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Abstract

In this paper, we initiate the study of garbled protocols — a generalization of Yao’s garbled
circuits construction to distributed protocols. More specifically, in a garbled protocol construc-
tion, each party can independently generate a garbled protocol component along with pairs of
input labels. Additionally, it generates an encoding of its input. The evaluation procedure takes
as input the set of all garbled protocol components and the labels corresponding to the input
encodings of all parties and outputs the entire transcript of the distributed protocol.

We provide constructions for garbling arbitrary protocols based on standard computational
assumptions on bilinear maps (in the common random/reference string model). Next, using
garbled protocols we obtain a general compiler that compresses any arbitrary round multiparty
secure computation protocol into a two-round UC secure protocol. Previously, two-round mul-
tiparty secure computation protocols were only known assuming witness encryption or learning-
with errors. Benefiting from our generic approach we also obtain (i) two-round protocol for
the setting of random access machines (RAM programs) while keeping the (amortized) com-
munication and computational costs proportional to running times, (ii) three-round protocol
making only a black-box use of the underlying group, eliminating the need for any expensive
non-black-box group operations and (iii) a two-round protocol satisfying semi-honest security
in the plain model.

Our results are obtained by a simple but powerful extension of the non-interactive zero-
knowledge proof system of Groth, Ostrovsky and Sahai [Journal of ACM, 2012].
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1 Introduction

Yao’s garbled circuits [Yao86] (also see [AIK04, LP09, BHR12]) are enormously useful in cryp-
tography. In a nutshell, Yao’s construction on input a circuit C generates a garbled circuit C̃
along with input labels {labi,0, labi,1} such that C̃ and {labi,xi} can be used to compute C(x) and
nothing more. Over the years, Yao’s construction has found numerous applications (to name a
few [AF90, BMR90, FKN94, KO04, GKR08]) and several extensions [GHV10, AIK11, LO13] have
been investigated. Furthermore, in light of their usefulness, substantial research has been invested to
improve the practical efficiency of these constructions [BMR90, KS08, PSSW09, BHKR13, KMR14,
ZRE15, GLNP15].

Garbled circuits, while tremendously useful in the two-party setting, when used in the multiparty
setting lead to comparatively inferior solutions. For example, Yao’s garbled circuits along with a
two-round 1-out-of-2 oblivious transfer (OT) protocol [Rab81, AIR01, NP01, HK12] gives an easy
solution to the problem of (semi-honest) two-round secure computation in the two-party setting.
However, the same problem for the multiparty setting turns out to be much harder. Beaver, Micali
and Rogaway [BMR90] show that garbled circuits can be used to realize a constant round multi-
party computation protocol. However, unlike the two-party case, this protocol is not two rounds.

1.1 Garbled Protocols

In this paper, we introduce a generalization of Yao’s construction from circuits to distributed
protocols. We next elaborate on (i) what it means to garble a protocol, (ii) why this notion is
interesting, and (iii) if we can realize this notion.

What does it mean to garble a protocol? Consider an arbitrary protocol Φ over n-parties
P1, . . . , Pn with inputs x1, . . . , xn, respectively. Just as in garbled circuits, a garbled protocol
construction allows each party Pi to independently generate a garbled protocol component Φ̃i along
with input labels {labij,0, labij,1}. However, now the party Pi additionally generates an input encoding

x̃i. Correctness requires that the set of all garbled protocol components {Φ̃i}i∈[n] and the set of

labels corresponding to the input encodings of all parties {labij,zj}i∈[n],j∈[|z|] where z := x̃1‖ · · · ‖x̃n
can be used to generate the entire transcript of the protocol Φ. Detailing the security guarantee
(for the semi-honest case), we require the existence of an efficient simulator Sim such that for any
set H ⊆ [n] of honest parties and inputs {xi}i∈[n] of the parties we have that

{Φ̃i, {labij,zj}, x̃i}i∈[n]
c
≈ Sim(H,Φ(x1, . . . xn), {xi}i 6∈H)

where
c
≈ denotes computational indistinguishability and Φ(x1, . . . , xn) denotes the transcript of Φ.

Why consider Garbled Protocols? We illustrate the power of garbled protocols by showing
how they can be used to realize a two-round (semi-honest) multiparty secure computation proto-
col. Looking ahead, our protocol is analogous to the construction of two-round, two party secure
computation protocol using garbled circuits.

Take any n-party secure computation protocol Φ and let x1, . . . , xn be the respective inputs

of the parties. Each party starts by independently generating
{

Φ̃i, {labij,0, labij,1}, x̃i
}

. In the

first round, each party distributes the generated values x̃i to every other party. On receiving the
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first messages of all other parties, each party sends its second round message
(

Φ̃i, {labij,zj}
)

(with

z := x̃1‖ · · · ‖x̃n) to every other party. Finally, by correctness of garbled protocols we have that each
party can locally execute the garbled protocol to obtain the output from the transcript Φ(x1, . . . xn).
On the other hand, the security of the garbled protocols and Φ ensure that nothing else beyond
the output is leaked.

Can we garble protocols? Our main result is a garbled protocols construction based on stan-
dard computational assumptions on bilinear maps [BF01, Jou04]. A bit more precisely:

Informal Theorem. Assuming the subgroup decision assumption or the decision linear assumption
on groups with bilinear maps there exists a garbled protocol construction with semi-malicious security
(in the common reference/random string model).1

We also show a modification of this construction such that it makes only black-box use of the
underlying group and avoids any expensive non-black-box group operations.

1.2 Applications to Two-Round Multiparty Secure Computation

Using the above primitive, we obtain a general compiler that converts an arbitrary (polynomial)
round (semi-honest) multi-party secure computation protocol into a two-round UC secure [Can01]
protocol against static adversaries. Previously, such compilers [GGHR14, GLS15] were known under
stronger computational assumptions such as indistinguishability obfuscation [BGI+01, GGH+13]
or witness encryption [GGSW13].2

Furthermore, instantiating this compiler with any multi-party secure computation protocol (e.g.,
the one by Goldreich, Micali, and Wigderson [GMW87]) we obtain the first two-round multiparty
computation protocol based on bilinear maps. Prior to this work, constructions of two-round mul-
tiparty computation protocols [MW16, PS16, BP16] were only known based on lattice assumptions
such as the learning-with-errors [Reg05].3 We also obtain the following extensions:

- Semi-honest Protocol in Plain Model: A simple modification in the construction of garbled
protocols from Informal Theorem gives a construction with semi-honest security in the plain
model. This readily gives a construction of two-round semi-honest secure MPC in the plain
model from bilinear maps. Prior constructions required witness encryption to achieve the
same result.

- Extension to RAM programs: Instantiating the above compilers with appropriate multi-party
secure computation protocols for RAM programs [OS97, GKK+12], we also obtain the first
two-round multiparty secure RAM computation protocol without first converting the RAM
program to a circuit based on standard techniques [CR73, PF79].

1Semi-malicious security is a strengthening of semi-honest security where the parties follow the protocol but are
allowed to choose an arbitrary string as its random tape.

2We note that the recent constructions of lockable obfuscation [GKW17, WZ17] based on standard assumptions
such as learning with errors is insufficient to obtain such a compiler since these works assume that the lock value has
some min-entropy.

3In two recent works, Boyle et al. [BGI16, BGI17] also obtain constructions of two-round multiparty computation
based on DDH. However, their results are applicable only for the setting of constant number of parties — a special
case of our result. Also, they assume the need for public-key infrastructure while we just assume a common random
string.
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- Black-Box Use of the Group: With the goal of obtaining multiparty computation protocol
that makes black-box use of the underlying cryptographic primitives, we modify our compiler
from above. More specifically, building on the non-interactive OT protocol of Bellare and
Micali [BM90] (based on the CDH assumption [DH76]), we obtain a compiler that converts
any arbitrary round (malicious secure) protocol ΦOT in the OT-hybrid model into a three-
round UC secure protocol against static adversaries while only making black box use of the
underlying group.4

Instantiating, this new compiler with an information theoretic protocol in the OT-hybrid
model [Kil88, IPS08] yields a three-round multiparty computation protocol based on bilinear
maps while avoiding expensive non-black-box use of the underlying group.5

We note that the multi-key fully-homomorphic encryption [AJL+12, LTV12, CM15, MW16,
PS16, BP16] based two-round secure computation techniques do not work for the setting of
RAM programs. This is because fully-homomorphic encryption techniques need interaction
for disclosing what locations are accessed by the oblivious RAM programs.6 On the other
hand, our use of garbled protocols does not suffer from this limitation.7

2 Technical Overview

At the heart of our garbled protocols construction is a simple but powerful extension of homo-
morphic proof commitments scheme. This primitive was first considered by Groth, Ostrovsky and
Sahai [GOS06] who used it to realize a non-interactive zero-knowledge proof system based on bilin-
ear maps. Below we start by (i) recalling GOS construction of homomorphic proof commitments,
(ii) how we augment them, and (iii) use them to realize garbled protocols. Finally we give details
on how to obtain two round, secure multiparty computation protocol making black-box use of the
underlying group.

2.1 Starting Point: Homomorphic Proof Commitments

A homomorphic proof commitment scheme is a (non-interactive) commitment scheme com that
supports homomorphic operations and provides some additional proof properties. In particular, it
is additively homomorphic, i.e., com(b0 + b1; r0 + r1) = com(b0; r0) · com(b1; r1) where the message
space is over Zp. Furthermore, given a commitment c = com(b; r), the corresponding committed
value b and randomness r, a prover can generate a NIZK proof proving that b ∈ {0, 1} without
leaking anything else about the value b.

GOS show that homomorophic proof commitments can be used to generate NIZK proofs for
arbitrary NP-statements. This is done in two steps:

4An earlier version of the paper claimed a two-round version of this result. This claim is incorrect and our ideas
only yield a three round protocol for the multiparty case.

5However, unlike our non black-box protocol, the length of the common reference string of our black-box con-
struction grows linearly with the number of parties.

6An oblivious RAM program is a RAM program compiled with an oblivious RAM scheme [Ost90, GO96].
7Another approach would be to use garbled RAM [LO13, GHL+14, GLOS15, GLO15]. However, those construc-

tions suffer from the same limitation as Yao’s garbled circuits in terms of supporting multiparty protocols. Specifically,
garbled RAM can be used to construct two-round two-party secure computation protocol, but the multiparty protocol
is only (larger than two) constant rounds [LO13, GGMP16].
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1. First, GOS show that given three commitments c0 = com(b0; r0), c1 = com(b1; r1), and c2 =
com(b2; r2) a prover given b0, b1, b2 and r0, r1, r2 can generate a NIZK proof proving that
b2 = NAND(b0, b1). This, in fact, can be done very simply by just proving that each one
of b0, b1, b2 and b0 + b1 + 2b2 − 2 is in {0, 1}. In other words, the prover generates a proof
showing that each one c0, c1, c2 and c0 ·c1 ·c2

2 ·com(−2; 0) is commitments to a value in {0, 1}.
Looking at the table of a NAND gate (as GOS prove), it is not too hard to prove that these
conditions are simultaneously satisfied if and only if values b2 = NAND(b0, b1).

2. Using the above trick, Groth et al. provide NIZK proofs for arbitrary NP-statements by
converting them to a circuit SAT instance. More specifically, given a circuit C composed
entirely of NAND gates, a prover can prove that ∃wit such that C(wit) = 1. The prover
achieves this as follows: it commits to the value assigned to every wire of the circuit C on
input wit and proves that (i) each of the committed values is in {0, 1}, (ii) each NAND gate
in C has been computed correctly, and (iii) the output of the circuit is 1.

Now, we very briefly describe how the GOS construction works in the setting of composite order
groups with bilinear maps. GOS commitments are generated with respect to a commitment key
which can either be in the binding mode or in the hiding mode and keys generated in the two
modes are computationally indistinguishable.8 The commitment key ck consists of a description of
a source group G (of order n = pq), a target group GT , a bilinear map e : G×G→ GT and a group
element h. In the binding mode, h is chosen randomly from the subgroup9 Gq and in the hiding
mode h is chosen randomly from G. The commitment keys in the two modes are indistinguishable
from the sub-group decision assumption. The commitment c to a message m ∈ Zp using randomness
r is given by gmhr. When h is chosen randomly from G, c information theoretically hides m and
when h is chosen from the sub-group Gq there exists unique (m, r) ∈ Zp × Zn such that c = gmhr.
The homomorphic property is easy to observe. The proof π certifying that c is a commitment to 0
or 1 is given by (g2m−1hr)r. The verification procedure relies on fact that if c is of the form hr or
ghr then either c or cg−1 have order 1 or q (when h is chosen in the binding mode). This is ensured
by checking if e(h, π) = e(c, cg−1).

2.2 New Technical Tool: Homomorphic Proof Commitments with Encryption

Armed with the above understanding of homomorphic proof commitments, we now explain how to
augment them to support an encryption, decryption functionality. Specifically, an encryptor given a
commitment c and a message msg can generate a ciphertext that can be efficiently decrypted using
a proof π certifying the fact that c is a commitment to 0 or 1. Our security requirement is that if
c is not a commitment to 0 or 1 then semantic security holds, i.e., for all msg,msg′ encryptions of
msg are indistinguishable from encryptions of msg′. Note that if c is not a commitment to 0 or 1
then the prover cannot generate a proof certifying this fact. We call this primitive a homomorphic
proof commitment with encryption. A careful reader might have noticed that the security provided
by a homomorphic proof commitment with encryption is very similar to the security guarantee of
a witness encryption [GGSW13]. Indeed, homomorphic proof commitment with encryption is a
witness encryption scheme for a special language.

8In particular, the commitments generated using the binding key are perfectly binding whereas the ones generated
using the hiding key are perfectly hiding.

9Recall that Gq is a sub-group of G with order q
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Next, we describe how the above abstract notion can be realized. An elegant aspect of our
work is that this augmentation to the homomorphic proof commitments of GOS can be done
without changing their construction. The encryption procedure on input a commitment c = gmhr

and a message msg essentially outputs the ciphertext (hs, e(cs, cg−1) ·msg) for a randomly chosen
s ← Zn.10 To decrypt this ciphertext using a proof π = (g2m−1hr)r, compute e(hs, π) and use
it to unmask the message msg. The key idea while proving security is that when h is chosen
in the binding mode, hs “loses” some information about s — specifically, s mod p is uniformly
distributed even given hs. Furthermore, this entropy in s is transferred to the masking factor
e(cs, cg−1) = e(hs, π)e(g, g)sm(m−1) when m is not 0 or 1. This allows us to argue that the message
msg remains hidden.

2.3 Realizing Garbled Protocols

In this subsection we highlight the key challenge in constructing garbled protocols for the multiparty
setting and how homomorphic proof commitments with encryption can be used to overcome this
barrier.

The key challenge. With the goal of explaining the challenge involved, we start by considering
garbled protocols in the easy case of two parties. We will focus only on how P1 generates its
garbled protocol components as the components generated by P2 will be analogous. For the case of
two parties, P1 can just garble the next message functions of the protocol Φ (using Yao’s garbled
circuits) and send them over to the P2. The only issue with this approach is how does P1’s garbled
next message functions read the messages generated by P2 in the execution of Φ. A natural idea
is to have P2 commit to its input x2 (and also its randomness in case Φ is a randomized protocol)
in its input encoding x̃2 which will then be hard-coded inside the garbled next-message functions.
Next, P1 can generate garblings of next message functions in a manner so that P2 would be able to
evaluate those garblings as long as it can prove to P1’s garbled circuit that it has been generating
its own messages consistent with the committed input x2. At a very high level this can be achieved
by letting P1’s garbled next message functions output ciphertexts containing encryptions of certain
labels that P2 can decrypt only if it has been generating its own messages correctly.

However, the techniques from the literature for doing this based on standard assumptions involve
P2’s secret state in the decryption step. Consequently, these techniques fail even for the three
party setting because the third party, say, P3 does not have access to P2’s secret state. Gordan et
al. [GLS15] (building on Garg et al. [GGHR14]) observe that witness encryption [GGSW13] for NP
can be used to solve this problem. The idea is: (i) P1 outputs a witness encryption which allows
decryption given just a NIZK proof certifying the correctness of computation, and (ii) P2 outputs
a proof for certifying this very fact. Next, using the proof, P3 can decrypt P1’s ciphertext while
secrecy of P2’s state is also maintained.

In this work, we show that the same intuition can be realized using homomorphic proof com-
mitments with encryption. However, recall that homomorphic proof commitments with encryption
are very weak. The encryption process cannot in “one-shot” verify that P2 generated its messages
correctly. Instead, our idea for this is that P1 keeps P2 on a “very tight leash,” making sure that
P2 computes every NAND gate in the execution of Φ correctly.

10The actual construction uses a strong randomness extractor and we avoid this in the informal overview.
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The rest of this subsection is organized as follows. (1) We start by making some assumptions
on the structure of distributed protocol Φ. We note that these assumptions can be made without
loss of generality. (2) Next, we give a garbling scheme for such structured protocols.

Structure of Φ. Let Φ be a n-party protocol. For the purposes of this informal overview, we will
assume that Φ is deterministic. Let T be the round complexity of the protocol. We assume that
each party Pi maintains a local state that is updated at the end of every round. The local state is
a function of the input and the set of messages received from other parties.

At the beginning of the tth round, every party Pi runs a program Φi on input t to obtain an
output (i∗, f, g). 11 Here, i∗ denotes the active party in round t. The active party Pi∗ computes one
NAND gate on a pair of bits of its state and writes the computed bit to its state. The inputs to the
NAND gate are given by the bits in the indices f and g of the local state of Pi∗ . Additionally, for
a (pre-determined) subset of rounds Bi∗ ⊆ {t ∈ [T ] : (i∗, ·, ·) = Φi(t)}, Pi∗ outputs the computed
bit to other parties. In this case, all the parties copy this bit to their state.

We note that any protocol can be compiled to follow this format at an additional cost of
increasing the round complexity by a polynomial factor.

Garbling Scheme for Protocols. The garbled protocol component Φ̃i generated by Pi consists
of a sequence of T garbled circuits and a set of labels for evaluating the first garbled circuit in the
sequence. These garbled circuits have a special structure, namely, the tth garbled circuit in the
sequence outputs the labels for evaluating the (t+ 1)th garbled circuit and thus starting from the
first garbled circuit we can execute every garbled circuit in the sequence. At a high level, the tth

garbled circuit corresponds to the computation done by party Pi in the tth round of the protocol Φ.
In a bit more details, the tth garbled circuit takes as input the local state obtained after the first
t − 1 rounds, updates the local state and outputs the labels corresponding to the updated state
for evaluating the next garbled circuit. This ensures that at the end of the T th evaluation, we can
obtain the transcript of the protocol from the final local state of party Pi. The encoding of an
input xi is given by a set of homomorphic commitments {ci,k} to each individual bit of the input
xi.

To look a bit more closely into the working of the tth garbled circuit, let us assume that Pi is the
active party in the tth round. Our assumption on the structure of Φ implies that in the tth round,
Pi has to update its local state by computing a NAND of two bits in its current state and write the
output to a specific location. Further, if t ∈ Bi, Pi has to communicate this bit to the other parties
and the other parties have to copy this bit to their state. In particular, this means that the labels
output by the tth garbled circuit in every other protocol component Φ̃j for j 6= i must reflect this
communicated bit. The main technical challenge we solve is in designing a non-interactive method
to realize this communication and also ensure at the same time that Pi computes each NAND gate
correctly. This is done using homomorphic proof commitment with encryption. Let us start with
a method to realize the communication.

Recall that by our assumption on Φ, the updated state of every party can only be one of two
choices. This choice is determined by the output of the NAND computation done by the active
party. Let the NAND computation done in round t take as input the bits in positions f and g of the
local state of party Pi. For simplicity, let us assume that f , g correspond to indices where the input
of Pi is written. Let d be a commitment to 0 using some fixed randomness (known to all parties)

11We assume that Φ1(t) = Φ2(t) = . . . = Φn(t) for every t ∈ [T ].
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and let d be a commitment to 1 (again using some fixed randomness). Applying the GOS trick, we
deduce that if the output of the NAND computation is 0 then e0 = ci,f · ci,g · d2 · com(−2; 0) is a

commitment to {0, 1}; else e1 = ci,f ·ci,g ·d
2 ·com(−2; 0) is a commitment to {0, 1}. Now, we let every

other garbled protocol component Φ̃j for j 6= i output two zero-one encryptions: one under the
commitment e0 containing the set of labels of the updated state assuming that the communicated
bit is 0; and the other under the commitment e1 assuming that the communicated bit is 1. The
active party outputs a zero-one proof that either e0 or e1 is a commitment to a message in {0, 1}.
Using this proof, every party can recover the correct set of labels corresponding to the updated
state. This approach of letting a garbled circuit output a witness encryption of the labels of the
next garbled circuit in a sequence is inspired by [DG17].

Note that the above described solution reveals the output of the NAND gate in the clear to the
other parties. This is necessary for the case where the bit is communicated to other parties but
is undesirable if the NAND is an internal computation as it might reveal some information about
the secret state of party Pi. On the contrary, every other party must somehow ensure that Pi
computes this NAND gate correctly. We solve this problem by augmenting the input encoding with
a commitment to a string of random bits i.e., the input encoding will be a homomorphic commitment
to every bit of xi‖ri where ri is a random string. To prove that an internal NAND computation is
done correctly, the active party Pi generates a zero-one proof that either e0 = ci,f ·ci,g ·d2 ·com(−2; 0)
or e1 = ci,f ·ci,g ·d ·com(−2; 0) is a commitment to {0, 1} where d is now a commitment to a random
bit generated as a part of the input encoding. d denotes the commitment to the flipped bit. Now,
a proof that either e0 or e1 contains a commitment to {0, 1} reveals the output of the NAND
computation masked with the random bit committed in d and hence completely hides the output.
Note that the homomorphic property of the commitment scheme enables every party to efficiently
generate d. A downside of this approach is that the size of the input encoding grows with the round
complexity of Φ. But using techniques from the recent work of Cho et al. [CDG+17], we can make
the size of the input encoding succinct i.e., grow only with the size of the input. We won’t delve
into the details.

2.4 Black-Box Three-Round MPC

Instantiating the above garbled protocols construction with a semi-honest secure Φ, we obtain
a two-round multiparty computation protocol based on bilinear maps.12 However, the protocol
makes non-black box use of the underlying homomorphic proof commitment with encryption as
well as cryptographic operations that Φ might invoke. In this subsection, we explain how to obtain
a three-round MPC protocol by making black-box use of a homomorphic proof commitment with
encryption as well as a DDH hard group.

Designing a protocol that makes black-box use of a homomorphic proof commitment with
encryption is somewhat straightforward. We observe that the proofs and the ciphertexts computed
within the garbled circuit can in fact be precomputed and hardwired in its description. Later, the
garbled circuit chooses the appropriate pre-computed values based on its inputs. We note that this
pre-computation is possible because the output of each garbled circuit depends only on a constant
number of bits in its input.

12For technical reasons, we need the protocol Φ to be semi-malicious [AJL+12]. The semi-malicious security is a
generalization of semi-honest security where the adversary is still restricted to follow the protocol but can choose its
random coins arbitrarily. Note that the protocol described in [GMW87] is semi-maliciously secure.
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We now explain how to obtain a protocol that makes black-box use of cryptographic operations
invoked by Φ.

Suppose Φ was an information theoretic secure MPC then the compiled protocol already makes
black-box use of the underlying cryptographic primitives. But information theoretic secure MPC
protocols can exist only if a majority of the parties are honest [BOGW88] and secure channels
are present between every pair of parties. However, the situation in the OT hybrid model is
different. There exist constructions of information theoretic protocols tolerating dishonest majority
and malicious behavior [Kil88, IPS08] in the OT hybrid model. We will be using such a protocol
to design our black-box three round MPC.

Let Φ be an information theoretic secure protocol in the OT hybrid model tolerating malicious
behavior. At a high level, our black-box three round MPC protocol generates OT correlations 13

in the first round and later uses these correlations to enable Φ perform information theoretic OTs.
We now explain how to generate such OT correlations building on the non-interactive oblivious
transfer by Bellare and Micali [BM90].

Let us first recall the OT protocol of Bellare and Micali in the common random string model.
The crs consists of a random group element X. The sender samples a random exponent a and
computes A := ga and sends it over to the receiver. The receiver samples a random exponent b
and computes B := gb. It then samples a random bit c and computes C0 := (1 − c)B + c(XB )
and C1 := cB + (1− c)(XB ) and sends them over to A. Notice that by construction of C0 and C1,
B knows the discrete log of Cc. The sender on receiving C0 and C1 sets the two random strings
(s0, s1) to be (Ca0 , C

a
1 ) and the receiver sets (c, sc) to be (c, Ab). Note that assuming the DDH

assumption, the other string s1−c is indistinguishable to a randomly distributed string. Building
on this protocol and additionally using Groth-Sahai [GS12] proofs to obtain malicious security, we
obtain a three round MPC protocol making black-box use a homomorphic proof commitment with
encryption and a DDH hard group. 14

3 Preliminaries

This section is devoted to recalling some well studied notions that we will need in this paper.
Let λ denote the security parameter. A function µ(·) : N → R+ is said to be negligible if for
any polynomial poly(·) there exists λ0 such that for all λ > λ0 we have µ(λ) < 1

poly(λ) . For a

probabilistic algorithm A, we denote A(x; r) to be the output of A on input x with the content of
the random tape being r. When r is omitted, A(x) denotes a distribution. For a finite set S, we
denote x ← S as the process of sampling x uniformly from the set S. We will use PPT to denote
Probabilistic Polynomial Time algorithm. We denote [k] to be the set {1, . . . , k} and [a, b] to be
the set {a, a + 1, . . . , b} for a ≤ b and a, b ∈ Z. For a binary string x ∈ {0, 1}n we will denote the
ith bit of x by xi. We assume without loss of generality that the length of the random tape used by
all cryptographic algorithms is λ. We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function.

13Recall that OT correlations consists of a random pair of strings (s0, s1) provided to the sender and a pair (c, sc)
where c is a random bit provided to the receiver.

14We have been a little imprecise in this overview. In order to use Groth-Sahai proofs we cannot rely on DDH
assumption as GS proofs assume the existence of an efficiently computable bilinear map. In the actual construction
we assume CDH is hard.
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3.1 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [Yao82] (see Lindell and Pinkas [LP09]
and Bellare et al. [BHR12] for a detailed proof and further discussion). A garbling scheme for
circuits is a tuple of PPT algorithms (GarbleCkt,EvalCkt). Very roughly, GarbleCkt is the circuit
garbling procedure and EvalCkt the corresponding evaluation procedure. More formally:

• (C̃, {`w,b}w∈inp(C),b∈{0,1})← GarbleCkt
(
1λ, C

)
: GarbleCkt takes as input a security parameter

λ, a circuit C, and outputs a garbled circuit C̃ along with labels `w,b where w ∈ inp(C) (inp(C)
is the set of input wires to the circuit C) and b ∈ {0, 1}.

• y ← EvalCkt
(

C̃, {`w,xw}w∈inp(C)

)
: Given a garbled circuit C̃ and a sequence of input labels

{`w,xw}w∈inp(C) (referred to as the garbled input), EvalCkt outputs a string y.

Correctness. For correctness, we require that for any circuit C and input x ∈ {0, 1}|inp(C)| we
have that:

Pr
[
C(x) = EvalCkt

(
C̃, {`w,xw}w∈inp(C)

)]
= 1

where (C̃, {`w,b}w∈inp(C),b∈{0,1})← GarbleCkt
(
1λ, C

)
.

Security. For security, we require that there exists a PPT simulator Sim such that for any circuit
C and input x ∈ {0, 1}|inp(C)|, we have that(

C̃, {`w,xw}w∈inp(C)

)
c
≈ Sim

(
1λ, C(x)

)
where (C̃, {`w,b}w∈inp(C),b∈{0,1}) ← GarbleCkt

(
1λ, C

)
and

c
≈ denotes that the two distributions are

computationally indistinguishable.

3.2 Cryptographic Assumptions

We will state the cryptographic assumptions used in this paper.

Sub-Group Decision Assumption [BGN05]. The presentation here follows the notation
given in [GOS12]. Let GBGN be a randomized algorithm that on security parameter λ outputs
(p, q,G,GT , e, g) such that

• p, q are primes with p < q

• G,GT are descriptions of cyclic groups of order n = pq

• e : G×G→ GT is a bilinear map, i.e., ∀u, v ∈ G ∀a, b ∈ Z : e(ua, vb) = e(u, v)ab

• g is a random generator for G and e(g, g) generates GT

• Group operations, deciding group membership and the bilinear map are efficiently com-
putable.

Let Gq be the subgroup of G of order q. The subgroup decision problem is to distinguish
elements of G from elements of Gq.

12



Definition 3.1 The subgroup decision assumption holds for generator GBGN if for any non-uniform
polynomial time adversary A we have

Pr
[
(p, q,G,GT , e, g)← GBGN(1λ);n = pq; r ← Z∗n;h = gr : A(n,G,GT , e, g, h) = 1

]
c
≈ Pr

[
(p, q,G,GT , e, g)← GBGN(1λ);n = pq; r ← Z∗q ;h = gpr : A(n,G,GT , e, g, h) = 1

]
.

Computational Diffie-Hellman Assumption [DH76]. Let SetupCDH be a randomized algo-
rithm that takes a security parameter as input and outputs (p,G,GT , e, g) such that

• p is a prime

• G,GT are descriptions of groups of order p

• e : G×G→ GT is a bilinear map, i.e., ∀u, v ∈ G ∀a, b ∈ Z : e(ua, vb) = e(u, v)ab

• g is a random generator of G and e(g, g) generates GT

• Deciding group membership, group operations and the bilinear map are all efficiently com-
putable.

Definition 3.2 (Computational Diffie-Hellaman Assumption) We say the computational Diffie-
Hellman holds for the bilinear group generator SetupCDH if for all non-uniform polynomial time
adversaries A we have

Pr
[
(p,G,GT , e, g)← SetupCDH(1λ);x, y ← Z∗p : A(p,G,GT , e, g, g

x, gy) = gxy
]
≤ negl(λ)

Decision Linear Assumption [BB04]. The presentation here follows the same notation given
in [GOS12]. Let GDLIN be a randomized algorithm that takes a security parameter as input and
outputs (p,G,GT , e, g) such that

• p is a prime

• G,GT are descriptions of groups of order p

• e : G×G→ GT is a bilinear map, i.e., ∀u, v ∈ G ∀a, b ∈ Z : e(ua, vb) = e(u, v)ab

• g is a random generator of G and e(g, g) generates GT

• Deciding group membership, group operations and the bilinear map are all efficiently com-
putable.

Definition 3.3 (Decisional Linear Assumption) We say the decisional linear assumption holds
for the bilinear group generator GDLIN if for all non-uniform polynomial time adversaries A we have

Pr
[
(p,G,GT , e, g)← GDLIN(1k);x, y ← Z∗p; r, s← Zp : A(p,G,GT , e, g, g

x, gy, gxr, gys, gr+s) = 1
]

≈ Pr
[
(p,G,GT , e, g)← GDLIN(1k);x, y ← Z∗p; r, s, d← Zp : A(p,G,GT , e, g, g

x, gy, gxr, gys, gd) = 1
]
.
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3.3 Homomorphic Proof Commitments

In this subsection we recall the definition of homomorphic proof commitments from Groth et al.
[GOS12] for realizing non-interactive zero-knowledge proofs. Much of the description below has
been taken verbatim from Groth et al. [GOS12]. We keep the notation identical to Groth et
al. [GOS12, Section 3] for the sake of a reader familiar with Groth et al. [GOS12].

A homomorphic proof commitment scheme is a non-interactive commitment scheme with some
special properties that we define below. Recall first that in a non-interactive commitment scheme
there is a key generator, which generates a public commitment key ck. The commitment key ck
defines a message spaceMck, a randomizer space Rck and a commitment space Cck. We will require
that the key generation algorithm is probabilistic polynomial time and outputs keys of length θ(λ).
It will in general be obvious which key we are using, so we will sometimes omit it in our notation.
There is an efficient commitment algorithm com that takes as input the commitment key, a message
and a randomizer and outputs a commitment, c = com(m; r). We call (m, r) an opening of c.

The commitment scheme must be binding and hiding. Binding means that it is infeasible to find
two openings with different messages of the same commitment. Hiding means that given a com-
mitment it is infeasible to guess which message is inside the commitment. We want a commitment
scheme that has two different flavors of keys. The commitment key can be perfectly binding, in
which case a valid commitment uniquely defines one possible message. Alternatively, the commit-
ment key can be perfectly hiding, in which case the commitment reveals no information whatsoever
about the message. We require that these two kinds of keys are computationally indistinguishable.

We will consider commitments, where both the message space (M,+, 0), the randomizer space
(R,+, 0) and the commitment space (C, ·, 1) are finite abelian groups. The commitment scheme
should be homomorphic, i.e., for all messages and randomizers we have

com(m1 +m2; r1 + r2) = com(m1; r1)com(m2; r2).

We will require that the message space has a generator 1, and also that it has at least order
4. The property that sets homomorphic proof commitments apart from other homomorphic com-
mitments, is that there is a way to prove that a commitment contains a message belonging {0, 1}.
More precisely, if the key is of the perfect binding type, then it is possible to prove that there exists
an opening (m, r) ∈ {0, 1}×R. On the other hand, if it is a perfect hiding key, then the proof will
be perfectly witness-indistinguishable, i.e., it is impossible to tell whether the message is 0 or 1.

Homomorphic proof commitment. We say that (Kbinding,Khiding, com,Topen, P01, V01) is a
homomorphic proof commitment scheme if it satisfies the following properties for all non-uniform
polynomial time adversaries A.

Key indistinguishability:

Pr
[
(ck, xk)← Kbinding(1λ) : A(ck) = 1

]
≈ Pr

[
(ck, tk)← Khiding(1k) : A(ck) = 1

]
.

Homomorphic property:

Pr
[
mode← {binding,hiding}; (ck, ∗)← Kmode(1

λ) :

∀(m1, r1), (m2, r2) ∈M×R : com(m1 +m2; r1 + r2) = com(m1; r1)com(m2; r2)
]

= 1.
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Perfect binding:

Pr
[
(ck, xk)← Kbinding(1λ) :

∃(m1, r1), (m2, r2) ∈M×R such that m1 6= m2 and com(m1; r1) = com(m2; r2)
]

= 0.

Perfect extractability: We say the commitment scheme has perfect extractability if there is a
polynomial time extraction algorithm Ext such that

Pr
[
(ck, xk)← Kbinding(1k) : ∀(m, r) ∈ {0, 1} ×R : Extxk(com(m; r)) = m

]
.

Perfect trapdoor opening:

Pr
[
(ck, tk)← Khiding(1λ); (m1,m2)← A(ck); r1 ← R; r2 ← Topentk(m1, r1,m2) :

com(m1; r1) = com(m2; r2) if m1,m2 ∈M
]

= 1.

Perfect trapdoor opening indistinguishability:

Pr
[
(ck, tk)← Khiding(1k); (m1,m2)← A(ck); r1 ← R; r2 ← Topentk(m1, r1,m2) :

m1,m2 ∈M and A(r2) = 1
]

= Pr
[
(ck, tk)← Khiding(1k); (m1,m2)← A(ck); r2 ← R : m1,m2 ∈M and A(r2) = 1

]
.

Perfect completeness:

Pr
[
mode← {binding,hiding}; (ck, ∗)← Kmode(1

λ); (m, r)← A(ck);π ← P01(ck,m, r) :

V01(ck, com(m; r), π) = 1 if (m, r) ∈ {0, 1} ×R
]

= 1.

Perfect soundness:

Pr
[
(ck, xk)← Kbinding(1k); (c, π)← A(ck) :

∃(m, r) ∈ {0, 1} ×R so c = com(m; r) if V01(ck, c, π) = 1
]

= 1.

Perfect witness indistinguishability:

Pr
[
(ck, tk)← Khiding(1λ); (r0, r1)← A(ck);π ← P01(ck, 0, r0) :

r0, r1 ∈ R and com(0; r0) = com(1; r1) and A(π) = 1
]

= Pr
[
(ck, tk)← Khiding(1λ); (r0, r1)← A(ck);π ← P01(ck, 1, r1) :

r0, r1 ∈ R and com(0; r0) = com(1; r1) and A(π) = 1
]
.

Remark 3.4 Groth et al. [GOS12] in their definition of homomorphic proof commitments also
define more properties such as perfect non-erasure witness indistinguishability. We do not need
these properties and skip defining them here.
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4 Homomorphic Proof Commitments with Encryption

In this section we provide definitions of homomorphic proof commitments with encryption – namely,
a homomorphic proof commitment scheme with some additional encryption and decryption func-
tionality. We then give constructions of this primitive based on the sub-group decision and the
decision linear assumptions.

4.1 The Definition

(Kbinding,Khiding, com,Topen, P01, V01, E01, D01) is a homomorphic proof commitments with en-
cryption if (Kbinding,Khiding, com,Topen, P01, V01) is homomorphic proof commitment and E01, D01

are PPT algorithms such that E01 on input a commitment key ck, a commitment c = com(ck,m; r)
and a message msg outputs a ciphertext ct and D01 given ck, the commitment c, the ciphertext
ct and a proof π such that V01(ck, c, π) = 1 outputs the encrypted message msg. In other words,
given a proof π such that c is a commitment to a message in {0, 1}, we can decrypt the ciphertext
ct. Formally, we require that E01 and D01 satisfy the following correctness and security properties.

Perfect Correctness. For any ck (in the support of Kbinding,Khiding), m ∈ {0, 1}, randomness
r, and proof π generated by P01(ck,m, r) and message msg,

Pr
[
ct← E01(ck, com(ck,m; r),msg) ∧D01(ck, ct, π) = msg

]
= 1.

Statistical Semantic-Security. For all (possibly unbounded) adversaries A = (A1,A2),

Pr
[
(ck, ·)← Kbinding(1λ); (c,msg0,msg1, st)← A1(ck); b← {0, 1}; ct← E01(ck, c,msgb) :

A2(ck, ct, st) = b ∧ ∃ m 6∈ {0, 1}, r ∈ R such that c = com(ck,m; r)
]
≤ 1

2
+ negl(λ)

We say that scheme has computational semantic-security if the above requirement holds only against
PPT A.

Remark 4.1 We note that homomorphic proof commitment with encryption is essentially a witness
encryption [GGSW13] scheme for a special language.

4.2 Construction from Sub-group Decision Assumption

In this subsection we give a construction of homomorphic proof commitment with encryption from
the sub-group decision assumption.

At a high level, our construction (Kbinding,Khiding, com, P01, V01, E01, D01) is obtained by supple-
menting the homomorphic proof commitment scheme of Groth et al. [GOS12], namely (Kbinding,Khiding,
com, P01, V01) with encryption E01 and decryption D01 operations. Below we start by recalling the
Groth et al. construction and then explain how to supplement it with encryption and decryption
operations.
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The Groth et al. construction [GOS12, Section 4]. We describe the Groth et al. construc-
tion informally. A complete description (taken verbatim from [GOS12]) is provided in Figure 1.

The commitment key ck consists of a description of a source group G (of order n = pq), a target
group GT , a bilinear map e : G×G→ GT and a group element h. In the binding mode, h is chosen
randomly from the subgroup15 Gq and in the hiding mode h is chosen randomly from G. The
commitment keys in the two modes are indistinguishable from the sub-group decision assumption.
The commitment c to a message m ∈ Zp using randomness r is given by gmhr. When h is chosen
randomly from G, c information theoretically hides m and when h is chosen from the sub-group
Gq there exists unique (m, r) ∈ Zp × Zn such that c = gmhr. The homomorphic property is easy
to observe. The proof π certifying that c is a commitment to 0 or 1 is given by (g2m−1hr)r. The
verification procedure relies on fact that if c is of the form hr or ghr then either c or cg−1 have order
1 or q (when h is chosen in the binding mode). This is ensured by checking if e(h, π) = e(c, cg−1).

Supplemental Encryption and Decryption. We now describe the encryption and decryption
procedures that we supplement homomorphic proof commitment. The encryption procedure on
input a commitment-key ck, a commitment c and a message msg essentially outputs the ciphertext
(hs, e(cs, cg−1) ·msg) for a randomly chosen s← Zn.16 To decrypt this ciphertext using a proof π,
D01 computes e(hs, π) and use it to unmask the message msg. The key idea while proving security
is that when h is chosen in the binding mode, hs “loses” some information about s. This is later
used to show that e(cs, cg−1) masks the message when c is not a commitment to 0 or 1.

The formal description is provided in Figure 2. The construction uses a (log p, negl(λ))-strong

randomness extractor RandExt : G× {0, 1}∗ → {0, 1}
log p
2 .

Lemma 4.2 Assuming the subgroup decision assumption, the construction described in Figures 1
and 2 is a homomorphic proof commitment with encryption.

Proof We note that (Kbinding,Khiding, com, P01, V01,Ext) is a homomorphic proof commitment
scheme as argued by Groth et al. [GOS12]. We now prove that (E01, D01) satisfy perfect correctness
and statistical semantic-security.

Perfect Correctness. Let c = com(ck,m; r) wherem ∈ {0, 1}. Let ct = (v, hs,RandExt(v, e(cs, cg−1))⊕
msg) and π = (g2m−1hr)r. To prove correctness it is sufficient to show that e(hs, π) = e(cs, cg−1).

e(cs, cg−1) = e(gmhr, gm−1hr)s

= e(g, g)sm(m−1)e(h, g)sr(m−1)e(g, h)smre(h, h)sr
2

= e(h, g)sr(m−1)e(g, h)smre(h, h)sr
2

(Since m ∈ {0, 1})
= e(h, g)sr(2m−1)e(h, h)sr

2

= e(hs, (g2m−1hr)r)

= e(hs, π)

15Recall that Gq is a sub-group of G with order q
16The actual construction in Figure 2 uses a (strong) randomness extractor to extract random bits from e(cs, cg−1)

and then use it to mask the message. We avoid this in the informal overview.
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Perfectly binding key generation Kbinding(1k):

1. (p, q,G,GT , e, g)← GBGN(1k). Let n = pq.

2. Sample x← Z∗q and compute h = gpx.

3. Let ck = (n,G,GT , e, g, h).

4. Let xk = (ck, q).

5. Return (ck, xk).

Perfectly hiding key generation Kbinding(1k):

1. (p, q,G,GT , e, g)← GBGN(1k). Let n = pq.

2. x← Z∗n and compute h = gx.

3. Let ck = (n,G,GT , e, g, h).

4. Let tk = (ck, x)

5. Return (ck, tk)

Commitment comck(m):

The key ck defines message space Zp, randomizer space Zn and commitment space G. To
commit to message m ∈ Zp do

1. r ← Zn
2. Return comck(m; r) = gmhr

WI proof P01(ck,m, r):

Given (m, r) ∈ {0, 1} × Zn we make the WI proof for commitment to 0 or 1 as π =
(g2m−1hr)r.

Verification V01(ck, c, π):

To verify a WI proof π of commitment c containing 0 or 1, check e(c, cg−1) = e(h, π).

Extraction Extxk(c):

On a perfect binding key we can use xk = (ck, q) to extract m of length O(log k) from
c = gmhr as follows. Compute cq = (gmhr)q = (gq)m and exhaustively search for m.

Trapdoor opening Topentk(m, r,m
′):

Given a commitment c = gmhr under a perfectly hiding commitment key we have c =
gm
′
hr−(m′−m)/x. So we can create a perfectly hiding commitment and open it to any

value we wish if we have the trapdoor key tk = (ck, x). The trapdoor opening algorithm

returns r′ = r − (m′−m)
x mod n.

Figure 1: Homomorphic Proof Commitment from sub-group decision taken verbatim from [GOS12]
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Encrypt E01(ck, c,msg): To encrypt msg ∈ {0, 1}
log p
2 ,

1. Choose s← Zn.

2. Choose v ← {0, 1}∗ as the seed of RandExt.

3. Output (v, hs,RandExt(v, e(cs, cg−1))⊕msg).

Decrypt D01(ck, c, π, ct):

1. Parse ct as (v, ct1, ct2).

2. Output RandExt(v, e(ct1, π))⊕ ct2.

Figure 2: Supplemental Encryption and Decryption.

Statistical Semantic Security. We first prove the following claim.

Claim 4.3 Let (ck, ·) ← Kbinding(1λ). Let S denote the random variable uniformly distributed in
Zn. Then

H∞(e(g, g)S |(ck, hS)) ≥ log p

Proof Let q1 ≡ q−1 mod p and p1 = p−1 mod q. By Chinese remainder theorem, any s ∈ Zn
can be expressed as sqpp1+spqq1 where sp ≡ s mod p and sq ≡ s mod q. As (ck, ·)← Kbinding(1λ),

therefore we have that h = gpx for some x ∈ Z∗q . Thus, for any s ∈ Zn, hs = gx(sqp2p1) mod n.
Let S be uniformly distributed in Zn. By Chinese remainder theorem, Sp ≡ S mod p and

Sq ≡ S mod q are uniform and independent random variables in Zp and Zq respectively. Also, hS =

gxSqp
2p1 mod n. Therefore, conditioned on fixing hS (which fixes Sq) and ck, gS is still uniformly

distributed over a set of size p since Sp is randomly distributed in Zp. Thus, H∞(e(g, g)S |(ck, hS)) ≥
log p.

Consider a commitment c = com(m; r) such that m 6∈ {0, 1}. Let S be a random variable
uniformly distributed in Zn. Then, we have that

e(cS , cg−1) = e(g, g)Sm(m−1)e(hS , g)r(m−1)e(g, hS)mre(h, hS)r
2

Since m 6∈ {0, 1}, conditioned on fixing (hS , ck), we infer from Claim 4.3 that H∞(e(cS , cg−1)) ≥
log p. Now, relying on the fact that the output of randomness extractor is statistically close to
uniform we conclude statistical semantic security for the scheme.

4.3 Construction from Decisional Linear Assumption

In this subsection we give our construction of homomorphic proof commitment with encryption
from the decisional linear assumption [BB04]. We give the formal description of our construction
in Figures 3,4.

Lemma 4.4 Assuming the decisional linear assumption, the construction described in Figures 3
and 4 is a homomorphic proof commitment with encryption.
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Perfectly binding key generation Kbinding(1k):

1. (p,G,GT , e, g)← GDLIN(1k)

2. x, y ← Z∗p
3. f = gx, h = gy

4. ru, sv ← Zp
5. (u, v, w) = (fru , hsv , gru+sv+z), where z ← Z∗p
6. Let ck = (p,G,GT , e, g, f, h, u, v, w)

7. Let xk = (ck, x, y, z) and return (ck, xk)

Perfectly hiding key generation Khiding(1k):

1. (p,G,GT , e, g)← GDLIN(1k)

2. x, y ← Z∗p
3. f = gx, h = gy

4. ru, sv ← Zp
5. (u, v, w) = (fru , hsv , gru+sv )

6. Let ck = (p,G,GT , e, g, f, h, u, v, w)

7. Let tk = (ck, ru, sv) and return (ck, tk)

Commitment comck(m): The key ck defines message space Zp, randomizer space Zp × Zp and
commitment space G3. To commit to message m ∈ Zp pick (r, s)← Zp × Zp and return

c = (c1, c2, c3) = com(m; r, s) = (umfr, vmhs, wmgr+s).

Extraction Extxk(c): On a perfect binding key we can extract m of length O(log k) from

c = (c1, c2, c3) as follows. Compute (gz)m = c3c
−1/x
1 c

−1/y
2 and exhaustively search for m.

Trapdoor opening Topentk(m, (r, s),m′): Given a commitment c = (umfr, vmhs, wmgr+s) under a
perfectly hiding commitment key we have
c = (um

′
fr−(m′−m)ru , vm

′
hs−(m′−m)sv , wm

′
gr+s−(m′−m)(ru+sv)). So we can create a perfectly

hiding commitment and open it to any value we wish if we have the trapdoor key tk = (ru, sv)
by returning (r′, s′) computed as r′ = r − (m′ −m)ru mod p and s′ = s− (m′ −m)sv mod p.

WI proof P01(ck,m, (r, s)): Given witness consisting of an opening (m, r, s) ∈ {0, 1} × Zp × Zp we
make a proof as follows. Choose t← Zp and let

π11 = (u2m−1fr)r π12 = v(2m−1)rhrs−t π13 = w(2m−1)rg(r+s)r+t

π21 = u(2m−1)sfrs+t π22 = (v2m−1hs)s π23 = w(2m−1)sg(r+s)s−t

Return the proof π = (π11, π12, π13, π21, π22, π23).

Verification V01(ck, c, π): On input (ck, c, π) compute π3j = π1jπ2j for j = 1, 2, 3. Accept the proof if
and only if

e(f, π11) = e(c1, c1u
−1) e(f, π12)e(h, π21) = e(c1, c2v

−1)e(c2, c1u
−1)

e(h, π22) = e(c2, c2v
−1) e(f, π13)e(g, π31) = e(c1, c3w

−1)e(c3, c1u
−1)

e(g, π33) = e(c3, c3w
−1) e(h, π23)e(g, π32) = e(c2, c3w

−1)e(c3, c2v
−1).

Figure 3: Homomorphic proof commitment from decisional linear assumption taken verbatim from
[GOS12].
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Encrypt E01(ck, c,msg): To encrypt msg ∈ {0, 1}
log p
2 ,

1. Choose r1, r2, r3, r4, r5, r6 ← Z∗p.
2. Compute

z1 =
(
e(c1, c1u

−1)
)r1 z4 =

(
e(c1, c2v

−1)e(c2, c1u
−1)
)r4

z2 =
(
e(c2, c2v

−1)
)r2 z5 =

(
e(c1, c3w

−1)e(c3, c1u
−1)
)r5

z3 =
(
e(c3, c3w

−1)
)r3 z6 =

(
e(c2, c3w

−1)e(c3, c2v
−1)
)r6 .

3. Compute
ct11 = f r1gr5 ct21 = hr4gr5

ct12 = f r4gr6 ct22 = hr2gr6

ct13 = f r5gr3 ct23 = hr6gr3

4. Choose v ← {0, 1}∗ as the seed of RandExt.

5. Output (v, {ctij},RandExt(v,
∏
zi)⊕msg).

Decrypt D01(ck, c, π, ct):

1. Parse ct as (v, {ctij}i∈[2],j∈[3], ct).

2. Parse π as {πij}i∈[2],j∈[3].

3. Compute z =
∏

i∈[2],j∈[3]

e(ctij , πij).

4. Output RandExt(v, z)⊕ ct.

Figure 4: Supplemental Encryption and Decryption.

Proof We note that (Kbinding,Khiding, com, P01, V01,Ext) is a homomorphic proof commitment
scheme as argued by Groth et al. [GOS12]. We now prove that (E01, D01) satisfy perfect correctness
and statistical semantic-security.

Perfect Correctness. Let c = com(ck,m; r) wherem ∈ {0, 1}. Let ct = (v, {ctij},RandExt(v,
∏
zi)⊕

msg) and {πij} be as described in Figure 3. To prove correctness it is sufficient to show that∏
i∈[2],j∈[3]

e(ctij , πij) =
∏

zi. Note that:

e(ct11, π11) = e(f r1 , π11)e(gr5 , π11) e(ct21, π21) = e(hr4 , π21)e(gr5 , π21)
e(ct12, π12) = e(f r4 , π12)e(gr6 , π12) e(ct22, π22) = e(hr2 , π22)e(gr6 , π22)
e(ct13, π13) = e(f r5 , π13)e(gr3 , π13) e(ct23, π23) = e(hr6 , π23)e(gr3 , π23)
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Thus,

∏
i∈[2],j∈[3]

e(ctij , πij) =

(
e(f r1 , π11)e(hr2 , π22)e(gr3 , π13π23)

e(f r4 , π12)e(hr4 , π21)e(f r5 , π13)

e(gr5 , π11π21)e(hr6 , π23)e(gr6 , π12π22)

)

=

( (
e(c1, c1u

−1)
)r1 (e(c1, c2v

−1)e(c2, c1u
−1)
)r4

(
e(c2, c2v

−1)
)r2 (e(c1, c3w

−1)e(c3, c1u
−1)
)r5

(
e(c3, c3w

−1)
)r3 (e(c2, c3w

−1)e(c3, c2v
−1)
)r6 )

=
∏

zi

Statistical Semantic Security. We first prove the following claim.

Claim 4.5 Let (ck, ·) ← Kbinding(1λ). For every i ∈ [6], let Ri denote the random variable uni-
formly distributed in Zp. Let

CT11 = fR1gR5 CT21 = hR4gR5

CT12 = fR4gR6 CT22 = hR2gR6

CT13 = fR5gR3 CT23 = hR6gR3

Then
H∞((R1, R2, R3, R4, R5, R6)|{CTi,j}) ≥ log p

Proof Let Si,j := DLOGg(CTi,j). The proof follows directly from the observation that the
following system of equations in {Ri} is linearly dependent. 17

S11 = xR1 +R5 S21 = yR4 +R5

S12 = xR4 +R6 S22 = yR2 +R6

S13 = xR5 +R3 S23 = yR6 +R3

(4.1)

Consider a commitment c = com(m; r) such that m 6∈ {0, 1}. Let Ri be a random variable

17Observe that the vectors (0, 0, 1, 0, x, 0), (0, 0, 1, 0, 0, y), (0, 0, 0, x, 0, 1) and (0, 0, 0, y, 1, 0) are linearly dependent.
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uniformly distributed in Zp for every i ∈ [6]. Then, we have that

∏
zi =

( (
e(c1, c1u

−1)
)R1

(
e(c1, c2v

−1)e(c2, c1u
−1)
)R4

(
e(c2, c2v

−1)
)R2

(
e(c1, c3w

−1)e(c3, c1u
−1)
)R5

(
e(c3, c3w

−1)
)R3

(
e(c2, c3w

−1)e(c3, c2v
−1)
)R6

)
= e(g, g)m(m−1)

(
(xru)2R1+(ysv)2R2+z′2R3+2(xruysv)R4+2(xruz′)R5+2(ysvz′)R6

)
︸ ︷︷ ︸

Z

× multiplicative terms

where z′ = z + ru + sv. Since m 6∈ {0, 1}, conditioned on fixing ct1, . . . , ct6, we infer from
Claim 4.3 that H∞(Z) ≥ log p since the DLOGgT (Z) defines an equation in {Ri} that is linearly
independent of the system given in 4.1.18 Now, relying on the fact that the output of randomness
extractor is statistically close to uniform we conclude statistical semantic security for the scheme.

5 Garbling Protocols

In this section we give the definition of garbling scheme for protocols and give an instantiation
based on a homomorphic proof commitment with encryption.

5.1 Definition

Let Φ be a n-party protocol.19 Let xi be the input of party i and let Φi be the next-message
function for party i. We define the transcript of Φ to be the set of all messages exchanged between
parties. The transcript is denoted by Φ(x1, . . . , xn) when Φ is run with inputs x1, . . . , xn. The
transcript is also assumed to be the output of the protocol.

Definition 5.1 A Garbling scheme for protocols is a tuple of algorithms (Setup,Garble,Eval) with
the following syntax, correctness and security properties.

• Setup(1λ) : It is a PPT algorithm that takes as input the security parameter (encoded in
unary) and outputs a reference string σ.

• Garble(σ, i,Φi, xi) : It is a PPT algorithm that takes as input a reference string σ, the index
i of a party, the next message function Φi and the input xi and outputs

– A garbled protocol component Φ̃i of the next message function Φi.

– An encoding x̃i (of length `e) of the input xi.

– A set of encoding labels {labij,0, labij,1}j∈[n·`e] for the input encodings of all parties.

18This can be verified by systematic elimination of every variable.
19For simplicity, we assume that Φ is deterministic. For the case where Φ is randomized, we extend the input string

of each party to include its random coins so that Φ is a deterministic protocol in the inputs of the parties.
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• Eval({Φ̃i}, {x̃i}, {labix1‖...‖xn}) : It is a deterministic algorithm that takes as input the set

of garbled protocol components {Φ̃i}, a set of input encodings {x̃i} and the encoding labels
{labix̃1‖...‖x̃n} corresponding to the input encodings x̃1‖ . . . ‖x̃n and outputs a string y or the
symbol ⊥.

Correctness: For every protocol Φ and every set of inputs {xi},

Pr
[
σ ← Setup(1λ); (Φ̃i, x̃i, {labij,0, labij,1})← Garble(σ, i,Φi, xi) ∀ i ∈ [n] :

Φ(x1, . . . , xn) = Eval({Φ̃i}, {x̃i}, {labix̃1‖...‖x̃n})
]

= 1

Semi-Honest Security: There exists a PPT algorithm Sim such that for every protocol Φ, every
subset H ⊆ [n] of honest parties and every choice of inputs {xi}i∈[n] of the parties we have
that: {

σ, {Φ̃i, x̃i, labix̃1‖...‖x̃n}i∈[n]

}
c
≈ Sim(1λ,Φ, H, {xi}i 6∈H ,Φ(x1, . . . , xn))

where σ ← Setup(1λ) and for each i ∈ [n] we have that (Φ̃i, x̃i, {labij,0, labij,1})← Garble(σ, i,Φi, xi).

Succinct Encodings. We say that a garbling scheme has succinct encodings if the size of the
input encoding does not grow with the complexity of the protocol Φ. This is formally defined
below.

Definition 5.2 We say that a garbling scheme for protocols has succinct input encodings if there
exists a fixed polynomial penc such that for every protocol Φ and every i ∈ [n] the size of the input
encoding |x̃i| = penc(|xi|, λ).20

Semi-Malicious Security. For our specific application of designing two round multi-party com-
putation protocols, the security guarantee in Definition 5.1 is not sufficient. We need a stronger
form of security, namely semi-malicious security which is defined below. At a high-level this defini-
tion allows the adversary to choose its input encodings after seeing the common random string and
the input encodings of the honest parties. We still assume that the input encodings are generated
honestly but with arbitrary random coins. We call such adversaries as admissible.

Definition 5.3 (Semi-malicious Security) There exists a PPT algorithm S = (S1, S2) such
that for every protocol Φ, and every subset H ⊆ [n] of honest parties, and for every choice of inputs
{xi}i∈H for honest parties, we have that for every admissible PPT adversary A = (A1,A2),∣∣∣Pr

[
Real[1λ, {xi}, H] = 1

]
− Pr

[
Ideal[1λ, {xi}, H] = 1

]∣∣∣ ≤ negl(λ)

where Real and Ideal games are described in Figure 5.

20For the case when Φ is a randomized protocol the length of the input xi would now additionally grow with the
randomness complexity of party Pi. In this case, the succinctness could be defined in stronger manner where the size
of input encoding is independent of the randomness complexity as well.

24



Real[1λ, {xi}i∈H , H]

1. σ ← Setup(1λ) and for every i ∈ H, compute

(Φ̃i, x̃i, {labij,b})← Garble(σ, i,Φi, xi)

2. {xi, x̃i}i 6∈H , stA ← A1(σ, {x̃i}i∈H).

3. Output A2(stA, {Φ̃i, x̃i, labix̃1‖...‖x̃n}i∈H)

Ideal[1λ, {xi}i∈H , H]

1. (σ, {x̃i}i∈H , stS)← S1(1λ, H)

2. {xi, x̃i}i 6∈H , stA ← A1(σ, {x̃i}i∈H).

3. OutputA2 (stA, S2(stS , {xj , x̃j}j 6∈H ,Φ(x1, . . . , xn)))

Figure 5: Semi-Malicious Real and Ideal world for Garbling Protocols

5.2 Construction

In this subsection we give a construction of a garbling scheme for protocols from a homomorphic
proof commitment with encryption and a garbling scheme for circuits (which is implied by the
existence of a commitment scheme). The main theorem that we prove in this section is:

Theorem 5.4 Assuming the existence of a homomorphic proof commitment with encryption there
exists a construction of garbling scheme for protocols satisfying semi-malicious security.

From Lemma 4.2 and Lemma 4.4, this gives a construction of garbling scheme for protocols from
the sub-group decision on composite order groups or the decision linear assumption on prime order
groups.

Corollary 5.5 Assuming the sub-group decision assumption or the decision linear assumption
there exists a construction of garbling scheme for protocols satisfying semi-malicious security.

Before describing the construction, we give some notation to describe the n-party protocol Φ
and make additional assumptions on the structure of Φ. These assumptions can be made without
loss of generality.

Notation for Φ. Recall that xi denotes the input of party i and Φi denotes its next message
function. We assume that the length of the input of each party is m. Let T be the round complexity
of Φ.

Structure of Φ. We assume that each party Pi maintains a local state that is updated at the end
of every round. The local state is a function of the input, the random tape and the set of messages
received from other parties.

At the beginning of the tth round, every party Pi runs the program Φi on input t to obtain an
output (i∗, f, g). 21 Here, i∗ denotes the active party in round t. The active party Pi∗ computes one
NAND gate on a pair of bits of its state and writes the computed bit to its state. The inputs to the
NAND gate are given by the bits in the indices f and g of the local state of Pi∗ . Additionally, for a
(pre-determined) subset of rounds Bi∗ ⊆ {t ∈ [T ] : (i∗, ·, ·) = Φi(t)}, Pi∗ outputs the computed bit
to other parties. In this case, all the parties copy this bit to their state. For the rest of the rounds

21We assume that Φ1(t) = Φ2(t) = . . . = Φn(t) for every t ∈ [T ].
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where Pi∗ is active, it outputs the computed bit masked with a random bit. In those rounds, every
other party ignores this message.

To describe this structure more formally, let B := ∪iBi. Let the initial state of the party Pi be
ri‖(xi, si) where xi ∈ {0, 1}m is the input, si ∈ {0, 1}s be the random tape used in the computation
of Φ and ri ∈ {0, 1}T are the masking bits. We will let ri have the form

ri,k :=

{
0 if k ∈ [T ] ∩B
uniform in {0, 1} if k ∈ [T ] \B

We consider ri‖(xi, si) as the actual input of party Pi.
For every i ∈ [n], let yi be the state of party Pi before the beginning of round t. Let (i∗, f, g) :=

Φi(t). The parties compute their updated state y′i at the end of round t as

y′i∗,k :=

{
yi∗,k k 6= t

NAND(yi∗,f , yi∗,g) k = t

for i 6= i∗ y′i :=

{
yi t 6∈ Bi∗ ∨ NAND(yi∗,f , yi∗,g) = 0

yi ⊕ et t ∈ Bi∗ ∧ NAND(yi∗,f , yi∗,g) = 1

where ek is the k-th unit vector. Finally, we let ` = T + m + r to denote the length of the local
state of every party.

Remark 5.6 We observe that any protocol Φ can be re-written to follow the above format at an
additional cost of increasing the round complexity by a polynomial (in the computational complexity
of Φ) factor.

Construction. We give the formal description of our construction in Figure 6 and give an
overview below. We make use of the following fact from [GOS12].

Fact 5.7 ([GOS12]) Let M be the message space of a homomorphic proof commitment with
encryption. Further, M is a finite cyclic group with neutral element 0 and generator 1. Let
b0, b1, b2 ∈ {0, 1}. If the order of the group is at least 4, then

b2 = ¬(b0 ∧ b1) if and only if b0 + b1 + 2b2 − 2 ∈ {0, 1}.

Overview. We start with the description of the input encoding. The encoding of an input xi
is given by a set of homomorphic commitments {ci,k} to each individual bit of the initial state
ri‖(xi, si) of party Pi in the computation of Φ. Recall that xi is the input, si is the random tape
used in the computation of Φ and ri are the masking bits. Note that the homomorphic property
of the commitment scheme implies that given ci,k which is a commitment to the bit yi,k, one can
efficiently compute the commitment ci,k which is a commitment to the bit 1−yi,k. The commitment
ci,k, of course hides the value of the bit yi,k.

We now describe the garbled protocol component. The garbled protocol component Φ̃i consists
of a sequence of T garbled circuits and a set of labels for evaluating the first garbled circuit in the
sequence. These garbled circuits have a special structure, namely, the tth garbled circuit in the
sequence outputs the labels for evaluating the (t+ 1)th garbled circuit and thus starting from the
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first garbled circuit we can execute every garbled circuit in the sequence. We now give details of the
tth circuit in the sequence. At a high level, the tth garbled circuit corresponds to the computation
done by party Pi in the tth round of the protocol Φ. In a bit more details, the tth garbled circuit
takes as input the local state obtained after the first t − 1 rounds, updates the local state and
outputs the labels corresponding to the updated state for evaluating the next garbled circuit. This
ensures that at the end of the T th evaluation, we can obtain the the transcript of the protocol from
the final local state of party Pi. To explain in detail the working of the tth garbled circuit, let us
assume that Pi is the active party in the tth round. This implies that Pi has to update its local
state by computing the NAND of two bits in its current state and write the output to a specific
location. Further, if t ∈ Bi then Pi has to communicate this bit to the other parties and the other
parties have to copy this bit to their state. This means that the labels output by the tth garbled
circuit in the protocol component Φ̃j for j 6= i must reflect this communicated bit. The main
technical challenge we solve is in designing a non-interactive method to realize this communication
using homomorphic proof commitment with encryption. Let us explain how.

Recall that by our assumption on the structure of Φ, the updated state of every party can only
be one of two choices. This choice is determined by the output of the NAND computation done by
the active party. At a very high level, we achieve this communication by letting the active party
give a proof π that it has correctly computed the NAND gate and every other party outputting
two encryptions each containing a set of labels corresponding to one choice of the updated state.
The guarantee we provide is that π can be used to decrypt exactly one of those two encryptions
and the labels obtained as a result of the decryption procedure correspond to the correct updated
state. Let us explain how this is achieved.

Let the NAND computation done in round t take as input the bits in position f and g of the
local state of party Pi. For simplicity, let us assume that f , g correspond to indices where the input
of Pi is written. The output of the NAND computation is written in position t. By our choice of
the masking string ri, ci,t is a commitment to 0 if t ∈ Bi. Further, by the homomorphic property
of the commitment scheme, every party can compute ci,t which is a commitment to 1. Fact 5.7
implies that if the output of the NAND computation is 0 then e0 = ci,f · ci,g · c2

i,tcom(ck,−2; 0) is

a commitment to {0, 1}; else e1 = ci,f · ci,g · c2
i,tcom(ck,−2; 0) is a commitment to {0, 1}. We let

every other party output two zero-one encryptions: one under the commitment e0 containing the
set of labels of the updated state assuming the communicated bit is 0; and the other under the
commitment e1 assuming the communicated bit is 1. The active party outputs a zero-one proof
that either e0 or e1 is a commitment to the message in {0, 1}. Using this proof every party can
recover the correct set of labels corresponding to the updated state.

Correctness. To argue correctness, it is sufficient to show that the local state of each party is
updated correctly at the end of every round number t. We show this by induction on the number
of rounds. The base case is clear. Let us assume that the hypothesis is true for the first t rounds.
Let yi be the local state of party Pi at the end of round t. Let (i∗, f, g) := Φ1(t+ 1). We consider
two cases:

• Case-1: t+1 6∈ Bi∗ . In this case, the local state of parties i 6= i∗ does not change i.e., y′i = yi.
The local state of party Pi∗ is updated as y′i∗,t+1 := NAND(yi∗,f , yi∗,g) and y′i∗,k = yi∗,k for
k 6= t + 1. Notice that for the case where t + 1 6∈ Bi∗ , program PΦ outputs the labels
corresponding to the string {y′i,k}k 6=t+1 in the clear and outputs two zero-one encryptions of
the same label corresponding to y′i,t+1 under the commitments e0 and e1 respectively. Thus,
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Let Φ be an n party protocol, (Kbinding,Khiding, P01, V01, E01, D01) be a homomorphic proof commitment
with encryption, and (GarbleCkt,EvalCkt) be a garbling scheme for circuits.

Setup(1λ): Sample (ck, ·)← Kbinding(1λ) and output σ := ck as the reference string.

Garble(σ, i,Φi, xi): To generate the input encoding, garbled protocol component and encoding labels:

1. Compute (x̃i, yi, ski)← Encode(σ, i, xi) where the function Encode is described in Figure 7.

2. Set labeli,T+1 :=
(
(0, 1), . . . , (0, 1)

)
where (0, 1) is repeated `+ n`e + n` times and `e := |x̃i|.

3. for each t from T down to 1,(
P̃i,t, labeli,t

)
← GarbleCkt(1λ,PΦ[i, t, ski, ck, labeli,t+1])

where PΦ is described in Figure 7.

4. Parse labeli,1 as {stik,0, stik,1}k∈[`], {enik,0, enik,1}k∈[n`e], {trik,0, trik,1}k∈[n`].

5. Set sti := {stik,yi,k}k∈[`] and tri := {trik,0}k∈[n`].

6. Set the garbled protocol component Φ̃i :=
(
{P̃i,t}t∈[T ], sti, tri

)
, the input encoding to x̃i and

the encoding labels to be {enik,0, enik,1}k∈[n`e].

Eval({Φ̃i}, {xi}, {enix̃1‖...‖x̃n}): To compute the output of the protocol:

1. For every i ∈ [n], parse x̃i as {ci,k}k∈[`]. For every k ∈ B, check if ci,k := com(ck, 0; 0λ). If
not, output ⊥.

2. Parse Φ̃i as
(
{P̃i,t}t∈[T ], sti, tri

)
.

3. Set ˜label
i

:=
(
sti, enix̃1‖...‖x̃n , tri

)
and the initial tracking strings ui := 0` for every i ∈ [n].

4. for every round t from 1 to T − 1 do:

(a) Let (i∗, f, g) := Φ1(t).

(b) Compute
(
label

i∗

, β, πi∗,t
)
← EvalCkt(P̃i

∗,t, ˜label
i∗

) and label
i ← EvalCkt(P̃i,t, ˜label

i
) for

every i 6= i∗.

(c) for every i ∈ [n] do,

i. Parse label
i

as (st
i
, eni, tr

i
).

ii. Compute df , dg, e0, e1 exactly as in PΦ described in Figure 7 using the tracking
string ui∗ .

iii. Parse st
i

as
(
{ŝt

i
k}k 6=t, stcti0, stcti1

)
and compute ŝt

i
t := D01(ck, eβ , stctiβ , πi∗,t). Up-

date sti := {ŝt
i
k}k∈[`].

iv. Parse tr
i

as
{
{t̂r

i
(j−1)`+k}k∈[`]\{t}, trctij,0, trctij,1

}
j∈[n]

. For every j ∈ [n], compute

t̂r
i
(j−1)`+t := D01(ck, eβ , trctij,β , πi∗,t). Update tri := {t̂r

i
k}k∈[n`].

v. Update ˜label
i

:=
(
sti, enix̃1‖...‖x̃n , tri

)
.

vi. Update ui∗,t to β. If t ∈ Bi∗ , update every uj,t to β for all j ∈ [n].

5. Compute y := EvalCkt(P̃i,T , ˜label
i
) and output y.

Figure 6: Garbling Scheme for Protocols
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Encode(σ, i, xi)

To generate an encoding of the input xi do the following:

1. Choose si ← {0, 1}s as the random tape of party Pi in the protocol Φ.

2. Let B := ∪iBi. Choose randomness {ωi,k}k∈[`] and the initial state yi := ri‖(xi, si) as:

ri,k :=

{
0 if k ∈ [T ] ∩B
uniform in {0, 1} if k ∈ [T ] \B

ωi,k :=

{
0λ if k ∈ B
uniform in {0, 1}λ otherwise

3. For each k ∈ [`], compute ci,k := com(ck, yi,k;ωi,k).

4. Output x̃i := {ci,k}k∈[`], the initial state yi and the secret randomness ski := {ωi,k}k∈[`].

PΦ[i, t, ski, {cki}, label]

Input. The state yi of party Pi, the set of encodings {x̃j} and the set of tracking strings {uj}
Hardcoded. The index i of the party, the round number t, the secret randomness ski, the commitment
key ck and a set of labels label :=

{
{stk,0, stk,1}k∈[`], {enk,0, enk,1}k∈[n`enc], {trk,0, trk,1}k∈[n`]

}
.

1. Let (i∗, f, g) := Φi(t).

2. Parse x̃i∗ as {ci∗,k}k∈[`].

3. Let df and dg be the commitments to the bits yi∗,f and yi∗,g where yi∗ is the current state of the
active party. These commitments are computed as follows: for h ∈ {f, g}, dh := ci∗,h if ui∗,h = 0;

else, dh := com(ck,1;0λ)
ci∗,h

.

4. Compute e0 := dfdgc
2
i∗,tcom(ck,−2; 0λ) and e1 := dfdg

(
com(ck,1;0λ)

ci∗,t

)2

com(ck,−2; 0λ).

Set α := NAND(yi,f , yi,g).

5. For b ∈ {0, 1}, compute stctb :=


E01(ck, eb, stt,b) if t ∈ Bi∗
E01(ck, eb, stt,yi,t) if t 6∈ Bi∗ ∧ i 6= i∗

E01(ck, eb, stt,α) if t 6∈ Bi∗ ∧ i = i∗
.

Set st := {stk,yi,k}k 6=t, stct0, stct1.

6. Set en := {enk,zk}k∈[n`enc] where z := x̃1‖ . . . ‖x̃n.

7. For b ∈ {0, 1} and j ∈ [n], compute trctj,b :=

{
E01(ck, eb, tr(j−1)`+t,b) if (t ∈ Bi∗) ∨ (j = i∗)

E01(ck, eb, tr(j−1)`+t,uj,t) if (t 6∈ Bi∗) ∧ (j 6= i∗)
.

Set tr :=
{
{tr(j−1)`+k,uj,k}k∈[`]\{t}, trctj,0, trctj,1

}
j∈[n]

.

8. If i = i∗ then parse ski as {ωi,k}k∈[`]. For h ∈ {f, g}, set ω′i,h :=

{
ωi,h if ui,h = 0

−ωi,h otherwise

Compute πi,t := P01(ck, eβ , ρβ) where β := yi,t⊕α, ρ0 = ω′i,f +ω′i,g +2ωi,t, ρ1 = ω′i,f +ω′i,g−2ωi,t.

9. If t 6= T then output label := (st, en, tr) and additionally output (β, πi,t) if i = i∗.
If t = T then output the transcript of the protocol from the state as {yi,k}k∈B .

Figure 7: The programs Encode and PΦ.
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decrypting stctiβ using the proof πi∗,t+1 yields the label corresponding to y′i,t+1 for every
i ∈ [n]. Thus, the updated states of every party is correct as per the computation of Φ.

• Case-2: t+1 ∈ Bi∗ . In this case, y′i,t+1 = NAND(yi∗,f , yi∗,g) and y′i∗,k = yi∗,k for k 6= t+1 for
every party i ∈ [n]. The program PΦ outputs the labels corresponding to the string {y′i,k}k 6=t+1

in the clear and outputs a zero-one encryption of the label y′i,t+1 under the commitment
ey′i,t+1

for every i ∈ [n]. Notice that by our construction yi,t+1 = 0 and thus β := y′i,t+1.

Thus, decrypting stctiβ using the proof πi∗,t+1 yields the label corresponding to y′i,t+1 for
every i ∈ [n]. Thus, even in this case the updated state of every party is correct as per the
computation of Φ.

5.3 Security

In this subsection we prove that the construction given in Figure 6 satisfies the semi-malicious
security (Definition 5.3). We start with the description of simulators (S1, S2).

S1: On input 1λ and the set H, S1 generates the encodings of the honest parties as follows:

1. Sample (ck, tk)← Khiding(1λ) and set σ := ck.

2. for every i ∈ H do:

(a) Set the initial state of the party Pi to be yi := 0T ‖(0m, 0s). Choose the randomness
{ωi,k} as in the honest execution of Encode function.

(b) Generate the commitments ci,k := com(ck, yi,k;ωi,k) for each k ∈ [`].

(c) Set the encoding x̃i := {ci,k}k∈[`].

3. Set the secret state stS := (tk, {ωi,k}i∈H,k∈[`])

4. Output (σ, {x̃i}i∈H , stS).

S2: On input the secret state stS , {x̃j , yj}j 6∈H 22 and the transcript Φ(x1, . . . , xn), S2 generates the
garbled protocol components of the honest parties as follows:

1. For every j 6∈ H, construct the final state y∗j using the initial state yj and the transcript
Φ(x1, . . . , xn). Set the final tracking string corresponding to party Pj as u∗j := yj ⊕ y∗j .

2. For every j ∈ H, set the final tracking string u∗j :=


0 if k > T

uniform in {0, 1} if k ∈ [T ] \B
based on Φ(x1, . . . , xn) if k ∈ [T ] ∩B

.

3. For every i ∈ H, compute
(
P̃ i,T , ˜label

i,T )
← Sim(1λ,Φ(x1, . . . , xn)).

4. for every t from T − 1 down to 1 do:

(a) For every i ∈ H, parse ˜label
i,t+1

as {stik}k∈[`], {enik}k∈[n`e] and {trik}k∈[`].

(b) Let (i∗, f, g) := Φ1(t).

(c) Compute df , dg, e0, e1 as given in program PΦ using the final tracking string ui∗ .

(d) Let β := ui∗,t.

22Recall that we consider yi to be the actual input of party Pi
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(e) For every i ∈ H, generate stctiβ := E01(ck, eβ, stit) and stcti1−β := E01(ck, e1−β, 0
λ).

For every j ∈ [n], generate trctij,β := E01(ck, eβ, tri(j−1)`+t) and trctij,1−β := E01(ck, e1−β, 0
λ).

(f) Set sti as
(
{stik}k 6=t, stcti0, stcti1

)
, eni as {enik}k∈[n`e] and tri as

{
{tri(j−1)`+k}k∈[`]\{t},

trctij,0, trctij,1
}
j∈[n]

.

(g) For every i ∈ H \ {i∗} generate, P̃ i,t, ˜label
i,t
← Sim(1λ, (sti, eni, tri)).

(h) if i∗ ∈ H then:

i. For h ∈ {f, g, t}, set ω′i∗,h :=

{
ωi∗,h if ui∗,h = 0

−ωi∗,h otherwise
.

ii. Compute v1 := Topen(tk, ui∗,f , ω
′
i∗,f , 0), v2 := Topen(tk, ui∗,g, ω

′
i∗,g, 0) and v3 :=

Topen(tk, ui∗,t, ω
′
i∗,t, 1).

iii. Compute πi∗,t := P01(ck, 1, ρ) where ρ = v1 + v2 − 2v3.

iv. Generate, P̃ i
∗,t, ˜label

i∗,t
← Sim(1λ, (sti

∗
, eni

∗
, tri

∗
), (β, πi∗,t))

This completes the description of the simulators (S1, S2). We show that

Lemma 5.8 Assuming the security of the garbling scheme for circuits and the homomorphic proof
commitment with encryption, we have that for every protocol Φ, and every subset H ⊆ [n] of
honest parties, for every choice of inputs {xi}i∈H for honest parties and for every PPT adversary
A = (A1,A2), ∣∣∣Pr

[
Real[1λ, {xi}, H] = 1

]
− Pr

[
Ideal[1λ, {xi}, H] = 1

]∣∣∣ ≤ negl(λ)

The proof of this lemma appears in Section 5.3.1.

5.3.1 Proof of Lemma 5.8

We prove the lemma through an hybrid argument. In a hybrid Hybridk, we define Adv(Hybridk) to
be the probability that A outputs 1 when given inputs as distributed in Hybridk.

For every w ∈ [T ], we define Hybridw as follows:

Hybridw: In this hybrid, we change how
(
P̃ i,t, ˜label

i,t)
for every i ∈ H and t < w are generated.

In particular, we generate them as described in the modified garbling procedure given in Figure 8.
Notice that Hybrid1 is distributed as in the real world.

Lemma 5.9 Assuming the security of garbling scheme for circuits and the homomorphic proof
commitments with encryption, we have that for every w ∈ [T ], |Adv(Hybridw)− Adv(Hybridw+1)| ≤
negl(λ).

Proof We define a couple of intermediate hybrids.
Hybridw,1: Let ywi := {y∗i,k}k∈[w−1]‖{yi,k}k∈[w,`] be the local state of party Pi at the beginning of the

w-th round. Let {uwj } be the set of tracking strings at the beginning of the w-th round. In this
hybrid, for every i ∈ H we generate(

P̃ i,w, ˜label
i,w)
← Sim(1λ,PΦ[i, w, ck, ski, labeli,w+1](ywi , {x̃j}, {uwj }))
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Garble′: On additional inputs the hybrid number w, the final state y∗i of party Pi, the set of encodings
{x̃j} and the final set of tracking strings {u∗j} for every Pj do:

1. Compute (x̃i, yi, ski)← Encode(σ, i, xi) where the function Encode is described in Figure 7.

2. Set labeli,T+1 :=
(
(0, 1), . . . , (0, 1)

)
where (0, 1) is repeated `+ n`e + n` times and `e := |x̃i|.

3. for each t from T down to w,(
P̃i,t, labeli,t

)
← GarbleCkt(1λ,PΦ[i, t, ski, ck, labeli,t+1])

where PΦ is described in Figure 7.

4. Parse labeli,w as {stik,0, stik,1}k∈[`], {enik,0, enik,1}k∈[n`e], {trik,0, trik,1}k∈[n`].

5. Set ˜label
i,w

:= {stik,y∗i,k
}k∈[w], {stik,yi,k}k∈[w+1,`], enx̃1...x̃n , {tri(j−1)`+k,u∗j,k

}j∈[n],k∈[w],

{tri(j−1)`+k,0}j∈[n],k∈[w+1,`].

6. for each t from w − 1 down to 1:

(a) Parse ˜label
i,t+1

as {stik}k∈[`], {enik}k∈[n`e] and {trik}k∈[`].

(b) Let (i∗, f, g) := Φ1(t).

(c) Compute df , dg, e0, e1 as given in program PΦ using the tracking string u∗i∗ .

(d) Let β := u∗i∗,t.

(e) Generate stctiβ := E01(ck, eβ , stit) and stcti1−β := E01(ck, e1−β , 0
λ). Generate trctij,β :=

E01(ck, eβ , tri(j−1)`+t) and trctij,1−β := E01(ck, e1−β , 0
λ) for every j ∈ [n].

(f) Set st
i

as
(
{stik}k 6=t, stcti0, stcti1

)
, eni as {enik}k∈[n`e] and tr

i
as
{
{tri(j−1)`+k}k∈[`]\{t},

trctij,0, trctij,1
}
j∈[n]

.

(g) Generate, P̃ i,t, ˜label
i,t
← Sim(1λ, (st

i
, eni, tr

i
)).

Figure 8: Modified Garbling Procedure

Claim 5.10 Assuming the security of garbling scheme for circuits, |Adv(Hybridw)−Adv(Hybridw,1)| ≤
negl(λ)

Proof Assume for the sake of contradiction that |Adv(Hybridw)− Adv(Hybridw,1)| > 1
poly(λ) . We

construct an adversary B breaking the security of garbling scheme for circuits.
B samples (ck, ·) ← Kbinding(1λ) and computes the input encodings {x̃i}i∈H as per the honest

procedure given in Figure 7. It then runs A1(σ, {x̃i}i∈H) to obtain {x̃i}i 6∈H and stA. B generates the

garbled circuits P̃i,t for t from T to w+ 1 as in the modified garbled procedure in Figure 8. B then
interacts with the garbled circuits challenger and gives for every i ∈ H, PΦ[i, t, ski, ck, labeli,w+1]

as the challenge circuit and ywi , {x̃j}, {uwj } as the challenge inputs. It obtains P̃i,w, ˜label
i,w

. It then

uses ˜label
i,w

to generate the rest of the garbled circuits P̃i,t as in Figure 8. Finally, B runs A2 on
the inputs stA, {Φ̃i, x̃i, labix̃1‖...‖x̃n}i∈H and outputs whatever A outputs.

Notice that if the garbling P̃i,w, ˜label
i,w

is generated using the honest procedure then the inputs
A2 are distributed identically to Hybridw. Else, they are distributed identically to Hybridw,1. Thus,

32



B breaks the security of garbling scheme for circuits which is a contradiction.

Hybridw,2: In this hybrid, we perform the modified garbling procedure with input w + 1 instead of

w. This hybrid is identically distributed to Hybridw+1.

Claim 5.11 Assuming the statistical semantic security of homomorphic proof commitments with
encryption, |Adv(Hybridw,1)− Adv(Hybridw,2)| ≤ negl(λ)

Proof Assume for the sake of contradiction that |Adv(Hybridw,1)−Adv(Hybridw,2)| > 1
poly(λ) . We

construct an adversary B breaking the semantic security of homomorphic proof commitments with
encryption.
B obtains ck from the external challenger and computes the input encodings {x̃i}i∈H as per the

honest procedure given in Figure 7. It then runs A1(σ, {x̃i}i∈H) to obtain {x̃i}i 6∈H and stA. B gener-

ates the garbled circuits P̃i,t for t from T to w+1 as in the modified garbled procedure in Figure 8. In-

stead of generating the garbled circuit
(
P̃ i,w, ˜label

i,w)
← Sim(1λ,PΦ[i, w, ck, ski, labeli,w+1](ywi , {x̃j}, {uwj }))

for every i ∈ H as in Hybridw,1, it generates it as follows:

1. Let yw+1
i be the local state of party i and {uw+1

j } be the set of tracking strings at the end of
the w-th round.

2. Let (i∗, f, g) := Φ1(w).

3. Compute df , dg, e0, e1 as given in program PΦ using the tracking string uw+1
i∗ .

4. Let β := uw+1
i∗,w , α := yw+1

i,w and γj := uw+1
j,w for every j ∈ [n].

5. Generate stctiβ := E01(ck, eβ, stiw,α) if w 6∈ Bi∗∨i = i∗; else generate stctiβ := E01(ck, eβ, stiw,β).
Interact with the semantic security challenger by giving e1−β as the challenge commitment,
stiw,1−α

23 and 0λ as the challenge messages. Receive the challenge ciphertext stcti1−β.

6. Generate trctij,β := E01(ck, eβ, tri(j−1)`+w,β) if w ∈ Bi∗ ∨ j = i∗; else generate trctij,β :=

E01(ck, eβ, tri(j−1)`+w,γj
). Interact with the semantic security challenger by giving e1−β as

the challenge commitment and tri(j−1)`+w,1−β
24 and 0λ as the challenge messages for every

j ∈ [n]. Receive the set of challenge ciphertexts {trctij,1−β} for every j ∈ [n].

7. Set sti as
(
{sti

k,yw+1
i,k

}k 6=t, stcti0, stcti1
)
, eni as {enik}k∈[n`e] and tri as

{
{tri

(j−1)`+k,uw+1
j,k

}k∈[`]\{t},

trctij,0, trctij,1
}
j∈[n]

.

8. Generate, P̃ i,w, ˜label
i,t
← Sim(1λ, (sti, eni, tri)).

Finally, B runs A2 on the inputs stA, {Φ̃i, x̃i, labix̃1‖...‖x̃n}i∈H and outputs whatever A outputs.
Notice that the challenge commitment e1−β is not a commitment to zero-one message. Thus,
B represents a valid challenger to the semantic security. If the challenge ciphertexts contain an
encryption of the string 0λ then the view of A2 is distributed identically to Hybridw,2. Else, it is

23We need to give stiw,α instead of stiw,1−α if w 6∈ Bi∗
24If w 6∈ Bi∗ ∧ j = i∗, we should then give tri(j−1)`+w,γj

instead of tri(j−1)`+w,1−β .

33



distributed identically to Hybridw,1. Thus, B breaks the semantic security of homomorphic proof
commitment with encryption.

This completes the proof of the lemma.

HybridT+1 : In this hybrid, we change how the reference string is generated. Instead of generating

(ck, ·)← Kbinding(1λ), we generate it as (ck, ·)← Khiding(1λ).

Lemma 5.12 Assuming key indisintinguishability property of homomorphic proof commitment
with encryption, |Adv(HybridT )− Adv(HybridT+1)| ≤ negl(λ)

Proof If |Adv(HybridT ) − Adv(HybridT+1)| > 1
poly(λ) we can get a straightforward reduction to

the breaking key indisintguishability property.

HybridT+2 : For every i ∈ H, let y∗i be the final local state, yi be the initial local state and u∗i be
the final value of the tracking string corresponding to i. Notice that u∗i is distributed uniformly on
projection to the coordinates [T ] \ {B} and y∗i := yi ⊕ u∗i . Let BH := ∪i∈HBi. In this hybrid, we
change how πi∗,t (which is hardcoded while generating the simulated garbled circuit) is generated
for every t ∈ BH . In particular, we generate it as:

1. Let (i∗, f, g) := Φi(t).

2. For h ∈ {f, g, t}, set ω′i∗,h :=

{
ωi∗,h if u∗i∗,h = 0

−ωi∗,h otherwise
.

3. Compute v1 such that com(ck, y∗i∗,f ;ω′i∗,f ) := com(0; v1), v2 such that com(ck, y∗i∗,g;ω
′
i∗,g) :=

com(0; v2) and v3 such that com(ck, y∗i∗,t;ω
′
i∗,t) := com(1; v3). Notice that this step might

take super-polynomial time.

4. Compute πi∗,t := P01(ck, 1, ρ) where ρ = v1 + v2 − 2v3.

Lemma 5.13 Assuming perfect witness indistinguishability of homomorphic proof commitment
with encryption we have, |Adv(HybridT+1)− Adv(HybridT+2)| = 0.

Proof Assume for the sake of contradiction that |Adv(Hybridw,1) − Adv(Hybridw,2)| > 0. We
construct an adversary B breaking the perfect witness indistinguishability of homomorphic proof
commitment with encryption.
B interacts with the external challenger and obtains the commitment key ck. It sets σ := ck and

generates the encodings as in the honest procedure. For every t ∈ BH , B submits the following sets
of messages (y∗i∗,f , 0), (y∗i∗,g, 0) and (y∗i∗,t, 1) and the following sets of witnesses (ω′i∗,f , v1), (ω′i∗,g, v2)
and (ω′i∗,g, v3). It receives πi∗,t as the challenge proof. B generates the rest of the inputs to A2 and
outputs whatever A2 outputs.

Notice that if πi∗,t has been generated using the honest commitment procedure then the view
of A is identical to HybridT+1. Else, it is distributed identically to HybridT+2. Thus, B breaks the
perfect witness indisintinguishability of homomorphic proof commitment with encryption.

HybridT+3 : In this hybrid, for every i ∈ H, we change how the encoding x̃i is generated. In

particular, for every k ∈ [`] \ B, we generate ci,k := com(ck, 0). As in the previous step, we find
v1, v2, v3 by running in possibly super-polynomial time.
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Lemma 5.14 Assuming perfect hiding of the homomorphic proof commitment with encryption we
have, |Adv(HybridT+2)− Adv(HybridT+3)| = 0.

Proof It is easy to see that the only change between HybridT+2 and HybridT+3 is in the generation
of commitments to the initial state. By perfect hiding property of the commitment scheme, we
have |Adv(HybridT+2)− Adv(HybridT+3)| = 0.

HybridT+4 : In this hybrid, we make the process of sampling from the distribution efficient by
giving access to the trapdoor key tk. Notice that the distributions HybridT+3 and HybridT+4 are
identical from the perfect trapdoor opening property of the homomorphic proof commitment with
encryption. HybridT+4 is distributed identically to Ideal.

This completes the proof of Lemma 5.8.

6 Two Round Multi-Party Computation

In this section we give a construction of a UC secure two-round multi-party computation from a
standalone multi-party semi-honest protocol Φ having arbitrary (but polynomial) round complexity
using a garbling scheme for protocols. We give a construction in the FNIZK hybrid model and we
start by recall the NIZK ideal functionality.

NIZK Hybrid Model. We recall the functionality FNIZK from [GOS12] in Figure 9. This figure
is taken verbatim from [GOS12].

Parameterized with relation R and running with parties P1, . . . , Pn and adversary S.

Proof: On input (prove,sid, pid, x, w) from party P ignore if (x,w) /∈ R. Send (prove,x) to
S and wait for answer (proof , π). Upon receiving the answer store (x, π) and send
(proof , sid, pid, π) to P .

Verification: On input (verify, sid, pid, x, π) from V check whether (x, π) is stored. If not
send (verify,x, π) to S and wait for an answer (witness,w). Upon receiving the answer,
check whether (x,w) ∈ R and in that case, store (x, π). If (x, π) has been stored return
(verification,sid, pid,1) to V , else return (verification,sid, pid,0).

Figure 9: NIZK argument functionality FNIZK.

We now describe the main theorem that we prove in this section:

Theorem 6.1 Assuming the existence of a garbling scheme for protocols satisfying semi-malicious
security and a standalone semi-honest secure n-party protocol Φ there exists a construction of two
round UC secure MPC in the FNIZK hybrid model.

If we instantiate Φ with a semi-honest multiparty protocol for computing a garbled RAM
program P̃ (using the garbling function in say, [GLOS15]) we obtain the following corollary.

Corollary 6.2 Assuming the existence of a garbling scheme for protocols satisfying the semi-
malicious security and standalone semi-honest secure n-party protocol Φ for evaluating RAM pro-
grams there exists a construction of two round UC secure MPC for evaluating RAM programs in
the FNIZK hybrid model.
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We give definitions of universal composable security [Can01] in Appendix A.

Construction. We give the formal description of our two round MPC in the NIZK hybrid model
in Figure 10. We assume that the standalone protocol is semi-malicious. In fact, the GMW semi-
honest protocol [GMW87] can be shown to satisfy semi-malicious security.

Let Φ be a n-party stand alone semi-malicious secure protocol computing the function f and let
(Setup,Garble,Eval) be a garbling scheme for protocols. We describe a two-round protocol Π in the
FNIZK model.

Ideal NIZK Functionality. The FNIZK ideal functionality is parameterized by the relationR defined as
R((x̃i, (σ, i, xi, Φ̃i, {labj,0, labj,1}, ωi)) = 1 if and only if (Φ̃i, x̃i, {labj,0, labj,1})← Garble(σ, i, xi,Φi;ωi).

Private Inputs: Party Pi for i ∈ [n], receives its private input xi, a session id sid.

Common Reference String: Let σ ← Setup(1λ) and output σ as the common reference string.

Round 1: Each party Pi does the following:

1. Choose a uniform ωi as the random tape for the Garble procedure.

2. Compute (Φ̃i, x̃i, {labj,0, labj,1})← Garble(σ, i, xi,Φi;ωi).

3. Send (prove, sid, i, (x̃i, (σ, i, xi, Φ̃i, {labj,0, labj,1}, ωi)) to FNIZK. Receive the the message
(proof, sid, i, πi) from FNIZK.

4. Send (x̃i, πi) to every other party.

Round 2: Each party Pi does the following:

1. For each j ∈ [n] \ {i}, verify if the proof πj is valid by sending (verify, sid, j, x̃j , πj) to
FNIZK. If FNIZK responds with (verification, sid, j, 0) then abort.

2. Send Φ̃i and {labix1‖...‖xn} to every other party.

Evaluation: Every party Pi computes y := Eval({Φ̃i}, {x̃i}, {labix̃1‖...‖x̃n}) and computes the output of
the functionality f from y.

Figure 10: Two-round Multi-Party Computation Protocol

6.1 Description of the Simulator

In this subsection we give the description of the ideal world adversary S having access to the ideal
functionality Ff that simulates the view of the real world adversary A. S will internally use the
simulators SΦ for the semi-malicious security of Φ and (S1, S2) for the garbling scheme for protocols.

We assume that A is static and hence the set of honest parties H is known before the execution
of the protocol.

Simulating the CRS. To simulate the common reference string, S runs S1 on input 1λ and H
and obtains σ, the set of input encodings {x̃i}i∈H for the honest parties and the secret simulation
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state stS . It set the common reference string to be σ and locally stores {x̃i}i∈H and stS .

Simulating the interaction with Z. For every input value for the set of corrupted parties that
S receives from Z, S writes that value to A’s input tape. Similarly, the output of A is written as
the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

• Round-1 messages from S to A: S recovers {x̃i}i∈H from its local storage. For each
i ∈ H, S samples πi from the appropriate distribution and sends (x̃i, πi) to A on behalf of
the honest party i. It then stores (x̃,πi) in its local storage.

• Round-1 messages from A to S: S receives the message (prove, sid, i, (x̃i, (σ, i, xi, Φ̃i,
{labj,0, labj,1}, ωi)) that A sends to the ideal NIZK functionality for an i 6∈ H. S checks if

R((x̃i, (σ, i, xi, Φ̃i, {labj,0, labj,1}, ωi)) = 1. If it is not the case, it ignores this message. Else
it locally stores, (x̃i, xi, ωi) and sends the message (proof, x̃i) to A and receives a message
(proof, πi). It stores (x̃i, πi).

• Round-2 messages from S to A:

1. for every i ∈ H,

(a) S receives the message {x̃j , πj}j 6∈H from A on behalf of i.

(b) For every j 6∈ H, S checks if the value (x̃j , πj) is stored. If such a value does not
exist, S locally stores (i,abort).

2. If for every i ∈ H, if (i,abort) is stored, S aborts the execution.

3. Else, for every j 6∈ H, S recovers the value (x̃j , xj , ωj) from its local storage and con-
structs the initial state yj comprising of the input xj and the randomness sj of party j
in the computation of Φ.

4. S queries the ideal functionality Ff with the query (input, sid, j, xj) for every j 6∈ H
and obtains the string z which is the output of the functionality.

5. S then runs the simulator SΦ on inputs {yj}j 6∈H and the output z and obtains the
simulated transcript τ .

6. It then runs S2 on input the secret state stS (recovered from its local storage), {yj , x̃j}j 6∈H
and the simulated transcript τ to obtain {Φ̃i, labx̃1‖...‖x̃n}i∈H .

7. For every i such that there does not exist (i,abort) in its local storage, S forwards
Φ̃i, labx̃1‖...‖x̃n on behalf of i.

• Round-2 messages from A to S: For every i ∈ H, S obtains the second round message
from A on behalf of the honest party. For every i ∈ H, if the set of message obtained from
A is well formed, S sends (generateOutput, sid, i) to the trusted party Ff .

We show that:

Lemma 6.3 Assuming the semi-malicious security of Φ and the security of garbling scheme for
protocols for any environment Z that obeys the rules of interaction for UC security we have
EXECF ,S,Z ≈ EXECπ,A,Z .
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6.2 Proof of Lemma 6.3

We prove the lemma via a hybrid argument.

Hybrid1 : This corresponds to the real world execution where the environment Z is interacting
with the real world adversary A. Alternatively, we can view this hybrid in the ideal world where
the ideal world adversary S additionally has access to the private inputs of the honest parties and
interacts with A. S generates the messages of the honest parties as given in the description of the
protocol. It also simulates the ideal world functionality FNIZK to A.

Hybrid2 : In this hybrid the ideal world adversary S invokes the simulator of the garbling scheme
for protocols instead of generating the round-1 and round-2 messages honestly. To give more de-
tails, S runs S1 on input 1λ and H, to obtain the common reference string σ, the set of input
encodings {x̃i}i∈H corresponding to the honest parties and the secret simulation state stS . It sets
the common reference string as σ and forwards {x̃i}i∈H to A on behalf of the honest parties. It
obtains {x̃j}j 6∈H and recovers the initial input state yj and the input xj for each j ∈ H through
its simulation of the ideal NIZK functionality. It executes Φ in “its head” using its knowledge of
the honest parties inputs and using the extracted inputs of the corrupted parties to obtain the
transcript Φ(x1, . . . , xn). It then runs the simulator S2 on input the secret state stS , {yj , x̃j}j 6∈H
and the transcript Φ(x1, . . . , xn) to obtain {Φ̃i, labx̃1‖...‖x̃n}i∈H . It then forwards this to A.

Notice that the view of the adversary in Hybrid1 and Hybrid2 is computationally indistinguish-
able from the semi-malicious security of garbling scheme for protocols.

Hybrid3 : In this hybrid, the ideal world adversary uses the simulator for Φ to generate the tran-
script of the protocol. The ideal world adversary S recovers the the initial input state yj and the
input xj for each j ∈ H as in the previous hybrid. It queries the ideal world functionality Ff on
input (input, sid, j, xj) for each j ∈ [n] and obtains the output z. It then runs the simulator SΦ on
inputs {yj}j 6∈H and z to obtain the simulated transcript τ . It then uses τ as input while running
S2. The rest of the simulation is exactly as in the previous hybrid.

Notice that the view of the adversary in Hybrid2 and Hybrid3 is computationally indistinguishable
from the semi-malicious security of Φ. Hybrid3 is distributed identically to EXECF ,S,Z .

7 Black-box Construction of Three-Round MPC

In this section we give a construction of three-round MPC that it makes black-box use of the
underlying group. The main theorem we prove in this section is:

Theorem 7.1 Assuming the sub-group decision assumption and the computational Diffie-Hellman
assumption there exists a construction of UC secure three round MPC that makes black-box use of
the underlying groups.

Before proceeding we define a stronger security property of the garbling scheme for protocols
which will be used in the construction of black-box MPC.

38



extReal[1λ, {xi}i∈H , H]

1. σ ← Setup(1λ) and for every i ∈ H, compute

(Φ̃i, x̃i, {labij,b})← Garble(σ, i,Φi, xi)

2. {xi, x̃i}i 6∈H , stA ← A1(σ, {x̃i}i∈H).

3. Output A2(stA, {Φ̃i, x̃i, labix̃1‖...‖x̃n}i∈H)

extIdeal[1λ, {xi}i∈H , H]

1. (σ, {x̃i}i∈H , stS)← S1(1λ, H)

2. {xi, x̃i}i 6∈H , stA ← A1(σ, {x̃i}i∈H).

3. Output A2 (stA, S2(stS , {x̃j}j 6∈H ,Φ(x1, . . . , xn)))

Figure 11: Extractable Semi-Malicious Real and Ideal world for Garbling Protocols

7.1 Extractable Semi-Malicious Security

In this subsection we define a stronger security notion for garbling scheme for protocols, namely,
extractable semi-malicious security. The difference between this notion and the semi-malicious
security (Definition 5.3) is that the simulator is only provided with the encodings {x̃i}i 6∈H of the
corrupted parties and not provided with their input {xi}i 6∈H . We define this notion formally below.

Definition 7.2 (Extractable Semi-malicious Security) A garbling scheme for protocols is said
to satisfy extractable semi-malicious security if there exists a PPT algorithm S = (S1, S2) such that
for every protocol Φ, and every subset H ⊆ [n] of honest parties, and for every choice of inputs
{xi}i∈H for honest parties, we have that for every admissible PPT adversary A = (A1,A2),∣∣∣Pr

[
extReal[1λ, {xi}, H] = 1

]
− Pr

[
extIdeal[1λ, {xi}, H] = 1

]∣∣∣ ≤ negl(λ)

where extReal and extIdeal games are described in Figure 11.

In Appendix B we give a construction of garbling scheme for protocols that satisfies extractable
semi-malicious security and additionally makes black-box use of a homomorphic proof commitment
with encryption. A key difference between this construction and the construction given in Figure 6
is in the structure of the input encoding x̃i. Recall that in the previous construction x̃i consists
of commitments {ci,k}k∈[`]. Now, the input encoding contains an additional component {πi,k}k∈[`]

where πi,k is a proof that ci,k is a commitment to a message in {0, 1}. Additionally, the size of the
common reference string σ grows with the number of parties.

Remark 7.3 We note that the construction given in Appendix B can be modified to satisfy semi-
honest security in the plain model by asking every party to generate the common random/reference
string in the binding mode. Later, in the proof of security we will change the reference strings of
the honest parties to the hiding mode.

7.2 FNIOT functionality

In this section we give a protocol for realizing the non-interactive oblivious transfer FNIOT func-
tionality defined in Figure 12. Looking ahead, the FNIOT functionality will be used to generate OT
correlations which then can be used to realize information theoretic MPC protocols [Kil88, IPS08]
with security against malicious behavior. We will use such protocols in our black-box MPC con-
struction.
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Parametrized with parties P1, . . . , Pn and adversary S controlling a subset of the parties. Let
H be the set of parties not controlled by the adversary.

On receiving (sid, pid1, pid2) from a party with id pid1, check if pid1 or pid2 is in H.

If both pid1, pid2 ∈ H, sample (s0, s1, c)← {0, 1}, send (s0, s1) to the party pid1 and (c, sc)
to the party pid2.

If pid1 6∈ H but pid2 ∈ H then send the message (sender, pid1) to S and receive (s0, s1)
from S. Sample c← {0, 1} and send (c, sc) to the party pid2.

If pid1 ∈ H but pid2 6∈ H, send the message (receiver, pid2) to S and receive (c, sc) from S.
Sample s1−c ← {0, 1} and send (s0, s1) to the party pid1.

if both pid1, pid2 6∈ H, ignore the message.

Figure 12: Non-Interactive Oblivious Transfer functionality FNIOT.

Construction. We give a protocol for realizing the FNIOT functionality in Figure 13. At a high
level, we augment the non-interactive oblivious transfer protocol of Bellare and Micali [BM90] with
Groth-Sahai proofs [GS12] that enables the simulator to extract the sender bits or the receiver’s
choice bit in the simulation. We use Groth-Sahai proofs so that it enables us to give proof about
equations over groups while making black-box use of the underlying group.

Let (KGS,binding,KGS,hiding, P, V ) be the Groth-Sahai proof system for proving equations over bilinear
groups. Let SetupCDH on input 1λ give the description of groups G,GT with prime order p, a generator g
for g and a bilinear map e : G×G→ GT such that the computational Diffie-Hellman is hard to solve in G.

Inputs: Party Pi for i ∈ [n], receives a session id sid.

Common Reference String: Let (G,GT , g, p, e) ← SetupCDH(1λ). Let x ← Z and set X := gx.
For each party i ∈ [n], sample σi ← KGS,binding(1λ). The common reference string consists of
(G,GT , p, g, e,X, σ1, . . . , σn).

Let us assume that Pi is the sender and Pj is the receiver.

Message sent by Pi → Pj: Sample a ← Z∗p and compute A := ga. Let πA be the GS proof for the
equation that there exists an a such that ga = A using σi as the crs. Send (A, πa) to Pj .

Message sent by Pj → Pi: Sample b ← Z∗p and c ← {0, 1}. Compute g0 := (1 − c)gb + c(X
gb

) and

g1 := cgb+(1−c)(X
gb

). Let πg0,g1 be a GS proof for the equation that there exists a group element

B such that e(g0B, g1B) = 1 using σj as the crs. Send (g0, g1, πg0,g1) to Pi.

Computation: Pi verifies the proof πg0,g1 and sets (s0, s1) := (h(ga0 ), h(ga1 )) where h is the hardcore
predicate. Pj verifies the proof πA and sets (c, sc) := (c, h(Ab)).

Figure 13: Non-Interactive Oblivious Transfer
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Description of the Simulator. We assume that A is static and hence the set of honest parties
H is known before the execution of the protocol.

Simulating the CRS. To simulate the common reference string, S samples (G,GT , g, p, e) ←
SetupCDH(1λ). It then chooses x ← Z∗p and sets X := gx. For every i ∈ H, it chooses (σi, tki) ←
KGS,hiding(1λ) and for every i 6∈ H it chooses (σi, xki) ← KGS,binding(1λ). It sets the common
reference string to be (G,GT , p, g, e,X, σ1, . . . , σn)

Simulating the interaction with Z. For every input value for the set of corrupted parties that
S receives from Z, S writes that value to A’s input tape. Similarly, the output of A is written as
the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start and for every choice of sender and the receiver Pi and Pj respectively, the
simulator does the following:

1. Both Pi and Pj are honest:

(a) Simulator chooses a random a ← Z∗p and compute A := ga. It generates a simulated
proof πA for the GS equation that there exists an a such that ga = A using σi as the crs
and tki as the trapdoor information. It sends (A, πA) to Pj on behalf of the honest Pj .

(b) Simulator samples b ← Z∗p and c ← {0, 1}. It computes g0 := (1 − c)gb + c(X
gb

) and

g1 := cgb + (1− c)(X
gb

). It generates a simulated proof πg0,g1 for the equation that there

exists a group element B such that e(g0B, g1B) = 1 using σj as the crs and tkj as the
trapdoor information. It then sends (g0, g1, πg0,g1) to Pi on behalf of the honest party
Pj .

2. Pi is corrupted and Pj is honest:

(a) Simulator samples b ← Z∗p and c ← {0, 1}. It computes g0 := (1 − c)gb + c(X
gb

) and

g1 := cgb + (1− c)(X
gb

). It generates a simulated proof πg0,g1 for the equation that there

exists a group element B such that e(g0B, g1B) = 1 using σj as the crs and tkj as the
trapdoor information. It then sends (g0, g1, πg0,g1) to Pi on behalf of the honest party
Pj .

(b) It receives the element A and the proof πA that A sends on behalf of the corrupted
party Pi. Using the extraction key xki, simulator recovers the witness a used in the
computation of πA. It computes (h(ga0), h(ga1)) and sends them to the ideal functionality
FNIOT.

3. Pj is corrupted but Pi is honest:

(a) Simulator chooses a random a ← Z∗p and computes A := ga. It generates a simulated
proof πA for the GS equation that there exists an a such that ga = A using σi as the
crs and tki as the trapdoor information. It sends (A, πa) to Pj on behalf of the honest
party Pi.

41



(b) Simulator receives the elements g0, g1, πg0,g1 from the adversary A. Using the extraction
key xkj simulator recovers the witness B such that e(g0B, g1B) = 1. It sets c to be
the bit in {0, 1} such that gcB = 1. It computes gac and sends (c, h(gac )) to the ideal
functionality FNIOT.

We show that:

Lemma 7.4 Assuming the computational Diffie-Hellman assumption and the security of the GS
proof system, for every Z that obeys the rules of interaction for UC security we have EXECF ,S,Z ≈
EXECπ,A,Z .

Proof of Lemma 7.4. We now show that no environment can distinguish the real world execution
with adversary A and an ideal world execution with adversary S. We consider three cases.

1. Case-1: Both Pi and Pj are honest. In this case the real world and the ideal world distri-
butions are identical except that the proof πA and πg0,g1 are simulated and the crs for the
honest parties is generated in the hiding mode.
Hybrid1 : In this hybrid, we change the crs for the honest parties i ∈ H to be the hiding mode.
Indistinguishability from the real world execution follows from the crs indistinguishability
property of the GS proof systems.
Hybrid2 : In this hybrid, we change the proofs generated by the honest parties to be simulated
rather than being generated honestly. Indistinguishability from the previous hybrid follows
from the zero-knowledge proof of the GS proof systems.

Notice that in Hybrid2 the view of the adversary is computationally independent of the bits
(s0, s1) from the computational Diffie-Hellman assumption and is statistically independent of
the bit c.

2. Case-2: Pi is corrupted and Pj is honest. In this case the real world and the ideal world
distributions are identical except that the proof πg0,g1 is simulated and the crs for the honest
parties is generated in the hiding mode.
Hybrid1 : In this hybrid, we change the crs for the honest parties i ∈ H to be the hiding mode.
Indistinguishability from the real world execution follows from the crs indistinguishability
property of the GS proof systems.
Hybrid2 : In thus hybrid we change the the proof πg0,g1 to be simulated instead of generating
it honestly. Indistinguishability from the previous hybrid follows from the zero-knowledge
proof of the GS proof systems.
Note that the extracted bits (h(ga0), h(ga1)) in Hybrid2 is computationally indistinguishable to
the bits in the real world view of the adversary.

3. Case-3: Pj is corrupted and Pi is honest. In this case the real world and the ideal world
distributions are identical except that the proof πA is simulated and the crs for the honest
parties is generated in the hiding mode.
Hybrid1 : In this hybrid, we change the crs for the honest parties i ∈ H to be the hiding mode.
Indistinguishability from the real world execution follows from the crs indistinguishability
property of the GS proof systems.
Hybrid2 : In thus hybrid we change the the proof πA to be simulated instead of generating it
honestly. Indistinguishability from the previous hybrid follows from the zero-knowledge proof
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of the GS proof systems.
Note that the extracted bit c in Hybrid2 is computationally indistinguishable to the bit in the
real world view of the adversary. Now in Hybrid2, h(ga1−c) is indistinguishable from a random
bit from the Computational Diffie-Hellman assumption.

7.3 Black-box Construction of Three-round MPC

We give the construction of three round MPC that makes black-box use of the underlying group
in Figure 14. The protocol uses an extractable semi-malicious secure garbling scheme for protocols
(Setup,Garble,Eval). For the sake of exposition, we split the Garble procedure into (Encode,GarbProt)
each having a separate random tape. Such a construction of garbling scheme appears in Figure 18
and Figure 19 in Appendix B. Furthermore, the construction in Figure 18 is augmented to make
black-box use of the underlying group as described in Section B.3.

Security. The description of the simulator and the hybrid arguments is almost identical to the
previous construction. We give the details in Appendix C for the sake of completeness.
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Let Φ be a n-party stand alone semi-malicious secure protocol computing the function f in the OT
hybrid model and let (Setup,Garble,Eval) be a garbling scheme for protocols satisfying the extractable
semi-malicious security. We describe a three-round protocol Π computing f .

Ideal FNIOT functionality. Parameterized by the parties P1, . . . , Pn

Private Inputs: Party Pi for i ∈ [n], receives its private input xi, a session id sid.

Common Reference String: Let σ ← Setup(1λ) and output σ as the common reference string.

Round 1: Each party Pi does the following:

1. For every OT invocation in Φ where Pi acts as the sender, send (sid, i, pid2) to FNIOT where
pid2 is the receiver id in the OT interaction.

Round 2: Each party Pi does the following:

1. Receive the set of bits {(sk,0, sk,1)} for every OT invocation where Pi acts as the sender
and the set {c, sl,c} for every OT invocation where Pi acts as the receiver from the ideal
functionality FNIOT.

2. Choose a uniform ωi as the random tape for Encode procedure.

3. Let yi be the string that is concatenation of xi along with the OT correlations received from
FNIOT functionality.

4. Compute x̃i ← Encode(σ, i, yi;ωi).

5. Send x̃i to every other party.

Round 3: Each party Pi does the following:

1. Parse σ as {cki}. For each j ∈ [n] \ {i}, parse x̃j as {cj,k, πj,k}k∈[`]. Check if for every

j ∈ [n]\{i} and k ∈ [`], V01(ckj , cj,k, πj,k) = 1 and for every k ∈ B, if cj,k := com(ckj , 0; 0λ).
If any of the checks fail, abort.

2. Compute (Φ̃i, labix̃1‖...‖x̃n)← GarbProt(σ, i,Φi, {x̃j}).

3. Send Φ̃i and {labix1‖...‖xn} to every other party.

Evaluation: Every party Pi computes y := Eval({Φ̃i}, {x̃i}, {labix̃1‖...‖x̃n}) and computes the output of
the functionality from y.

Figure 14: Three-round Multi-Party Computation Protocol making black-box use of the under-
lying group
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Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008, Part II,
volume 5126 of LNCS, pages 486–498, Reykjavik, Iceland, July 7–11, 2008. Springer,
Heidelberg, Germany.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
719–734, Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.
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A UC Security

In this section we briefly review UC security. For full details see [Can01]. A large part of this
introduction has been taken verbatim from [CLP10].

A.1 The basic model of execution

Following [GMR88, Gol01], a protocol is represented as an interactive Turing machine (ITM), which
represents the program to be run within each participant. Specifically, an ITM has three tapes that
can be written to by other ITMs: the input and subroutine output tapes model the inputs from and
the outputs to other programs running within the same “entity” (say, the same physical computer),
and the incoming communication tapes and outgoing communication tapes model messages received
from and to be sent to the network. It also has an identity tape that cannot be written to by the
ITM itself. The identity tape contains the program of the ITM (in some standard encoding) plus
additional identifying information specified below. Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of
ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an ITI is an
ITM along with an identifer that distinguishes it from other ITIs in the same system. The identifier
consists of two parts: A session-identifier (SID) which identifies which protocol instance the ITM
belongs to, and a party identifier (PID) that distinguishes among the parties in a protocol instance.
Typically the PID is also used to associate ITIs with “parties”, or clusters, that represent some
administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes in
certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI in the
system.

With one exception (discussed within) we assume that all ITMs are probabilistic polynomial
time (PPT). An ITM is PPT if there exists a constant c > 0 such that, at any point during its
run, the overall number of steps taken by M is at most mc, where m is the overall number of bits
written on the input tape of M in this run. (In fact, in order to guarantee that the overall protocol
execution process is bounded by a polynomial, we define m as the total number of bits written to
the input tape of M , minus the overall number of bits written by M to input tapes of other ITMs.;
see [Can01].)

A.2 Security of protocols

Protocols that securely carry out a given task (or, protocol problem) are defined in three steps, as
follows. First, the process of executing a protocol in an adversarial environment is formalized. Next,
an “ideal process” for carrying out the task at hand is formalized. In the ideal process the parties
do not communicate with each other. Instead they have access to an “ideal functionality,” which is
essentially an incorruptible “trusted party” that is programmed to capture the desired functionality
of the task at hand. A protocol is said to securely realize an ideal functionality if the process of
running the protocol amounts to “emulating” the ideal process for that ideal functionality. Below
we overview the model of protocol execution (called the real-life model), the ideal process, and the
notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running an
instance of a protocol Π, an adversary A that controls the communication among the parties, and an
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environment Z that controls the inputs to the parties and sees their outputs. We assume that all
parties have a security parameter λ ∈ N. (We remark that this is done merely for convenience and
is not essential for the model to make sense). The execution consists of a sequence of activations,
where in each activation a single participant (either Z, A, or some other ITM) is activated, and may
write on a tape of at most one other participant, subject to the rules below. Once the activation
of a participant is complete (i.e., once it enters a special waiting state), the participant whose tape
was written on is activated next. (If no such party exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first
activation, the environment invokes the adversary A, providing it with some arbitrary input. In
the context of UC security, the environment can from now on invoke (namely, provide input to)
only ITMs that consist of a single instance of protocol Π. That is, all the ITMs invoked by the
environment must have the same SID and the code of Π.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or report information to Z by writing this information on
the subroutine output tape of Z. For simplicity of exposition, in the rest of this paper we assume
authenticated communication; that is, the adversary may deliver only messages that were actually
sent. (This is however not essential as shown in [Can04, BCL+05].)

Once a protocol party (i.e., an ITI running Π) is activated, either due to an input given by the
environment or due to a message delivered by the adversary, it follows its code and possibly writes
a local output on the subroutine output tape of the environment, or an outgoing message on the
adversary’s incoming communication tape.

The protocol execution ends when the environment halts. The output of the protocol execution
is the output of the environment. Without loss of generality we assume that this output consists
of only a single bit.

Let EXECπ,A,Z(n, z, r) denote the output of the environment Z when interacting with parties
running protocol Π on security parameter λ, input z and random input r = rZ , rA, r1, r2, . . . as
described above (z and rZ for Z; rA for A, ri for party Pi). Let EXECπ,A,Z(n, z) random variable
describing EXECπ,A,Z(n, z, r) where r is uniformly chosen. Let EXECπ,A,Z denote the ensemble
{EXECπ,A,Z(n, z)}n∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing the
protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient in the
ideal protocol is the ideal functionality that captures the desired functionality, or the specification,
of that task. The ideal functionality is modeled as another ITM (representing a “trusted party”)
that interacts with the parties and the adversary. More specifically, in the ideal protocol for
functionality F all parties simply hand their inputs to an ITI running F . (We will simply call this
ITI F . The SID of F is the same as the SID of the ITIs running the ideal protocol. (the PID of F is
null.)) In addition, F can interact with the adversary according to its code. Whenever F outputs
a value to a party, the party immediately copies this value to its own output tape. We call the
parties in the ideal protocol dummy parties. Let Π(F) denote the ideal protocol for functionality
F .

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol φ
if for any adversary A there exists an adversary S such that no environment Z, on any input,
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can tell with non-negligible probability whether it is interacting with A and parties running Π,
or it is interacting with S and parties running φ. This means that, from the point of view of the
environment, running protocol Π is ‘just as good’ as interacting with φ. We say that Π securely
realizes an ideal functionality F if it emulates the ideal protocol Π(F). More precise definitions
follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

Definition A.1 Let Π and φ be protocols. We say that Π UC-emulates φ if for any adversary A
there exists an adversary S such that for any environment Z that obeys the rules of interaction for
UC security we have EXECF ,S,Z ≈ EXECπ,A,Z .

Definition A.2 Let F be an ideal functionality and let Π be a protocol. We say that Π UC-realizes
F if Π UC-emulates the ideal process Π(F).

A.3 Hybrid protocols

Hybrid protocols are protocols where, in addition to communicating as usual as in the standard
model of execution, the parties also have access to (multiple copies of ) an ideal functionality. Hybrid
protocols represent protocols that use idealizations of underlying primitives, or alternatively make
trust assumptions on the underlying network. They are also instrumental in stating the universal
composition theorem. Specifically, in an F-hybrid protocol (i.e., in a hybrid protocol with access to
an ideal functionality F), the parties may give inputs to and receive outputs from an unbounded
number of copies of F .

The communication between the parties and each one of the copies of F mimics the ideal
process. That is, giving input to a copy of F is done by writing the input value on the input tape
of that copy. Similarly, each copy of F writes the output values to the subroutine output tape of
the corresponding party. It is stressed that the adversary does not see the interaction between the
copies of F and the honest parties.

The copies of F are differentiated using their SIDs. All inputs to each copy and all outputs from
each copy carry the corresponding SID. The model does not specify how the SIDs are generated,
nor does it specify how parties “agree” on the SID of a certain protocol copy that is to be run by
them. These tasks are left to the protocol. This convention seems to simplify formulating ideal
functionalities, and designing protocols that securely realize them, by freeing the functionality from
the need to choose the SIDs and guarantee their uniqueness. In addition, it seems to reflect common
practice of protocol design in existing networks.

The definition of a protocol securely realizing an ideal functionality is extended to hybrid pro-
tocols in the natural way.

The universal composition operation. We define the universal composition operation and
state the universal composition theorem. Let ρ be an F-hybrid protocol, and let Π be a protocol
that securely realizes F . The composed protocol ρΠ is constructed by modifying the code of each
ITM in ρ so that the first message sent to each copy of F is replaced with an invocation of a new copy
of Π with fresh random input, with the same SID, and with the contents of that message as input.
Each subsequent message to that copy of F is replaced with an activation of the corresponding
copy of Π, with the contents of that message given to Π as new input. Each output value generated
by a copy of Π is treated as a message received from the corresponding copy of F . The copy of
Π will start sending and receiving messages as specified in its code. Notice that if Π is a G-hybrid
protocol (i.e., ρ uses ideal evaluation calls to some functionality G) then so is ρΠ.
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The universal composition theorem. Let F be an ideal functionality. In its general form,
the composition theorem basically says that if Π is a protocol that UC-realizes F then, for any F-
hybrid protocol ρ, we have that an execution of the composed protocol ρΠ “emulates” an execution
of protocol ρ. That is, for any adversary A there exists a simulator S such that no environment
machine Z can tell with non-negligible probability whether it is interacting with A and protocol ρΠ

or with S and protocol ρ, in a UC interaction. As a corollary, we get that if protocol ρ UC-realizes
F , then so does protocol ρΠ. 25

Theorem A.3 (Universal Composition [Can01].) Let F be an ideal functionality. Let ρ be a
F-hybrid protocol, and let Π be a protocol that UC-realizes F . Then protocol ρΠ UC-emulates ρ.

An immediate corollary of this theorem is that if the protocol ρ UC-realizes some functionality
G, then so does ρΠ.

A.4 The Common Reference/Random String Model

In the common reference string (CRS) model [CF01, CLOS02], all parties in the system obtain
from a trusted party a reference string, which is sampled according to a pre-specified distribution
D. The reference string is referred to as the CRS. In the UC framework, this is modeled by an
ideal functionality FDCRS that samples a string ρ from a pre-specified distribution D and sets ρ as
the CRS. FDCRS is described in Figure 15.

Functionality FD
CRS

1. Upon activation with session id sid proceed as follows. Sample ρ = D(r),
where r denotes uniform random coins, and send (crs, sid, ρ) to the ad-
versary.

2. On receiving (crs, sid) from some party send (crs, sid, ρ) to that party.

Figure 15: The Common Reference String Functionality.

When the distribution D in FDCRS is sent to be the uniform distribution (on a string of appro-
priate length) then we obtain the common random string model.

A.5 General Functionality

We consider the general-UC functionality F , which securely evaluates any polynomial-time (pos-
sibly randomize) function f : ({0, 1}`in)n → ({0, 1}`out)n. The functionality Ff is parameterized
with a function f and is described in Figure 16. In this paper we will only be concerned with the
static corruption model.

25 The universal composition theorem in [Can01] applies only to “subroutine respecting protocols”, namely protocols
that do not share subroutines with any other protocol in the system.
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Functionality Ff

Ff parameterized by an (possibly randomized) n-ary function f , running with
parties P = {P1, . . . Pn} (of which some may be corrupted) and an adversary
S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends
(input, sid,P, Pi, xi) to the functionality.

2. Upon receiving the inputs from all parties, evaluate (y1, . . . yn) ←
f(x1, . . . , xn). For every Pi that is corrupted send adversary S the mes-
sage (output, sid,P, Pi, yi).

3. On receiving (generateOutput, sid,P, Pi) from S the ideal functionality
outputs (output, sid,P, Pi, yi) to Pi. (And ignores the message if inputs
from all parties in P have not been received.)

Figure 16: General Functionality.

B Garbling Protocols with Extractable Semi-malicious Security

In this section we give a construction of garbling scheme for protocols satisfying extractable semi-
malicious security. We first describe a construction making non-black box use of a homomorphic
proof commitment with encryption and then we will explain how to make the construction black-
box.

The key difference between this construction and the construction in Section 5.2 is that the
length of the CRS in this construction grows with the number of parties. Essentially, we have
a separate commitment key for each party in the CRS. The rest of the components are almost
identical to the construction in Section 5.2.

Construction. We give the description of the construction in Figure 18. The differences between
the two constructions are underlined.

B.1 Description of Simulators

We now give the description of simulators (S1, S2) that satisfy the extractable semi-malicious se-
curity.

S1: On input 1λ and the set H, S1 generates the encodings of the honest parties as follows:

1. For each i ∈ H, sample (cki, tki)← Khiding(1λ) and for each i 6∈ H, sample (cki, xki)←
Kbinding(1λ). Set σ := {cki}i.

2. for every i ∈ H do:

(a) Set the initial state of the party Pi to be yi := 0T ‖(0m, 0s). Choose the randomness
{ωi,k} as in the honest execution of Encode function.

(b) Generate the commitments ci,k := com(cki, yi,k;ωi,k) for each k ∈ [`].
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Functionality Ff

Ff parameterized by an n-ary deterministic single output function f , running
with parties P = {P1, . . . Pn} (of which some may be corrupted) and an adver-
sary S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends
(input, sid,P, Pi, xi) to the functionality.

2. Upon receiving the inputs from all parties, evaluate y ← f(x1, . . . , xn).
Send adversary S the message (output, sid,P, y).

3. On receiving (generateOutput, sid,P, Pi) from S the ideal functionality
outputs (output, sid,P, y) to Pi. (And ignores the message if inputs from
all parties in P have not been received.)

Figure 17: General Functionality for Deterministic Single Output Functionalities.

(c) Set the encoding x̃i := {ci,k}k∈[`].

3. Set the secret state stS := ({tki}i∈H , {xki}i 6∈H , {ωi,k}i∈H,k∈[`])

4. Output (σ, {x̃i}i∈H , stS).

S2: On input the secret state stS , {x̃j}j 6∈H and the transcript Φ(x1, . . . , xn) S2 generates the garbled
protocol components of the honest parties as follows:

1. For every j 6∈ H, use the extraction key xkj to extract the value of the initial state yj
from {cj,k}k∈[`].

2. For every j 6∈ H, construct the final state y∗j using the initial state yj and the transcript
Φ(x1, . . . , xn). Set the final tracking string corresponding to party Pj as u∗j := yj ⊕ y∗j .

3. For every j ∈ H, set the final tracking string u∗j :=


0 if k > T

uniform in {0, 1} if k ∈ [T ] \B
based on Φ(x1, . . . , xn) if k ∈ [T ] ∩B

.

4. For every i ∈ H, compute
(
P̃ i,T , ˜label

i,T )
← Sim(1λ,Φ(x1, . . . , xn)).

5. for every t from T − 1 down to 1 do:

(a) For every i ∈ H, parse ˜label
i,t+1

as {stik}k∈[`], {enik}k∈[n`e] and {trik}k∈[`].

(b) Let (i∗, f, g) := Φ1(t).

(c) Compute df , dg, e0, e1 as given in program PΦ using the final tracking string ui∗ .

(d) Let β := ui∗,t.

(e) For every i ∈ H, generate stctiβ := E01(cki∗ , eβ, stit) and stcti1−β := E01(cki∗ , e1−β, 0
λ).

For every j ∈ [n], generate trctij,β := E01(cki∗ , eβ, tri(j−1)`+t) and trctij,1−β := E01(cki∗ , e1−β, 0
λ).

(f) Set sti as
(
{stik}k 6=t, stcti0, stcti1

)
, eni as {enik}k∈[n`e] and tri as

{
{tri(j−1)`+k}k∈[`]\{t},

trctij,0, trctij,1
}
j∈[n]

.
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Let Φ be an n party protocol, (Kbinding,Khiding, P01, V01, E01, D01) be a homomorphic proof commitment
with encryption, and (GarbleCkt,EvalCkt) be a garbling scheme for circuits.

Setup(1λ): Sample (cki, ·)← Kbinding(1λ) for each i ∈ [n] and output σ := {cki}i∈[n] as the reference

string.

Garble(σ, i,Φi, xi): To generate the input encoding, garbled protocol component and encoding labels:

1. Compute (x̃i, yi, ski)← Encode(σ, i, xi) where the function Encode is described in Figure 19.

2. Set labeli,T+1 :=
(
(0, 1), . . . , (0, 1)

)
where (0, 1) is repeated `+ n`e + n` times and `e := |x̃i|.

3. for each t from T down to 1,(
P̃i,t, labeli,t

)
← GarbleCkt(1λ,PΦ[i, t, ski, {cki}, labeli,t+1])

where PΦ is described in Figure 19.

4. Parse labeli,1 as {stik,0, stik,1}k∈[`], {enik,0, enik,1}k∈[n`e], {trik,0, trik,1}k∈[n`].

5. Set sti := {stik,yi,k}k∈[`] and tri := {trik,0}k∈[n`].

6. Set the garbled protocol component Φ̃i :=
(
{P̃i,t}t∈[T ], sti, tri

)
, the input encoding to x̃i and

the encoding labels to be {enik,0, enik,1}k∈[n`e].

Eval({Φ̃i}, {xi}, {enix̃1‖...‖x̃n}): To compute the output of the protocol:

1. For every i ∈ [n], parse x̃i as {ci,k, πi,k}k∈[`]. Check if V01(cki, ci,k, πi,k) = 1 for every k ∈ [`].

Additionally, for every k ∈ B, check if ci,k := com(cki, 0; 0λ). If any of the checks fail, output
⊥.

2. Parse Φ̃i as
(
{P̃i,t}t∈[T ], sti, tri

)
.

3. Set ˜label
i

:=
(
sti, enix̃1‖...‖x̃n , tri

)
and the initial tracking strings ui := 0` for every i ∈ [n].

4. for every round t from 1 to T − 1 do:

(a) Let (i∗, f, g) := Φ1(t).

(b) Compute
(
label

i∗

, β, πi∗,t
)
← EvalCkt(P̃i

∗,t, ˜label
i∗

) and label
i ← EvalCkt(P̃i,t, ˜label

i
) for

every i 6= i∗.

(c) for every i ∈ [n] do,

i. Parse label
i

as (st
i
, eni, tr

i
).

ii. Compute df , dg, e0, e1 exactly as in PΦ described in Figure 7 using the tracking
string ui∗ .

iii. Parse st
i

as
(
{ŝt

i
k}k 6=t, stcti0, stcti1

)
and compute ŝt

i
t := D01(cki∗ , eβ , stctiβ , πi∗,t).

Update sti := {ŝt
i
k}k∈[`].

iv. Parse tr
i

as
{
{t̂r

i
(j−1)`+k}k∈[`]\{t}, trctij,0, trctij,1

}
j∈[n]

. For every j ∈ [n], compute

t̂r
i
(j−1)`+t := D01(cki∗ , eβ , trctij,β , πi∗,t). Update tri := {t̂r

i
k}k∈[n`].

v. Update ˜label
i

:=
(
sti, enix̃1‖...‖x̃n , tri

)
.

vi. Update ui∗,t to β. If t ∈ Bi∗ , update every uj,t to β for all j ∈ [n].

(d) Compute y := EvalCkt(P̃i,T , ˜label
i
) and output y.

Figure 18: Garbling Scheme for Protocols
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Encode(σ, i, xi)

To generate an encoding of the input xi do the following:

1. Choose si ← {0, 1}s as the random tape of party Pi in the protocol Φ.

2. Let B := ∪iBi. Choose randomness {ωi,k}k∈[`] and the initial state yi := ri‖(xi, si) as:

ri,k :=

{
0 if k ∈ [T ] ∩B
uniform in {0, 1} if k ∈ [T ] \B

ωi,k :=

{
0λ if k ∈ B
uniform in {0, 1}λ otherwise

3. For each k ∈ [`], compute ci,k := com(cki, yi,k;ωi,k) and πi,k := P01(cki, yi,k, ωi,k)

4. Output x̃i := {ci,k, pi,k}k∈[`], the initial state yi and the secret randomness ski := {ωi,k}k∈[`].

PΦ[i, t, ski, {cki}, label]

Input. The state yi of party Pi, the set of encodings {x̃j} and the set of tracking strings {uj}
Hardcoded. The index i of the party, the round number t, the secret randomness ski, the set of commit-
ment keys {cki} and a set of labels label :=

{
{stk,0, stk,1}k∈[`], {enk,0, enk,1}k∈[n`enc], {trk,0, trk,1}k∈[n`]

}
.

1. Let (i∗, f, g) := Φi(t).

2. Parse x̃i∗ as {ci∗,k}k∈[`].

3. Let df and dg be the commitments to the bits yi∗,f and yi∗,g where yi∗ is the current state of the
active party. These commitments are computed as follows: for h ∈ {f, g}, dh := ci∗,h if ui∗,h = 0;

else, dh :=
com(cki∗ ,1;0λ)

ci∗,h
.

4. Compute e0 := dfdgc
2
i∗,tcom(cki∗ ,−2; 0λ) and e1 := dfdg

(
com(cki∗ ,1;0λ)

ci∗,t

)2

com(cki∗ ,−2; 0λ).

Set α := NAND(yi,f , yi,g).

5. For b ∈ {0, 1}, compute stctb :=


E01(cki∗ , eb, stt,b) if t ∈ Bi∗
E01(cki∗ , eb, stt,yi,t) if t 6∈ Bi∗ ∧ i 6= i∗

E01(cki∗ , eb, stt,α) if t 6∈ Bi∗ ∧ i = i∗
.

Set st := {stk,yi,k}k 6=t, stct0, stct1.

6. Set en := enx̃1‖...‖x̃n .

7. For b ∈ {0, 1}, j ∈ [n], compute trctj,b :=

{
E01(cki∗ , eb, tr(j−1)`+t,b) if (t ∈ Bi∗) ∨ (j = i∗)

E01(cki∗ , eb, tr(j−1)`+t,uj,t) if (t 6∈ Bi∗) ∧ (j 6= i∗)
.

Set tr :=
{
{tr(j−1)`+k,uj,k}k∈[`]\{t}, trctj,0, trctj,1

}
j∈[n]

.

8. If i = i∗ then parse ski as {ωi,k}k∈[`]. For h ∈ {f, g}, set ω′i,h :=

{
ωi,h if ui,h = 0

−ωi,h otherwise

Compute πi,t := P01(cki, eβ , ρβ) where β := yi,t⊕α, ρ0 = ω′i,f +ω′i,g+2ωi,t, ρ1 = ω′i,f +ω′i,g−2ωi,t.

9. If t 6= T then output label := (st, en, tr) and additionally output (β, πi,t) if i = i∗.
If t = T then output the transcript of the protocol from the state as {yi,k}k∈B .

Figure 19: The programs Encode and PΦ.58



(g) For every i ∈ H \ {i∗} generate, P̃ i,t, ˜label
i,t
← Sim(1λ, (sti, eni, tri)).

(h) if i∗ ∈ H then:

i. For h ∈ {f, g, t}, set ω′i∗,h :=

{
ωi∗,h if ui∗,h = 0

−ωi∗,h otherwise
.

ii. Compute v1 := Topen(tki∗ , ui∗,f , ω
′
i∗,f , 0), v2 := Topen(tki∗ , ui∗,g, ω

′
i∗,g, 0) and

v3 := Topen(tki∗ , ui∗,t, ω
′
i∗,t, 1).

iii. Compute πi∗,t := P01(cki∗ , 1, ρ) where ρ = v1 + v2 − 2v3.

iv. Generate, P̃ i
∗,t, ˜label

i∗,t
← Sim(1λ, (sti

∗
, eni

∗
, tri

∗
), (β, πi∗,t))

We show that

Lemma B.1 Assuming the security of the garbling scheme for circuits and the homomorphic proof
commitment with encryption for every protocol Φ, and every subset H ⊆ [n] of honest parties,
and for every choice of inputs {xi}i∈H for honest parties, we have that for every PPT adversary
A = (A1,A2),∣∣∣Pr

[
extReal[1λ, {xi}, H] = 1

]
− Pr

[
extIdeal[1λ, {xi}, H] = 1

]∣∣∣ ≤ negl(λ)

B.2 Proof of Lemma B.1

The proof of this lemma proceeds in a similar way as the proof of Lemma 5.8. As before, in
hybrid Hybridk, we define Adv(Hybridk) to be the probability that A outputs 1 when given inputs
as distributed in Hybridk.

For every w ∈ [T ], we define Hybridw as follows:

Hybridw: In this hybrid, we change how
(
P̃ i,t, ˜label

i,t)
for every i ∈ H and t < w are generated.

In particular, we generate them as given in the modified garbling procedure given in Figure 8.
Notice that Hybrid1 is distributed as in the real world.

Lemma B.2 Assuming the security of garbling scheme for circuits and the homomorphic proof
commitments with encryption, we have that for every w ∈ [T ], |Adv(Hybridw)− Adv(Hybridw+1)| ≤
negl(λ).

Proof We define a couple of intermediate hybrids.
Hybridw,1: Let ywi := {y∗i,k}k∈[w−1]‖{yi,k}k∈[w,`] be the local state of party Pi at the beginning of the

w-th round. We use the extraction key xkj to extract the value of the initial state {yj}j 6∈H from
{x̃j}j 6∈H . Later using the transcript Φ(x1, . . . , xn), we can construct ywj for every j 6∈ H. For every
i ∈ H, yi can be constructed from Φ(x1, . . . , xn). Let {uwj } be the set of tracking strings at the
beginning of the w-th round. In this hybrid, for every for every i ∈ H we generate(

P̃ i,w, ˜label
i,w)
← Sim(1λ,PΦ[i, w, ck, ski, labeli,w+1](ywi , {x̃j}, {uwj }))

Claim B.3 Assuming the security of garbling scheme for circuits, |Adv(Hybridw)−Adv(Hybridw,1)| ≤
negl(λ)
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Garble′′: On additional inputs the hybrid number w, the final state y∗i of party Pi, the set of encodings
{x̃j} and the final set of tracking strings {u∗j} for every Pj do:

1. Compute (x̃i, yi, ski)← Encode(σ, i, xi) where the function Encode is described in Figure 19.

2. Set labeli,T+1 :=
(
(0, 1), . . . , (0, 1)

)
where (0, 1) is repeated `+ n`e + n` times and `e := |x̃i|.

3. for each t from T down to w,(
P̃i,t, labeli,t

)
← GarbleCkt(1λ,PΦ[i, t, ski, {cki}, labeli,t+1])

where PΦ is described in Figure 19.

4. Parse labeli,w as {stik,0, stik,1}k∈[`], {enik,0, enik,1}k∈[n`e], {trik,0, trik,1}k∈[n`].

5. Set ˜label
i,w

:= {stik,y∗i,k
}k∈[w], {stik,yi,k}k∈[w+1,`], enx̃1...x̃n , {tri(j−1)`+k,u∗j,k

}j∈[n],k∈[w],

{tri(j−1)`+k,0}j∈[n],k∈[w+1,`].

6. for each t from w − 1 down to 1:

(a) Parse ˜label
i,t+1

as {stik}k∈[`], {enik}k∈[n`e] and {trik}k∈[`].

(b) Let (i∗, f, g) := Φ1(t).

(c) Compute df , dg, e0, e1 as given in program PΦ using the tracking string u∗i∗ .

(d) Let β := u∗i∗,t.

(e) Generate stctiβ := E01(cki∗ , eβ , stit) and stcti1−β := E01(cki∗ , e1−β , 0
λ). Generate

trctij,β := E01(cki∗ , eβ , tri(j−1)`+t) and trctij,1−β := E01(cki∗ , e1−β , 0
λ) for every j ∈ [n].

(f) Set st
i

as
(
{stik}k 6=t, stcti0, stcti1

)
, eni as {enik}k∈[n`e] and tr

i
as
{
{tri(j−1)`+k}k∈[`]\{t},

trctij,0, trctij,1
}
j∈[n]

.

(g) Generate, P̃ i,t, ˜label
i,t
← Sim(1λ, (st

i
, eni, tr

i
)).

Figure 20: Modified Garbling Procedure

Proof The proof of this claim follows via an identical argument in the proof of Claim 5.10.

Hybridw,2: In this hybrid, we perform the modified garbling procedure with input w + 1 instead of

w. This hybrid is identically distributed to Hybridw+1. Additionally, instead of using the extraction
key xkj to extract out the value of the initial state yj for every j 6∈ H we brute force search for a
yj using {cj,k}k∈[`]. Note that this search procedure might take super-polynomial time.

Claim B.4 Assuming the statistical semantic security of homomorphic proof commitments with
encryption, |Adv(Hybridw,1)− Adv(Hybridw,2)| ≤ negl(λ)

Proof Assume for the sake of contradiction that |Adv(Hybridw,1)−Adv(Hybridw,2)| > 1
poly(λ) . We

construct an adversary B breaking the semantic security of homomorphic proof commitments with
encryption.
B obtains {cki}i∈[n] from the external challenger and computes the input encodings {x̃i}i∈H as

per the honest procedure given in Figure 7. It then runs A1(σ, {x̃i}i∈H) to obtain {x̃j}j 6∈H and stA.
B does a brute force search on {x̃j}j 6∈H to obtain the initial states {yj}j 6∈H . B generates the garbled
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circuits P̃i,t for t from T to w+1 as in the modified garbled procedure in Figure 20. Instead of gen-

erating the garbled circuit
(
P̃ i,w, ˜label

i,w)
← Sim(1λ,PΦ[i, w, {cki}, ski, labeli,w+1](ywi , {x̃j}, {uwj }))

for every i ∈ H as in Hybridw,1, it generates it as follows:

1. Let yw+1
i be the local state of party i and {uw+1

j } be the set of tracking strings at the end of
the w-th round.

2. Let (i∗, f, g) := Φ1(w).

3. Compute df , dg, e0, e1 as given in program PΦ using the tracking string uw+1
i∗ .

4. Let β := uw+1
i∗,w , α := yw+1

i,w and γj := uw+1
j,w for every j ∈ [n].

5. Generate stctiβ := E01(cki∗ , eβ, stiw,α) if w 6∈ Bi∗∨i = i∗; else generate stctiβ := E01(cki∗ , eβ, stiw,β).
Interact with the semantic security challenger by giving e1−β as the challenge commitment,
stiw,1−α

26 and 0λ as the challenge messages. Receive the challenge ciphertext stcti1−β.

6. Generate trctij,β := E01(cki∗ , eβ, tri(j−1)`+w,β) if w ∈ Bi∗ ∨ j = i∗; else generate trctij,β :=

E01(cki∗ , eβ, tri(j−1)`+w,γj
). Interact with the semantic security challenger by giving e1−β as

the challenge commitment and tri(j−1)`+w,1−β
27 and 0λ as the challenge messages for every

j ∈ [n]. Receive the set of challenge ciphertexts {trctij,1−β} for every j ∈ [n].

7. Set sti as
(
{sti

k,yw+1
i,k

}k 6=t, stcti0, stcti1
)
, eni as {enik}k∈[n`e] and tri as

{
{tri

(j−1)`+k,uw+1
j,k

}k∈[`]\{t},

trctij,0, trctij,1
}
j∈[n]

.

8. Generate, P̃ i,w, ˜label
i,t
← Sim(1λ, (sti, eni, tri)).

Finally, B runs A2 on the inputs stA, {Φ̃i, x̃i, labix̃1‖...‖x̃n}i∈H and outputs whatever A outputs.
Notice that the challenge commitment e1−β is not a commitment to zero-one message. Thus,
B represents a valid challenger to the semantic security. If the challenge ciphertexts contain an
encryption of the string 0λ then the view of A2 is distributed identically to Hybridw,2. Else, it is
distributed identically to Hybridw,1. Thus, B breaks the semantic security of homomorphic proof
commitment with encryption.

This completes the proof of the lemma.

HybridT+1 : In this hybrid, we change how the reference string is generated. Instead of generating

(cki, ·) ← Kbinding(1λ), we generate it as (cki, ·) ← Khiding(1λ) for every i ∈ H. We still generate
(ckj , xkj) ← Kbinding(1λ) for every j ∈ H and use the extraction key xkj to extract the value of
the initial state yj .

The following lemma directly follows from the key indistinguishability of the homomorphic proof
commitment.

Lemma B.5 Assuming key indisintinguishability property of homomorphic proof commitment with
encryption, |Adv(HybridT )− Adv(HybridT+1)| ≤ negl(λ)

26We need to give stiw,α instead of stiw,1−α if w 6∈ Bi∗
27If w 6∈ Bi∗ ∧ j = i∗, we should then give tri(j−1)`+w,γj

instead of tri(j−1)`+w,1−β .
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HybridT+2 : For every i ∈ H, let y∗i be the final local state, yi be the initial local state and u∗i be
the final value of the tracking string corresponding to i. Notice that u∗i is distributed uniformly on
projection to the coordinates [T ] \ {B} and y∗i := yi ⊕ u∗i . Let BH := ∪i∈HBi. In this hybrid, we
change how πi∗,t (which is hardcoded while generating the simulated garbled circuit) is generated
for every t ∈ BH . In particular, we generate it as:

1. Let (i∗, f, g) := Φi(t).

2. For h ∈ {f, g, t}, set ω′i∗,h :=

{
ωi∗,h if u∗i∗,h = 0

−ωi∗,h otherwise
.

3. Compute v1 such that com(cki∗ , y
∗
i∗,f ;ω′i∗,f ) := com(0; v1), v2 such that com(cki∗ , y

∗
i∗,g;ω

′
i∗,g) :=

com(0; v2) and v3 such that com(cki∗ , y
∗
i∗,t;ω

′
i∗,t) := com(1; v3). Notice that this step might

take super-polynomial time.

4. Compute πi∗,t := P01(cki∗ , 1, ρ) where ρ = v1 + v2 − 2v3.

The following lemma follows via an identical argument to Lemma 5.13.

Lemma B.6 Assuming perfect witness indistinguishability of homomorphic proof commitment with
encryption we have, |Adv(HybridT+1)− Adv(HybridT+2)| = 0.

HybridT+3 : In this hybrid, for every i ∈ H, we change how the encoding x̃i is generated. In

particular, for every k ∈ [`] \ B, we generate ci,k := com(cki, 0). As in the previous hybrid, we
additionally find v1, v2, v3 by running in possibly super-polynomial time.

Lemma follows from Lemma 5.14

Lemma B.7 Assuming perfect hiding of the homomorphic proof commitment with encryption we
have, |Adv(HybridT+2)− Adv(HybridT+3)| = 0.

HybridT+4 : In this hybrid, we make the process of sampling from the distribution efficient by
giving access to the trapdoor key tk. Notice that the distributions HybridT+3 and HybridT+4 are
identical from the perfect trapdoor opening property of the homomorphic proof commitment with
encryption. HybridT+4 is distributed identically to extIdeal.

B.3 Black-Box Construction

In this subsection we explain how to transform the non-black box construction given in Figure 18
to a fully black-box construction. Notice that the only non black-box use the underlying primitive
happens in the program PΦ described in Figure 19 that uses the circuit for encryption and proof
generation. We now describe a way to make the program PΦ not use the circuit for computing
encryption and proof generation by pre-computing the appropriate values and hardwiring them in
the program.

Since the output of Φi on an input is fixed and does not depend on the messages sent in the
protocol, we can pre-compute the value of this output as (i∗, f, g) for every round t. For each value
of the bit ui∗,h where h ∈ {f, g}, we can pre-compute dh,0 if ui∗,h = 0 and dh,1 if ui∗,h = 1. We
can then hardwire these pre-computed commitments in the program PΦ and use them as and when
needed within the program. For each of the four possible choices of df,a and dg,b where a, b,∈ {0, 1},
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we pre-compute the values ea,b,0 and ea,b,1 and hardwire them in the program PΦ. Similarly, for
every choice of a, b, c ∈ {0, 1}, we can pre-compute the encryptions stcta,b,c,d by encrypting stt,d
for d ∈ {0, 1}. Similarly, we can pre-compute trctj,a,b,c,d encrypting tr(j−1)`+t,d for d ∈ {0, 1} and
hardwire them in the program PΦ. We can also pre-compute the proof πi∗,t,a,b,c for every value of
a, b, c ∈ {0, 1}. Now the role of the program PΦ is just to identify the appropriate commitments,
the ciphertexts and the proofs based on the state yi and the tracking strings {uj}. Notice that the
number of hardwired components in the new program PΦ is polynomial in the number of parties.
The new program PΦ makes black-box use of the underlying homomorphic proof commitment with
encryption.

C Description of the Simulator and Hybrid argument for Black-
box MPC

In this section we give the description of the simulator for the protocol described in Figure 14 and
prove indistinguishability of the simulated distribution from the real world execution.

C.1 Description of the Simulator

In this subsection we give the description of the ideal world adversary S having access to the ideal
functionality Ff that simulates the view of the real world adversary A. S will internally use the
simulators SΦ for the semi-malicious security of Φ and (S1, S2) for the garbling scheme for protocols.

We assume that A is static and hence the set of honest parties H is known before the execution
of the protocol.

Simulating the CRS. To simulate the common reference string, S runs S1 on input 1λ and H
and obtains σ, the set of input encodings {x̃i}i∈H for the honest parties and the secret simulation
state stS . It set the common reference string to be σ and locally stores {x̃i}i∈H and stS . Note that
stS consists of a set of extraction keys xkj for every j 6∈ H.

Simulating the interaction with Z. For every input value for the set of corrupted parties that
S receives from Z, S writes that value to A’s input tape. Similarly, the output of A is written as
the output on S’s output tape.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

• Round-1 messages: S also simulates the ideal functionality FNIOT to A and stores all the
queries that A makes to FNIOT and answers them according to FNIOT.

• Round-2 messages from S to A: S recovers {x̃i}i∈H from its local storage. For each
i ∈ H, S sends x̃i to A on behalf of the honest party i.

• Round-2 messages from A to S: S receives {x̃j}j 6∈H on behalf of each honest party i ∈ H.

• Round-3 messages from S to A:

1. for every i ∈ H,
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(a) For each j 6∈ H, S parses x̃j received by i as {cj,k, πj,k}j 6∈H .

(b) For every j 6∈ H and every k ∈ [`], S checks if the proof πj,k is a valid zero-one proof
that cj,k is a commitment to a message in {0, 1}. If any of the checks fail, S locally
stores (i,abort).

2. If for every i ∈ H, (i,abort) is stored, S aborts the execution.

3. Else, for every j 6∈ H, S recovers the initial state yj from the commitments {cj,k} using
the extraction key xkj . Note that the initial state yj consists of the input xj and the
randomness sj of party j in the computation of Φ.

4. S queries the ideal functionality Ff with the query (input, sid, j, xj) for every j 6∈ H
and obtains the string z which is the output of the functionality.

5. S then runs the simulator SΦ on inputs {yj}j 6∈H , the output z and the extracted OT
correlations queried by A to obtain the simulated transcript τ .

6. It then runs S2 on input the secret state stS (recovered from its local storage), {x̃j}j 6∈H
and the simulated transcript τ to obtain {Φ̃i, labx̃1‖...‖x̃n}i∈H .

7. For every i such that there does not exist (i,abort) in its local storage, S forwards
Φ̃i, labx̃1‖...‖x̃n on behalf of i.

• Round-3 messages from A to S: For every i ∈ H, S obtains the second round message
from A on behalf of the honest party. For every i ∈ H, if the set of message obtained from
A is well formed, S sends (generateOutput, sid, i) to the trusted party Ff .

We show that:

Lemma C.1 Assuming the semi-malicious security of Φ and the extractable semi-malicious secu-
rity of garbling scheme for protocols for any environment Z that obeys the rules of interaction for
UC security we have EXECF ,S,Z ≈ EXECπ,A,Z .

C.2 Proof of Lemma C.1

We prove the lemma via a hybrid argument.

Hybrid1 : This corresponds to the real world execution where the environment Z is interacting
with the real world adversary A. Alternatively, we can view this hybrid in the ideal world where
the ideal world adversary S additionally has access to the private inputs of the honest parties and
interacts with A. S generates the messages of the honest parties as given in the description of the
protocol. It also simulates the ideal world functionality FNIOT to A.

Hybrid2 : In this hybrid the ideal world adversary S invokes the simulator of the garbling scheme for
protocols instead of generating the round-2 and round-3 messages honestly. To give more details,
S runs S1 on input 1λ and H, to obtain the common reference string σ, the set of input encodings
{x̃i}i∈H corresponding to the honest parties and the secret simulation state stS . It sets the common
reference string as σ and forwards {x̃i}i∈H to A on behalf of the honest parties. It obtains {x̃j}j 6∈H
and recovers the initial input state yj and the input xj for each j ∈ H using the extraction key
xkj in stS . It executes Φ in “its head” using its knowledge of the honest parties inputs and using
the extracted inputs of the corrupted parties to obtain the transcript Φ(x1, . . . , xn). It then runs
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the simulator S2 on input the secret state stS , {x̃j}j 6∈H and the transcript Φ(x1, . . . , xn) to obtain

{Φ̃i, labx̃1‖...‖x̃n}i∈H . It then forwards this to A.
Notice that the view of the adversary in Hybrid1 and Hybrid2 is computationally indistinguish-

able from the extractable semi-malicious security of garbling scheme for protocols.

Hybrid3 : In this hybrid, the ideal world adversary uses the simulator for Φ to generate the tran-
script of the protocol. The ideal world adversary S recovers the the initial input state yj and the
input xj for each j ∈ H as in the previous hybrid. It queries the ideal world functionality Ff on
input (input, sid, j, xj) for each j ∈ [n] and obtains the output z. It then runs the simulator SΦ on
inputs {xj}j 6∈H , the output z and the extracted OT correlations to obtain the simulated transcript
τ . It then uses τ as input while running S2. The rest of the simulation is exactly as in the previous
hybrid.

Notice that the view of the adversary in Hybrid2 and Hybrid3 is computationally indistinguishable
from the semi-malicious security of Φ. Hybrid3 is distributed identically to EXECF ,S,Z .
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