3. Let φ = (φ0, . . . , φn−1) be a permutation of Fn2 . For every 0 ≤ i ≤
n− 1 the coordinate function φi is β`(φ)− 2 resilient Boolean function.

We also recall the notion of degree of a Boolean function. Given a Boolean
function ϕ of n variables there exist a unique polynomial P (X0, . . . , Xn−1)
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in n variables over F2 such that ϕ(x0, . . . , xn−1) = P (x0, . . . , xn−1) for every
(x0, . . . , xn−1) ∈ Fn2 . Such a polynomial is called Algebraic Normal Form of ϕ
and the total degree of P is called algebraic degree (or simply degree) of ϕ. Note
that deg(ϕ) = 0 only for constant functions and deg(ϕ) = 1 if ϕ is affine. For
any Boolean function ϕ its resiliency order and its degree are connected as fol-
lows, which is known as Siegenthaler bound [16]. If ϕ is a n variable r−resilient
Boolean function then

deg(ϕ) ≤ n− 1− r. (9)

Using the connection in Lemma 3 and (9) we obtain bounds on the linear
branch number of permutations of Fn2 .

Theorem 3. For any nonlinear permutation φ of Fn2 we have β`(φ) ≤ n− 1.

Proof. First we show that β`(φ) ≤ n and then that only linear permutations
have β`(φ) = n. Let φ = (φ0, . . . , φn−1) be a permutation of Fn2 with coordinate
Boolean functions {φ0, . . . , φn−1}. Suppose φi ∈ {φ0, . . . , φn−1} be any coordi-
nate function. If β`(φ) ≥ n+1 then from Lemma 3 it follows that the function φi
is r− resilient where r ≥ (n+1)−2 = n−1. By Siegenthaler bound (9) we must
have deg(φi) ≤ (n− 1)− (n− 1) = 0. On the other hand, if deg(φi) = 0 then φi
is a constant function which is impossible because φi a coordinate function of a
permutation of Fn2 and hence need to be balanced. This contradiction shows that
β`(φ) ≤ n. Using same kind of argument one can easily see that if β`(φ) = n
then deg(φi) ≤ 1 for every 0 ≤ i ≤ n−1, which implies that it is affine and hence
φ itself is affine. As a consequence it follows that if φ is a nonlinear permutation
of Fn2 then β`(φ) ≤ n− 1. ut

Next we focus on bounds for the differential branch number of general per-
mutations of Fn2 .

4 Bounds on Differential Branch Number

It is trivial to check that for any permutation φ of Fn2 , we have βd(φ) ≥ 2.
For linear permutations, some upper bound can be easily obtained from coding
theory. If L : Fn2 → Fn2 is linear permutation, then the set C = {(x, L(x)) :
x ∈ Fn2} forms a [2n, n] linear code, and its minimum distance is actually the
differential branch number of L. An [N,K] linear code has minimum distance
d ≤ N − K + 1 (Singleton Bound). The codes which achieve the Singleton
Bound are called MDS codes. Therefore, the differential branch number of L
is bounded by n + 1. However, it is known that there is no nontrivial binary
MDS code [11], which means that there is no linear permutation defined over Fn2
having the differential branch number n+ 1. Thanks to Griesmer bound we can
have further bounds [8].
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Lemma 4 (Griesmer Bound). Let [N,K] be a binary linear code with the
minimum distance d then

N ≥
K−1∑
i=0

⌈
d

2i

⌉
.

In this section we present a bound on the differential branch number of an
arbitrary permutation of Fn2 . We begin with following remark which will be
useful in our proofs.

Remark 2. Let φ be a permutation of Fn2 such that φ(0) = c for some c 6= 0 ∈ Fn2 .
Then for the permutation φ′ defined as φ′(x) = φ(x) ⊕ c it is easy to see that
βd(φ) = βd(φ

′) and φ′(0) = 0. Thus while deriving bounds on the differential
branch numbers we can simply consider permutations φ such that φ(0) = 0.

Suppose q is a power of prime, and L : Fnq −→ Fnq is a linear permutation. It is
a well known fact [11] that βd(L) ≤ n+ 1 whenever q 6= 2.

Next, let φ be a arbitrary permutation of Fn2 . If βd(φ) = n + 1 then by
Definition 1 and Remark 2 we get

wt(ei ⊕ 0) + wt(φ(ei)⊕ φ(0)) = wt(ei) + wt(φ(ei)) ≥ n+ 1,

which implies that wt(φ(ei)) ≥ n for i = 0, . . . n− 1. However, this is impossible
because there is precisely one element ē ∈ Fn2 with wt(ē ) = n. Hence we must
have βd(φ) < n + 1. This gives us a trivial bound on the differential branch
number of permutations of Fn2 as follows.

Lemma 5. For any permutation φ of Fn2 we have βd(φ) < n+ 1.

In the remaining part of this section we sharpen the bound in Lemma 5. To
make proofs easy we consider the case of permutations over F4

2 and the case of
permutations over Fn2 , n ≥ 5 separately.

4.1 Differential Branch Number of Permutations of F4
2

In this section we consider permutations defined on F4
2 which are used to design

4× 4 S-boxes. Here we show that if the differential branch number of a permu-
tation of F4

2 is 4 then it is necessarily affine and hence the differential branch
number of any 4× 4 S-box is bounded above by 3.

Lemma 6. Suppose φ : F4
2 → F4

2 is a permutation with φ(0) = 0 and βd(φ) = 4.
Then the following conditions hold for x ∈ F4

2

C1. if wt(x) = 4 then wt (φ(x)) = 4,
C2. if wt(x) = 1 then wt (φ(x)) = 3,
C3. if wt(x) = 2 then wt (φ(x)) = 2,
C4. if wt(x) = 3 then wt (φ(x)) = 1.

9



Proof. Since βd(φ) = 4, and φ(0) = 0, any nonzero x ∈ F4
2 must satisfy

wt(x) + wt(φ(x)) ≥ 4. (10)

Immediate consequence of this is that wt(φ(ei)) = 3 or wt(φ(ei)) = 4 as wt(ei) =
1 for any 0 ≤ i ≤ 3. Suppose wt(φ(ei)) = 4 for some i, then for any j 6= i we
have

wt(ei ⊕ ej) + wt(φ(ei)⊕ φ(ej)) = 3 < 4,

contradicting (10). Hence C2 follows.
Next let x ∈ F4

2 with wt(x) = 2. Then, 2 ≤ wt(φ(x)) ≤ 4 by (10). Since
φ maps all weight 1 elements to weight 3 elements and φ is a permutation, so
wt(φ(x)) 6= 3. Suppose that wt(φ(x)) = 4. Choose ei such that wt(ei ⊕ x) = 1,
and since wt(φ(ei)) = 3 we must have

wt(ei ⊕ x) + wt(φ(ei)⊕ φ(x)) = 1 + 1 = 2 < 4,

again contradicting (10); hence it follows that wt(φ(x)) = 2. This concludes the
proof of C3.
Now let’s prove C4. Consider x with wt(x) = 3. By C2 and C3, we have
wt(S(x)) 6= 2, 3. This leaves open the possibility that wt(φ(x)) = 1 or 4. If
wt(φ(x)) = 4, consider an element x′ with wt(x′) = 2 and wt(x⊕ x′) = 1. Then

wt(x⊕ x′) + wt(φ(x)⊕ φ(x′)) = 1 + 2 < 4,

a contradiction. So wt(φ(x)) = 1.
Finally, C2, C3, C4 imply that wt(φ(x)) = 4, when wt(x) = 4. ut

Above theorem leads to the following characterization of permutations φ of
F4
2 for which βd(φ) = 4.

Theorem 4. Let φ : F4
2 −→ F4

2 be a permutation with βd(φ) = 4. Then φ is
affine.

Proof. As per Remark 2 we prove the result for φ(0) = 0. Since βd(φ) = 4 and
φ(0) = 0, φ satisfies C1, C2, C3, C4 ( of Lemma 6). Note that the set of 1-weight
vectors {e0, e1, e2, e3} form a basis of F4

2 and by C2 the corresponding image
set {φ(e0), φ(e1), φ(e2), φ(e3)} contains all the 3-weight vectors of F4

2. Note that
{φ(e0), φ(e1), φ(e2), φ(e3)} also forms a basis of F4

2. Recall that the permutation
φ is a linear map iff

φ(c0e0 ⊕ c1e1 ⊕ c2e2 ⊕ c3e3) = c0φ(e0)⊕ c1φ(e1)⊕ c2φ(e2)⊕ c3φ(e3)

holds for all (c0, c1, c2, c3) ∈ F4
2.

As wt(φ(e0⊕ e1⊕ e2⊕ e3)) = 4 (by C1 of Lemma 6), and wt(φ(e0)⊕φ(e1)⊕
φ(e2)⊕ φ(e3)) = 4, then

φ(e0 ⊕ e1 ⊕ e2 ⊕ e3) = φ(e0)⊕ φ(e1)⊕ φ(e2)⊕ φ(e3).
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In the following we will use the fact that φ(ei) ⊕ φ(ej) has weight 2, and
φ(ei) ⊕ φ(ej) ⊕ φ(ek) has weight 1. The set {φ(e0), φ(e1), φ(e2), φ(e3)} forms a
basis and wt(φ(ei⊕ ej)) = 2 (by C3 of Lemma 6), then φ(ei⊕ ej) can be written
as

φ(ei ⊕ ej) = φ(e`)⊕ φ(er),

for some ` and r. If linearity does not hold for (ei ⊕ ej) then (i, j) 6= (`, r).
If i = ` (and j 6= r), then

wt(ej ⊕ ei ⊕ ej) + wt(φ(ej)⊕ φ(ei ⊕ ej)) = wt(ei) + wt(φ(ej)⊕ φ(ei)⊕ φ(er))

= 1 + 1 < 4,

a contradiction. The case j = r can be treated similarly.
Next if `, r /∈ {i, j}, then

wt(ej ⊕ ei ⊕ ej) + wt(φ(ej)⊕ φ(ei ⊕ ej)) = wt(ei) + wt(φ(ej)⊕ φ(e`)⊕ φ(er))

= 1 + 1 < 4,

which contradicts the fact that βd(φ) = 4. Therefore, for any linear combinations
of the form ei ⊕ ej we must have

φ(ei ⊕ ej) = φ(ei)⊕ φ(ej).

We now consider linear combinations of the form ei ⊕ ej ⊕ ek. By C4 of
Lemma 6, we have wt(φ(ei ⊕ ej ⊕ ek)) = 1. As {φ(e0), φ(e1), φ(e2), φ(e3)} forms
a basis, so we can write

φ(ei ⊕ ej ⊕ ek) = φ(e`)⊕ φ(er)⊕ φ(et).

Suppose that linearity does not hold for ei⊕ej⊕ek, then (i, j, k) 6= (`, r, t). Note
that we must have |{i, j, k} ∩ {`, r, t}| = 2. Assume that i = ` and j = r. Then

wt(ei ⊕ ek ⊕ ei ⊕ ej ⊕ ek) + wt(φ(ei ⊕ ek)⊕ φ(ei ⊕ ej ⊕ ek))
= wt(ej) + wt(φ(ei)⊕ φ(ek)⊕ φ(ei)⊕ φ(ej)⊕ φ(et))
= wt(ej) + wt(φ(ek)⊕ φ(ej)⊕ φ(et))
= 1 + 1 < 4,

a contradiction. Therefore, for any linear combinations of the form ei ⊕ ej ⊕ ek
we must have

φ(ei ⊕ ej ⊕ ek) = φ(ei)⊕ φ(ej)⊕ φ(ek).

Thus we conclude that φ is linear, and the theorem follows. ut

Recall that, by definition an n× n S-box is a strictly nonlinear permutation
of Fn2 . Using Lemma 5 and Theorem 4 we get the following strict upper bound
on the differential branch number of 4× 4 S-boxes.

Theorem 5. The maximum possible differential branch number of a 4×4 S-box
is 3.
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The paper [13] followed the work of [10] to search for optimal 4× 4 S-boxes
in the affine equivalent classes. The maximum differential branch number in the
affine equivalent classes of the 16 optimal 4 × 4 S-boxes from [10] is 3. As this
search did not consider the so-called non-optimal S-boxes, the question of the
maximal differential branch number of any 4 × 4 S-box remained unanswered.
Theorem 5 settles this question.

We now give a family of linear permutations LSn of Fn2 with βd(LSn) = 4.
Definition of these permutations varies slightly depending on whether n is even
or odd. Since these permutations are linear we specify their action on basis
Bn = {e0, . . . , en−1} of Fn2 and the maps extend linearly to other elements of Fn2 .

Example 1. Let n be an even integer. The linear permutation LSn of Fn2 , defined
on the basis Bn as

LSn(ei) = ē ⊕ ei (11)

has βd(LSn) = 4 and it is also involution. Further, observe that matrix repre-
senting the map LSn is symmetric from which it follows that β`(LSn) = 4.

Next we give a family of linear permutations with the differential branch
number 4 defined over Fn2 for odd values of n

Example 2. Let n be an odd integer. The linear permutation LSn of Fn2 , defined
on basis Bn as

LSn(ei) =


ē ⊕ ei ⊕ ei+1 if 0 ≤ i ≤ n− 2

ē ⊕ en−1 ⊕ e0 if i = n− 1

has the differential branch number 4.

In both cases it is easy to show that the set {LSn(e0), . . . , LSn(en−1)} is a
basis of Fn2 asserting that the maps LSn indeed are bijections. The fact that
βd(LSn) = 4 can also be easily checked from the Definition 1 of the differential
branch number for linear maps. Next we present bounds for permutations of Fn2 ,
for n ≥ 5.

4.2 Differential Branch Number of Permutations of Fn
2 , for n ≥ 5

In this section we present bounds on the differential branch number of a general
permutation of Fn2 . In the remainder of this paper we assume that n ≥ 5 unless
specified otherwise. We begin with some initial observations.

Suppose that x ∈ Fn2 with wt(x) = n − δ for some δ ≥ 1. Then x can be
expressed as x = ē⊕ ex1

⊕ . . .⊕ exδ for unique set of elements ex1
, . . . exδ ∈ Bn.

Using this one can easily see the following fact which we will be using frequently
in this paper:

Fact 1 For x, x′ ∈ Fm2 with x 6= x′, wt(x) ≥ n− δ and wt(x′) ≥ n− δ′ we have

wt(x⊕ x′) ≤ δ + δ′.

12



Lemma 7. Let φ be a permutation of Fn2 with φ(0) = 0 and the differential
branch number βd(φ) = n − β + 1 for some 1 ≤ β ≤ n − 1. Then we have for
0 ≤ i ≤ n− 1

n− β ≤ wt(φ(ei)) ≤ 2β + 1 (12)

and for 0 ≤ i 6= j ≤ n− 1,

n− (β + 1) ≤ wt(φ(ei)⊕ φ(ej)) ≤ 2β. (13)

Proof. From the definition of the differential branch number it follows that

wt(φ(ei)) ≥ n− β, (14)

as φ(0) = 0. Then using x = φ(ei), x
′ = φ(ej) in Fact 1 we get

wt(φ(ei)⊕ φ(ej)) ≤ 2β. (15)

Again for every pair of indices i 6= j

wt(φ(ei)⊕ φ(ej)) ≥ n− (β + 1). (16)

Using (14) and (16) in Fact 1 we get (12). Further combining (15) and (16) we
get (13). ut

Lemma 8. Let δ be an integer such that 1 ≤ δ ≤ n. Denote byWn
δ the following

set
Wn
δ = {x ∈ Fn2 : wt(x) = n− δ}. (17)

Then for any x, x′ ∈ Wn
δ we have wt(x⊕ x′) = 2k for some 1 ≤ k ≤ δ. Further

suppose V ⊆ Wn
δ defined as

V = {x ∈ Wn
δ :wt(x⊕ x′) = 2δ for all x′ ∈ V}

then |V| ≤
⌊
n
δ

⌋
.

Proof. First claim is obvious. To see second part, first observe that given any
x ∈ Wn

δ there exist a unique set of elements {ex1 . . . , exδ} ⊆ Bn such that
x = ē ⊕ ex1 ⊕ · · · ⊕ exδ .

An element y ∈ Wn
δ is in V

if and only if
{ey1 . . . , eyδ} ∩ {ex1

. . . , exδ} = ∅

for every element x already in V. Consequently, we have |V| ≤
⌊
n
δ

⌋
as required.

ut

Using the above observations we prove the following bound on the differential
branch number of a permutation of Fn2 .

Theorem 6. If n ≥ 5 then for any permutation φ of Fn2 we have

βd(φ) ≤
⌈
2
n

3

⌉
. (18)
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Proof. First it is easy to see that⌈
2
n

3

⌉
= n−

⌊n
3

⌋
,

and hence we substitute the bound in (18) by n−
⌊
n
3

⌋
to make the proof easy.

On the contrary to (18) assume that βd(φ) ≥ n −
⌊
n
3

⌋
+ 1. Using β =

⌊
n
3

⌋
in

Lemma 7 we get

n−
⌊n

3

⌋
≤ wt(φ(ei)) ≤ 2

⌊n
3

⌋
+ 1 (19)

for 0 ≤ i ≤ n− 1, and

n− (
⌊n

3

⌋
+ 1) ≤ wt(φ(ei)⊕ φ(ej)) ≤ 2

⌊n
3

⌋
(20)

for 0 ≤ i 6= j ≤ n− 1. Now, recall that the integer n can be written as

n = 3
⌊n

3

⌋
+ r (21)

for a unique r such that 0 ≤ r ≤ 2. We prove our claim separately for each value
of r.
Case 1. r = 2. From (19) we have

n−
⌊n

3

⌋
≤ 2

⌊n
3

⌋
+ 1

and substituting n = 3
⌊
n
3

⌋
+ 2 in this we get 2 ≤ 1 which is a contradiction.

Case 2. r = 1. In this case, by substituting n = 3
⌊
n
3

⌋
+ 1 the inequalities (19)

and (20) become the following equalities

wt(φ(ei)) = n−
⌊n

3

⌋
wt(φ(ei)⊕ φ(ej)) = 2

⌊n
3

⌋ (22)

Note that both identities in (22) must be satisfied by all the elements of the set
{φ(e0), . . . , φ(en−1)}. We show that this is impossible. Since wt(φ(ei)) = n−

⌊
n
3

⌋
for all 0 ≤ i ≤ n− 1, we are in the situation of Lemma 8 with φ(ei) ∈ Wn

δ where
δ =

⌊
n
3

⌋
. Consequently, we see that there can be at most b n

bn3 c
c = 3 elements

φ(er), φ(es), φ(et) for which the latter identity in (22) can hold. On the other
hand, since n ≥ 5, there exists at least two basis elements eu and ev apart from
er, es, et, and by Lemma 8 we will have

wt(φ(eu)⊕ φ(ev)) ≤ 2 (δ − 1) < 2
⌊n

3

⌋
which contradicts (22).
Case 3. r = 0. In this case we have n = 3

⌊
n
3

⌋
and the inequalities (19), (20)

simplify to

wt(φ(ei)) = n−
⌊n

3

⌋
or n−

⌊n
3

⌋
+ 1 (23)
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wt(φ(ei)⊕ φ(ej)) = n−
⌊n

3

⌋
− 1 or n−

⌊n
3

⌋
(24)

Note that for every element of {φ(e0), . . . , φ(en−1)} there are only two pos-
sibilities for wt(φ(ei)) as in (23). First we show that wt(φ(ei)) = wt(φ(ej)) =
n−

⌊
n
3

⌋
+ 1 cannot hold, for i 6= j, otherwise

using x = φ(ei), x
′ = φ(ej) and δ = δ′ =

⌊
n
3

⌋
− 1 in Fact 1 we get

wt(φ(ei)⊕ φ(ej)) ≤ 2(
⌊n

3

⌋
− 1) = n−

⌊n
3

⌋
− 2 < n−

⌊n
3

⌋
− 1

contradicting (24). Thus there can be at most one element φ(ei) such that
wt(φ(ei) = n −

⌊
n
3

⌋
+ 1. Without loss of generality assume that wt(φ(e0)) =

n −
⌊
n
3

⌋
+ 1, then it follows from (23) that for i = 1, . . . , n − 1 the weights of

wt(φ((ei)) satisfy

wt(φ(ei)) = n−
⌊n

3

⌋
. (25)

Thus, we are in situation of Lemma 8 with φ(e1), . . . , φ(en−1) ∈ Wn
δ for δ =

⌊
n
3

⌋
.

Hence there can be only three elements φ(er), φ(es), φ(et), 1 ≤ r 6= s 6= t ≤ n−1
such that for any two indices i, j ∈ {r, s, t}

wt(φ(ei)⊕ φ(ej)) = 2 δ = 2
⌊n

3

⌋
holds. Since n ≥ 5 there exist at least one element ek, where k 6= 0 and also
k /∈ {r, s, t}. Then for any i ∈ {r, s, t} we must have (by Lemma 8) wt(φ(ek) ⊕
φ(ei)) ≤ 2(δ − 1), which means that

wt(φ(ek)⊕ φ(ei)) ≤ 2
⌊n

3

⌋
− 2 < n−

⌊n
3

⌋
− 1,

contradicting (24). This concludes the proof of Case 3 and also of the theorem.
ut

4.3 Comparison with Griesmer Bound

Recall that Griesmer bound (Lemma 4) is applicable to linear permutations only.
Notably our bound as in (18) works for any permutation. The Table 3 shows
different n with corresponding values of Griesmer Bound and our bound (18).

It is noticeable that our bound is very close to Griesmer bound, and in
fact matching for some small values of n. The Griesmer bound is not sharp,
for example for an [8, 4] binary linear code the maximum possible minimum
distance d is 5 (see [1]), whereas the Griesmer bound says d ≤ 6. Our bound for
the differential branch number of permutations of F8

2 is also 6. At this moment we
also do not know the existence of any nonlinear permutation with the differential
branch number 6, and in general for Fn2 with n ≥ 5, it is not known whether
there is any nonlinear permutation for which the bound of the differential branch
number is achieved. We suspect that like Griesmer bound our bound is also not
sharp in general.
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n Griesmer Bound Our Bound

4 4 4

5 4 4

6 4 4

7 5 5

8 6 6

9 6 6

10 7 7

11 8 8

12 8 8

13 8 9

14 8 10

15 9 10

16 10 11

17 10 12

18 11 12

19 12 13

Table 3. Comparison between the differential branch number of linear permutations
obtained from Griesmer bound and that of general permutations obtained from our
bound (18).

5 Conclusions

In this paper we have analyzed the differential and the lnear branch numbers of
permutations. We have theoretically proved that 4×4 S-boxes can have the max-
imum differential branch number 3. This is important for the designers who are
aiming to construct lightweight block ciphers following the design like PRESENT.
We have also presented upper bounds on both the linear and the differential
branch numbers for permutations over Fn2 , for general n. We feel that there is
still a scope of improving these bounds. We showed that the maximum differen-
tial branch number and the maximum linear branch number of liner permuta-
tions match. However, it is not known whether the same happens for nonlinear
permutations as well. It will be interesting to pursue the following question.

Question 1. Can an S-box achieve both the maximum linear and differential
branch numbers?

As we have seen that the differential branch number is associated with dif-
ference distribution table, whereas the linear branch number is associated with
the correlation matrix. Therefore, if there is a relation between these two ma-
trices, then probably we have the answer to Question 1. In fact [17] has shown
that there is a relationship between the DDT and the correlation matrix (in a
different form). Let C2φ denote the following matrix which is derived from the
correlation matrix of φ.
Recall from (1) that the correlation coefficient of φ with respect to (α, β) is given
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by

Cφ(α, β) =
∑
x∈Fn2

(−1)α
t·x⊕βt·φ(x)

Now define C2φ = [C2φ(α, β)]2n×2n as the matrix whose (α, β)-th element is given

by (Cφ(α, β))2. Then we have the following relation as mentioned in [17, Lemma
2 (iii)]

C2φ = HnDφHn, (26)

where Hn is the Hadamard matrix of order 2n × 2n.
It will be interesting to explore (26) in order to establish a relationship be-

tween the linear and the differential branch numbers.
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