
Cryptanalysis of 1-Round KECCAK

Rajendra Kumar1 ,Mahesh Sreekumar Rajasree1 and Hoda AlKhzaimi2

1 Center for Cybersecurity, Indian Institute of Technology Kanpur, India
rjndr@iitk.ac.in , mahesr@iitk.ac.in

2 Center for Cyber Security, New York University, Abu Dhabi
hoda.alkhzaimi@nyu.edu

Abstract. In this paper, we give the first pre-image attack against 1-
round KECCAK-512 hash function, which works for all variants of 1-
round KECCAK. The attack gives a preimage of length less than 1024
bits by solving a system of 384 linear equations. We also give a collision
attack against 1-round KECCAK using similar analysis.

Keywords: Cryptanalysis, KECCAK, SHA-3, Preimage, Collision

1 Introduction

Hash functions are used in digital signatures, message integrity and authenti-
cation. In 2006, NIST announced the “NIST hash function competition” which
received 64 proposals from around the world. In October 2012, KECCAK de-
signed by Guido Bertoni, Joan Daemen, Michal Peeters, and Gilles Van Assche
[3], was selected as the winner of the competition and in 2015, it was standard-
ized as a “Secure Hash Algorithm 3” [9].

The KECCAK hash family is based on the sponge construction[4]. Sponge con-
struction has the property to generate an output of any length and because of
this property, SHA3 standards include two extendable output functions which
are SHAKE128 and SHAKE256. These can also be used as a pseudo-random
generator. Due to its vast applications, a lot of security analysis is being per-
formed on the KECCAK hash family.

In 2010, D. J. Bernstein [1] gave an idea for second preimage of KECCAK
variants and in 2014, Chang et al. [5] gave a 1st and 2nd preimage attack. Both
have an improvement in time complexity over the brute-force. Morawiecki et al.
[11] gave a theoretical preimage attack up to 4 rounds of KECCAK by using a
technique called as rotational cryptanalysis. Morawiecki et al. [12] performed
a preimage analysis of round reduced KECCAK by using toolkit CryptLogVer
and SAT solver PrecoSAT. Mara Naya-Plasencia et al. [13] gave a preimage
attack on 2-round for KECCAK-224 and KECCAK-256 by using the meet in
middle approach. Dinur et al. [6] [8] gave a collision attack upto 4 rounds using
differential and algebraic techniques, and later improved upto 5 rounds using
generalized internal differential [7]. In 2016 Guo et al. [10] gave preimage attack

for 2 round for KECCAK-224, 256, 384 and 512. The complexity of attack [10]
for KECCAK-384 is 2129 and for KECCAK-512 is 2384. They extended this upto
4 round for small hash length. Apart from above-mentioned attacks, there are
several other attacks against KECCAK.

Our Contribution: In this paper, we give the first preimage attack against
1 round KECCAK-512. The only computation required in this attack is solv-
ing 384 linear equations. It is based on exploiting the degree of freedom in the
equations between hash values and message bits, and convert these equations to
simple assignments of values to message variables. Using this method, we can
find a message of length less than 1024 bits corresponding to every hash value.
Also, the time complexity of this attack is constant.

Organization: The rest of the paper contains the following sections. In Sec-
tion 2, we briefly describe the structure of KECCAK. In Section 3, we show the
cryptanalysis of 1 round KECCAK-512. Section 4 contains the implementation
results and describes how to extend the preimage attack to a collision attack.
Section 5 contains conclusion and future works.

2 Structure of KECCAK

KECCAK hash function has 3 parameters: r is the bitrate, c is the capacity
and n is the output length. It is based on sponge construction[4] which uses a
padding function pad, a bitrate parameter r and a permutation function f as
shown in figure 1.

Fig. 1. Sponge function [4]

2.1 Sponge Construction

The sponge construction begins by applying the padding function pad on the
input string M which produces M ′ whose length is a multiple of r. M ′ under
goes the absorbing phase as follows.

1. M ′ is split into blocks of r bits namely m1,m2, ...mk.
2. There is an initial string(o0) which is a b bit string initialized to zero.
3. The initial r bits of o0 is XORed with first block m1 and is given as input

to f . The output produced by f is denoted by o1.
4. Similarly, the initial r bits of oi is XORed with the mi+1 and given to f .
5. Finally, the output of the absorbing phase is ok.

The squeezing phase consists of obtaining the output which can be of any
length. Let n be the required output length such that n = pr + q where q < r.

1. Apply the f function p more times such that ok+i = f(ok+i−1).
2. Let O be the concatenation of the first r bits of each ok+i where 0 ≤ i ≤ p.
3. The output of the sponge construction is the first n bits of O.

In case of KECCAK hash function, f is a KECCAK − f [1600] permutation
and the pad function appends 10∗1 to input M . KECCAK−f is a specialization
of KECCAK-p permutation.

KECCAK − f [b] = KECCAK − p[b, 12 + 2l]

where l = log2(b/25).

2.2 KECCAK-p permutation

KECCAK-p permutation is denoted by KECCAK-p[b, nr], where b is length
of input string which is called the width of the permutation, nr is number of
rounds of internal transformation where b ∈ {25, 50, 100, 200, 400, 800, 1600} and
nr being any positive integer. We can define two more quantities w = b/25 and
l = log2(b/25). For KECCAK-512, the number of rounds of internal transforma-
tion nr is 24 and b = 1600. The b bit input string can be represented as a 5×5×w
3-dimensional array known as state as shown in figure 2. A lane in a state S is
denoted by S[x][y] which is the substring S[x][y][0]|S[x][y][1]| . . . |S[x][y][w − 1]
where | is the concatenation function.

The internal transformation consists of 5 step mappings θ,ρ,π,χ and ι which
acts on a state. We give a brief description of each of these step mappings with
A and A′ being the state before and after applying a step mappings.

1. θ:

A′[x][y][z] = A[x][y][z]⊕ CP [(x+ 1) mod 5][(z − 1) mod 64]

⊕ CP [(x− 1) mod 5][z]

where CP [x][z] is the parity of a column, i.e,

CP [x][z] = A[x][0][z]⊕A[x][1][z]⊕A[x][2][z]⊕A[x][3][z]⊕A[x][4][z]

Fig. 2. KECCAK state [2]

2. ρ:

A′[x][y] = A[x][y] << r[x][y]

where << means bitwise rotation towards MSB of the 64-bit word. The
values of r[x][y] are given in the table below.

4 18 2 61 56 14

3 41 45 15 21 8

2 3 10 43 25 39

1 36 44 6 55 20

0 0 1 62 28 27

y\x 0 1 2 3 4

3. π:

A′[y][2x+ 3y] = A[x][y]

π interchanges the lanes of the state A.

4. χ:

A′[x][y][z] = A[x][y][z]⊕ ((A[(x+ 1) mod 5][y][z]⊕ 1)

.A[(x+ 2) mod 5][y][z])

χ is the only non-linear operation among the 5 step mappings.

5. ι:

A′[0][0] = A[0][0]⊕RCi

where RCi is a constant which depends on i where i is the round number.

3 Cryptanalysis Of One-Round KECCAK

In this section, we will cover the analysis of 1 round KECCAK for the different
preimage message size.

3.1 Preliminaries and Notations

In our analysis, we are going to use following observations of the χ and θ oper-
ation [10]. Considering χ as a row operation, let a0, a1, a2, a3, a4 be the 5 input
bits to the χ operation and b0, b1, b2, b3, b4 be the 5 output bits.

Observation 1: In χ operation, if all output bits b0, b1, b2, b3, b4 are known,
then we can exactly determine the input bits a0, a1, a2, a3, a4 using

ai = bi ⊕ (bi+1 ⊕ 1).(bi+2 ⊕ (bi+3 ⊕ 1).bi+4)

Observation 2: In χ operation, if any 3 non-consecutive input bits are known,
then all the output bits can be written as linear combinations of input bits.
Observation 3: In χ operation, given b0, b1, b2 and a3 = 1, we can exactly
determine the values of a0, a1 and a2.

a2 = b2

a1 = b1 ⊕ (b2 ⊕ 1)

a0 = b0 ⊕ (b1 ⊕ b2).b2

Observation 4: Let d0, d1, d2, d3, d4 be the elements of a column. Then, the
parity of column can be fixed to a constant c by choosing for any i ∈ {0, 1, 2, 3, 4}

di = c⊕ (

j=4⊕
j=1

di+j)

In the rest of the paper, all the message variables and hash values are rep-
resented in the form of lanes (array) of length 64 and we will use + symbol in
place of ⊕. In all the equations and figures, the value inside the brackets ‘()′

indicates the offset by which the lane is shifted. Every operation between two
lanes are bitwise.

3.2 General description of the attack

We now give the generic description of the attack.

1. The given hash value uses the first 8 lanes of a state and we ignore the values
in the rest of the 17 lanes.

2. Invert the ι operation by XORing the (0, 0) lane with the Round constant
RC.

3. Invert the χ operation by using the above given observations. Let’s call this
state as I.

4. Apply the necessary operations on the message block to reach state I. For
making the operations linear, use the above observations.

5. Check for the dependencies among the linear equations. If they are indepen-
dent, then solve the system of linear equations.

3.3 Analysis of Preimage attack by using 1 message block

In this section, we are going to show that by using only 1 message block it is
not possible to find the preimage for all the hash values of KECCAK-512. In the
subsection 3.4, we will also characterize the hash values whose preimage can be
found by using 1 message block. In KECCAK-512, we have n = 512, c = 1024
and r = 576. So, the hash value occupies 8 lanes and message block is of 9 lanes.
Let A = a0a1a2a3a4a5a6a7a8 be the message block of 576 bit length where each
ai is an array of 64 bits. Figure 3 shows the state after applying θ,ρ and π on
A where di[k] = CP [i− 1][k] + CP [i+ 1][k − 1] and CP represents the column
parity.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

a5 a6 a7 a8 0

a0 a1 a2 a3 a4

ρ ◦ θ
−−−−−→

d0

(18)

d1

(2)

d2

(61)

d3

(56)

d4

(14)

d0

(41)

d1

(45)

d2

(15)

d3

(27)

d4

(8)

d0

(3)

d1

(10)

d2

(43)

d3

(25)

d4

(39)

a5 ⊕ d0
(36)

a6 ⊕ d1
(44)

a7 ⊕ d2
(6)

a8 ⊕ d3
(55)

d4

(20)

a0 ⊕ d0
(0)

a1 ⊕ d1
(1)

a2 ⊕ d2
(62)

a3 ⊕ d3
(28)

a4 ⊕ d4
(27)

π

a2 ⊕ d2
(62)

a8 ⊕ d3
(55)

d4

(39)

d0

(41)

d1

(2)

a4 ⊕ d4
(27)

a5 ⊕ d0
(36)

d1

(10)

d2

(15)

d3

(56)

a1 ⊕ d1
(1)

a7 ⊕ d2
(6)

d3

(25)

d4

(8)

d0

(18)

a3 ⊕ d3
(28)

d4

(20)

d0

(3)

d1

(45)

d2

(61)

a0 ⊕ d0
(0)

a6 ⊕ d1
(44)

d2

(43)

d3

(27)

d4

(14)

1

Fig. 3. State after applying θ, ρ, π

Suppose H = h0h1h2h3h4h5h6h7 is the 512-bit hash value where each hi is
of 64 bits. We know that we can invert the last row of H and obtain the exact
values of h

′

0, h
′

1, h
′

2, h
′

3 and h
′

4(shown in figure 4) using the formula given in 3.1.
The same cannot be done for the second last row.

By equating the 3rd state of figure 3 and 2nd state of figure 4, we get the
exact values of d2, d3, d4 and two linear equations

a0 + d0 = h
′

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

a5 a6 a7 a8 0

a0 a1 a2 a3 a4

ρ ◦ θ
−−−−−→

d0

(18)

d1

(2)

d2

(61)

d3

(56)

d4

(14)

d0

(41)

d1

(45)

d2

(15)

d3

(27)

d4

(8)

d0

(3)

d1

(10)

d2

(43)

d3

(25)

d4

(39)

a5 ⊕ d0
(36)

a6 ⊕ d1
(44)

a7 ⊕ d2
(6)

a8 ⊕ d3
(55)

d4

(20)

a0 ⊕ d0
(0)

a1 ⊕ d1
(1)

a2 ⊕ d2
(62)

a3 ⊕ d3
(28)

a4 ⊕ d4
(27)

π

a2 ⊕ d2
(62)

a8 ⊕ d3
(55)

d4

(39)

d0

(41)

d1

(2)

a4 ⊕ d4
(27)

a5 ⊕ d0
(36)

d1

(10)

d2

(15)

d3

(56)

a1 ⊕ d1
(1)

a7 ⊕ d2
(6)

d3

(25)

d4

(8)

d0

(18)

a3 ⊕ d3
(28)

d4

(20)

d0

(3)

d1

(45)

d2

(61)

a0 ⊕ d0
(0)

a6 ⊕ d1
(44)

d2

(43)

d3

(27)

d4

(14)

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

h5 h6 h7 ? ?

h0 h1 h2 h3 h4

χ−1 ◦ ι−1
−−−−−−−−−→

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

h
′
5 h

′
6 h

′
7 h

′
8 h

′
9

h
′
0 h

′
1 h2

′
h
′
3 h

′
4

1

Fig. 4. Inverse operation on hash values

a6 + d1 = h
′

1

By applying χ on the 3rd state of figure 3, we have the following equations

a3(28) + d3(28) + (d4(20) + 1)d0(3) = h5

d4(20) + (d0(3) + 1)d1(45) = h6

d0(3) + (d1(45) + 1)d2(61) = h7

The 2nd equation is quadratic while the other two are linear. It can be easily
seen that for many cases, there isn’t a solution to this system of equations. For
example, take the case where d4 = h

′

4 = 0 and d2 = h
′

2 = 0. Then,

(d0(3) + 1)d1(45) = h6

d0(3) = h7

The above equations cannot be solved simultaneously if h7 = 1 and h6 = 1. So,
by using only 1 message block we can’t get all possible hash values of KECCAK-
512

3.4 Preimage Attack

In this section, we give the preimage attack to one round KECCAK-512. This
preimage attack gives a message of length less than 1024 bits, i.e two message
blocks. In each of the following subsection, we describe a preimage attack for one
round KECCAK-512 by considering different settings for the attack and give an
analysis on it. We will be considering h0, ..., h7 as the hash value where each hi
is of length 64 bits.

Using one message block and keeping θ as identity: We first invert
the hash values by applying χ−1 ◦ ι−1. To do this, we make the lanes at (3, 1)
and (4, 1) of the inverted state as 0(refer figure 5). We further invert this state
through π and ρ. e0, ..., e8 is the message block represented in 9 lanes. Since we
are keeping θ as identity, we have only four free lane variables. Also, we must
keep the last bit of the message block as 1 inorder to satisfy the padding rule,
so the last bit of e8(which is equal to e3) should be 1. Therefore, we can assign

e0 = h′0(0), e3 = h′5(36), e6 = h′1(20)

h5 h6 h7

h0 h1 h2 h3 h4

χ−1 ◦ ι−1
−−−−−−−−−→

h
′
5 h

′
6 h

′
7 0 0

h
′
0 h

′
1 h

′
2 h

′
3 h

′
4

ρ−1 ◦ π−1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

e5 e6 e7 e8 0

e0 e1 e2 e3 e4

θ−→

0

h
′
4

(50)

0

h
′
3

(43)

h
′
7

(61)

h
′
2

(21)

h
′
1

(20)

h
′
6

(44)

h
′
0

(0)

h
′
5

(36)

3

Fig. 5. Using one message block and keeping θ as identity

Therefore, we can successfully find the preimage for hash values of the form
h2 = h6 = h7 = 0 and both h0 and h1 can take any arbitary values whereas
h5 can have arbitary values except for a single bit which must be 1 because
h5 = h′5 = e3(28). Also, h4 must be equal to h0h1 and h3 = h0. Hence for 2191

hash values we can find preimage by using 1 message block and keeping θ as
identity.

Using one message block without making θ as identity: We first invert
the hash values by applying χ−1 ◦ ι−1, but this time keeping the lane at (3, 1) as
1. So, now we have h7 = h′7. In figure 6, pi denotes the value added to an element
in ith column by the θ function. By comparing the 3rd state in figure 6 and the
state obtained by inverting the hash values, we use the following assignments.

e0(0) = h′0(0) + h′7(61) because p0(3) = h′7(0)

e6(44) = h′1(0) + 1 because p1(45) = 1

e3(28) = h′5(0) + h′3(1) because p3(27) = h′3(0)

Lane (4,0) and (1,1) are rotations of each other. From 320 linear equations in
320 variables, there are only 319 linearly independent equations. Therefore, for
at-most 2383 hash values, we can find the preimage by solving these equations.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

e5 e6 e7 e8 0

e0 e1 e2 e3 e4

ρ ◦ θ
−−−−−→

p0

(18)

p1

(2)

p2

(61)

p3

(56)

p4

(14)

p0

(41)

p1

(45)

p2

(15)

p3

(27)

p4

(8)

p0

(3)

p1

(10)

p2

(43)

p3

(25)

p4

(39)

e5 ⊕ p0
(36)

e6 ⊕ p1
(44)

e7 ⊕ p2
(6)

e8 ⊕ p3
(55)

p4

(20)

e0 ⊕ p0
(0)

e1 ⊕ p1
(1)

e2 ⊕ p2
(62)

e3 ⊕ p3
(28)

e4 ⊕ p4
(27)

π

e2 ⊕ p2
(62)

e8 ⊕ p3
(55)

p4

(39)

p0

(41)

p1

(2)

e4 ⊕ p4
(27)

e5 ⊕ p0
(36)

p1

(10)

p2

(15)

p3

(56)

e1 ⊕ p1
(1)

e7 ⊕ p2
(6)

p3

(25)

p4

(8)

p0

(18)

e3 ⊕ p3
(28)

p4

(20)

p0

(3)

p1

(45)

p2

(61)

e0 ⊕ p0
(0)

e6 ⊕ p1
(44)

p2

(43)

p3

(27)

p4

(14)

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

h5 h6 h7 ? ?

h0 h1 h2 h3 h4

χ−1 ◦ ι−1
−−−−−−−−−→

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

h
′
5 h

′
6 h

′
7 h

′
8 h

′
9

h
′
0 h

′
1 h2

′
h
′
3 h

′
4

1

Fig. 6. Using one message block without making θ as identity

Therefore, hash values with h6 = h7(0)⊕h4(6)⊕h0(6).(h1(6)⊕h2(6).h3(6))⊕
1, we can find the preimage using 1 message block.

Using two message blocks and making both θ operation as identity:
By using the same idea used above, we are going to invert the hash values by

applying ρ−1 ◦ π−1 ◦ χ−1 ◦ ι−1.We are going to make θ operation as identity by
using the 5 lane variables of message block E. So, from second message block we
are left with only 4 free lane variables.

h5 h6 h7

h0 h1 h2 h3 h4

χ−1 ◦ ι−1
−−−−−−−−−→

h
′
5 h

′
6 h

′
7 1

h
′
0 h

′
1 h

′
2 h

′
3 h

′
4

ρ−1 ◦ π−1

w20 w21 w22 w23 w24

w15 w16 w17 w18 w19

w10 w11 w12 w13 w14

w5 ⊕ e5 w6 ⊕ e6 w7 ⊕ e7 w8 ⊕ e8 w9

w0 ⊕ e0 w1 ⊕ e1 w2 ⊕ e2 w3 ⊕ e3 w4 ⊕ e4

θ−→

h
′
4

(50)

1

h
′
3

(43)

h
′
7

(61)

h
′
2

(21)

h
′
1

(20)

h
′
6

(44)

h
′
0

(0)

h
′
5

(36)

a2(62) a3(56) 0 a2(62) a2(62)a3(55)

0 a0(36) 0 0 a0(36)

a1(1) a2(6) 0 a1(1) a1(1)a2(6)

a3(28) 0 0 a3(28) 0

a0 ⊕ RC0 a1(44) 0 a0 a0a1(44)

x20

(18)

x21

(2)

x22

(61)

x23

(56)

x24

(14)

x15

(41)

x16

(45)

x17

(15)

x18

(27)

x19

(8)

x10

(3)

x11

(10)

x12

(43)

x13

(25)

x14

(39)

b5 ⊕ x5
(36)

b6 ⊕ x6
(44)

b7 ⊕ x7
(6)

b8 ⊕ x8
(55)

x9

(20)

b0 ⊕ x0
(0)

b1 ⊕ x1
(1)

b2 ⊕ x2
(62)

b3 ⊕ x3
(28)

b4 ⊕ x4
(27)

π◦ρ◦θ
−−−−−→

b2 ⊕ x2
(62)

b8 ⊕ x8
(55)

x14

(39)

x15

(41)

x21

(2)

b4 ⊕ x4
(27)

b5 ⊕ x5
(36)

x11

(10)

x17

(15)

x23

(56)

b1 ⊕ x1
(1)

b7 ⊕ x7
(6)

x13

(25)

x19

(8)

x20

(18)

b3 ⊕ x3
(28)

x9

(20)

x10

(3)

x16

(45)

x22

(61)

b0 ⊕ x0
(0)

b6 ⊕ x6
(44)

x12

(43)

x18

(27)

x24

(14)

2

Fig. 7. Using two message blocks and making both θ operation as identity

For the first message block we are using the message block

D = d0, d1, d2, d3, 0, d0, d1, d2, d3

This makes the θ operation identity. Figure 8 represents the state W which is
obtained after applying a KECCAK-p permutation on message block D.

Substituting wi, we get the following equations

h′0 = d0 +RC0 + e0, h
′
1(20) = e6

h′2(21) = 0, h′3(43) = 0, h′4(50) = d2(62)d3(55)

h′5(36) = e3 + d0, h
′
6(44) = 0

h′7(61) = d1(1), 1 = d0(36)

h5 h6 h7

h0 h1 h2 h3 h4

χ−1 ◦ ι−1
−−−−−−−−−→

h
′
5 h

′
6 h

′
7 1

h
′
0 h

′
1 h

′
2 h

′
3 h

′
4

ρ−1 ◦ π−1

w20 w21 w22 w23 w24

w15 w16 w17 w18 w19

w10 w11 w12 w13 w14

w5 ⊕ e5 w6 ⊕ e6 w7 ⊕ e7 w8 ⊕ e8 w9

w0 ⊕ e0 w1 ⊕ e1 w2 ⊕ e2 w3 ⊕ e3 w4 ⊕ e4

θ−→

h
′
4

(50)

1

h
′
3

(43)

h
′
7

(61)

h
′
2

(21)

h
′
1

(20)

h
′
6

(44)

h
′
0

(0)

h
′
5

(36)

d2(62) d3(55) 0 d2(62) d2(62)d3(55)

0 d0(36) 0 0 d0(36)

d1(1) d2(6) 0 d1(1) d1(1)d2(6)

d3(28) 0 0 d3(28) 0

d0 ⊕ RC0 d1(44) 0 d0 d0d1(44)

x20

(18)

x21

(2)

x22

(61)

x23

(56)

x24

(14)

x15

(41)

x16

(45)

x17

(15)

x18

(27)

x19

(8)

x10

(3)

x11

(10)

x12

(43)

x13

(25)

x14

(39)

b5 ⊕ x5
(36)

b6 ⊕ x6
(44)

b7 ⊕ x7
(6)

b8 ⊕ x8
(55)

x9

(20)

b0 ⊕ x0
(0)

b1 ⊕ x1
(1)

b2 ⊕ x2
(62)

b3 ⊕ x3
(28)

b4 ⊕ x4
(27)

π◦ρ◦θ
−−−−−→

b2 ⊕ x2
(62)

b8 ⊕ x8
(55)

x14

(39)

x15

(41)

x21

(2)

b4 ⊕ x4
(27)

b5 ⊕ x5
(36)

x11

(10)

x17

(15)

x23

(56)

b1 ⊕ x1
(1)

b7 ⊕ x7
(6)

x13

(25)

x19

(8)

x20

(18)

b3 ⊕ x3
(28)

x9

(20)

x10

(3)

x16

(45)

x22

(61)

b0 ⊕ x0
(0)

b6 ⊕ x6
(44)

x12

(43)

x18

(27)

x24

(14)

2

Fig. 8. State W

From the above equation, we have to assign d0 = 1 and by using the message
lanes e0, e6, e3, d1, d2 and d3 we can get any values for h′0, h

′
1, h
′
4, h
′
5, h
′
7. Hence,

for hash values h0, h1, h2, h3, h4, h5, h6, h7 with constraints h3 = h2h0, h4 =
h2 + h0h1, h7 = h6 , preimage can be found by using 2 message block and
keeping both the θ operation as identity. So, for total 2320 hash values we can
find preimage by using this analysis.

By using two message block and keeping only first θ operation as
identity: We make the first θ operation applied to the message block D as
identity. So, we are left with only 4 message lanes d0, d1, d2, d3. After applying a
KECCAK-p permutation on message block D we get the state W which is same
as the one shown above.

For the second message, we are not putting any constraints.

w20 w21 w22 w23 w24

w15 w16 w17 w18 w19

w10 w11 w12 w13 w14

w5 ⊕ e5 w6 ⊕ e6 w7 ⊕ e7 w8 ⊕ e8 w9

w0 ⊕ e0 w1 ⊕ e1 w2 ⊕ e2 w3 ⊕ e3 w4 ⊕ e4

ρ ◦ θ
−−−−−→

w20 ⊕ p0
(18)

w21 ⊕ p1
(2)

w22 ⊕ p2
(61)

w23 ⊕ p3
(56)

w24 ⊕ p4
(14)

w15 ⊕ p0
(41)

w16 ⊕ p1
(45)

w17 ⊕ p2
(15)

w18 ⊕ p3
(27)

w19 ⊕ p4
(8)

w10 ⊕ p0
(3)

w11 ⊕ p1
(10)

w12 ⊕ p2
(43)

w13 ⊕ p3
(25)

w14 ⊕ p4
(39)

e5 ⊕ w5 ⊕ p0
(36)

e6 ⊕ w6 ⊕ p1
(44)

e7 ⊕ w7 ⊕ p2
(6)

e8 ⊕ w8 ⊕ p3
(55)

w9 ⊕ p4
(20)

e0 ⊕ w0 ⊕ p0
(0)

e1 ⊕ w1 ⊕ p1
(1)

e2 ⊕ w2 ⊕ p2
(62)

e3 ⊕ w3 ⊕ p3
(28)

e4 ⊕ w4 ⊕ p4
(27)

π

e2(62) ⊕ w2(62)

⊕p2(62)

e8(55) ⊕ w8(55)

⊕p3(55)

w14(39)⊕
p4(39)

w15(41)⊕
p0(41)

w21(2)⊕
p1(2)

e4(27) ⊕ w4(27)

⊕p4(27)

e5(36) ⊕ w5(36)

⊕p0(36)

w11(10)⊕
p1(10)

w17(15)⊕
p2(15)

w23(56)⊕
p3(56)

e1(1) ⊕ w1(1)

⊕p1(1)

e7(6) ⊕ w7(6)

⊕p2(6)

w13(25)⊕
p3(25)

w19(8)⊕
p4(8)

w20(18)⊕
p0(18)

e3(28) ⊕ w3(28)

⊕p3(28)

w9(20)⊕
p4(20)

w10(3)⊕
p0(3)

w16(45)⊕
p1(45)

w22(61)⊕
p2(61)

e0(0) ⊕ w0(0)

⊕p0(0)

e6(44) ⊕ w6(44)

⊕p1(44)

w12(43)⊕
p2(43)

w18(21)⊕
p3(21)

w24(14)

p4(14)

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

h5 h6 h7 ? ?

h0 h1 h2 h3 h4

χ−1 ◦ ι−1
−−−−−−−−−→

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

h
′
5 h

′
6 h

′
7 h

′
8 h

′
9

h
′
0 h

′
1 h2

′
h
′
3 h

′
4

1

Fig. 9. By using two message block and keeping only first θ operation as identity

After applying π ◦ ρ ◦ θ over the state W ⊕E and equating this state to the
state we got after applying χ−1 ◦ ι−1 on the state of the hash value, we get 9
lane equation (576 equation) over the message block D and E.

h′0 = e0(0) + d0(0) +RC(0) + p0(0), h′1 = e6(44) + p1(44)

h′2 = p2(43), h′3 = p3(21), h′4 = d2(12)d3(5) + p4(14)

h′5 = e3(28) + d0(28) + p3(28), h′6 = p4(20)

h′7 = d1(4) + p0(3), 1 = d0(17) + p1(45)

These equations are not linear because the column parities p0 and p3 con-
tains the terms d0(0)d1(44), d1(1)d2(6), and d2(62)d3(55). To make these equa-
tions linear we assigned d0 = 0 and d2 = 0. By this, we also get assignment of
e3, e6 and d3.

e3(28) = h′5(0) + h′3(7) because d0 = 0 and h′3(0) = p3(21)

e6(44) = h′1(0) + 1 because d0 = 0 and d0(17) + p1(45) = 1

d3(5) = h′4(0) + h′6(6) because d2 = 0 and h′6 = p4(20)

The remaining linear equation are

h′0 = e0(0) +RC(0) + d1(44) + d3(55) + e4(0) + d1(43) + d3(54) + e1(63) + e6(63)

h′2 = d1(23) + d3(34) + e1(43) + e6(43) + d1(43) + d3(6) + e3(42) + e8(42)

h′3 = e2(21) + e7(21) + d1(0) + d3(11) + e4(20)

h′6 = d3(48)+d1(21)+e3(20)+e8(20)+d1(20)+d3(47)+RC(19)+e0(19)+e5(19)

h′7 = d1(1) + d1(47) + d3(58) + e4(3) + d1(46) + d3(57) + e1(2) + e6(2)

1 = RC(45) + d3(9) + d1(46) + e0(45) + e5(45) + e2(44) + e7(44)

We assign e7 to 0 and assign the last bit of e8 to 1 to satisfy the padding
condition while the rest of the bits of e8 are assigned to 0. This is done so that
the preimage length is minimized. Now we are left with total 384 linear equation
in 384 variables. All of these linear equations are linearly independent. Applying
Gaussian elimination, we can completely find the message block D and E that
gives the required hash value on application of 1 round of KECCAK-512.

4 Results and Extension to Collision attack

The above preimage attack was implemented in C++ [15] using the NTL library[14]
from Victor Shoup. The code was executed on a laptop with Intel Core i5-7200
processor and 16 GB RAM giving the preimage in less than 0.005 seconds. In
the analysis given in 3.4, if we randomly choose e7 and e8 while also keep the
last bit of e8 as 1, we can get 2127 preimages for the same hash value, thus giving
us a collision attack.

The following tables describe the characterization of the hash values that can be
found using the preimage analysis done in section 3.4.

Type of attack
Number of
hash values

Characterization of hash
values

1 message block, θ as identity 2191 h2 = h6 = h7 = 0, h5[35] =
1, h4 = h0h1, h3 = h0

1 message block, θ not identity 2447
h6 = h7(0) ⊕ h4(6) ⊕
h0(6).(h1(6) ⊕
h2(6).h3(6)) ⊕ 1

2 message blocks, both θ as identity 2320 h3 = h2.h0, h4 = h2⊕h0.h1,
h7 = h6

2 message blocks, first θ as
identity

2512 All possible hash values

Table 1. Characterization of hash values

5 Conclusion and Future Works

Our approach gives a preimage and collision attack to all the variants of 1 round
KECCAK hash functions. These are currently the fastest attacks known. These
attacks does not pose a threat to the security of 24-round KECCAK. In future,
we need to find whether this idea can be extended to 2 rounds KECCAK-384
and KECCAK-512.

References

1. Daniel J Bernstein. Second preimages for 6 (7?(8??)) rounds of keccak. NIST
mailing list, 2010.

2. G Bertoni, J Daemen, M Peeters, and GV Assche. The keccak reference. online at
http://keccak. noekeon. org/keccak-reference-3.0. pdf, 2011.

3. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak
specifications. Submission to NIST (Round 2), 2009.

4. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Crypto-
graphic sponges. online] http://sponge. noekeon. org, 2011.

5. Donghoon Chang, Arnab Kumar, Pawell Morawiecki, and Somitra Kumar Sanad-
hya. 1st and 2nd preimage attacks on 7, 8 and 9 rounds of keccak-224,256,384,512.
In SHA-3 workshop (August 2014), 2014.

6. Itai Dinur, Orr Dunkelman, and Adi Shamir. New attacks on keccak-224 and
keccak-256. In FSE, volume 12, pages 442–461. Springer, 2012.

7. Itai Dinur, Orr Dunkelman, and Adi Shamir. Collision attacks on up to 5 rounds
of sha-3 using generalized internal differentials. In International Workshop on Fast
Software Encryption, pages 219–240. Springer, 2013.

8. Itai Dinur, Orr Dunkelman, and Adi Shamir. Improved practical attacks on round-
reduced keccak. Journal of cryptology, 27(2):183–209, 2014.

9. Morris J Dworkin. Sha-3 standard: Permutation-based hash and extendable-output
functions. Federal Inf. Process. Stds.(NIST FIPS)-202, 2015.

10. Jian Guo, Meicheng Liu, and Ling Song. Linear structures: Applications to crypt-
analysis of round-reduced keccak. In Advances in Cryptology–ASIACRYPT 2016:
22nd International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I
22, pages 249–274. Springer, 2016.

11. Pawe l Morawiecki, Josef Pieprzyk, and Marian Srebrny. Rotational cryptanalysis
of round-reduced keccak. In International Workshop on Fast Software Encryption,
pages 241–262. Springer, 2013.

12. Pawe l Morawiecki and Marian Srebrny. A sat-based preimage analysis of reduced
keccak hash functions. Information Processing Letters, 113(10-11):392–397, 2013.

13. Maŕıa Naya-Plasencia, Andrea Röck, and Willi Meier. Practical analysis of
reduced-round keccak. In INDOCRYPT, volume 7107, pages 236–254. Springer,
2011.

14. Victor Shoup. Ntl: A library for doing number theory. www. shoup. net/ntl/, 2001.
15. Mahesh S.R and Rajendra Kumar. Keccak - cryptanalysis of keccak.

https://github.com/Mahe94/KECCAK.

	Cryptanalysis of 1-Round KECCAK

