
A Systematic Evaluation of Profiling through Focused
Feature Selection

Stjepan Picek1, Annelie Heuser2, Alan Jovic3, and Lejla Batina4

1 Delft University of Technology, The Netherlands, e-mail: S.Picek@tudelft.nl,
2 CNRS, IRISA, France, e-mail: annelie.heuser@irisa.fr,

3 University of Zagreb Faculty of Electrical Engineering and Computing, Croatia, e-mail: alan.jovic@fer.hr,
4 L. Batina is with Radboud University, The Netherlands, e-mail: lejla@cs.ru.nl

Abstract. Profiled side-channel attacks consist of several steps one needs to take. An im-
portant, but sometimes ignored, step is a selection of the points of interest (features) within
side-channel measurement traces. A large majority of the related works start the analyses with
an assumption that the features are preselected. Contrary to this assumption, here we concen-
trate on the feature selection step. We investigate how advanced feature selection techniques
stemming from the machine learning domain can be used to improve the attack efficiency. To
this end, we provide a systematic evaluation of the methods of interest. The experiments are
performed on several real-world datasets containing software and hardware implementations
of AES, including the random delay countermeasure. Our results show that Wrapper and
Hybrid feature selection methods perform extremely well over a wide range of test scenarios
and a number of features selected. We emphasize L1 regularization (Wrapper approach) and
Linear SVM with recursive feature elimination used after chi square filter (Hybrid approach)
that perform well in both accuracy and guessing entropy. Finally, we show that the use of
appropriate feature selection techniques is more important for an attack on the high-noise
datasets, including those with countermeasures than on the low-noise ones.

1 Introduction

Profiled side-channel attacks (SCAs) have received a lot of attention in recent years because this
type of attacks defines the worst case security assumptions. Besides the more traditional choice of
template attack, a number of machine learning (ML) techniques have been investigated in this con-
text [?,?,?]. The common knowledge from those results suggests that profiled side-channel analysis
can be extremely powerful for key recovery, with machine learning being a highly viable choice.
Contrary, feature selection, in particular, the usage of ML-based techniques, did not receive signif-
icant attention. Early works on template attacks introduced SOST/SOSD [?] as feature selection
methods and consequently, most of the follow-up works assume that this step has somehow been
performed in a satisfactory, if not optimal, manner. A common strategy often also suggests using
Pearson correlation for this purpose, see e.g., [?,?].

First, we ask a question on the importance of the number of features in a dataset. For a fixed
number of training samples, the predictive power of a classifier algorithm eventually reduces as the
dimensionality (the number of features) of the problem increases. Consequently, for scenarios with
a large number of features, we need to use more training examples, where that number increases
exponentially with the number of dimensions. This results in the so-called curse of dimensionality
(and the closely related Hughes effect). When discussing features (also known as points of interest,
points in time, variables, attributes), we can distinguish among relevant, irrelevant, and redundant

features. A meaningful separation in these categories is very important when optimizing the attack
strategy and can be divided into the following general directions:
1. feature selection – where the most important subsets of features are selected,
2. dimensionality reduction – where methods like PCA transform the original features into new

features, and
3. deep learning techniques like convolutional neural networks that perform implicit feature selec-

tion.
The last two techniques can be very successful but they do not provide information about the

original features. Such techniques either completely transform the features or use them in a manner
too complicated to be understood by human experts. Moreover, deep learning could often have
no performance advantage against “standard” machine learning if the number of measurements
is not very large [?]. Note that in this paper we do not consider comparisons with deep learning
techniques, but we refer interested readers to [?,?,?].

There are many papers considering profiled SCA, where the number of features is fixed and the
analysis is conducted by considering only the changes in the number of traces or by selecting a
more powerful classifier, see e.g., [?,?]. It is indeed somewhat surprising that the SCA community
(until now) did not take a closer look at the feature selection part of the classification process.
Similar to the powerful classification methods coming from the ML domain, there are also feature
selection techniques one could utilize. To the best of our knowledge, there exists one work that
focuses on the feature selection for profiled SCA, but it does not consider ML techniques and it
compares only methods known for side-channel analysis either as feature selection techniques or as
distinguishers [?]. Note that, in leakage detection (see e.g., [?]), one is identifying data-dependent
but not necessarily model-agnostic leakage information. Consequently, detecting features (points in
the power trace) is a task orthogonal to leakage detection, as leakage detection (according to, e.g.,
TVLA) may not necessarily lead to a successful key recovery. One approach could be as follows:
first, use leakage detection to identify possible leakages in the trace, then analyze the corresponding
operation, in particular, determine if the model is key sensitive, and finally use feature selection in
combination with the underlying model for a profiled distinguisher.

In this paper, we concentrate on feature selection techniques but we also investigate PCA to
give insights into performance differences between feature selection and dimensionality reduction
techniques. More precisely, we investigate how the efficiency of SCA distinguishers can increase
due to feature selection techniques. For this, we employ several feature selection techniques ranging
from “simple” ones like the Pearson correlation, which is a de-facto standard in the side-channel
community, to more complex approaches such as various Wrapper and Hybrid methods used in ML.
To the best of our knowledge, the use of such advanced techniques has never been reported in the
context of SCA before.

We show that feature selection is an important step in profiled attacks. We give insights on its
use for the following goals: 1) faster training of models, 2) reducing model complexity, 3) improving
model performance (when suitable features are selected), 4) reducing overfitting, 5) “correcting”
the covariance matrix in template attack when the number of features is too large with respect to
the number of traces.

1.1 Our contributions

1. We introduce a novel approach of using ML techniques for the important problem of feature
selection in SCA.

2

2. We demonstrate the potential of Wrapper and Hybrid methods in SCA as they often perform
the best for feature selection on the examined datasets.

3. We show how to overcome some previously identified shortcomings of template attacks by the
ML techniques, which not just solves the problems but also improves upon the performance of
templates as well.

4. We show that our feature selection methods may also be used for dimensionality reduction,
having similar or better results than PCA in most cases.

5. All our results are verified on the real-world datasets in different settings. The analysis is very
detailed. In total, we consider and run more than 600 experimental scenarios in this work.

1.2 Previous work

Ever since the seminal work of Chari et al. introducing template attacks [?], efforts were put into
optimizing those and enlarging their scope. The observation on the profiling, i.e., training phase in
template attacks, has naturally led to machine learning techniques and their potential impact on
the key recovery phase.

With that respect, a number of ML techniques have been investigated, see e.g., [?, ?, ?]. The
results suggested the unquestionable potential of ML techniques for templates and, as such, they
were stimulating for further research. However, the limitations of ML approaches were unveiled and
their full potential remained unclear. The work of Lerman et al. [?] in particular compared template
attacks and machine learning on dimensionality reduction. They concluded that template attacks
are the method of choice as long as a limited number of features can be identified in leakage traces
containing most of the relevant information. Accordingly, an increase in the number of points of
interest favors ML methods. Our results show that the answer is not so simple, i.e., it depends on
several factors, such as the number of features, classifiers, implementation details, etc.

Regarding the feature selection problem in SCA, there were very few attempts and works de-
voted to this topic, as some simple techniques were considered sufficient. Early works introduced
SOST/SOSD [?] as feature selection methods and the majority of follow-up papers skipped this
step completely. One strategy also suggested using Pearson correlation for this purpose e.g., [?,?,?],
which is an obvious solution, but does not answer the question on whether we can do better.

Some authors noticed the importance of finding adequate time points in other scenarios. Reparaz
et al. [?] introduced a technique to identify tuples of time samples before key recovery for multi-
variate DPA attacks. Here, typically, the attacker is confronted with a masked implementation,
requiring higher-order attacks (hence multiple features corresponding to the right time moments,
e.g., when a mask is generated and manipulated). Zheng et al. looked into this specific feature
selection question but left ML techniques aside [?]. Picek et al. considered several ML techniques
for profiling attacks and investigated the influence of the number of features in the process by
applying Information Gain feature selection [?]. Finally, we also question the previous results on
dimensionality reduction as our comparison of ML feature selection and PCA [?] (which is feature
extraction) favors the former.

2 Background

2.1 Notation

Calligraphic letters (e.g., X) denote sets, capital letters (e.g., X) denote random variables taking
values in those sets, and the corresponding lowercase letters (e.g., x) denote their realizations. Let k∗

3

be the fixed secret cryptographic key (byte) and the random variable T the plaintext or ciphertext
of the cryptographic algorithm which is uniformly chosen. The measured leakage is denoted as X
and we are particularly interested in multivariate leakage X = X1, . . . , XD, where D is the number
of time samples or features (attributes) in machine learning terminology.

Considering a powerful attacker who has a device and the knowledge on the secret key imple-
mented, a set of N profiling traces X1, . . . ,XN is used to estimate the leakage model beforehand.
Note that this set is multi-dimensional (i.e., it has dimension D × N). In the attack phase, the
attacker then measures additional traces X1, . . . ,XQ from the device under attack to recover the
unknown secret key k∗.

2.2 Datasets

We use three datasets that we consider to be a representative sample of commonly encountered
scenarios. More precisely, one dataset is without countermeasures and with a small amount of
noise, which is a relatively easy scenario for profiled attack when the number of measurements
is sufficient. Next, we consider one dataset without countermeasures but with a large amount of
noise. There, we are approaching more realistic scenarios where profiled techniques have problems
in reaching high performance. Finally, the last dataset has a countermeasure in the form of random
delays, which represents a realistic scenario for evaluation. We do not consider datasets with masked
implementations since we assume that the mask is different in the training and testing phase, which
makes feature selection more complex.

DPAcontest v4 Dataset [?] The 4th version of the DPAcontest dataset provides measurements
of a masked AES software implementation. As the mask is known, one can easily turn it into an
unprotected scenario. As this is a software implementation, the most leaking operation is not the
register writing but the processing of the S-box operation, and thus the attack targets the first
round. Hence, the leakage model is

Y (k∗) = Sbox[Pb1 ⊕ k∗]⊕ M︸︷︷︸
known mask

, (1)

where Pb1 is a plaintext byte and we choose b1 = 1. Compared to the measurements from the 2nd
version of the dataset, the SNR is much higher with a maximum value of 5.8577. For our experiments,
we start with a preselected window of 3 500 features from the original trace (we simply preselect all
features around the S-box operation).

AES HD Dataset This dataset is chosen in order to target an unprotected implementation of
AES-128 encryption specification. The core of AES-128 was written in VHDL in a round based
architecture, taking 11 clock cycles for each encryption. A UART module is wrapped around the
core to enable external communication. The module is designed to allow accelerated measurements
so avoid any DC shift due to environmental variation over prolonged measurements. The total area
footprint of the design contains 1 850 LUT and 742 flip-flops. Xilinx Virtex-5 FPGA of a SASEBO
GII evaluation board was used to implement the design. Side-channel traces were measured using
a high sensitivity near-field EM probe, which was placed over a decoupling capacitor on the power
line. Measurements were sampled on the Teledyne LeCroy Waverunner 610zi oscilloscope. A suitable

4

and commonly used (HD) leakage model, when attacking the last round of an unprotected hardware
implementation, is the register writing in the last round [?], i.e.,

Y (k∗) = HW (Sbox−1[Cb1 ⊕ k∗]︸ ︷︷ ︸
previous register value

⊕ Cb2︸︷︷︸
ciphertext byte

), (2)

where Cb1 and Cb2 are two ciphertext bytes, and the relation between b1 and b2 is given through
the inverse ShiftRows operation of AES. b1 = 12 was chosen, which resulted in b2 = 8, as it is
one of the easiest bytes to attack. The obtained measurements that form the dataset are relatively

noisy and the resulting model-based SNR (signal-to-noise ratio), i.e., var(signal)
var(noise) = var(y(t,k∗))

var(x−y(t,k∗))

has a maximum value of 0.0096. In total, 500 000 traces were captured corresponding to 500 000
randomly generated plaintexts, each trace with 1 250 features. However, not all the traces were
used for training and testing the model. The evaluations details are given in Section 4. As this
implementation leaks in the HD model, we denote this implementation as AES HD. The dataset is
publicly available at https://github.com/AESHD/AES HD Dataset.

Random Delay Dataset [?] As our third use case, we use an actual protected implementation
to prove the potential of our approach. Our target is a software implementation of AES on an
8-bit Atmel AVR microcontroller with implemented random delay countermeasure, as described
by Coron and Kyzhvatov in [?]. We mounted our attacks against the first AES key byte by
targeting the first S-box operation. The dataset consists of 50 000 traces of 3 500 features each.
For this dataset, the SNR has a maximum value of 0.0556. This dataset is publicly available at
https://github.com/ikizhvatov/randomdelays-traces.

2.3 Profiled Attacks and Guessing Entropy

In this section, we introduce the methods we use in the classification tasks. Note that we opted to
work with only a small set of techniques, since we aim to explore how to find the best possible subset
of features, while the classification task should be considered as just a means of comparison among
feature selection methods. Consequently, we try to be as “method-agnostic” as possible and we note
that for each set of features, one could probably find a classification algorithm performing slightly
better. As noted in [?], there is no need to include many classifiers to obtain the best solutions.
Usually, one of the best classifiers suffices, which is certainly the Random Forest algorithm. We
use Random Forest for classification in all the experiments since it provides stable and accurate
results [?,?]. Also, linear kernel Support Vector Machine is used because of its efficiency and accuracy
for Wrapper and Hybrid based feature selection, as explained in continuation. As mentioned in
Section 1.2, the template attack (TA) (i.e., template attack classifier) is the traditional method of
choice in SCA, especially when the number of features is small. Consequently, we use TA classifier
and its pooled version [?] for comparison with Random Forest.

Random Forest Random Forest (RF) is a well-known ensemble decision tree learner [?]. Decision
trees choose their splitting attributes from a random subset of k attributes at each internal node.
The best split is taken among these randomly chosen attributes and the trees are built without
pruning. RF is a stochastic algorithm because of its two sources of randomness: bootstrap sampling
and attribute selection at node splitting. Learning time complexity for RF is approximately O

(
I ·

5

k ·N · logN
)
, where I is the number of trees in the forest, k is the number of features considered

at each node in each tree (usually k =
√
D, D being the total number of features) and N is the

number of samples. We use RF as the classifier of choice for multiclass classification in our work.
This is mainly in line with available research [?], where it is expected that RF will perform among
the best classifiers. RF is used in all evaluations of the reduced sized feature sets.

Support Vector Machines Support Vector Machine (SVM) is a kernel-based machine learn-
ing family of methods used to accurately classify both linearly separable and linearly inseparable
data [?]. The basic idea when the data are not linearly separable is to transform them to a higher
dimensional space by using a transformation kernel function. In this new space, the samples can
usually be classified with higher accuracy. We use SVM with the linear kernel as the classification
algorithm for Wrapper and Hybrid based feature selection (see Sections 3.2 and 3.3). Linear kernel
SVM is used instead of a polynomial or radial based SVM, because advanced feature selection ap-
proaches require the construction of many models, which is computationally intensive and therefore
unsuitable for nonlinear kernel function based SVM. The time complexity range for linear kernel
SVM is O

(
DN

)
, which is significantly less than O

(
DN3

)
for the time complexity of radial kernel

SVM. We note that utilizing a linear kernel is an efficient choice when the number of dimensions is
high (as in our case) or when we can assume there is a linear separation between data.

Template Attack The template attack relies on the Bayes theorem and considers the features
as dependent. In the state-of-the-art, template attack relies mostly on a normal distribution. Ac-
cordingly, template attack assumes that each P (X = x|Y = y) follows a (multivariate) Gaussian
distribution that is parameterized by its mean and covariance matrix for each class Y . The authors
of [?] propose to use only one pooled covariance matrix averaged over all classes Y to cope with
statistical difficulties and thus a lower efficiency. Besides the standard approach, we additionally
use this version of the template attack in our experiments. The time complexity for TA is O

(
ND2

)
in the training phase and O

(
|Y|D2

)
in the testing phase (|Y| is the number of classes).

2.4 Guessing Entropy

After running profiled attacks, we obtain accuracy as the measure of performance for our classifiers.
Since this measure can be often misleading in SCA, especially in the Hamming weight scenario [?],
we also use the guessing entropy to properly assess the performance of our feature selection and
classification techniques [?]. A side-channel adversary AEK ,L conducts experiment ExpAEK,L

, with

time-complexity τ , memory complexity m, and making Q queries to the target implementation of
the cryptographic algorithm. The attack outputs a guessing vector g of length o, and is considered
a success if g contains the correct key k∗. o is also known as the order of the success rate.

Guessing entropy (GE) measures the average number of key candidates to test after the attack.
The Guessing entropy of the adversary AEk,L against a key class variable S is defined as:

GEAEK,L
(τ,m, k∗) = E[ExpAEK,L

].

3 Feature Selection Techniques

A successful feature selection algorithm should output an optimal or near-optimal subset of features
while ignoring the rest. Such algorithms can be classified into three broad classes of feature selection

6

techniques: Filter methods, Wrapper methods, and Hybrid methods [?]. The Wrapper and Hybrid
classes of methods are known to either increase or retain the accuracy of the Filter methods [?,?].

Only the first three presented Filter methods (Pearson correlation coefficient, SOSD, SOST) have
been used as feature selection techniques for side-channel analysis in previous works, whereas the
remaining methods, to the best of our knowledge, have never been studied to find the most important
features in SCA traces. We consider methods from all three classes of feature selection techniques
in order to cover a wide set of feature selection cases. The choice of individual methods from these
classes is based on our previous experience and the fact that all the methods are well-established
in the field of feature selection, as noted in the corresponding subsections below. We also consider
in this section the Principal Component Analysis. While PCA is, strictly speaking, dimensionality
reduction and not feature selection technique, we compare it with the feature selection methods,
because it is often used in SCA attacks.

3.1 Filter Selection Methods

The selection of features using Filter methods is independent of the classifier method. Features are
selected based on their scores obtained after running various types of statistical tests. We depict
the Filter methods principle in Figure 1, with methods and numbers pertaining to our work.

Fig. 1: Filter methods

Pearson Correlation Coefficient Pearson correlation coefficient measures linear dependence
between two variables, x and y, in the range [−1, 1], where 1 is the total positive linear correlation,
0 is no linear correlation, and −1 is the total negative linear correlation. Pearson correlation for a
sample of the entire population is defined by [?]:

Pearson(x, y) =

∑N
i=1((xi − x̄)(yi − ȳ))√∑N

i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

. (3)

We calculate Pearson correlation for the target class variables HW and intermediate value, which
consists of categorical values that are interpreted as numerical values. The features are ranked in
descending order of the coefficient.

SOSD
In [?], the authors proposed the sum of squared differences as a selection method, simply as:

SOSD(x, y) =
∑
i,j>i

(x̄yi − x̄yj)2, (4)

7

where x̄yi is the mean of the traces where the model equals yi. Because of the square, SOSD is
always positive. Another advantage of using it is to emphasize big differences in means.

SOST SOST is the normalized version of SOSD [?] and is thus equivalent to the pairwise
Student’s t-test:

SOST (x, y) =
∑
i,j>i

(
(x̄yi − x̄yj)/

√
σ2
yi

nyi
+
σ2
yj

nyj

)2

(5)

with nyi and nyj being the number of traces where the model equals to yi and yj , respectively.
Chi Square Chi square (χ2) is a measure of dependence between two stochastic variables. It is

a cumulative test statistic, which asymptotically approaches a χ2 distribution. In the general case,
χ2 distribution may be obtained from the sum of squares of the set of k standard normal random
variables, where k are the degrees of freedom. χ2 test statistic for each feature-class pair may be
calculated using the expression:

χ2 =

n∑
i=1

(xyi − Eyi)2

Eyi
. (6)

Here, n is the number of discrete categories, xyi is the observed value of category yi, and Eyi
is the expected (theoretical) frequency of category yi. Note that, for numerical features, the values
need to be discretized to obtain categories before calculation of the statistic. By using the statistic,
we proceed to remove the features that are the most likely to be independent of class attribute and
therefore irrelevant for classification. Finally, since this measure works only for non-negative values,
before using it, we normalize the data into [0, 1] range. The complexity of calculating the measure
is O(N ·D).

3.2 Wrapper Selection Methods

In Wrapper methods, there is a feature selection algorithm implemented as a wrapper around a
classifier [?]. The feature selection algorithm searches for a good subset by using a classifier algorithm
as a part of the function evaluating feature subsets, as depicted in Figure 2. Here, the classifier
algorithm is considered as a black box and is run on the dataset with different sets of features
removed from the data. The subset of features with the highest evaluation is chosen as the final set
on which to run the classifier [?]. Note that, since Wrapper methods check many different subsets, the
feature selection process is often treated as a high-dimensional problem. L1 regularization with linear
SVM is used for Wrapper based feature selection in all the experiments, because the combination
is sufficiently fast, accurate, and memory-undemanding. The other potential candidates that could
have been used are naive Bayes, linear SVM and k-nearest neighbors. However, although the use of
solely these classifiers may be faster compared to L1 regularization with linear SVM, they may not
be as accurate in estimating the accuracy of feature subsets. On the other hand, methods such as
random forest, neural network, non-linear SVM, etc. are more complex and are not typically used
as wrappers, since they exhibit non-linear complexity dependence on the number of instances.

L1-based Feature Selection In general, regularization encompasses methods that add a
penalty term to the model, which then reduces the overfitting and improves generalizations. L1
regularization works by adding a regularization term α ·R(θ), where θ represents the parameters of
the model that is used to penalize large weights/parameters. For a D-dimensional input (i.e., the

number of features equal to D), R(θ) is equal to
∑D
i=1 |θi|. In the regularization term, α controls

8

Fig. 2: Wrapper methods

the trade-off between fitting the data and having small parameters. By adding a penalty for each
non-zero coefficient, the expression forces weak features to have zero as coefficients, where a zero
value means that the feature is omitted from the set. The usage of L1 regularization as a tool for
feature selection is well known, for example, the linear least-squares regression with L1 regulariza-
tion (Lasso) algorithm [?]. There can be certain effects with L1 regularization when used for feature
selection: most notably, out of a group of highly correlated features, L1 regularization will tend to
select an individual feature [?].

3.3 Hybrid Selection Methods

Hybrid methods combine Filter and Wrapper techniques. First, a filter method is used in order
to reduce the feature space dimension space. Then, a wrapper method is utilized to find the best
candidate subset. Hybrid methods usually achieve high accuracy that is characteristic to wrappers
and high efficiency characteristic to filters. We depict a diagram for Hybrid methods, as used in
this paper, in Figure 3. In our experiments, we first use χ2 to reduce the number of features to 250
in order to further reduce the runtime of Hybrid selection techniques. Then, we apply either the
Linear SVM selection or the Stability selection technique.

Fig. 3: Hybrid methods

Linear SVM Based Hybrid Selection We use a recursive feature elimination approach with
linear SVM Wrapper to obtain the target reduced feature sets. The method was first described
in [?]. Here, the “best-first” backward direction search method is used. This strategy uses greedy
hill climbing, starting from the full feature subset and inspecting how the elimination of a feature
or a set of features from the starting set influences the output of the classifier. The feature(s) whose
removal influences the accuracy the least are eliminated from the set.

9

Stability Selection Stability selection is a method based on subsampling in combination with
some classification algorithm (that can work with high-dimensional data) [?]. The key concept of
stability selection is the stability paths, which is the probability for each feature to be selected
when randomly resampling from the data. In other words, a subsample of the data is fitted to
the L1 regularization model, where the penalty of a random subset of coefficients has been scaled.
By repeating this procedure n times, the method will assign high scores to the features that are
repeatedly selected. We use multinomial logistic regression for this task and we set the number
of randomized models n to 25. Multinomial logistic regression uses a linear predictor function
f(k, i) to predict the probability that observation i has the outcome k, of the form f(k, i) =
β0,k + β1,kx1,i + . . .+ βM,kxM,i where βM,kxM,i is a regression coefficient of the mth variable and
the kth outcome. The β coefficients are estimated using the maximum likelihood estimation, which
requires finding a set of parameters for which the probability of the observed data is the greatest.

3.4 Principal Component Analysis

Principal component analysis (PCA) is a well-known linear dimensionality reduction method that
may use Singular Value Decomposition (SVD) of the data matrix to project it to a lower dimen-
sional space [?]. PCA creates a new set of features (called principal components) that are linearly
uncorrelated, orthogonal, and form a new coordinate system. The number of components equals
the number of original features. The components are arranged in a way that the first component
covers the largest variance by a projection of the original data and the subsequent components
cover less and less of the remaining data variance. The number of kept components, designated
with L, maximizes the variance in the original data and minimizes the reconstruction error of the
data transformation. The Python implementation of PCA uses either the LAPACK implementation
of the full SVD or a randomized truncated SVD by the method of Halko et al. [?], depending on
the shape of the input data and the number of components selected to extract. We experiment with
L values in the range [10, 25, 50, 75, 100].

4 Experimental Evaluation

In our experiments, we are interested in supervised (profiled) problems that have a large number
of features (sample points from power traces) D but where there could exist a small subset D′

of features that is sufficient to classify the features X according to the classes Y . We use the
previously described Filter, Wrapper, and Hybrid methods to reduce the number of features found
in the original datasets to the smaller subsets of sizes [10, 25, 50, 75, 100]. The investigated subset
sizes are selected based on the usual number of features considered in related work (see Section 1.2).
We have also tried increasing the number of features, inspecting up to 200 features. The results
were not better and the analysis was prolonged. Specifically, the features in range 101-200 lead to
no improvement in accuracy or guessing entropy with respect to only the first 100 included features,
for all methods.

Once the best feature subsets are selected, we run three profiled attacks: Random Forest, TA,
and TA pooled (TAp) for each feature selection technique to evaluate its efficiency. We use multiple
profiled attacks to avoid potential effects that a certain feature selection technique could have
on a specific attack. We emphasize that the goal here is not to compare the efficiency of attacks
and, consequently, we do not give such an analysis. Finally, we note that for the Wrapper methods,
selecting the exact number of features can be difficult (since the methods can simply discard multiple

10

features) and, consequently, subset sizes of [10, 25, 50, 75, 100] represent an upper bound on the
number of actually selected features.

From the initial datasets, we randomly select 10 000 power traces for training and another 25 000
randomly selected traces for testing. We opted to have a larger test set to obtain meaningful results
with guessing entropy. For evaluation on the training set, we conduct 5-fold cross-validation and use
the averaged results of individual folds to select the best classifier parameters. We report the results
from testing phase only and we present them as the accuracy (%) of the classifier, where the accuracy
is the number of correctly classified traces divided by the total number of traces. All experiments
are done with MATLAB and Python (scikit-learn library) tools. For the L1 regularization with
linear SVM Wrapper, Hybrid Linear SVM, and Hybrid Stability selection, we tune the parameter
C for each subset size. For Linear SVM, we further select the step equal to 5 to remove features –
in each iteration of the algorithm, we discard 5 least important features from the feature set. For
RF, we experiment with I = [10, 50, 100, 200, 500, 1 000] trees in the tuning phase, with no limit to
tree size. Based on the tuning phase, we select 500 trees for the HW model and 100 trees for the
intermediate value model.

4.1 Results

We give results for test set accuracy in Tables 1– 7 and for guessing entropy in Figures 4– 6. Due to
the lack of space, we do not show GE results for all tested scenarios, but only for a representative
subset of them. For each size of the feature subset in Tables 1– 6, we give the best obtained solution
in a cell with the gray background color. For Table 7, the gray background of a cell indicates a
better result for PCA than for all feature selection methods.

DPAcontest v4 Dataset Tables 1 and 2 display the results for DPAcontest v4 with the HW
model and intermediate value model, respectively. For the HW model, we observe that Linear SVM
Hybrid method is, by far, the best performing feature selection method when considering accuracy,
comparable or outperformed only slightly by PCA for a larger number of features (see the first row
of Table 7). Linear SVM works very well for the low-noise scenario and when the number of classes
is rather low (9 for the HW model). Note that the results for Linear SVM are comparable to the
results for L1 and stability selection for the intermediate value model (256 classes), thus suggesting
that the method is more appropriate for the smaller number of classes.

Figure 4 shows that, for GE, the changes between the different techniques are rather small
with an advantage of Linear SVM, L1, and Correlation using 10 features. When considering 100
features, all techniques perform almost equivalently, except for PCA, which performs the worst.
Due to the low noise present in this scenario, all the feature selection methods have found highly
similar features, see Figure 7 later in the paper. Comparing the results for 100 and 10 features, it
is shown that when the number of features is large (i.e., 100), there is a higher chance that most
of the informative features are included by all methods than when the number of features is small
(i.e., 10). For 10 features, there is a larger difference between the methods, indicating that some
important features are omitted by some methods.

When considering the intermediate value model (see Table 2), we observe that the Wrapper and
Hybrid methods have the highest accuracy, outperforming filters and PCA. Here, even accuracy for
100 features varies significantly.

11

Table 1: Accuracy for DPAcontest v4 - HW model
Pearson correlation

Classifier 10 25 50 75 100

TA 69.8 72.5 0.3 2.8 41.8

TA (pooled) 68.5 71.7 80.9 81.7 91.4

RF 74.5 81.4 84.6 84.1 85.8

SOST
Classifier 10 25 50 75 100

TA 71.5 73.9 0.5 20 0.2

TA (pooled) 69.4 73.4 80.6 86.6 91.6

RF 74.2 81.4 84.3 84.7 86

SOSD
Classifier 10 25 50 75 100

TA 72.2 74.7 8.7 8.7 3.8

TA (pooled) 69.8 74.4 77.3 84.5 89.6

RF 75.9 81.6 82.5 83.7 84.4

χ2

Classifier 10 25 50 75 100

TA 72.2 74.3 36.9 30.5 0.5

TA (pooled) 69.8 74.3 81.1 84.9 91.6

RF 76.2 81.4 84.7 84.5 86.4

Linear SVM wrapper
Classifier 10 25 50 75 100

TA 19.9 51.6 1.5 4.6 1.3

TA (pooled) 14 49.7 85.3 98.1 98.1

RF 89.7 91.9 92.3 91.6 91.2

L1 regularization
Classifier 10 25 50 75 100

TA 8.4 32.1 1.3 91.5 11

TA (pooled) 9.6 27.4 90.1 97 97.3

RF 80.4 86.7 88.8 89.8 89.4

Stability selection
Classifier 10 25 50 75 100

TA 20.7 31.3 0 86.2 30.3

TA (pooled) 16.3 28.9 92.2 97.4 98

RF 75.3 91.4 91.5 91.2 90.7

For GE in the intermediate value model, we observe the same phenomena as for the HW model:
all the techniques are differing only slightly when considering a low number of features and become
closer when more features are considered.

AES HD Dataset For AES HD dataset, we give results in Tables 3 and 4 for HW model and
intermediate value model, respectively. For HW model, some observations made for DPAcontest v4
also apply for AES HD. We see that having more features also, in general, results in higher accuracy.
Still, in some scenarios, accuracy for the smaller feature set size is even higher than for larger feature
set sizes but those differences are rather small. Differing from DPAcontest v4, for AES HD, we do

12

(a) 10 features, HW, RF. (b) 100 features, HW, RF.

Fig. 4: Guessing entropy, DPAcontest v4 dataset

not observe a significant drop in performance when using only 10 features. PCA performs well for
this case, slightly outperforming feature selection methods with respect to accuracy (see the third
row of Table 7).

For the intermediate value model, the accuracy is very low and even looks like random guessing
(1/256, see Table 4). The results show that there is no significant difference in behavior for any
technique. This is expected, since there are 256 classes and only 10 000 measurements in the training
phase, which is barely enough to have results better than random guessing when dealing with such
difficult datasets.

We are able to reach a low guessing entropy (i.e., retrieve the secret key), as Figure 5 clearly
illustrates. More specifically, Figures 5a until 5f depict GE results for the AES HD dataset for HW
and intermediate value model ranging between 25 and 100 features. In this high-noise scenario,
we observe a more distinct behavior for different techniques. Generally, PCA-based attack mostly
performs comparable or worse than the feature selection techniques. In Figures 5b and 5d, one can
observe that Correlation for 50 features or Correlation and SOSD for 100 features only become stable
when using a large number of measurements in the attacking phase with RF. Figures 5e and 5f show
that, despite approximately even accuracy for the intermediate model, there are marked differences
among some methods with respect to GE. In these cases, when using TA pooled classifier, PCA,
Linear SVM, and Chi2 underperform with respect to other methods.

Random Delay Dataset Finally, Tables 5 and 6 give results for the Random Delay dataset for HW
and intermediate value model, respectively. For the HW model, the highest accuracies are spread
among the feature selection methods. Namely, for 5 scenarios, we have 4 different techniques reaching
the highest accuracies. PCA performs slightly worse than feature selection methods for HW model.
Figure 6 shows that GE results are also widely spread. For HW, as well as for intermediate value
model, Linear SVM and L1 usually perform well, while in some rare cases, SOST also performs well,
while Linear SVM underperforms. (Figure 6f). We can observe that, again, Linear SVM is suitable
when a small amount of features is selected (see Figures 6a and 6c). Comparing the results of RF

13

(a) 25 features, HW, TA. (b) 50 features, HW, RF.

(c) 75 features, HW, TA. (d) 100 features, HW, RF.

(e) 25 features, intermediate value, TA pooled. (f) 75 features, intermediate value, TA pooled.

Fig. 5: Guessing entropy, AES HD

14

Table 2: Accuracy for DPAcontest v4 - intermediate value model
Pearson correlation

Classifier 10 25 50 75 100

TA 11.4 0.4 0.4 0.2 0.4

TA (pooled) 15.8 18.0 20.5 31.1 53

RF 13 20.4 25 29.8 36.2

SOST
Classifier 10 25 50 75 100

TA 11.5 0.1 0.1 0.1 0

TA (pooled) 16.2 32.6 51.7 62.3 64.3

RF 15.3 32.5 38.4 42.2 43.1

SOSD
Classifier 10 25 50 75 100

TA 17.9 0.3 0.1 0 0.1

TA (pooled) 23.2 38 56.1 64.4 65.7

RF 18 30.1 39.9 41.2 42.1

χ2

Classifier 10 25 50 75 100

TA 1.6 0.3 0.1 0.2 0.2

TA (pooled) 1.6 3.7 28.4 57.1 69

RF 23.9 34.7 41.2 44 45.8

Linear SVM wrapper
Classifier 10 25 50 75 100

TA 26.8 20.2 0. 0.1 0

TA (pooled) 24.3 43.9 64.9 71 74.3

RF 24.6 44.5 70.8 74.2 75.5

L1 regularization
Classifier 10 25 50 75 100

TA 28.7 0 0.2 0 0

TA (pooled) 26.1 51.8 66.9 74 75.6

RF 28.8 53.1 73.9 74.4 75.3

Stability selection
Classifier 10 25 50 75 100

TA 25.2 0.2 0 0.3 0.1

TA (pooled) 21.4 47.4 64.3 73.1 75.7

RF 24.8 46.9 65.6 71 75.2

and TA pooled classifiers for the intermediate value model, RF was shown to provide significantly
more stable GE results. PCA-based attacks perform comparably to most feature selection methods
on this dataset.

Feature Illustration In Figures 7a and 7b, we depict 100 selected features for all datasets, HW
and intermediate value models, respectively. The visualization allows a more detailed inspection in
the behavior of feature selection methods. Namely, if different methods find similar features, then the
selected features are probably globally more relevant than the others for the classification problem
(assuming that not all the methods are wrong). If different methods find different features, while

15

(a) 10 features, HW, RF. (b) 25 features, HW, TA.

(c) 10 features, intermediate value, RF. (d) 100 features, intermediate value, RF.

(e) 10 features, intermediate value, TA pooled. (f) 100 features, intermediate value, TA pooled.

Fig. 6: Guessing entropy, Random Delay dataset

16

Table 3: Accuracy for AES HD - HW model
Pearson correlation

Classifier 10 25 50 75 100

TA 11.4 17.7 5.3 5 1.5

TA (pooled) 4.4 5.6 7.9 8.2 8.9

RF 23.8 24.7 25.2 25.3 25.5

SOST
Classifier 10 25 50 75 100

TA 10.5 17.7 5.4 13 11.1

TA (pooled) 4.3 5.7 7.9 8 9.5

RF 23.7 24.6 24.6 25 25.4

SOSD
Classifier 10 25 50 75 100

TA 10.5 18.4 1.4 0.7 0.6

TA (pooled) 4.3 6 8.2 8.8 9.5

RF 23.7 25.2 25.9 26.4 26.2

χ2

Classifier 10 25 50 75 100

TA 11.4 18.2 4.1 2.3 1.4

TA (pooled) 4.4 6.4 7.8 9.1 9.5

RF 23.8 25 24.8 25.7 25.3

Linear SVM wrapper
Classifier 10 25 50 75 100

TA 11 16.3 1.9 10.2 4.3

TA (pooled) 5.1 6 8.2 8.9 9.9

RF 24.4 24.9 25.4 25.8 25.8

L1 regularization
Classifier 10 25 50 75 100

TA 10.1 16.3 7.1 3.3 7.9

TA (pooled) 5.5 7.5 8.1 9.3 9.9

RF 23.6 24.9 25.3 26 25.7

Stability selection
Classifier 10 25 50 75 100

TA 11 16.1 8.5 3.8 10.4

TA (pooled) 5.6 5.7 6.9 7.8 8.2

RF 24.7 25.8 25.7 25.8 26

obtaining similarly good classification results, then this suggests that many features are informative
enough to produce accurate models. If, however, different methods find different features, while
obtaining different classification results (some better than others), then this suggests that some
methods perform better selection than the others. For DPAcontest v4 and both considered models,
a large part of the selected features for all techniques is the same. Consequently, the obtained
results for both accuracy and GE are similar. This indicates that in a low-noise scenario, the choice
among the feature selection methods is not crucial. For the AES HD dataset, we can observe that
there are some regions where all the selection techniques find relevant features. Interestingly, for
L1 regularization and HW model, the selected features are much less grouped when compared to

17

Table 4: Accuracy for AES HD - intermediate value model
Pearson correlation

Classifier 10 25 50 75 100

TA 0.3 0.4 0.4 0.3 0.4

TA (pooled) 0.4 0.4 0.4 0.4 0.4

RF 0.4 0.4 0.4 0.4 0.3

SOST
Classifier 10 25 50 75 100

TA 0.4 0.4 0.4 0.4 0.4

TA (pooled) 0.4 0.5 0.4 0.5 0.5

RF 0.3 0.4 0.4 0.4 0.3

SOSD
Classifier 10 25 50 75 100

TA 0.3 0.4 0.3 0.4 0.4

TA (pooled) 0.4 0.4 0.4 0.4 0.4

RF 0.3 0.4 0.4 0.4 0.5

χ2

Classifier 10 25 50 75 100

TA 0.4 0.4 0.4 0.4 0.4

TA (pooled) 0.4 0.4 0.4 0.4 0.4

RF 0.4 0.4 0.4 0.5 0.4

Linear SVM wrapper
Classifier 10 25 50 75 100

TA 0.4 0.4 0.4 0.4 0.4

TA (pooled) 0.4 0.4 0.4 0.4 0.5

RF 0.4 0.4 0.4 0.4 0.4

L1 regularization
Classifier 10 25 50 75 100

TA 0.3 0.4 0.4 0.5 0.5

TA (pooled) 0.4 0.4 0.4 0.4 0.4

RF 0.4 0.4 0.4 0.4 0.4

Stability selection
Classifier 10 25 50 75 100

TA 0.4 0.4 0.5 0.4 0.4

TA (pooled) 0.4 0.4 0.3 0.4 0.5

RF 0.4 0.4 0.4 0.4 0.5

the other selection techniques. The similarity in the selected features is reduced compared to the
DPAcontest v4 dataset. This indicates that, for the high-noise scenario, the choice of the methods
is more important than for the low-noise one. Finally, for the Random Delay dataset, all techniques
select quite different features, which results in a significantly different performance, as seen in the
GE results. This suggests that, for the high-noise with countermeasures scenarios, the choice of
the feature selection method is very important, however, the overall results are still lower when
compared to the less difficult scenarios.

18

Table 5: Accuracy for Random Delay - HW model
Pearson correlation

Classifier 10 25 50 75 100

TA 11.4 17.4 5.5 0.8 6.5

TA (pooled) 4.4 5.3 6.8 7.5 8.1

RF 25.3 26.1 26 26.2 26

SOST
Classifier 10 25 50 75 100

TA 9.4 15.7 5.5 5.7 4.5

TA (pooled) 5.9 6.2 8.5 9.3 9.8

RF 25.5 26 26.6 26.4 26.4

SOSD
Classifier 10 25 50 75 100

TA 10.1 17 0.5 8.2 14.6

TA (pooled) 6.6 7.9 8.8 9.5 9.9

RF 25.2 25.8 26.7 26.3 26.2

χ2

Classifier 10 25 50 75 100

TA 9.6 16.6 2.5 8.5 10.6

TA (pooled) 5.9 6.9 8.3 9.1 9.5

RF 25 25.4 25.9 26 26.1

Linear SVM wrapper
Classifier 10 25 50 75 100

TA 7.2 15.5 1.7 1.9 7.6

TA (pooled) 4.7 5.9 7.0 7.5 8.3

RF 25.6 25.7 26.1 26.1 26.1

L1 regularization
Classifier 10 25 50 75 100

TA 10.7 15.9 1.3 7.3 6.3

TA (pooled) 6.3 6.5 7.8 8.7 9

RF 24.9 25.6 25.9 25.7 26.2

Stability selection
Classifier 10 25 50 75 100

TA 13.7 16.8 1.5 7.5 2.7

TA (pooled) 8 6.8 8.8 9.6 10

RF 24.8 25.5 25.8 25.8 26.1

4.2 General Observations

After presenting the results for different considered scenarios, we now concentrate on more general
findings pertaining to feature selection in SCA.

1. Different feature selection techniques can result in a radically different classifier behavior, which
is especially evident from the presented GE results. Consequently, one should devote the same
amount of attention to feature selection as to classification. This is in line with the “No Free
Lunch” theorem, which states that there is no single best algorithm for all problems [?].

19

Table 6: Accuracy for Random Delay - intermediate value model
Pearson correlation

Classifier 10 25 50 75 100

TA 0.4 0.4 0.4 0.4 0.4

TA (pooled) 0.4 0.4 0.4 0.4 0.4

RF 0.4 0.4 0.3 0.5 0.4

SOST
Classifier 10 25 50 75 100

TA 0.4 0.4 0.4 0.4 0.3

TA (pooled) 0.4 0.4 0.4 0.4 0.4

RF 0.4 0.5 0.4 0.4 0.3

SOSD
Classifier 10 25 50 75 100

TA 0.3 0.4 0.4 0.4 0.5

TA (pooled) 0.3 0.4 0.4 0.4 0.5

RF 0.4 0.4 0.4 0.4 0.5

χ2

Classifier 10 25 50 75 100

TA 0.4 0.4 0.4 0.4 0.4

TA (pooled) 0.4 0.4 0.4 0.4 0.5

RF 0.4 0.4 0.4 0.4 0.4

Linear SVM wrapper
Classifier 10 25 50 75 100

TA 0.3 0.3 0.4 0.4 0.4

TA (pooled) 0.4 0.4 0.4 0.4 0.4

RF 0.4 0.4 0.4 0.4 0.4

L1 regularization
Classifier 10 25 50 75 100

TA 0.3 0.4 0.4 0.4 0.5

TA (pooled) 0.4 0.4 0.5 0.4 0.4

RF 0.4 0.3 0.4 0.5 0.4

Stability selection
Classifier 10 25 50 75 100

TA 0.4 0.4 0.4 0.5 0.4

TA (pooled) 0.4 0.4 0.4 0.4 0.4

RF 0.4 0.4 0.4 0.4 0.4

2. It is important to conduct feature selection individually for each model considered. For instance,
we show that, if feature selection is done for the Hamming weight model, then, in general, one
should not use the same features when considering the intermediate value model.

3. We confirm that having a higher number of features than the number of traces per class results
in template attack becoming unstable, as also indicated by previous works (e.g., [?]), which
is an observation that does not hold for machine learning techniques. In particular, for TA,
we observe the effect of instability in the estimation of the covariance matrix when using the
intermediate value model (= 256 classes) and if the number of features is > 10. The pooled
version tries to circumvent instabilities by reducing the number of covariance matrices to be

20

(a) HW model

(b) Intermediate value model

Fig. 7: 100 selected features for a) DPAcontest v4, b) AES HD, c) Random Delay

Table 7: PCA classification results.
Accuracy, % (best classifier)

Dataset 10 25 50 75 100

DPA v4, HW 26.4(RF)38.1(RF)93.8(TAp)97.6(TAp)98.3(TAp)

DPA v4, int. 0.7(RF)4.0(RF)40.1(TAp)61.3(TAp)74.7(TAp)

AES HD,
HW

25.2(RF)25.9(RF)26.7(RF)26.7(RF)26.8(RF)

AES HD, int. 0.4(all) 0.4(all) 0.5(RF)0.4(all) 0.4(all)

Rand. D.,
HW

24.3(RF)25.1(RF)25.5(RF)25.7(RF)26.2(RF)

Rand. D., int. 0.4(all) 0.4(all) 0.4(all) 0.4(all) 0.4(all)

estimated to a single one, which may include information loss. We show an alternative to
increasing the number of traces or using only one pooled covariance matrix as suggested by [?].
More precisely, an alternative approach is to use one of the Wrapper or Hybrid techniques,
which may result in improved performance of template attack.

4. We show that even a very small subset of features, if selected properly, can result in better per-
formance than a superset obtained with other selection techniques (that may contain redundant
or incorrect features).

5. We show that it is possible to conduct feature selection even in the presence of a random delay
countermeasure. There, although some important features are moved in the time domain, the

21

amount of information obtained from traces is sufficient for a reliable feature selection, resulting
in efficient attacks.

6. Datasets with large amounts of noise are difficult for classification as well as for feature selection.
This is expected, especially for Wrapper and Hybrid methods, since there we use ML classifiers
for feature selection.

7. When considering datasets with a large amount of noise or countermeasures, it is possible to
conduct a successful attack even in extremely constrained scenarios where we have only 10
features, if they are well-chosen.

5 Conclusions and Perspectives

In this paper, we addressed the following questions: how to select the most informative features
from raw data and what is the influence of the feature selection step in the performance of the
classification algorithm? Our results show that the proper selection of features has a tremendous
impact on the final classification results. We notice that often with a small number of features when
using a proper selection technique, one can achieve approximately the same results as some other
method using a much larger number of features.

We demonstrated how state-of-the-art techniques for feature selection from the ML area behave
for profiling in side-channel analysis. We observe that much more powerful techniques than those
currently used in the SCA community are applicable and achieve higher accuracies. Unfortunately,
our results do not reveal a single method as the best performing one. Still, this is to be expected,
since the “No Free Lunch” theorem also holds for feature selection. We emphasize that the Pearson
correlation is rarely the most successful technique for feature subset selection, which is a common
choice for feature selection in the SCA community. When considering guessing entropy results, we
emphasize Linear SVM Hybrid method and L1 regularization Wrapper that performed consistently
well for all datasets. This is especially interesting, since L1 regularization did not perform the
best when considering accuracy and the Random Delay and AES HD datasets. Naturally, feature
selection in the case of “easy” scenarios (e.g., DPAcontest v4) is not the most important and
effective task, but in scenarios with high noise and even countermeasures (Random Delay dataset),
our techniques may bring significant improvements.

The obtained accuracy results in most cases favor ML-based feature selection techniques when
compared to PCA-based feature extraction. At the same time, when considering guessing entropy,
we see that PCA is never the best technique. Future work may compare ML-based feature selection
with other dimensionality reduction methods, e.g. SNR metrics [?], in detail and determine the
superiority in specific contexts.

Acknowledgement This work was supported in part by the Technology Foundation STW (Project
13499 TYPHOON - VIDI) from the Dutch government.

22

	A Systematic Evaluation of Profiling through Focused Feature Selection
	Introduction
	Our contributions
	Previous work

	Background
	Notation
	Datasets
	Profiled Attacks and Guessing Entropy
	Guessing Entropy

	Feature Selection Techniques
	Filter Selection Methods
	Wrapper Selection Methods
	Hybrid Selection Methods
	Principal Component Analysis

	Experimental Evaluation
	Results
	General Observations

	Conclusions and Perspectives

