
Performing Computations on Hierarchically
Shared Secrets

Giulia Traverso, Denise Demirel, Johannes Buchmann

TU Darmstadt (Germany)

Abstract. Hierarchical secret sharing schemes distribute a message to
a set of shareholders with different reconstruction capabilities. In dis-
tributed storage systems, this is an important property because it al-
lows to grant more reconstruction capability to better performing storage
servers and vice versa. In particular, Tassa’s conjunctive and disjunctive
hierarchical secret sharing schemes are based on Birkhoff interpolation
and perform equally well as Shamir’s threshold secret sharing scheme.
Thus, they are promising candidates for distributed storage systems. A
key requirement is the possibility to perform function evaluations over
shared data. However, practical algorithms supporting this have not been
provided yet with respect to hierarchical secret sharing schemes. Aiming
at closing this gap, in this work, we show how additions and multiplica-
tions of shares can be practically computed using Tassa’s conjunctive and
disjunctive hierarchical secret sharing schemes. Furthermore, we provide
auditing procedures for operations on messages shared hierarchically,
which allow to verify that functions on the shares have been performed
correctly. We close this work with an evaluation of the correctness, secu-
rity, and efficiency of the protocols we propose.

Keywords: hierarchical secret sharing, Birkhoff interpolation, verifiable secret
sharing, auditing, multi-party computation, distributed storage systems, cloud
computing.

1 Introduction

In this work, we provide procedures allowing to evaluate functions on shares
that have been generated by using a hierarchical secret sharing scheme. The
primary focus of this paper is the application of secret sharing to the model
of distributed storage systems. In distributed storage systems [24], shares of a
document are generated and distributed to storage servers owned by multiple
storage providers. As well as for cloud computing, means to measure the per-
formance and the quality of service offered by storage providers is needed (for
more details see recommendations by NIST [22] about the introduction of trust
in cloud computing). This enables users to grant more reconstruction capability
to the better performing storage servers, i.e. to the storage providers offering
a better service, and vice versa. The problem is to find the most suitable se-
cret sharing schemes to be applied to distributed storage systems. We argue

that these are Tassa’s conjunctive and disjunctive hierarchical secret sharing
schemes [33] rather than the commonly used Shamir’s threshold secret sharing
scheme [31]. In fact, Tassa’s conjunctive and disjunctive hierarchical secret shar-
ing schemes allow for the same features as Shamir’s threshold secret sharing
scheme. Furthermore, Tassa’s schemes achieve also optimal storage consump-
tion and arranges the shares such that none of the storage providers has enough
information to break the confidentiality of the document. More precisely, regard-
ing storage consumption, on the one hand, Tassa’s conjunctive and disjunctive
hierarchical secret sharing schemes generate shares with different reconstruction
capabilities but that have all the same length. On the other hand, Shamir’s
threshold secret sharing scheme generates shares that are all equivalent in their
reconstruction capability. In this case, granting more reconstruction capability
to the better performing storage servers means to overload them with multiple
shares to manage. Thus, more shares than the amount of storage servers have
to be generated and, overall, more storage space is consumed. Regarding confi-
dentiality, when Shamir’s threshold secret sharing scheme is used, the number
of storage providers deployed must be larger than the reconstructing thresh-
old. Otherwise, storage providers would have enough shares to retrieve the data
within the storage servers they own. On the contrary, Tassa’s conjunctive and
disjunctive hierarchical secret sharing schemes allow for more flexibility because
the reconstruction capability of the storage servers can be arranged such that
no storage provider has enough information to retrieve the document. Clearly,
if users can rely on less storage providers for a given reconstructing threshold,
then this allow for a better trade-off between data protection and storage cost.

This paper shows how to practically compute additions and multiplications
over hierarchically shared data when Tassa’s conjunctive and disjunctive secret
sharing schemes are used. So far solutions to perform operations on shared mes-
sages have only been instantiated for Shamir’s threshold secret sharing schemes
and have been generalized for any linear secret sharing scheme in [10]. Thus, in
this work we fill this gap by introducing procedures allowing to evaluate func-
tions on shares that have been generated using a hierarchical secret sharing
scheme. More precisely, we show how to perform linear operations and multipli-
cations on messages that have been shared and need to be reconstructed using
the Birkhoff interpolation formula. Tassa’s conjunctive and disjunctive hierar-
chical secret sharing schemes are based on Birkhoff interpolation and are linear
schemes. Thus, we adapt to our setting the general procedure for computations
over linear secret sharing schemes introduced in [10]. This is not trivial because
in practice multiplications are split in a preprocessing and an on-line phase which
both have to be adapted to the hierarchical setup. Furthermore, we prove that
these procedures compute the outcome of functions correctly and provide perfect
secrecy, i.e. only qualified subsets are able to retrieve the input messages and
the result of computations. Moreover, we provide an audit procedure for com-
putations over messages shared hierarchically. Lastly, we discuss security and
efficiency of the algorithms introduced. The rest of the paper is organized as
follows. First, the related work and the preliminaries are discussed in Section 2

and Section 3, respectively. Then, our contribution is presented. More precisely,
in Section 4 it is shown how to perform operations over messages shared using
Birkhoff interpolation-based hierarchical secret sharing schemes. Furthermore,
it is proven that those procedures compute the outcome of functions correctly
and provide perfect secrecy. Since multiplications on hierarchical shares require
larger changes on the preprocessing phase we detail this process in Section 5. In
Section 6, it is described how to perform the auditing procedure. Security and
efficiency of the proposed protocols are discussed in Section 7. Conclusions can
be found in Section 8.

2 Related Work

Independently introduced by Shamir [31] and Blakley [4], threshold secret shar-
ing is a cryptographic primitive enabling a dealer to share a message equally
among a set of players, called shareholders. The message can be reconstructed
by subsets of a certain amount of shareholders while subsets smaller than the
threshold do not learn any information about the data shared. The best known
and most widely used secret sharing scheme is Shamir’s threshold secret shar-
ing, introduced in 1979 in [31]. His solution is based on polynomials and on
Lagrange interpolation. In addition, extensive research has been done with re-
spect to Shamir’s threshold secret sharing showing very desirable features from
a practical point of view. For instance, it has been shown in [21] how shares can
be periodically refreshed to ensure long-term protection of the shared message.
Based on the general approach of [12], it has been shown in [19] how to modify
the definition of eligible subsets of shareholders for the reconstruction of the
message. In [26], it has been shown how to add shareholders. Furthermore, it is
possible to perform operations over shared messages, provided that the set of
shareholders and the threshold remain the same for all the shared messages, as
shown in [18]. This enables general multi-party computation, as discussed in [3],
[8], and [16]. Furthermore, in [30] it is shown how to perform an auditing proce-
dure for computations over shared messages, which is based on the work done in
[1] and in [11]. So called hierarchical secret sharing schemes [14] address scenar-
ios where the shareholders are not equal in their reconstruction capability. This
allows, for instance, to reflect the hierarchical structure of companies. Further-
more, they can be used to realize social secret sharing schemes in cloud storage
solutions (see e.g. [25], [35]). Here the best performing storage servers are treated
as the most powerful shareholders. A preliminary notion of hierarchical secret
sharing has been discussed by Shamir already in his seminal work [31]. However,
this approach overloads the most powerful shareholders. Brickell in [7] and Sim-
mons in [32] presented a solution where each shareholder receives only one share
which is of equal size, but with different reconstruction capabilities. However, the
reconstruction process is highly expensive. Ghodosi et al. showed in [17] how to
construct efficient schemes for specific instantiations. In 2007 Tassa solved these
problems by introducing in [33] two schemes based on polynomials and Birkhoff
interpolation (a generalization of Lagrange interpolation) for the reconstruction

of the message. These are called conjunctive and disjunctive hierarchical secret
sharing schemes, depending on which subsets of shareholders are eligible to ac-
cess the shared message. It has been proven in [34] that Tassa’s conjunctive
and disjunctive hierarchical secret sharing schemes achieve the same flexibility
as Shamir’s threshold secret sharing scheme. More precisely, algorithms based
on Birkhoff interpolation have been designed that allow Tassa’s schemes to add
shareholders, to periodically refresh the shares, and to modify the definition of
eligible subsets for the reconstruction of the message. According to the notion
of dynamic secret sharing1 specified in [34], both Shamir’s and Tassa’s secret
sharing schemes are dynamic. The last step to show that hierarchical secret
sharing achieves the same functionalities as Shamir’s threshold secret sharing is
to prove that Tassa’s schemes support the same operations over shared messages,
i.e. linear combinations and multiplication. Conditions on the access structure
allowing for multiplication have been investigated in [23]. However, they lead
to schemes with either an increased length of the shares (which is not optimal
for our application to distributed storage systems) or with stronger conditions
on the access structure deviating from the original schemes proposed by Tassa.
Furthermore, practical and ready to be used algorithms for linear operations
and multiplications over Tassa’s conjunctive and disjunctive hierarchical secret
sharing schemes and for performing auditing over such computations were not
proposed. And this is what we provide in this work.

3 Preliminaries

This section provides preliminaries with respect to secret sharing and explains
in details how Tassa’s conjunctive and disjunctive hierarchical secret sharing
schemes are defined.

3.1 Threshold Secret Sharing Schemes

Secret sharing schemes are used to share a message m ∈ Fq across a set S =
{s1, . . . , sn} of n shareholders. More precisely, a dealer generates shares σ1, . . . , σn ∈
Fq of message m and distributes each share σi ∈ Fq to the respective shareholder
si ∈ S. Only specific subsets A ⊂ S of shareholders can reconstruct the message
provided that certain requirements are fulfilled. Instead, subsets U ⊂ S not ful-
filling such requirements cannot reconstruct the message and get no information
about it. These subsets are called authorized and unauthorized, respectively. De-
noted by P(S) the partition of set S, the access structure Γ ⊂ P(S) determines
both sets, i.e. A ∈ Γ and U /∈ Γ . More formally, secret sharing is a pair of algo-
rithms (Share,Reconstruct). Algorithm Share takes as input a message m ∈ Fq
and the unique ID i ∈ I of shareholder si ∈ S and outputs its share σi ∈ Fq, for
i = 1, . . . , n. Algorithm Reconstruct takes as input a subset R ⊂ S and outputs

1 Note that this is different from the notion of fully dynamic secret sharing discussed
in [5], where one scheme supports different access structures for different secrets.

the message m if R ∈ Γ and ⊥ otherwise. Adapting the definition provided in
[2] to the purpose of this paper, in the following we formalize the notions of
correctness and perfect secrecy.

Definition 1. Given the set Fq of messages and the set S = {s1, . . . , sn} of
shareholders, the pair of algorithms (Share,Reconstruct) is a secret sharing scheme
realizing access structure Γ ⊂ P(S) if the following two requirements hold.

1) Correctness: if shares held by shareholders of an authorized set A ∈ Γ are
given as input to algorithm Reconstruct, then algorithm Reconstruct retrieves
the message m shared during algorithm Share, for every message m ∈ Fq.

2) Perfect secrecy: if shares held by shareholders of an unauthorized set U /∈ Γ
are given as input to algorithm Reconstruct, then algorithm Reconstruct leaks
no information about the message m shared during algorithm Share, for every
message m ∈ Fq.

Linear threshold secret sharing schemes are amongst the most studied schemes
also due to their usage in practical scenarios. The first (t, n)-threshold secret
sharing scheme is proposed by Shamir in [31] and it is based on interpola-
tion of polynomials. More precisely, a message m is shared using a polynomial
f(x) = a0 +a1x+ · · ·+at−1x

t−1 of degree deg(f(x)) = t−1, where a0 := m and
coefficients a1, . . . , at−1 ∈ Fq are chosen uniformly at random. Algorithm Share
computes share σi ∈ Fq for shareholder si ∈ S as a point on polynomial f(x),
i.e. σi := f(i), where i ∈ I is the ID of shareholder si. Algorithm Reconstruct
is based on Lagrange interpolation of polynomials. Thus, on the one hand, au-
thorized subsets A ⊂ S are composed of t or more shareholders, that is |A| ≥ t.
In fact, when t or more points of polynomial f(x) are collected, it is possible to
correctly interpolate polynomial f(x) and message m is retrieved as f(0) = a0.
On the other hand, unauthorized subsets U ⊂ S are composed of t − 1 or less
shareholders, that is |U | ≤ t − 1. In fact, when only t − 1 or less points are
collected, polynomial f(x) cannot be reconstructed and no information about
message m ∈ Fq is leaked.

3.2 Hierarchical Secret Sharing Schemes and Birkhoff Interpolation
Problem

The so called conjunctive and disjunctive schemes proposed by Tassa in [33] are
the first hierarchical secret sharing schemes based on Birkhoff interpolation of
polynomials. More precisely, shares are either points on a polynomial or points on
one of the derivatives of such polynomial. More precisely, a hierarchy is composed
of levels L0, . . . , L`, where L0 is the highest level, L` the lowest, and ` ≤ n. The
cardinality of each level Lh is denoted by nh and each shareholder is assigned
to one level only. In addition, a threshold th is associated with each level Lh,
for h ∈ 0, . . . , `, such that 0 < t0 < · · · < t`. Tassa individuated two types
of access structures, defining, respectively the conjunctive and the disjunctive
hierarchical secret sharing. On the one hand, the conjunctive access structure

determines that a subset A ⊂ S is authorized if, for all levels Lh, it contains
th shareholders assigned to levels equal or higher than Lh, for h = 0, . . . , `. On
the other hand, the disjunctive access structure specifies that a subset A ⊂ S
is authorized if, for at least one level Lh, it contains th shareholders assigned
to levels equal or higher than Lh, for h = 0, . . . , `. In the following, we write
information relating to disjunctive hierarchical secret sharing in brackets. For
conjunctive (disjunctive) hierarchical secret sharing schemes the unique ID of
shareholder si,j ∈ S is a pair (i, j) ∈ I × I, where i = 1, . . . , nh and j :=
th−1 (j := t` − th), for h = 0, . . . , ` with t−1 := 0. The algorithms Share and
Reconstruct of the conjunctive (disjunctive) hierarchical secret sharing are as
follows.

Share The algorithm takes as input a message m ∈ Fq and generates a polyno-
mial f(x) = a0 +a1x+ · · ·+at−1x

t−1 of degree deg(f(x)) = t−1, where a0 := m
(at−1 := m) and the coefficients a1, . . . , at−1 ∈ Fq (a0, . . . , at−2 ∈ Fq) are chosen
uniformly at random. It outputs share σi,j ∈ Fq for shareholder si,j ∈ S com-
puted as σi,j := f j(i), where f j(x) is the j-th derivative of polynomial f(x) and
pair (i, j) ∈ I × I is the unique ID of shareholder si,j ∈ S, for i = 1, . . . , nh and
h = 0, . . . , `.

Reconstruct The algorithm takes as input a set of shares held by a subset
R ⊂ S of shareholders. If R is unauthorized, i.e. R /∈ Γ , then it outputs ⊥. If
R is authorized, i.e. R ∈ Γ , then it reconstructs polynomial f(x) using Birkhoff
interpolation and outputs m = a0 (m = at−1).

The Birkhoff interpolation problem is a generalization of the Lagrange in-
terpolation problem and describes the problem of finding a polynomial f(x) =
a0 + a1x + · · · + at−1x

t−1 satisfying the equalities f j(i) = σi,j . Given an au-
thorized set R ∈ Γ of shareholders for conjunctive (disjunctive) hierarchical
secret sharing schemes, the Birkhoff interpolation problem can be solved as fol-
lows. The interpolation matrix associated to set R is a binary matrix E where
entry ei,j is set to ‘1’ if shareholder si,j participates with share σi,j and ‘0’
otherwise. Let us denote by I(E) = {(i, j) such that ei,j = 1} the set con-
taining the entries of E in lexicographic order, i.e. the pair (i, j) precedes the
pair (i′, j′) if and only if i < i′ or i = i′ and j < j′. The elements of I(E)
are denoted by (i1, j1), (i2, j2), . . . , (ir, jr), where r := |R|. Furthermore, we set
ϕ := {φ0, φ1, φ2, . . . , φt−1} = {1, x, x2, . . . , xt} and denote by φjk the j-the deriva-
tive of φk, for k = 0, . . . , t− 1. Then the matrix A(E,X,ϕ) is defined as follows:

A(E,X,ϕ) =


φj10 (i1) φj11 (i1) φj12 (i1) · · · φj1t−1(i1)

φj20 (i2) φj21 (i2) φj22 (i2) · · · φj2t−1(i2)
...

...
... · · ·

...

φjr0 (ir) φ
jr
1 (ir) φ

jr
2 (ir) · · · φjrt−1(ir)

 .

Polynomial f(x) can be reconstructed in distributed fashion by computing

f(x) =

t−1∑
k=0

akx
k =

t−1∑
k=0

r∑
l=1

al,kx
k,

where al,k := σil,jl(−1)l−1+k
det(Al−1,k(E,X,ϕ))

det(A(E,X,ϕ)) is computed locally by shareholder

sil,jl ∈ R, for l = 1, . . . , r, and matrix Al−1,k(E,X,ϕ) results from matrix
A(E,X,ϕ) by removing the l-th row and the (k+1)-th column (see [34], Theorem
1 for a formal proof). Appendix A discusses the necessary and sufficient require-
ments for Birkhoff interpolation problem to have a unique solution. Examples of
Birkhoff interpolation problems can be found in [27].

4 Operations on Messages Distributed through
Hierarchical Secret Sharing Schemes

In this section, we prove that Tassa’s conjunctive and disjunctive hierarchical
secret sharing schemes, based on Birkhoff interpolation, allow to perform op-
erations over shared messages. More precisely, a message can be reconstructed
which is the result of operations performed over previously shared messages. The
operations supported are the sum of messages, the multiplication of a message
by a scalar, and the product of messages.

4.1 Setting

Messages m1,m2 ∈ Fq are distributed to a set S of n shareholders according to
the following assumptions.

(A1) The underlying access structure Γ remains the same for both messages
m1,m2. More precisely, both polynomials f(x) and h(x) used to share m1

and m2, respectively, have the same degree. Furthermore, shareholder si,j
with unique ID (i, j) holds share σi,j(m1) := f j(i) and σi,j(m2) := hj(i).

(A2) The degree t − 1 of polynomials f(x) and h(x) is chosen such that 2t ≤ n,
where n is the total number of shareholders.

(A3) The ID (i, j) of each shareholder si,j ∈ S is chosen such that index i ∈ I
is selected once within the whole hierarchy and such that the corresponding
Birkhoff interpolation problem has a unique solution. The requirements to
achieve this can be found in Appendix A.

(A4) The user communicates with the shareholders and the shareholders among
each other using private channels.

(A5) A tamper-proof bulletin board is available to allow exchanging data during
the preprocessing phase of the multiplication procedure. Note that this is
a common assumption for auditable multi-party computation and a more
formal definition can be found in [20].

Let us recall that index j ∈ I of the unique identity ID of shareholder si,j ∈ S
is defined as j := th−1 (j := t`−th), for h = 0, . . . , ` and t−1 := 0 (see Section 3).
Algorithm Share defined in Section 3.2 is run separately to share and distribute
message m1 and message m2 to the n shareholders of set S. More precisely, to
share message m1, algorithm Share selects a polynomial f(x) = a0 + a1x+ · · ·+
at−1x

t−1, where a0 := m1 (at−1 := m1) and a1, . . . , at−1 ∈ Fq (a0, . . . , at−2 ∈ Fq)
are chosen uniformly at random. It distributes to each shareholder si,j ∈ S share
σi,j(m1) = f j(i). To share message m2, algorithm Share generates a polynomial
h(x) = b0 + b1x+ · · ·+ bt−1x

t−1, where b0 := m2 (bt−1 := m2) and b1, . . . , bt−1 ∈
Fq (b0, . . . , bt−2 ∈ Fq) are chosen uniformly at random. It distributes to each
shareholder si,j ∈ S share σi,j(m2) = hj(i). Afterwards, algorithms Linear and
Multiply are run by each shareholder individually to perform linear operations
and multiplications on their shares of messages m1 and m2. Finally, the result
m ∈ Fq of these operations on m1,m2 can be reconstructed by running algorithm
Reconstruct defined in Section 3.2 on the shares computed by each shareholder.

4.2 Linear Operations

In this section, algorithm Linear is presented, which computes share σi,j(m) ∈ Fq
for shareholder si,j ∈ S, to be used as input for algorithm Reconstruct to retrieve
message m = λ1 ·m1 + λ2 ·m2, for scalars λ1, λ2 ∈ Fq.

Linear The algorithm takes as input shares σi,j(m1), σi,j(m2) ∈ Fq held
by shareholder si,j ∈ S, and scalars λ1, λ2 ∈ Fq. It outputs share σi,j(m) :=
λ1 · σi,j(m1) + λ2 · σi,j(m2) ∈ Fq for shareholder si,j ∈ S.

Theorem 1. The algorithm Linear for conjunctive (disjunctive) hierarchical se-
cret sharing introduced above computes the shares correctly. More precisely, on
input shares σi,j(m1), σi,j(m2) and scalars λ1, λ2, the shares computed by Linear
reconstruct to message m, where m = λ1 ·m1 + λ2 ·m2. Furthermore, perfectly
secrecy, according to Definition 1, is maintained while performing Linear.

Proof. Let σi,j(m) ∈ Fq be the shares computed by shareholders si,j ∈ R
using algorithm Linear, where R ∈ Γ is an authorized set. To prove correctness,
we have to show that algorithm Reconstruct outputs message m = λ1 ·m1+λ2 ·m2

when it takes as input shares σi,j(m) ∈ Fq. More precisely, we have to show that
the shares interpolate to a polynomial p(x) = c0 + c1x+ · · ·+ ct−1x

t−1 of degree
deg(p(x)) = t − 1, where c0 = λ1 ·m1 + λ2 ·m2(ct−1 = λ1 ·m1 + λ2 ·m2). To
prove perfect secrecy, we have to show, first, that algorithm Linear computes
shares for message m = λ1 · m1 + λ2 · m2 without leaking information about
the shares for message m1 and message m2. Second, we have to show that any
unauthorized set U /∈ Γ gets no information about m = λ1 ·m1+λ2 ·m2. In order
to do that, we have to show that polynomial p(x) = c0 + c1x + · · · + ct−1x

t−1

can be computed in distributed fashion by each shareholder si,j ∈ R. That is,
correctness and perfect secrecy hold if each shareholder can compute a term
p(i,j),k without leaking information to any other shareholder and such that:

p(x) =

t−1∑
k=0

ckx
k =

t−1∑
k=0

∑
si,j∈R

p(i,j),kx
k,

where c0 = λ1 ·m1 + λ2 ·m2(ct−1 = λ1 ·m1 + λ2 ·m2).
Let us recall that message m1 ∈ Fq is shared using polynomial f(x) = a0 +

a1x+· · ·+at−1xt−1. Due to Birkhoff interpolation resolution formula (see Section
3.2), coefficient ak of polynomial f(x) can be computed as:

ak =

r∑
l=1

al,k =

r∑
l=1

σl(m1)(−1)l−1+k
det(Al−1,k(E,X,ϕ))

det(A(E,X,ϕ))
,

for k = 0, . . . , t − 1, where σl(m1), for l = 1, . . . , r, are the shares σi,j(m1) in
lexicographic order ((i, j) precedes the pair (i′, j′) if i < i′ or i = i′ and j < j′).
Similarly, message m2 ∈ Fq is shared through polynomial h(x) = b0 + b1x +
· · ·+ bt−1x

t−1. Due to Birkhoff interpolation resolution formula, coefficient bk of
polynomial h(x) can be computed as:

bk =

r∑
l=1

bl,k =

r∑
l=1

σl(m2)(−1)l−1+k
det(Al−1,k(E,X,ϕ))

det(A(E,X,ϕ))
,

for k = 0, . . . , t − 1, where σl(m2), for l = 1, . . . , r, are the shares σi,j(m2)
in lexicographic order. Because of the homomorphic property of polynomials,
polynomial p(x) can be computed as the linear combination of polynomial f(x)
and polynomial h(x) with scalars λ1, λ2 ∈ Fq. That is, p(x) = λ1 ·f(x)+λ2 ·h(x).
Therefore,

p(x) =

t−1∑
k=0

λ1 · ak + λ2 · bk =

t−1∑
k=0

r∑
l=1

λ1 · al,k + λ2 · bl,k.

This shows that the terms pl,k = p(i,j),k := λ1 · al,k + λ2 · bl,k computed by the
shareholders si,j ∈ R interpolate to polynomial p(x) and correctness is provided.
Regarding perfect secrecy, the computation of pl,k is performed solely by share-
holder sl ∈ R using the information it has and without leaking al,k nor bl,k.
Thus, no information about shares σl(m1), σl(m2) is leaked. Moreover, being
polynomial p(x) of degree deg(p(x)) = t − 1, the original access structure Γ is
maintained: subsets U ⊂ S of shareholders such that U /∈ Γ not only cannot
reconstruct m = λ1 ·m1 +λ2 ·m2, but also do not get any information about m1

nor m2. Thus, perfect secrecy of the underlying conjunctive (disjunctive) hier-
archical secret sharing is still maintained even if algorithm Linear is run and the
shares computed by this algorithm are used as input for algorithm Reconstruct.

4.3 Multiplication

In this section, algorithm Multiply is presented, which computes share σi,j(m)
for shareholder si,j ∈ S. Share σi,j(m) is used as input for algorithm Reconstruct

to retrieve message m = m1 ·m2. Algorithm Multiply uses algorithm Linear (see
Section 4.2) to compute message m as linear combinations of the shares for
message m1 and message m2. More precisely, it builds on the multiplication al-
gorithm discussed in [30], requiring for each multiplication a preprocessing phase
in which the shareholders jointly compute shares σi,j(α), σi,j(β), σi,j(γ) to mes-
sages α, β, γ ∈ Fq such that α · β = γ. Note that, according to Assumption (A1)
in Section 4.1, for algorithm Multiply to work the values α, β, and γ have to be
shared according to the access structure Γ . More details about how to achieve
this are provided in Section 5.

Multiply The algorithm selects a triple (α, β, γ) generated during the prepro-
cessing phase and it takes as input shares σi,j(m1), σi,j(m2) ∈ Fq and shares
σi,j(α), σi,j(β), σi,j(γ) ∈ Fq held by shareholder si,j ∈ S. It outputs share
σi,j(m) ∈ Fq for message m = m1 · m2, which is computed performing the
following steps.

First, shareholder si,j computes share σi,j(δ) := σi,j(m1)−σi,j(α) and share
σi,j(ε) := σi,j(m2) − σi,j(β) using algorithm Linear. Second, shareholders from
an authorized set R ∈ Γ run algorithm Reconstruct with shares σi,j(δ), σi,j(ε) as
input to publicly reconstruct values δ, ε using the bulletin board. Third, share-
holder si,j ∈ S computes the share σi,j(m) := σi,j(γ)+ε·σi,j(m1)+δ·σi,j(m2)−δε
using algorithm Linear.

Theorem 2. The algorithm Multiply for conjunctive (disjunctive) hierarchical
secret sharing introduced above computes the shares correctly. More precisely,
on input shares σi,j(m1), σi,j(m2), the shares computed by Multiply reconstruct
to message m, where m = m1 ·m2. Furthermore, perfect secrecy, according to
Definition 1, is maintained while performing Multiply.

Proof. The correctness relies on the correctness of algorithm Linear, presented
in Section 4.2. In fact, share σi,j(m) is defined as the linear combination of shares
σi,j(γ), σi,j(m1), σi,j(m2) for messages γ,m1,m2, respectively, and scalars δ, ε.
More precisely, in the first step the scalars δ and ε are computed in distributed
fashion using algorithm Linear, such that δ = m1 − α and ε = m2 − β. After
those values have been reconstructed in the second step, in the third step each
shareholder computes a share to message m by computing σi,j(m) = σi,j(γ) +
ε · σi,j(m1) + δ · σi,j(m2) − δε using algorithm Linear. Therefore, if algorithm
Reconstruct takes as input shares σi,j(m) ∈ Fq held by shareholders si,j ∈ R,
where R ∈ Γ is an authorized set, then it retrieves:

m = γ + ε ·m1 + δ ·m2 − δε

= γ + (m2 − β) ·m1 + (m1 − α) ·m2 − (m2 − β)(m1 − α)

= γ +m1 ·m2 − β · α

Since α · β = γ this leads to

m = m1 ·m2,

showing that algorithm Multiply is correct. Thus, algorithm Reconstruct interpo-
lates to a polynomial p(x) = c0 +c1x+ · · ·+ct−1x

t−1 of degree deg(p(x)) = t−1
and retrieves message m1 · m2 as c0(ct−1). The perfect secrecy of algorithm
Multiply is implied by the perfect secrecy of algorithm Linear (proven in Section
4.2) and by the perfect secrecy of the preprocessing phase, which is discussed in
Section 5.

5 Preprocessing Phase

In this section, we introduce the preprocessing phase enabling the multiplication
between two shared messages (see Section 4.3). Preprocessing has been common
practice for multi-party computation since it has been introduced by Beaver in
[1], because it lowers the communication complexity of the algorithm Multiply.
More precisely, during the preprocessing phase a triple (α, β, γ) is generated such
that the following conditions hold.

– α · β = γ.
– Assumption (1) of Section 4.1 holds, i.e. each shareholder si,j ∈ S with ID

(i, j) ∈ I × I holds shares σi,j(α) := f jα(i), σi,j(β) := f jβ(i), and σi,j(γ) :=

f jγ(i), where fα(x), fβ(x), and fγ(x) are the polynomials of degree t − 1
sharing α, β, and γ, respectively.

In [11] it is shown how to generate such triples, but it is assumed that Shamir’s
threshold secret sharing scheme is used. Thus, here we present a preprocessing
phase for Tassa’s conjunctive (disjunctive) hierarchical secret sharing scheme.

PreMult The algorithm outputs for each shareholder si,j ∈ S a triple of shares
σi,j(α), σi,j(β), σi,j(γ) ∈ Fq, such that for each triple it holds that σi,j(γ) =
σi,j(αβ). This is done in three main steps.

First, each shareholder si,j randomly chooses a pair of shares σi,j(α), σi,j(β),
as shown in Appendix B.1. Second, shareholders s1, . . . , sr ∈ R from an autho-
rized set R ∈ Γ compute for each shareholder si,j terms δl,(i,j) and εl,(i,j). Third,
using δl,(i,j) and εl,(i,j) each shareholder si,j ∈ S computes its share σi,j(γ) ∈ Fq.

More precisely, in the second step each shareholder sl ∈ R, for l = 1, . . . , r,
computes the input δl,(i,j) and εl,(i,j) for si,j by performing the following steps.

First, shareholder sl ∈ R uses its shares σl(α) and σl(β) and the unique ID
(i, j) of shareholder si,j to compute the values λl,(i,j) and µl,(i,j) defined as:

λl,(i,j) :=σl(α)

t−1∑
k=j−1

k!

(k − j + 1)!
(−1)l−1+k

det(Al−1,k(E,X,ϕ))

det(A(E,X,ϕ))
ik−j+1

and

µl,(i,j) :=σl(β)

t−1∑
k=j−1

k!

(k − j + 1)!
(−1)l−1+k

det(Al−1,k(E,X,ϕ))

det(A(E,X,ϕ))
ik−j+1,

where A(E,X,ϕ) and Al−1,k(E,X,ϕ) are the matrices defined in Section 3.
Then, it randomly splits λl,(i,j) and µl,(i,j) into r values, i.e. λl,(i,j) = λ1,l,(i,j) +
· · ·+λr,l,(i,j) and µl,(i,j) = µ1,l,(i,j)+· · ·+µr,l,(i,j) and sends λm,l,(i,j) and µm,l,(i,j)
to shareholder sm ∈ R, for m = 1, . . . , r and m 6= l, using a private channel.
Afterwards, it collects all values λl,m,(i,j) and µl,m,(i,j) received from shareholder
sm ∈ R, for m = 1, . . . , r and m 6= l, and computes δl,(i,j) :=

∑r
m=1 λl,m,(i,j)

and εl,(i,j) :=
∑r
m=1 µl,m,(i,j). Finally, it sends δl,(i,j) and εl,(i,j) to shareholder

si,j using a private channel.
In the third step, all shareholders within the set S compute their shares. More

precisely, each shareholder si,j ∈ S computes share σi,j(γ) using the values δl,(i,j)
and εl,(i,j) received from shareholder sl ∈ R, for l = 1, . . . , r, as

σi,j(γ) := σi,j(αβ) =

(r∑
l=1

δl,(i,j)

)
· σi,j(β) + σi,j(α) ·

(r∑
l=1

εl,(i,j)

)
.

Theorem 3. The algorithm PreMult for conjunctive (disjunctive) hierarchical
secret sharing introduced above computes the multiplicative triples correctly. More
precisely, on input the shares σi,j(α) and σi,j(β), the shares computed by algo-
rithm PreMult reconstructs to γ, where γ = αβ. Furthermore, perfect secrecy,
according to Definition 1, is maintained while performing PreMult.

Proof. Let σi,j(αβ) be the share computed by shareholder si,j ∈ R us-
ing algorithm PreMult, where R ∈ Γ is an authorized set. Correctness of al-
gorithm PreMult is provided if the shares held by shareholders in R it out-
puts interpolate to a polynomial p(x) = c0 + c1x + · · · + c2(t−1)x

2(t−1), where
c0 = αβ(c2(t−1) = αβ). Polynomial p(x) is defined as p(x) = fα(x) · fβ(x), given
that α is shared using polynomial fα(x) and β is shared using polynomial fβ(x).
We have to show that, for each share σi,j(γ) computed by algorithm PreMult, it
holds that σi,j(γ) = σi,j(αβ), where σi,j(α) and σi,j(β) were randomly selected
from shareholder si,j . In this case σi,j(γ) can be written as:

σi,j(αβ) = pj(i) = [fα(i) · fβ(i)]j = f jα(i) · f j−1β (i) + f j−1α (i) · f jβ(i).

The terms f jα(i) and f jβ(i) constitute the random values σi,j(α) and σi,j(β) se-

lected by shareholder si,j ∈ S. It is left to check that
∑r
l=1 δl,(i,j) and

∑r
l=1 εl,(i,j)

correspond to f j−1α (i) and f j−1β (i), respectively. From the second step, we recall

that δl,(i,j) =
∑r
m=1 λl,m,(i,j). Thus, it follows that:

r∑
l=1

δl,(i,j) =

r∑
l=1

r∑
m=1

λl,m,(i,j) =

r∑
l=1

f j−1α,l (i) = f j−1α (i),

where polynomial f j−1α,l (x) is the (j − 1)-th derivative of polynomial fα,l(x) =∑t−1
k=0 αl,kx

k, where αl,k is the reconstructing term of Birkhoff interpolation for-
mula (see Section 3.2). Note that the last equality of the expression above holds
because the coefficients of fα(x) can be computed in distributed fashion, see The-
orem 2 in [34]. The equality

∑r
l=1 εl,(i,j) = f j−1β (i) can be shown analogously.

Moreover, since polynomial p(x) = c0 + c1x+ · · ·+ c2(t−1)x
2(t−1) is the product

of polynomials fα(x) and fβ(x), then c0 = a0b0 = αβ(c2(t−1) = at−1bt−1 = αβ).
Thus, correctness holds. To prove perfect secrecy, we have to show that no in-
formation is leaked when share σi,j(αβ) is generated for shareholder si,j ∈ S.
Regarding the terms

∑r
l=1 δl,(i,j) and

∑r
l=1 εl,(i,j), we have to show that they do

not leak information about shares σl(α) and σl(β) of shareholder sl ∈ R, respec-
tively. That is the case because shareholder sl ∈ R uses additive secret sharing
[13] to split λl,(i,j) and µl,(i,j) into r random values λm,l,(i,j) and µm,l,(i,j), re-
spectively. Furthermore, perfect secrecy holds also because index i ∈ I of each
identity ID (i, j) ∈ I×I is used once, as required by Assumption (A3) of Section
4.1. Otherwise, points f j−1α (i) and f j−1β (i) might correspond to already existing
shares σi,j−1(α) and σi,j−1(β) for α and β, respectively, already computed for
shareholder si,j−1 ∈ S. Moreover, because each share σi,j(γ) is a point on poly-
nomial p(x) or on one of its derivatives, the underlying conjunctive (disjunctive)
hierarchical secret sharing scheme ensures that unauthorized subsets gain no
information about α, β, γ.

6 Auditing Procedure for Computations over
Hierarchically Shared Messages

In this section, we provide measures allowing a third party to verify that a func-
tion on shares has been computed correctly, i.e that the message reconstructed
from the computed shares is the correct outcome. We present auditing proce-
dures suitable for the algorithms Linear, PreMult, and Multiply for conjunctive
(disjunctive) hierarchical secret sharing schemes. This is achieved through com-
mitment schemes and techniques applied in verifiable secret sharing [29].

6.1 Verifiable Secret Sharing and Commitments Schemes

Verifiable secret sharing was introduced in [9] to allow shareholders to check the
consistency of shares received from the message dealer. More precisely, audit
data are generated that allow the shareholders to check whether the shares of
each authorized subset of shareholders lead to the same message during the re-
construction algorithm. To provide verifiable secret sharing usually commitment
schemes are used, which come with two properties. First, bindingness ensures
that it is not possible to change the message committed to. Second, hidingness
ensures that no information about the message is leaked. Furthermore, there
are several commitment schemes with homomorphic properties available, i.e.
operations performed on the values committed to can be transferred to oper-
ations performed on the commitments. Verifiable secret sharing uses Feldman
commitment [15], which is unconditionally binding and computationally hiding,
or Pedersen commitment [28], which is computationally binding and uncondi-
tionally hiding. In the following, we use Feldmann commitment for the sake of
simplicity, but our solutions work with both schemes. In the following, we recall
the definition of Feldman commitment and Pedersen commitment (in brackets).

Definition 2 ([15],[28]). Feldman (Pedersen) commitment scheme is a triple
(Setup,Commit,Open) of the following algorithms.

Setup It takes as input a security parameter λ and it outputs a prime q, a
group G of order q, and a generator g ∈ G (distinct generators g, h ∈ G).

Commit It takes as input a message m ∈ Fq (and randomness r ∈ Fq) and it
outputs commitment c = gm (c = gmhr).

Open It takes as input a commitment c ∈ G, a message m ∈ Fq (and ran-
domness r ∈ Fq) and it outputs ‘1’ if c = gm (if c = gmhr) and ‘0’ otherwise.

6.2 Auditing Procedure for Conjunctive (Disjunctive) Hierarchical
Secret Sharing Schemes

In this section, we present auditing procedures for computations on messages
shared hierarchically by using Tassa’s conjunctive (disjunctive) hierarchically
secret sharing schemes, based on Birkhoff interpolation. More precisely, first, we
present algorithms Audit.Setup and Audit.Share, which describes the steps to be
performed during the setup phase and after algorithm Share, respectively. Then,
we present algorithm Audit.Linear which is run after algorithm Linear to verify
the correctness of linear operations. Finally, we present algorithms Audit.PreMult
and Audit.Multiply, which allow auditing of multiplications.

Setup and Share. Algorithm Audit.Setup sets up the cryptographic prim-
itives, i.e. commitment schemes and bilinear maps2, needed for the auditing
procedures. This can be run by any party. However, the parameters must be
made publicly available for the dealer of the input messages and the auditor
running the auditing procedures. Then, to allow operations to be audited, the
dealer commits to messages shared by running Audit.Share.

Audit.Setup The algorithm takes as input a security parameter λ and it out-
puts two large primes p, q such that q|(p − 1). It also outputs a generator g of
the q-th order subgroup Fq of F∗p.

Audit.Share The dealer of messages m1,m2 ∈ Fq calls algorithm Commit.Share
during algorithm Share and computes commitment c(m1) := gm1 mod p to
message m1 and commitment c(m2) := gm2 mod p to message m2. It publishes
the commitments on the bulletin board.

Linear Operations. In the following, algorithm Audit.Linear run by the au-
ditor to verify the result of linear operations over shared messages is presented.
We assume that either the shareholders or the message dealer published the used
scalars λ1, λ2 ∈ Fq on the bulletin board.

Audit.Linear The algorithm takes as input the commitments to the input
values c(m1), c(m2) and the scalars λ1, λ2 ∈ Fq from the bulletin board and the
claimed result m. If gm = c(m1)λ1 · c(m2)λ2 it returns ‘1’ and ‘0’ otherwise.

2 For a formal definition of bilinear maps we refer to [6].

Multiplication. In the following, the auditing procedure for products over
shared messages is presented. More precisely, first algorithm Audit.PreMult is
introduced, which computes commitments to the multiplicative triples generated
during algorithm PreMult of Section 5. Second, algorithm Audit.PreMult showing
the auditing procedure for algorithm Multiply is presented.

Note that, algorithm PreMult is performed in distributed fashion by the share-
holders of an authorized set R ∈ Γ . That is, each shareholder si,j ∈ S receives
input from each shareholder contained in R to compute share σi,j(αβ). If one of
the inputs is not valid, then shareholder si,j cannot compute a valid share for
αβ. This also affects the correctness of algorithm Multiply. In the following, it is
explained what audit data have to be generated such that shareholder si,j can
detect inconsistent input sent by other malicious shareholders during algorithm
PreMult of Section 5 performing the preprocessing phase.

Audit.PreMult The algorithm is run by the auditor to verify whether the
shares σi,j(αβ), output of algorithm PreMult, have been computed correctly.
The algorithm takes as input from the bulletin board commitments ck,α, ck,β ,
for k = 0, . . . , t − 1, to the coefficients of the polynomials fα(x), fβ(x) sharing
α and β, respectively. Appendix B.2 shows how commitments ck,α and ck,β are
computed. Then, each shareholder si,j ∈ S has valid input δl,i,j and εl,i,j , for
l = 1, . . . , r, to compute share σi,j(αβ) if and only if

g
∑r
l=1 δl,i,j ≡

t−1∏
k=j−1

ck,α
k!

(k−j+1)!
ik−j+1

= gf
(j−1)
α (i),

and if and only if

g
∑r
l=1 εl,i,j ≡

t−1∏
k=j−1

ck,β
k!

(k−j+1)!
ik−j+1

= gf
(j−1)
β (i).

If one of the both equalities is not satisfied, then it outputs ‘0’ and aborts. Other-
wise, each shareholder si,j ∈ S holding shares σi,j(α), σi,j(β), σi,j(γ) computes
commitments ci,j(α) := gσi,j(α), ci,j(β) := gσi,j(β), and ci,j(γ) := gσi,j(γ) for
σi,j(α), σi,j(β), and σi,j(γ), respectively. It publishes ci,j(α), ci,j(β), and ci,j(γ)
on the bulletin board and outputs ‘1’.

If algorithm Audit.PreMult has been run successfully, i.e. it outputs ‘1’, then
the shareholders can perform a multiplication on their shares and the auditor
can call algorithm Audit.PreMult to verify the correctness of the result computed.

Audit.Multiply The algorithm takes as input the values δ, ε, the commitments
to the shares of the multiplicative triple, i.e. ci,j(α), ci,j(β), and ci,j(γ), for si,j ∈
S, the commitments to the input values, i.e. c(m1), c(m2), and the claimed result
m. Then, it first audits that the equation αβ = γ was fulfilled and then that m
has been computed correctly performing the following steps.

First, the auditor computes the reconstruction vector (w1, . . . , wr)
3 for share-

holders s1, . . . , sr ∈ R, with R ∈ Γ authorized set, which computed the input
for γ during PreMult. Then, it computes the following commitments:

c(α) :=

r∏
l=1

cl(α)wl ; c(β) :=

r∏
l=1

cl(β)wl ; c(γ) :=

r∏
l=1

cl(γ)wl ,

where cl(α), cl(β), cl(γ), for l = 1, . . . , r, are commitments ci,j(α), ci,j(β), ci,j(γ),
respectively, in lexicographic order. The multiplicative triple (α, β, γ) was cor-
rect if and only if e(c(α), c(β)) = e(c(γ), g)4. If the equation does not hold it
outputs ‘0’ and aborts the algorithm. Otherwise, the auditor takes from the bul-
letin board commitments c(m1), c(m2) and the values δ, ε reconstructed during
algorithm Multiply. If it holds that c(α)−1 · c(m1) = gδ and c(β)−1 · c(m1) = gε

and gm = c(γ) · c(m1)ε · c(m2)δ · g−δε it returns ‘1’ and ‘0’ otherwise.

7 Security and Efficiency

Security. We have proven that algorithm Linear of Section 4.2, algorithm Multiply
of Section 4.3, and algorithm PreMult of Section 5 do not compromise the perfect
secrecy and correctness of the underlying conjunctive (disjunctive) hierarchical
secret sharing scheme. The adversary these algorithms can cope with is active, i.e.
not only it knows data private to shareholders (like the passive adversary), but
also it can make them deviate from the protocols. More precisely, assumptions
(A1)-(A4) of Section 4.1 set requirements for, respectively, the access structure,
the threshold, the identities of the shareholders, and the channels through which
shareholders communicate. These assumptions together with verifiable secret
sharing ensure that a honest majority of shareholders is able to correctly recon-
struct the message, while maintaining the secrecy of their shares, even if all other
shareholders are corrupted by the adversary and cheat. Assumption (5) prevents
the adversary from tampering the bulletin board and, together with the audit-
ing procedure, ensures correctness when operations on data are performed. As
it is shown in [34], conjunctive (disjunctive) hierarchical secret sharing schemes
support proactive secret sharing [21]. This means that, provided that the shares
are refreshed periodically, our protocols can cope with a mobile adversary, which
is only bounded in the amount of shareholders it can corrupt within a certain
time interval, but not over time. Furthermore, we provide an auditing procedure
in Section 6 allowing to detect misbehaviors. The protocols described use Feld-
man commitment, which ensures only computationally hidingness. However, the
auditing procedure can be easily adapted to Pedersen commitment to achieve un-
conditionally hidingness, which preserves even perfect secrecy of the underlying
conjunctive (disjunctive) hierarchical secret sharing scheme.

3 For conjunctive (disjunctive) hierarchical secret sharing schemes the interpola-

tion vector is composed of the entries wl := (−1)l−1 det(Al−1,0(E,X,ϕ))

det(A(E,X,ϕ))

(
wl :=

(−1)l+t−2 det(Al−1,t−1(E,X,ϕ))

det(A(E,X,ϕ))

)
according to the notation of Section 3.2.

4 Here the definition of bilinear maps is used.

Efficiency. With respect to efficiency, the algorithms Share, Reconstruct,
Linear, Multiply, and PreMult for conjunctive (disjunctive) hierarchical secret
sharing perform equally well as Shamir’s threshold secret sharing. Besides poly-
nomials’ evaluation, algorithm Share requires also to compute up to t− 1 poly-
nomials’ derivatives. However, the additional multiplications due to derivation
are balanced by the fewer multiplications needed when evaluating derivatives of
polynomials. Algorithm Recostruct is the most expensive algorithm and requires
in both Tassa’s and Shamir’s scheme to perform Gaussian elimination to find a
solution to a system of t linear equations. Algorithm Linear and Multiply require
that the shareholders perform steps very similar to the corresponding algorithms
for Shamir’s secret sharing (see for instance [3], [30]). Algorithm PreMult requires
more work with respect to the preprocessing phase compared to Shamir’s thresh-
old secret sharing. In fact, algorithm PreMult is computed in distributed fashion
because additional information is needed to compute the shares. Despite the fact
that only additions and polynomials’ evaluation are performed to compute such
additional information, algorithm PreMult increases the communication cost and
requires secure channels. For Shamir’s threshold secret sharing scheme this addi-
tional information needs not to be computed and the communication complexity
is, thus, lower. For the same reasons, the auditing procedure during the on-line
phase of Tassa’s schemes has computational complexity similar to the one for
Shamir’s scheme while the auditing procedure during the off-line phase is more
expensive. In fact, to perform algorithms Audit.Linear and Audit.Multiply, the
auditor takes steps very similar to the corresponding auditing procedure for
Shamir’s secret sharing schemes, because algorithms Linear and Multiply are de-
fined similarly. Instead, algorithm Audit.PreMult requires the computation of
commitments in a distributed fashion, which increases the communication and
the computation cost. However, we recall that the preprocessing phase is off-line
and can be performed in advance. Regarding the on-line phase, which is the time
critical phase, the schemes of both Shamir and Tassa perform equally well.

8 Conclusion

In this work, we showed how to practically compute linear operations and mul-
tiplications over shared messages when Tassa’s conjunctive and disjunctive hi-
erarchical secret sharing schemes are used. Together with the property of mod-
ifying the access structure and changing the set of shareholders shown in [34],
we proved that Birkhoff interpolation-based secret sharing schemes allow for
the same functionalities as Shamir’s secret sharing scheme, which is based on
Lagrange interpolation. Furthermore, we showed how to perform the prepro-
cessing phase enabling to reconstruct the product of two shared messages and
provided auditing procedures to check that the operations were performed cor-
rectly. Moreover, the protocols we proposed do not lower the overall security
of the underlying conjunctive and disjunctive hierarchical secret sharing scheme
and do not increase in the on-line phase the computation overhead with respect
to the same protocols for Shamir’s secret sharing scheme. From a theoretical

point of view, this result can be inferred from the approach presented in [10],
which shows how secure multi-party computation can be built from linear se-
cret sharing schemes. However, such approach is very general and does not show
how this can be done for specific schemes, which is what we provide here for
Birkhoff interpolation-based secret sharing schemes. From a practical point of
view, this result is more interesting because it impacts the framework of cloud
computing and distributed storage systems. More precisely, the possibility to
perform operations over hierarchically shared messages sets Tassa’s conjunctive
and disjunctive hierarchical secret sharing schemes as promising candidates for
distributed storage systems, where the storage servers are granted with different
reconstruction capabilities depending on their performance [25], [35]. In fact,
Tassa’s conjunctive and disjunctive hierarchical secret sharing schemes together
with the auditing procedure we presented would allow computations on docu-
ments outsourced to the cloud and stored in distributed fashion.

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Ad-
vances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings. pp.
420–432 (1991), http://dx.doi.org/10.1007/3-540-46766-1_34

2. Beimel, A.: Secret-sharing schemes: A survey. In: Coding and Cryptology - Third
International Workshop, IWCC 2011, Qingdao, China, May 30-June 3, 2011. Pro-
ceedings. pp. 11–46 (2011), http://dx.doi.org/10.1007/978-3-642-20901-7_2

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, May
2-4, 1988, Chicago, Illinois, USA. pp. 1–10 (1988), http://doi.acm.org/10.1145/
62212.62213

4. Blakley, G.R., et al.: Safeguarding cryptographic keys. In: Proceedings of the na-
tional computer conference. vol. 48, pp. 313–317 (1979)

5. Blundo, C., Cresti, A., Santis, A.D., Vaccaro, U.: Fully dynamic secret sharing
schemes. In: Advances in Cryptology - CRYPTO ’93, 13th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 22-26, 1993, Pro-
ceedings. pp. 110–125 (1993), http://dx.doi.org/10.1007/3-540-48329-2_10

6. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pair-
ing. SIAM J. Comput. 32(3), 586–615 (2003), https://doi.org/10.1137/

S0097539701398521

7. Brickell, E.F.: Some ideal secret sharing schemes. In: Advances in Cryptology EU-
ROCRYPT’89. pp. 468–475. Springer (1990)

8. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA. pp. 11–19 (1988),
http://doi.acm.org/10.1145/62212.62214

9. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: 26th An-
nual Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-
23 October 1985. pp. 383–395 (1985), http://dx.doi.org/10.1109/SFCS.1985.64

10. Cramer, R., Damg̊ard, I., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: Advances in Cryptology - EUROCRYPT
2000, International Conference on the Theory and Application of Cryptographic
Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding. pp. 316–334 (2000),
https://doi.org/10.1007/3-540-45539-6_22

11. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Advances in Cryptology - CRYPTO 2007, 27th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007, Proceed-
ings. pp. 572–590 (2007), http://dx.doi.org/10.1007/978-3-540-74143-5_32

12. Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures
and its applications. Tech. rep., Technical Report ISSE TR-97-01, George Mason
University (1997)

13. Doganay, M.C., Pedersen, T.B., Saygin, Y., Savas, E., Levi, A.: Distributed privacy
preserving k-means clustering with additive secret sharing. In: Proceedings of the
2008 International Workshop on Privacy and Anonymity in Information Society,
PAIS 2008, Nantes, France, March 29, 2008. pp. 3–11 (2008), http://doi.acm.
org/10.1145/1379287.1379291

14. Farràs, O., Padró, C.: Ideal hierarchical secret sharing schemes. In: Theory of Cryp-
tography, 7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland,
February 9-11, 2010. Proceedings. pp. 219–236 (2010), http://dx.doi.org/10.

1007/978-3-642-11799-2_14

15. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
Foundations of Computer Science, 1987., 28th Annual Symposium on. pp. 427–438.
IEEE (1987)

16. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fact-track multiparty
computations with applications to threshold cryptography. In: Proceedings of the
Seventeenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’98, Puerto Vallarta, Mexico, June 28 - July 2, 1998. pp. 101–111 (1998),
http://doi.acm.org/10.1145/277697.277716

17. Ghodosi, H., Pieprzyk, J., Safavi-Naini, R.: Secret sharing in multilevel and com-
partmented groups. In: Information Security and Privacy. pp. 367–378. Springer
(1998)

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: Proceedings of the
19th Annual ACM Symposium on Theory of Computing, 1987, New York, New
York, USA. pp. 218–229 (1987), http://doi.acm.org/10.1145/28395.28420

19. Gupta, V., Gopinath, K.: Gits
2 VSR: : An information theoretical secure verifiable

secret redistribution protocol for long-term archival storage. In: Security in Storage
Workshop, 2007. SISW’07. Fourth International IEEE. pp. 22–33. IEEE (2007)

20. Heather, J., Lundin, D.: The append-only web bulletin board. In: Formal Aspects
in Security and Trust, 5th International Workshop, FAST 2008, Malaga, Spain,
October 9-10, 2008, Revised Selected Papers. pp. 242–256 (2008), https://doi.
org/10.1007/978-3-642-01465-9_16

21. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or:
How to cope with perpetual leakage. In: Advances in Cryptology CRYPTO’95, pp.
339–352. Springer (1995)

22. Hogan, M., Liu, F., Sokol, A., Tong, J.: NIST Cloud Computing Standards
Roadmap. NIST Special Publication 35 (2011)

23. Käsper, E., Nikov, V., Nikova, S.: Strongly multiplicative hierarchical threshold
secret sharing. In: Information Theoretic Security - Second International Confer-

ence, ICITS 2007, Madrid, Spain, May 25-29, 2007, Revised Selected Papers. pp.
148–168 (2007), https://doi.org/10.1007/978-3-642-10230-1_13

24. Loruenser, T., Happe, A., Slamanig, D.: Archistar: towards secure and robust cloud
based data sharing. In: Cloud Computing Technology and Science (CloudCom),
2015 IEEE 7th International Conference on. pp. 371–378. IEEE (2015)

25. Nojoumian, M., Stinson, D.R.: Social secret sharing in cloud computing using a
new trust function. In: Tenth Annual International Conference on Privacy, Security
and Trust, PST 2012, Paris, France, July 16-18, 2012. pp. 161–167 (2012), http:
//dx.doi.org/10.1109/PST.2012.6297936

26. Nojoumian, M., Stinson, D.R., Grainger, M.: Unconditionally secure social secret
sharing scheme. Information Security, IET 4(4), 202–211 (2010)

27. Pakniat, N., Eslami, Z., Nojoumian, M.: Ideal social secret sharing using Birkhoff
interpolation method. IACR Cryptology ePrint Archive 2014, 515 (2014), http:
//eprint.iacr.org/2014/515

28. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Advances in Cryptology CRYPTO’91. pp. 129–140. Springer (1992)

29. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: Proceedings of the twenty-first annual ACM symposium on
Theory of computing. pp. 73–85. ACM (1989)

30. Schabhüser, L., Demirel, D., Buchmann, J.A.: An unconditionally hiding auditing
procedure for computations over distributed data. In: 2016 IEEE Conference on
Communications and Network Security, CNS 2016, Philadelphia, PA, USA, Oc-
tober 17-19, 2016. pp. 552–560 (2016), http://dx.doi.org/10.1109/CNS.2016.

7860547

31. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (Nov 1979),
http://doi.acm.org/10.1145/359168.359176

32. Simmons, G.J.: How to (really) share a secret. In: Proceedings on Advances in
cryptology. pp. 390–448. Springer-Verlag New York, Inc. (1990)

33. Tassa, T.: Hierarchical threshold secret sharing. Journal of Cryptology 20(2), 237–
264 (2007)

34. Traverso, G., Demirel, D., Buchmann, J.A.: Dynamic and verifiable hierarchical
secret sharing. In: Information Theoretic Security - 9th International Conference,
ICITS 2016, Tacoma, WA, USA, August 9-12, 2016, Revised Selected Papers. pp.
24–43 (2016), http://dx.doi.org/10.1007/978-3-319-49175-2_2

35. Traverso, G., Demirel, D., Habib, S.M., Buchmann, J.A.: As3: Adaptive social
secret sharing for distributed storage systems. In: 14th Annual Conference on Pri-
vacy, Security and Trust, PST 2016, Auckland, New Zealand, December 12-14,
2016. pp. 528–535 (2016), https://doi.org/10.1109/PST.2016.7907011

Appendix

A Requirements for Birkhoff interpolation matrices
Intepolation

In this section the necessary requirements and a sufficient condition for the
interpolation matrix E are presented, such that the corresponding Birkhoff in-
terpolation problem is well posed. For the corresponding proofs we refer to [33].

Lemma 1. Let A ⊂ S be an authorized subset of shareholders, i.e. A ∈ Γ , and
E the corresponding interpolation matrix, where the entries ei,j of the matrix E
satisfy the following condition:

k∑
j=0

r∑
i=1

ei,j ≥ k + 1, 0 ≤ k ≤ d, (1)

where d is the highest derivative order in the problem and r := |A| is the
number of interpolating points.

Before providing the sufficient condition (Theorem 4), the following definition
is needed.

Definition 3 ([33]). In the interpolation matrix E a 1-sequence is a maximal
run of consecutive 1s in a row of the matrix E itself. Namely, it is a triplet of
the form (i, j0, j1) where 1 ≤ i ≤ r and 0 ≤ j0 ≤ j1 ≤ d, such that ei,j = 1
for all j0 ≤ j ≤ j1, while ei,j0−1 = ei,j1+1 = 0. A 1-sequence (i, j0, j1) is called
supported if E has 1s both to the northwest and southwest of the leading entry
in the sequence, i.e. there exist indexes nw and sw, where inw < i < isw and
jnw, jsw < j0 such that einw,jnw = eisw,jsw = 1.

Theorem 4. The interpolation Birkhoff problem for an authorized subset A and
the corresponding interpolation matrix E has a unique solution, if the interpola-
tion matrix E satisfies (1) and contains no supported 1-sequence of odd length.

In case the Birkhoff interpolation problem is instantiated over a finite field
Fq with q > 0 a prime number, then also the following condition has to hold.

Theorem 5. The Birkhoff interpolation problem for an interpolation matrix E
has a unique solution over the finite field Fq, if Theorem 4 holds and in addition
also the following inequality is satisfied:

q > 2−d+2 · (d− 1)
(d−1)

2 · (d− 1)! · x
(d−1)(d−2)

2
r , (2)

where d is the highest derivative order of the problem.

B Computation of shares σi,j(α), σi,j(β) and
commitments ck,α, ck,β

In this section, we explain how the inputs to algorithm PreMult of Section 5 and
algorithm Audit.PreMult of Section 6.2 are computed. We recall that Assump-
tions (A1), (A2), (A3), (A4), and (A5) of Section 4.1 hold and that information
relating to disjunctive hierarchical secret sharing schemes is put in brackets.

B.1 Computation of shares σi,j(α), σi,j(β)

In this section, algorithm RandShares is presented, which computes random
shares σi,j(α), σi,j(β) reconstructing to messages α, β, respectively. Algorithm
RandShares constitutes the first step of algorithm PreMult of Section 5. The chal-
lenge is that messages α, β are unknown and the shareholders have to find a way
to coordinate their choices for shares σi,j(α), σi,j(β) without leaking information.
The strategy we adopt is to make use of the underlying conjunctive (disjunc-
tive) hierarchical secret sharing scheme to generate the shares σi,j(α), σi,j(β).
In the following, we present algorithm RandShares to compute shares σi,j(α) for
shareholders si,j reconstructing to message α. Algorithm RandShares can be run
analogously to generate shares σi,j(β) reconstructing to message β.

RandShares The algorithm takes as input values αi,j ∈ Fq chosen uniformly
at random by shareholders si,j ∈ S. It outputs shares σi,j(α) of message α ∈ Fq
for shareholders si,j ∈ S. To do that, each shareholder si,j ∈ S has to perform
the following steps.

1) It chooses a secret message αi,j ∈ Fq uniformly at random.
2) It runs algorithm Share of Section 3.2 to generate a polynomial fαi,j (x) of de-

gree t− 1 defined as fαi,j (x) := a0,(i,j) +a1,(i,j)x+ · · ·+at−1,(i,j)x
t−1, where

a0,(i,j) = αi,j (at−1,(i,j) = αi,j) and coefficients a1,(i,j), . . . , at−1,(i,j) ∈ Fq
(a0,(i,j), . . . , at−2,(i,j) ∈ Fq) are chosen uniformly at random. Shares σi′,j′(αi,j)
for shareholders si′,j′ ∈ S with ID (i′, j′) 6= (i, j) are computed as σi′,j′(αi,j) :=

f j
′

αi,j (i
′). Share σi,j(αi,j) for shareholder si,j itself is computed as σi,j(αi,j) :=

f jαi,j (i).
3) It sends shares σi′,j′(αi,j) to shareholders si′,j′ ∈ S with ID (i′, j′) 6= (i, j)

using a private channel and keeps share σi,j(αi,j).
4) It runs algorithm Linear of Section 4.2 to compute share σi,j(α) using share

σi,j(αi,j) and all the shares σi,j(αi′,j′) received from shareholders si′,j′ as
σi,j(α) :=

∑
(i′,j′)6=(i,j) σi,j(αi′,j′) + σi,j(αi,j).

In the following, we prove correctness of algorithm RandShares and we show
that perfect secrecy, according to Definition 1, is provided.

Theorem 6. The algorithm RandShares for conjunctive (disjunctive) hierarchi-
cal secret sharing introduced above computes the shares σi,j(α) correctly. More
precisely, on input random secret messages αi,j, the shares computed by algo-
rithm RandShares reconstruct to a common value α. Furthermore, perfect secrecy,
according to Definition 1, is maintained while performing RandShares.

Proof. Let σi,j(α) ∈ Fq be the shares computed using algorithm RandShares
and held by shareholders si,j ∈ R, where R ∈ Γ is an authorized set. To prove
correctness, we have to show that algorithm Reconstruct outputs a message α
when it takes as input shares σi,j(α) held by shareholders of an authorized set
R. This means that correctness holds provided that algorithm Reconstruct can
be successfully run by shareholders of any authorized set. This is implied by

the correctness of algorithm Linear, presented in Section 4.2. In fact, each share
σi,j(α) is computed as a sum of shares σi,j(αi′,j′) and share σi,j(αi,j). Thus,
for the homomorphic property of polynomials, shares σi,j(α) is either a point
of polynomial fα(x) := a0,α + a1,αx + · · · + at−1,αx

t−1 =
∑

(i,j) fαi,j (x) or a

point on one of its derivatives, where a0,α =
∑

(i,j) αi,j(at−1,α =
∑

(i,j) αi,j).

Because of the underlying conjunctive (disjunctive) hierarchical secret sharing
scheme, any authorized set R of shareholders can run algorithm Reconstruct over
their shares and retrieve message α :=

∑
(i,j) αi,j . This proves correctness. With

respect to perfect secrecy, the underlying conjunctive (disjunctive) hierarchical
secret sharing scheme guarantees that shares σi,j(α) are computed without leak-
ing information about the secret messages αi,j . Furthermore, this implies that
unauthorized sets of shareholders not only cannot successfully run algorithm
Reconstruct to retrieve α, but also no information about it is gained.

B.2 Computation of commitments ck,α, ck,β

In this section, algorithm Audit.RandShares is presented, which computes com-
mitments ck,α, ck,β to the coefficients of the polynomials sharing messages α, β,
respectively. Algorithm Audit.RandShares constitutes the first step of algorithm
Audit.PreMult of Section 6.2. More precisely, commitments ck,α, ck,β , for k =
0, . . . , t − 1, are used to check the validity of terms δl,i,j and εl,i,j for the com-
putation of shares σi,j(αβ). Note that commitments ck,α, ck,β can be correctly
computed provided that an auditing procedure verifying the validity of shares
σi,j(α), σi,j(β) for shareholders si,j is performed, where shares σi,j(α), σi,j(β)
are the output of algorithm RandShares of Appendix B.1. For consistency with
algorithm Audit.PreMult, Feldman commitment is used. However, the algorithm
can be easily adapted to Pedersen commitment. In the following, we present
algorithm Audit.RandShares to compute commitment ck,α, for k = 0, . . . , t − 1.
Algorithm Audit.RandShares can be run analogously to generate commitment
ck,β , for k = 0, . . . , t− 1.

Audit.RandShares The algorithm is run by an auditor to verify that shares
σi,j(α) was computed correctly. This is performed in the following steps.

1) Each shareholder si,j ∈ S running algorithm Share to share the secret mes-
sage αi,j ∈ Fq among all other shareholders si′,j′ ∈ S for (i′, j′) 6= (i, j)
calls algorithm Commit.Share and computes commitments ck,αi,j := gak,(i,j)

mod p, to coefficient ak,(i,j) of polynomial fαi,j (x), for k = 0, . . . , t − 1. It
publishes the commitments on the bulletin board.

2) Each shareholder si,j ∈ S has valid input σi,j(αi′,j′), for (i′, j′) 6= (i, j), to
compute share σi,j(α) if and only if

gσi,j(αi′,j′) ≡
t−1∏
k=j

ck,αi′,j′
k!

(k−j)! i
k−j

= g
fjα
i′,j′

(i)
.

If the above equality is not satisfied, then it outputs ‘0’ and aborts. Other-
wise, it publishes ‘1’ on the bulletin board and Step 3) can be performed.

3) The auditor uses commitments ck,αi,j published by shareholders si,j ∈ S on
the bulletin board to compute commitments

ck,α :=
∏
(i,j)

ck,αi,j ,

for k = 0, . . . , t− 1. It publishes the commitments on the bulletin board.

