
A Comparative Investigation of Approximate Attacks on
Logic Encryptions

Yuanqi Shen, Amin Rezaei, and Hai Zhou
Northwestern University

yuanqishen2020@u.northwestern.edu, me@aminrezaei.com, haizhou@northwestern.edu

ABSTRACT

Logic encryption is an important hardware protection tech-
nique that adds extra keys to lock a given circuit. With recent
discovery of the effective SAT-based attack, new enhancement
methods such as SARLock and Anti-SAT have been proposed
to thwart the SAT-based and similar exact attacks. Since these
new techniques all have very low error rate, approximate at-
tacks such as Double DIP and AppSAT have been proposed to
find an almost correct key with low error rate. However, mea-
suring the performance of an approximate attack is extremely
challenging, since exact computation of the error rate is very ex-
pensive, while estimation based on random sampling has low
confidence. In this paper, we develop a suite of scientific en-
cryption benchmarks where a wide range of error rates are pos-
sible and the error rate can be found out by simple eyeballing.
Then, we conduct a thorough comparative study on different
approximate attacks, including AppSAT and Double DIP. The
results show that approximate attacks are far away from clos-
ing the gap and more investigations are needed in this area.

I. INTRODUCTION

The growing participation of third party foundries in differ-
ent stages of Integrated Circuit (IC) design from specification to
physical implementation has given the semiconductor industry
several emerging threats [2, 4, 6, 11]. Among them, overproduc-
tion is the most serious one, since the precious design can be
produced without notice of the designers [5]. Moreover, with
the growing number of untrusted foundries, the possibility of
Inside Foundry Attack (IFA) is also escalating. The loss due to
global hardware piracy has now reached the level of billions per
month, with a major share in almost all electronic devices [1].
Several hardware protection techniques have been proposed to
tackle the unauthorized production problem, of which logic en-
cryption [3, 8–10, 12] attracts much attention.

In logic encryption, key-controlled gates are inserted into IC
design to hide its original functionality. The key inputs are con-
nected to a tamper-proof memory, and the IC only produces
all correct input-output pairs only if the key inputs have their
predefined correct values. In this case, even though the inside
foundry attacker is able to access the netlist and the external
attacker can employ reverse engineering techniques to get the
netlist from layout [16], they will not get functional circuit with-
out knowing the correct key value. The inserted key-controlled
gates can be further obfuscated to make it hard for attackers to
directly remove them from the netlist [7].

However, the SAT-based attack [15] on logic encryption al-
lows the attacker to narrow down the scope of correct key val-
ues utilizing an advanced satisfiability (SAT) solver. In order to
defeat the SAT-based attack, different enhancing methods such
as SARLock [18] and Anti-SAT [17] were proposed to make the
time complexity of the SAT-based attack exponential. However,
since these new techniques all have very low error rate, approx-
imate attacks such as Double DIP [14] and AppSAT [13] have
been proposed to find an approximate key which has low error
rate with regard to the correct key.

An approximate attack is deemed to be more harmful than an ex-
act attack. By deploying an approximate key in the circuit, an
attacker can be assured to still make profit by selling the chip,
since the tiny numbers of wrong outputs can almost not be dis-
covered. However, these wrong outputs become a stealthy Tro-
jan that could crash the whole system some day in the future. In
other words, an approximation attack is more harmful since it
can be viewed as an exact attack plus stealthy Trojan insertion.

A big challenge in studying approximate attacks are the mea-
surement of the performance, which is given by the error rate
of the returned key. On existing benchmarks, the error rate for
a wrong key is either unknown or with a fixed tiny value (e.g.
in SARLock or Anti-SAT). To find the exact error rate of a given
key, every possible input must be simulated, which is exponen-
tially expensive. To facilitate our comparative study, we have
developed a suite of scientific benchmarks where the error rate
of each key is different and can be adjusted while the error rate
can be found by simple eyeballing of the key.

The contributions of this paper are as follows:

• We develop a suite of scientific encryption benchmarks
where a wide range of error rate is possible, and the error
rate can be exactly calculated from the key.

• We conduct a comparative study on existing approximate
attacks. The results show that, the error rates achieved by
these approximate attacks are similar to those by random
key guess, and increasing the iteration number of approx-
imate attacks does not decrease the error rates of the gen-
erated keys.

II. PRELIMINARIES

In this section, we first overview the SAT-based attack [15] as
an exact attack on logic encryption. Then, we discuss the Anti-
SAT block [17] as an example of methods to defeat the original
SAT-based attack. Finally, we review Double DIP [14] and App-
SAT [13] as approximate attack algorithms.

A. SAT-based Attack

Using the SAT-based attack [15] on combinational logic en-
cryption, almost all of the existing logic encryption methods [8,
9, 12] can be successfully unlocked. The attack model assumes
that the logic of the locked circuit is known, and the original cir-
cuit can be accessed as a black-box using an activated IC. The
SAT-based attack is shown in Algorithm 1.

Supposing C (X ,K ,Y) is the Conjunctive Normal Form (CNF)
of the locked circuit with input X , key K , and output Y , the
SAT-based attack iteratively finds the assignment to the CNF
C (X ,K 1,Y 1) ∧ C (X ,K 2,Y 2) ∧ (Y 1 6= Y 2) with constraints
on the keys, until it is unsatisfiable. When X i as an assignment
of X is generated, its corresponding output Y i from the origi-
nal circuit is found, and these X i and Y i are used to constrain
K 1 and K 2 by adding C (X i ,K 1,Y i) ∧ C (X i ,K 2,Y i) to the
existing CNF. The iteration will stop when the CNF is no longer

Algorithm 1 SAT-based attack
Input: C and eval .
Output: K ∗.
1: i = 1
2: F 1 = C (X ,K 1,Y 1) ∧ C (X ,K 2,Y 2)
3: while sat [Fi ∧ (Y1 6= Y2)] do
4: X i = sat assignmentX (F i ∧ (Y 1 6= Y 2))
5: Y i = eval(X i)
6: F i+1 = F i ∧ C (X i ,K 1,Y i) ∧ C (X i ,K 2,Y i)
7: i = i + 1
8: end while
9: K ∗ = sat assignmentK1(F i)

XOR

XOR

f(x)
X0
K0

Xn-1
Kn-1

X0
Kn

Xn-1
K2n-1

XOR

XOR

XOR

B1 = g(X, Kl1)

B2 = g(X, Kl2)

AND

Inputs

Fig. 1. The general design of Anti-SAT.

satisfiable, which means that there exists no input that can dif-
ferentiate possible keys. Therefore, any key that satisfies the
current constraints is the correct key, which can be computed
by a SAT solver on the constraints. The SAT-based attack needs
to use only a small number of X i called Distinguishing Input
Patterns (DIPs) to exclude all wrong keys for a locked circuit.
This means that some DIPs in the iterations exclude a substan-
tial number of wrong keys.

B. Anti-SAT Block

One way to defeat the SAT-based attack is to increase the
number of iterations in the process. The Anti-SAT block [17]
shown in Fig. 1 is such a design. In Anti-SAT, a set of key-
controlled gates (i.e. XORs) are inserted at the inputs of two
logic blocks (i.e. B1 and B2), whose original functionalities
are complementary. Therefore, B1 = g(X ,K l1) and B2 =

g(X ,K l2), where |K l1 | = |K l2 | = n . Hence, the key-size
is 2n . Then, the outputs of B1and B2 are fed into an AND gate,
whose output is used to determine whether the output of the
original circuit is flipped or not. In practice, one possible de-
sign of B1 and B2 is AND and NAND gates. Since the Anti-
SAT block has 2n key bits, and the correct key happens when
K 0...K n−1 = K n ...K 2n−1, there exists 2n correct key combina-
tions and 22n − 2n wrong key combinations.

C. Double DIP

Double DIP [14] is an approximate decryption algorithm tar-
geting SARLock [18]. The goal of Double DIP is to find the cor-
rect key of the traditional logic encryption technique K 1. Since
wrong keys of SARLock will only cause very few wrong input-
output pairs, Double DIP will terminate when K 1 is correct to
avoid exponential iterations.

Double DIP shown in Algorithm 2 utilizes the following CNF

with constraints to find two DIPs in each iteration:

C (X ,K 1,Y 1) ∧ C (X ,K 2,Y 2) ∧ C (X ,K 3,Y 1)∧
C (X ,K 4,Y 2) ∧ (Y 1 6= Y 2) ∧ (K 1 6= K 3) ∧ (K 2 6= K 4),

If this CNF is satisfiable, X will prune out at least two wrong
keys by adding the constraint of the original circuit evaluation.

Algorithm 2 Double DIP
Input: C and eval .
Output: K ∗.
1: i = 1
2: F 1 = C (X ,K 1,Y 1) ∧ C (X ,K 2,Y 2) ∧ C (X ,K 3,Y 1) ∧

C (X ,K 4,Y 2)
3: while sat [Fi ∧ (Y1 6= Y2) ∧ (K1 6= K3) ∧ (K2 6= K4)] do
4: X i = sat assignmentX (F i ∧ (Y 1 6= Y 2) ∧ (K 1 6= K 3) ∧

(K 2 6= K 4))
5: Y i = eval(X i)
6: F i+1 = F i ∧ C (X i ,K 1,Y i) ∧ C (X i ,K 2,Y i) ∧

C (X i ,K 3,Y i) ∧ C (X i ,K 4,Y i)
7: i = i + 1
8: end while
9: K ∗ = sat assignmentK1(F i)

It can be proved that when applying Double DIP on SAR-
Lock, the traditional encryption part is guaranteed to be exactly
decrypted when the algorithm terminates.

D. AppSAT

AppSAT [13] is another approximate attack algorithm based
on random testing. Ideally, the error rate of the circuit with
an approximate key should be below ε ∈ O(1

2n
), where n is

the length of inputs. However, calculating ε precisely would
require exponential queries itself, so heuristic methods for esti-
mating the error is used for large functions [13].

The algorithm of AppSAT is as follows. First, it uses SAT-
based attack to prune out key values with a certain number of
DIPs; then, a SAT solver is utilized to provide a key value sat-
isfying all these DIPs. To evaluate the correctness of the key
value, random testing is adopted to estimate the error rate of
the key. If the estimated error rate is below ε, the key value
is considered as an approximate key with ε error rate. Other-
wise, the random sampling that resulted in a disagreement will
be added to the SAT formula as a new constraint. The combi-
nation of the SAT-based attack and random testing is repeated
until the estimated ε is below the threshold.

III. CHALLENGES FOR APPROXIMATE ATTACKS

An approximate attack on logic encryption is more harmful
than an exact attack, since it can be viewed as an exact attack
combined with a stealthy Trojan insertion. Thus, the investiga-
tion of approximate attacks and their prevention has become a
critical research topic in logic encryption.

Here, we are trying to understand how effective the existing
approximate attacks are. It has been shown in [13] that AppSAT
can effectively find the correct keys of the traditional encryp-
tions that are mixed with Anti-SAT for almost all the bench-
marks. To explain why AppSAT is effective, they also plotted
the error rates after each iteration in the SAT-based attack, and
demonstrated that, with 10 random samples being reinforced in
each iteration, the error rate decreases much faster.

However, we want to point out that only measuring the simu-
lated attack time on logic encryption is misleading since each query
of the correct circuit will be more expensive in the real attack. Re-
member that each query of the correct circuit needs to scan in

the input, proceed in one clock cycle, and then scan out the out-
put. When 10 random samples are taken in each iteration of the
SAT-based attack, it simply means that 11 times of queries are
needed.

Therefore, we just want to conduct the following experiments.
On each benchmark with traditional encryption mixed with Anti-
SAT, we first run AppSAT with the same parameters as in [13]
and record the total number of queries on the correct circuit.
Then, we run the original SAT-based attack with the same num-
ber of queries. The experimental result is shown in Table I. Out
of 36 benchmarks, 27 and 29 benchmarks can be successfully
decrypted by the SAT-based attack and AppSAT respectively. It
indicates that these two attacks performs almost the same and
we would better have further investigation.

TABLE I
APPSAT AND THE SAT-BASED ATTACK WITH THE SAME

QUERY NUMBER ON BENCHMARKS ENCRYPTED WITH
ANTI-SAT + A TRADITIONAL ENCRYPTION METHOD [12].

AppSAT SAT-based attack

overhead 5% 10% 5% 10%

apex2 no no no no
apex4 yes no yes no
c1355 yes yes yes yes
c1908 yes yes yes no
c3540 yes yes yes yes
c432 yes yes yes yes
c499 yes yes yes yes
c5315 yes yes yes yes
c880 yes yes yes no
dalu yes yes yes yes

ex1010 no no yes no
ex5 yes yes yes yes
i4 yes yes yes yes
i7 yes yes yes yes
i8 yes yes yes yes
i9 yes yes yes yes
k2 yes yes no yes
seq no no no no

OR

XOR

XOR

OR

AND

XNOR NAND

f(x)

XOR

n

k0…kn-1
k*

x0
k0

xm-1
km-1
xm
km

xn-1
kn-1

Fig. 2. The general design of ECE as a suite of scientific
benchmarks.

However, one big challenge for studying approximate attack
methods is the lack of scientific measure of their performances.
Different from exact attacks, where the correctness can be easily
measured by comparing the keys or by comparing the circuits

if there are more than one correct keys, the performances of ap-
proximate attacks cannot be easily measured by the generated
keys or even the generated circuits. For two approximate at-
tacks, one is better than the other if the circuit generated by one
has less error rate than the other. Exact measure of error rate
needs to do circuit simulation for all possible inputs or to do
SAT queries to find all the errors one by one. None of them is
cheap.

Not any better is the current practice of using the combina-
tion of a traditional encryption and a specific encryption against
the SAT-based attack such as Anti-SAT. The easy thing to report
is the number of benchmarks where the key of the traditional
encryption is correct. However, if an approximate attack could
not get the key of the traditional encryption correct, which is
very common for large or complex benchmarks, we get lost
again. Measuring how many bits are correct in the key of the
traditional encryption is of no use, since a mistake on one bit
may have more errors than a mistake on many other bits. Us-
ing random sampling for error rate measurement is relatively
cheap but the accuracy is highly in doubt.

For these reasons, it is critical for the investigation of approx-
imate attacks to develop a set of scientific benchmarks to mea-
sure their performance. The desired properties for the scientific
benchmarks include:

1. Different keys have different error rates;

2. The error rate is known for each key;

3. The error rate is adjustable;

4. The benchmarks are difficult to be decrypted by the SAT-
based attack.

IV. ERROR-CONTROLABLE ENCRYPTION

In this section, we present a design of such a suite of scien-
tific benchmarks, named Error-Controlable Encryption (ECE). The
general design of ECE is given in Fig. 2.

Here we assume that the original circuit f (x) has n input bits
and the logic encryption has n key bits. We are going to select
a correct key K ∗, and a number m < n as a design parameter.
As shown in the figure, we are going to have OR gates of x i

and k i for all i ∈ 0..m − 1 and to have XOR gates of x i and k i

for all i ∈ m..n − 1. Then, we feed outputs of all these gates
to an AND gate. k0...kn−1 is compared with correct key value
K ∗, and a signal will be generated by XNOR and NAND gates
to the same AND gate. The output of the AND gate is used to
flip the output of f (x) by an XOR gate. Here, we do not worry
about structural attacks to these benchmarks, since we can do
resynthesis to obfuscate the circuit structure.

The ECE scientific benchmarks guarantee that the error rate
for a key can be exactly calculated. If a key is correct, then
k0...kn−1 is equal to correct key value K ∗, and a zero signal will
be generated by XNOR and NAND gates. It forces the output of
the AND gate to be zero so that the flipping is disabled. Other-
wise, k0...kn−1 is a wrong key, and the NAND gate outputs one.
The error rate depends on how many key bits connecting to OR
gates are equal to one. Flipping signal happens to be one only
when outputs of all XOR and OR gates become one. All XOR

gates output one when x i = k i for all i ∈ m..n − 1. To make all
OR gates output one, for i th OR gate, 0 ≤ i ≤ m − 1, x i can be
either zero or one if k i = 1, and x i has to be one if k i = 0.

Assume for 0 ≤ i ≤ m−1, the number of k is so that k i = 1, is
equal to l . Then, there exists 2l possible inputs which enable the
flipping signal, and the error rate of the wrong key is 2l / 2n =

2l−n . Now we can prove the following theorem for the ECE
scientific benchmarks.

Theorem 1. The ECE scientific benchmarks will have different error
rates ranging from 2−n to 2m−n for a wrong key. The error rate is
known for each key, and the minimal number of iterations for the SAT-
based attack is 2n−m .

PROOF. The upper bound of the error rate happens when k i

for all i ∈ 0..m − 1 is set to one. In that case, the value of
the flipping signal depends on the result of XOR gates. For a
random assignment of k i for all i ∈ m..n−1, the flipping signal
is 1 only if x i = k i for all i ∈ m..n − 1. So the error rate is
2m / 2n = 2m−n .

The lower bound of the error rate happens when k i for all
i ∈ 0..m − 1 is set to zero. Then, the flipping signal is one only
if x i = 1 for i ∈ 0..m − 1 and x i = k i for i ∈ m..n − 1. In that
case, the error rate is 2−n .

Any other key values will have the error rate ranging from
2−n to 2m−n . To solve the correct key K ∗, the SAT-based attack
should prune out all wrong keys. Since for an assignment of X ,
only keys with k i = x i for all i ∈ m..n − 1 are possible to be
pruned in each iteration, and there exists 2n−m combinations
for xm ...xn−1, therefore the number of iterations for the SAT-
based attack is at least 2n−m .

The analysis of the ECE scientific benchmarks illustrates they
are not only a suite of benchmarks to accurately measure the
performance of approximate attacks, but also a robust logic en-
cryption technique to defeat the SAT-based attack. By assign-
ing different values to m , the error rate of a key and the nec-
essary number of iterations for the SAT-based attack to decrypt
the correct key are adjustable. An interesting trade-off is that
increasing m increases the upper bound of the error rates, but
also decreases the number of iterations for the SAT-based at-
tack. Designers can also introduce randomness to the bench-
marks by randomly selecting K ∗, randomly selecting m indices
for the OR gates (the remaining will be XOR gates), and ran-
domly inserting inverters after each key bit to further obfuscate
the circuit.

TABLE II
ITERATIONS FOR APPROXIMATE TECHNIQUES TO ATTACK ECE

SCIENTIFIC BENCHMARKS.

Iterations

SAT AppSAT RS Attack Double DIP

apex2 500 24 1 500
apex4 223 24 1 164
c1355 500 24 1 500
c1908 500 24 1 458
c3540 500 24 1 500
c432 500 24 1 500
c499 500 50 1 500
c5315 500 24 1 500
c880 500 24 1 500
dalu 500 24 1 500
des 500 24 4 500

ex1010 500 157 5 211
i4 500 24 1 500
i7 500 24 1 500
i8 500 24 1 500
i9 429 24 1 500
k2 500 24 1 500
seq 500 24 1 500

V. EXPERIMENTAL RESULTS

We perform four advanced logic decryption techniques on
ECE scientific benchmarks, and compare the exact error rate of
approximate keys with the error rate of a random generated
key. The result shows that existing approximate attack tech-
niques still need to be further developed. It also shows that,
the error rate generated by these approximate attacks is similar
to the error rate of a random generated key, and the generated
error rate does not decrease in each iteration.

OR

XOR

XOR

OR

AND

XNOR NAND

f(x)

XOR

n

k0…kn-1
k*

x1
k1

xm-1

km-1

xm

km

xn-1

kn-1

x0

k0
OR

XNOR

XNOR

XNOR

Fig. 3. ECE benchmarks with extra XNOR gates and inverters.

-­‐250 -­‐200 -­‐150 -­‐100 -­‐50 0

apex2

apex4

c1355

c1908

c3540

c432

c499

c5315

c880

dalu

des

ex1010

i4

i7

i8

i9

k2

seq

Benchmarks	
 vs.	
 Error	
 Rate	
 (log)

a	
 random	
 key SAT-­‐based	
 attack

Fig. 4. A comparison of the error rate between a key solved by
the SAT-based attack and a random key.

One potential issue for ECE is that a SAT solver may start
to try easy assignments such as all zeros or all ones. To avoid
the SAT solver assigns all zeros to k is for all i ∈ 0..m − 1 to
have a small error rate, we invert half of the key inputs from
k0 to km−1, and add extra XNOR gates as equivalence checking
shown in Fig. 3. We assign the number of XOR gates to seven, so
that the SAT-based attack requires at least 27 iterations to prune
out wrong keys.

We apply four attack techniques on ECE, which are the SAT-
based attack, AppSAT, Double DIP, and Random Sampling (RS)
attack. RS attack randomly guesses a key and uses random
samples to evaluate the error rate of the guessed key. If the
error rate exceeds the threshold, the random samples that re-
sult in disagreement compared with the original circuit will be
added into the SAT solver to further constrain the key. For App-
SAT and RS attack, we query 200 random samples five times
to estimate the error rate and collect random samples with dis-
agreeing results. If there is no random sample which results in a
different output for five times, the algorithm will be terminated
and a key will be generated by the SAT solver. For AppSAT
we run the random sampling after every 24 iterations of the
SAT-based attack, and since the SAT-based attack and Double
DIP may trap into exponential iterations, we set the number of
maximum iterations to 500 as the condition of termination.

-­‐300 -­‐250 -­‐200 -­‐150 -­‐100 -­‐50 0

apex2

apex4

c1355

c1908

c3540

c432

c499

c5315

c880

dalu

des

ex1010

i4

i7

i8

i9

k2

seq

Benchmarks	
 vs.	
 Error	
 Rate	
 (log)

a	
 random	
 key AppSAT

Fig. 5. A comparison of the error rate between a key solved by
AppSAT and a random key.

-­‐250 -­‐200 -­‐150 -­‐100 -­‐50 0

apex2

apex4

c1355

c1908

c3540

c432

c499

c5315

c880

dalu

des

ex1010

i4

i7

i8

i9

k2

seq

Benchmarks vs.	
 Error	
 Rate	
 (log)	

a	
 random	
 key Double	
 DIP

Fig. 6. A comparison of the error rate between a key solved by
Double DIP and a random key.

-­‐160 -­‐140 -­‐120 -­‐100 -­‐80 -­‐60 -­‐40 -­‐20 0

apex2

apex4

c1355

c1908

c3540

c432

c499

c5315

c880

dalu

des

ex1010

i4

i7

i8

i9

k2

seq

Benchmarks	
 vs.	
 Error	
 Rate	
 (log)

a	
 random	
 key RS	
 Attack

Fig. 7. A comparison of the error rate between a key solved by
RS attack and a random key.

Table II demonstrates the number of iterations for these ap-
proximate methods to attack ECE. The queries that are required
for random sampling in AppSAT and RS attack are not shown
in the table. An interesting result is that for RS attack, since
initially there is no DIP in the SAT solver, a random key is gen-
erated, and it already satisfies the requirement of error rate by
the random sampling.

Fig. 4, 5, 6, 7 compare the error rate of keys from different
approximate attacks with the error rate of a random generated
key. The dashed line indicates the correct key is solved so that
the error rate is 2−∞. Two benchmarks apex4 and ex1010 are
possible to be successfully attacked, since for these two bench-
marks the length of inputs are limited (i.e. 10 bits). For other
complex benchmarks, correct keys cannot be solved. The com-
parison illustrates the error rate of a random generated key is at
the same level compared with the error rate of the returned keys
from other attack techniques, which indicates these approxi-
mate decryption techniques are no better than random guessing
while attacking ECE.

-­‐40

-­‐35

-­‐30

-­‐25

-­‐20

-­‐15

-­‐10

-­‐5

0
0 5 10 15 20 25 30

Error	
 Rate	
 (log)	
 vs.	
 Iterations	

apex2 apex4 c1355 c1908 c3540 c432

Fig. 8. The error rate of temporary keys generated by AppSAT
with increasing of iterations.

To study whether the error rate of the returned keys is related
to the number of iterations of the logic decryption techniques,

-­‐40

-­‐35

-­‐30

-­‐25

-­‐20

-­‐15

-­‐10

-­‐5

0
0 100 200 300 400 500 600

Error	
 Rate	
 (log)	
 vs.	
 Iterations	

apex2 apex4 c1355 c1908 c3540 c432

Fig. 9. The error rate of temporary keys generated by Double
DIP with increasing of iterations.

-­‐100

-­‐90

-­‐80

-­‐70

-­‐60

-­‐50

-­‐40

-­‐30

-­‐20

-­‐10

0
0 100 200 300 400 500 600

Error	
 Rate	
 (log)	
 vs.	
 Iterations	

apex2 apex4 c1355 c1908 c3540 c432

Fig. 10. The error rate of temporary keys generated by the
SAT-based attack with increasing of iterations.

we use the SAT solver to generate a set of temporary keys dur-
ing the process of the decryption and explore if more iterations
are beneficial to decrease the error rate of the keys. Fig. 8, 9
and 10 show the error rate of the temporary keys with increas-
ing the number of iterations. Even though more DIPs are put
into the SAT solver, the error rate does not have a meaning-
ful trend to decrease and appears to be random. Thus, more
advanced approximate logic decryption techniques should be
investigated.

VI. CONCLUSION AND ACKNOWLEDGEMENT

In this paper, we proposed a suite of scientific benchmarks
called Error-Controllable Encryption (ECE) which has different
error rates for different keys, and the error rate can be easily cal-
culated for each key. We performed four existing approximate
logic attacks on ECE scientific benchmarks and found that they
are not better than random key guessing. Increasing the iter-
ation number of these attacks does not improve the error rate
of the generated keys either. Therefore, approximate attacks
are far away from being effective and further investigations are
needed.

This work is partially supported by NSF under CNS-1441695,
CCF-1533656, and CNS- 1651695.

VII. REFERENCES

[1] White paper: The value and management of intellectual
assets. http://www.vsi.org.

[2] Miron Abramovici and Paul Bradley. Integrated circuit
security: new threats and solutions. In Workshop on Cyber
Security and Information Intelligence Research, page 55, 2009.

[3] Alex Baumgarten, Akhilesh Tyagi, and Joseph Zambreno.
Preventing ic piracy using reconfigurable logic barriers.
IEEE Design and Test, 27(1), 2010.

[4] Swarup Bhunia, Michael S Hsiao, Mainak Banga, and
Seetharam Narasimhan. Hardware trojan attacks: threat
analysis and countermeasures. Proceedings of the IEEE,
102(8):1229–1247, 2014.

[5] Ujjwal Guin, Domenic Forte, and Mohammad
Tehranipoor. Anti-counterfeit techniques: from design to
resign. In 14th International Workshop on Microprocessor Test
and Verification, pages 89–94, 2013.

[6] Ryan Kastner and Ted Huffmire. Threats and challenges
in reconfigurable hardware security. Technical report,
UCSD, ECE, 2008.

[7] Li Li and Hai Zhou. Structural transformation for
best-possible obfuscation of sequential circuits. In Proc.
IEEE International Symposium on Hardware Oriented
Security and Trust, pages 55–60, 2013.

[8] Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu,
and Ramesh Karri. Logic encryption: A fault analysis
perspective. In Proc. DATE: Design Automation and Test in
Europe, pages 953–958, 2012.

[9] Jeyavijayan Rajendran, Youngok Pino, Ozgur Sinanoglu,
and Ramesh Karri. Security analysis of logic obfuscation.
In Proc. of the Design Automation Conf., pages 83–89, 2012.

[10] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang,
Garrett S. Rose, Youngok Pino, Ozgur Sinanoglu, and
Ramesh Karri. Fault analysis-based logic encryption. IEEE
Transactions on Computers, 64(2), 2015.

[11] Masoud Rostami, Farinaz Koushanfar, Jeyavijayan
Rajendran, and Ramesh Karri. Hardware security: Threat
models and metrics. In Proc. Intl. Conf. on Computer-Aided
Design, pages 819–823, 2013.

[12] Jarrod A. Roy, Farinaz Koushanfar, and Igor L. Markov.
EPIC: Ending piracy of integrated circuits. In Proc. DATE:
Design Automation and Test in Europe, 2008.

[13] Kaveh Shamsi, Meng Li, Travis Meade, Zheng Zhao,
David Z. Pan, and Yier Jin. AppSAT: Approximately
deobfuscating integrated circuits. In Proc. IEEE
International Symposium on Hardware Oriented Security and
Trust, pages 95–100, 2017.

[14] Yuanqi Shen and Hai Zhou. Double dip: Re-evaluating
security of logic encryption algorithms. In Proc. ACM
Great Lakes Symposium on VLSI, pages 179–184, 2017.

[15] Pramod Subramanyan, Sayak Ray, and Sharad Malik.
Evaluating the security of logic encryption algorithms. In
Proc. IEEE International Symposium on Hardware Oriented
Security and Trust, pages 137–143, 2015.

[16] Randy Torrance and Dick James. The state-of-the-art in ic
reverse engineering. In Conference on Cryptographic
Hardware and Embedded Systems, pages 363–381. 2009.

[17] Yang Xie and Ankur Srivastava. Mitigating SAT attack on
logic locking. In Conference on Cryptographic Hardware and
Embedded Systems, pages 127–146, 2016.

[18] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan
J V Rajendran, and Ozgur Sinanoglu. SARLock: SAT
attack resistant logic locking. In Proc. IEEE International
Symposium on Hardware Oriented Security and Trust, pages
236–241, 2016.

