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Abstract. Linear dimensionality reduction plays a very important role in side chan-
nel attacks, but it is helpless when meeting the non-linear leakage of masking im-
plementations. Increasing the order of masking makes the attack complexity grow
exponentially, which makes the research of nonlinear dimensionality reduction very
meaningful. However, the related work is seldom studied. A kernel function was
firstly introduced into Kernel Discriminant Analysis (KDA) in CARDIS 2016 to re-
alize nonlinear dimensionality reduction. This is a milestone for attacking masked
implementations. However, KDA is supervised and noise-sensitive. Moreover, sever-
al parameters and a specialized kernel function are needed to be set and customized.
Different kernel functions, parameters and the training results, have great influence
on the attack efficiency. In this paper, the high dimensional non-linear leakage of
masking implementation is considered as high dimensional manifold, and manifold
learning is firstly introduced into side channel attacks to realize nonlinear dimen-
sionality reduction. Several classical and practical manifold learning solutions such
as ISOMAP, Locally Linear Embedding (LLE) and Laplacian Eigenmaps (LE) are
given. The experiments are performed on the simulated unprotected, first-order and
second-order masking implementations. Compared with supervised KDA, manifold
learning schemes introduced here are unsupervised and fewer parameters need to
be set. This makes manifold learning based nonlinear dimensionality reduction very
simple and efficient for attacking masked implementations.
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1 Introduction

Cryptographic devices may leak secret information through side channels such as electro-
magnetic [1], acoustic [12] and power consumption [15] during the hardware and software
implementation of cryptographic algorithms. These leakages are usually unconscious and
difficult to be discovered. By taking advantage of statistical correlation between assumed
power consumption of intermediate values (e.g. the outputs of Sbox in the first round
of AES-128) and these side channel leakages, an attacker can recover the key used in
the target devices. Side channel attacks, such as Differential Power Analysis (DPA) [15],
Correlation Power Analysis (CPA)[4], Template Attacks (TA) [6] and Collision Attacks
(CA) [25, 23], pose serious threats to the security of cryptographic implementation. Coun-
termeasures, such as masking [24, 8], must be taken to prevent against them, which make
side channel attacks hard to perform. However, these countermeasures also make it hard
to evaluate the security of implementation.

Higher-order attacks against masking implementations are widely researched [7, 19].
For a d-th order masking implementation, the masking includes d + 1 shares, of which
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the first d ones are random, and the last one is fixed and calculated from the first d
shares and the intermediate values (see Section 2.2). For all shares parallel performed
masking implementations, the attacker can simply traverse the time samples and perform
his attacks. However, for serial software implementations, different shares are performed
at different times. That’s to say, secret information leaks at different time samples. In
order to perform higher order attacks, the attacker needs to find at least a time sample
combination of d + 1 shares. However, most of current papers perform their attacks
under the hypothesis that the locations of all d + 1 shares are known. This brings higher-
order attacks back to the unprotected first order attacks case and ignores the detection
of Points-of-Interest (POI) [18].

As far as we know, there are only several papers talking about POI selection for mask-
ing implementation. Oswald et al. used educated guess that performing an exhaustive
search over all possible (d + 1)-tuples of time samples in a selected window [17]. Reparaz
et al. proposed an alternative solution based on Mutual Information Analysis (MIA) [13]
in [20]. However, both of these two solutions are very time-consuming, since the power
traces acquired are usually very long. This makes the higher-order attacks very difficult to
perform. Linear dimensionality reduction methods, such as PCA [11], LDA [27], project
the high dimensional power traces into a lower dimensional subspace by optimizing ob-
jective functions. However, these methods are limited to the dimensionality reduction in
linear space. They become powerless when meeting high-dimensional nonlinear leakage
for higher-order masking implementations.

Durvaux et al. proposed a new solution to select POIs based on Projection Pursuits
(PP) [10]. This solution returns the locations of time samples for shares. It needs to
set several parameters. As stated in [5], it works very well when attacking second or-
der masking implementations. However, it becomes powerless and fails when d > 2 in
the experimental results of Cagli et al. [5]. In this case, Kernel Discriminant Analysis
(KDA) [5] still works in third- and fourth- order attacks. It projects high dimensional
traces leaked by higher-order masking implementation to low dimensional space through
a nonlinear kernel function (see KDA introduced in Section 3). KDA is currently the only
feasible solution for nonlinear dimensionality reduction towards masked implementations.
It makes the complex and time-consuming higher-order attacks simple and feasible. This
is a milestone for higher order attacks. However, for non-linear dimensionality reduction,
there is still a lot of work to do. Since the correlation between the intermediate values and
combined power consumption becomes very weak after performing KDA, which makes the
attack require a lot of traces (see the experimental results detailed in Section 5). More-
over, for higher-order masking implementations, a power trace usually includes hundred
thousand or even millions time samples, which makes the storage and computing time
very huge, and greatly increases the difficulty of the attacks.

Nonlinear dimensionality reduction methods can be divided into two classes: kernel
based ones and eigenvalues based ones. The former class, such as KPCA [22], KICA [31]
and KDA introduced in this paper, introduce kernel function into linear dimensionality
reduction schemes to realize nonlinear dimensionality reduction. The latter class, such as
ISOMAP [29], Locally Linear Embedding (LLE) [21], Laplacian Eigenmaps (LE) [2] and
LTSA [32], uses nonlinear mapping to map the high-dimensional data into low dimensional
space and maintains the local structure of the original data set. In order to solve the
problems detailed in the above paragraph, we firstly introduce manifold learning into side
channel attacks and use them for nonlinear dimensionality reduction on traces acquired
when performing higher-order masking implementations. Solutions such as ISOMAP, LLE
and LE, are used. Compared with KDA, manifold learning based dimensionality reduction
does not require custom kernel functions, nor does it need to set complex parameters.
Moreover, these three manifold learning solutions are unsupervised. These make manifold
learning based dimensionality reduction very simple and efficient for attacking masking



implementations.

The rest of the paper is organized as follows. Notations, non-linear leakage of masking
implementation and intrinsic dimensionality estimation in manifold learning are intro-
duced in Section 2. KDA is introduced in Section 3. Manifold learning schemes including
ISOMAP, LLE and LE are detailed in Section 4. Second- and third-order attacks are per-
formed on simulated traces to highlight the superiority of our manifold learning schemes
in comparison with KDA in Section 5. Finally, Section 6 draws general conclusions.

2 Backgrounds

2.1 Notations

The principle of dimensionality reduction is to map data samples from high dimensional
input space through linear or nonlinear mapping to a low dimensional space, so as to
find meaningful low dimensional structures hidden in high dimensional observation data.
Suppose that the attacker encrypts n plaintexts P = (p1,p2,...,pn), acquires n power
traces 1, T2, . . ., T, and saves them in matrix X. Thus, X = {z1,22,...,2,} C RP. Here
R denotes the real number space, D denotes the number of samples on each acquired power
trace. If the high-dimensional samples in X can be generated from the data set Y in the
low dimensional space through an unknown mapping function f:

zi = f (i) + 0, (1)

then f: R? — RP is an embedded mapping. Here 6; is noise and d < D. If f is a linear
function, then we say it’s a linear mapping. Otherwise, it’s a nonlinear mapping. The
main purpose of manifold learning is to obtain the low dimensional samples Y according
to the given high dimensional observation samples X, and construct a non-linear mapping
f~! from high-dimension to low dimension.

2.2 Non-linear Leakage of Masking Implementation

The principle of masking is secret sharing. Take a d-th order masking of AES-128 for
example, the sensitive intermediate values of S-box outputs in the first round are divided
into S1,52,...,S5¢ and Sg41 pieces:

I=S58080---085;08q41, (2)

o here denotes a group operation, such as XOR. The shares S1, So, - - - , Sq are independent
with each other and random. The last share S;4; is fixed and satisfies Equation 1. Thus,
The masking implementations eliminate the correlation between the side channel leakage
X = {x1,22,...,2,} and intermediate values I. To perform a successful attack, the
attacker needs to find at least a time sample combination of these d 4+ 1 shares. If at
most d shares are found, the combined power consumption is still independent of the
assumed leakage of intermediate values. The introduction of masking into encryption and
decryption slows down the implementation, makes the power trace long. If the sampling
rate is set very high, this problem is very obvious. This makes it hard for the attacker to
find a time sample combination of shares.

Not only the group operation XOR in Equation 2, the intermediate values I can be
generalized as the non-linear function f " of d + 1 shares:

I:f/(Slsta"'aSCH’l)a (3)

the side channel leakage can be simply regarded as the observation of this manifold struc-
ture. The intrinsic dimension of the side channel leakage is always much smaller than the



corresponding power trace set. Intrinsic dimension here is defined as the actual dimen-
sion of low-dimensional manifold structure corresponding to the high-dimensional leakage
samples. In this way, the problem of side channel attacks on masking implementation can
be changed to the problem of non-linear dimensionality reduction. The dimension d of
Y after dimensionality reduction is much smaller than the dimension D of original power
trace set X. Moreover, the information of shares are mapped into the low dimensional
manifold. We can simply consider that the D-dimension samples are projected onto a
vector for each dimension after mapping.

Manifold learning can map high-dimensional samples to low-dimensional space and
preserve the original structure of data. If the first-order CPA performed on a vector
have a high correlation coefficient, the classification of samples on this dimension after
projection is good. Thus, the attacker can directly perform first order side channel attacks
on the data set Y. Therefore, the non-linear dimensionality reductions based on manifold
learning can significantly improve the attack efficiency. If template attack (TA) is used
here, the attacker has to take several mapped dimensions into consideration.

2.3 Intrinsic Dimensionality Estimation

As mentioned in Section 2.2, the intrinsic dimension of side channel leakage is always much
smaller than the corresponding dimension of power trace set. Dimensionality reduction
can not only obtain computational advantages, but also greatly improve the comprehen-
sibility of data set. Although the intrinsic dimension of the high-dimensional leakage
samples for a certain masking implementation is determined, it is difficult to estimate it
from the leakage samples since the presence of other operations and noise. An attacker
can usually describe the intrinsic dimension by using the minimum number of independent
variables required by model the observed samples.

Schemes such as Geodesic Minimal Spanning Tree (GMST) [9], k-Nearest Neighbor
(k-NN) [26], Maximum Likelihood Estimator (MLE) [16], can be used to estimate the
intrinsic dimension in manifold learning. Actually, it’s enough to keep several projection
directions, since the high correlation usually occurs on them.

3 Kernel Discriminant Analysis

Let (27'),_, ., denote the class z = z; including all traces corresponding to class z;. For
example, the power traces are divided into 9 classes according to their intermediate values.
Let K = (acj] ,xf’*’)izl nij=l,...m store only columns indexed by the indices i such that
z; = z, | denote a n, x nz Edeﬁtify matrix, and I,,, denote a n, X n, matrix with all entries

equal to n% KDA introduced in [5] uses a kernel function
K(wi @) = (25 - ;) (4)
to turn linear distinguisher LDA [27] into nonlinear distinguisher, where - denotes the dot

product. Then, it uses the labeled set (x;%) ,, and the kernel function to construct a
between-class scatter matrix M:

i=1,...,

M= n.(M.—Mg) (M. —Mp)", (5)

z€EZ

where M, and Mt are two n-size column vectors whose entries are given as:

ML) = o 3 Kl i), (6)

112, =2
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n

Mrlj] = — S K7, a2). (7)

n
Z =1

T here represents a matrix transpose. Cagli et al. then constructed a within-class scatter

matrix N:
N.[j] = Y Ka(l =1 KT 8)

zEZ

Cagli et al. then regularized the matrix N:
N =N+ pul, (9)

and found ) non-zero eigenvalues A1, . .., Ag and the corresponding eigenvectors vy, ...,vg
of N"'M. This step aims at minimizing the within-class variance and maximizing between-
class variance. (v;) .—1....o here denotes different projection directions. If a new trace x is
projected onto the [-th nonlinear d-th order discriminant component, then the projection

1S
n

e P (@) = Y wliK (2 2) . (10)
i=1
The most time-consuming step in KDA is to find the eigenvalues of N~'M, of which the
complexity is O(n3). When the number of traces used is very large, KDA works very
slowly. Moreover, KDA is a supervised nonlinear dimensionality reduction, the training
result has direct impact on the dimensionality reduction results.

4 Manifold Learning

Since the proposal of ISOMAP [29], Manifold learning schemes such as LLE [21], LE [2],
LTSA [32], LPP [14] and MFA [30], have been widely studied. ISOMAP, LLE and LE
is three most classical schemes, which are introduced in Sections 4.1, 4.2 and 4.3. It is
worth noting that different manifold learning schemes are based on different mathemat-
ical principles. So, it is all depend that whether the scheme can be used to reduce the
dimension of time samples acquired when performing masking implementation. The rea-
son why we use these three methods is that they are able to attack our simulated masking
implementations in addition to their classic.

4.1 Isomap

ISOMAP is one representative of isometric mapping methods and maintains the global
structure of the original data. Euclidean distance used in MDS [3] can’t be exactly rep-
resent the distance relation between points on manifold structure. For example, a worm
creeps from a point A to a point B on the curved surface. Since it can only creep on the
surface. So, directly using the Euclidean distance between these two points to present the
creeping distance of the worm is clearly not appropriate. Here if we use geodesic distance
to represent the distance, then it can correctly reflect the shortest distance that the insect
has creep. In this sense, ISOMAP improves MDS by using geodesic distance instead of
Euclidean distance, the procedures of which are introduced as follows:

Neighbors Selection. The attacker defines the adjacency graph G containing all
points (here each power trace is regarded as a point). If two nodes ¢ and j are adjacent,
then there is a side between them, of which the length is d, (4, 7). Euclidean distance is
used here. It is worth noting that Euclidean distance is only used to represent the distance
between two adjacent points, and the geodetic distance is used to find the shortest path
between any two sample points.



Finding Shortest Paths. The attacker calculates the approximate geodesic distance
matrix J = {dg(?,7)},,«,- If nodes i and j are connected, the shortest path dg(i,j) =
d, (i,7). Otherwise, dg(i,7) = co. The attacker performs Floyd or Dijkstra algorithm on
adjacency graph G to find the shortest paths. The geodesic distance is defined as:

da(i,7), if nodes i and j are adjacent

11
min{dg(i,j),da(i, k) + da(k,j)}, otherwise (1)

dG(i’j) = {

The shortest path matrix Jo = (dg (i,7)) among sample vectors finally converges after
many iterations. The complexity is O(n?) when using Dijkstra algorithm to find the
shortest path between two power traces. If the shortest paths between any two sample
points are calculated, the complexity is O(kn?logn). k here is the number of nearest
neighbors.

Computing Low Dimensional Embedding. Isomap uses MDS to obtain the low
dimensional embedding, a d-dimensional space that maintains the essential geometry of
power traces. The procedures of MDS are as follows:

Step 1. The attacker computes S = (d3;).

Step 2. He then sets h;; = 6;; — L. The centralization matrix H = (H;;). d;; satisfies

that
L i
P S (12)
0, j#1J

Step 3. The attacker then doubles the centering and computes

HSH
T(J) = ——. (13)
2
Let Jy denote the Euclidean distance between samples after dimensionality reduction.
ISOMAP aims at minimizing the objective function:

E=|r(Ja) =7y, (14)

where [|Al[ 2 = /> Afj. The low dimensional embedding w1, y2, . . ., yn are the d eigen-

vectors corresponding to the d minimum eigenvalues. ISOMAP uses MDS to perform
eigendecomposition, the complexity is O(n3). Compared to KDA, ISOMAP is unsuper-
vised. The attacker only needs to set two parameters k and d.

4.2 Locally Linear Embedding

Unlike ISOMAP, Locally Linear Embedding (LLE) [21] maintains local properties of data,
and it’s a local optimization solution. LLE considers the structure of data as linearity in
local sense. Therefore, a data point z; can be approximated by the linear combination
2?21 wy;x; of its neighbor points x;-s. That is, z; ~ Z?:l w;jx;. In this way, recon-
struction weights are constructed between each data point and its neighboring points.
The weight vectors constructed by reconstruction weights keep the local linear structure
of high-dimensional data. The local linear structure is also maintained in the low dimen-
sional space. That is, y; ~ 25:1 Wi Y-

The procedures of LLE are as follows:

Neighbors Selection. Similar to ISOMAP, the first step of LLE is also to find
k nearest neighbors for each point. k is a predetermined value given by the attacker.
It is a very important parameter and has great impact on the results of side channel
attacks. Another important parameter here is dimension d after dimensionality reduction
introduced in Section 4.1. The complexity of neighbors selection is O(Dn?).



It must be noted here that both the ISOMAP and LLE have two parameters k and d,
so as to the LE introduced in Section 4.3. k-NN is also used in their first step. However,
the mathematical principles of them are different. So, we can’t simply think that these
two parameters are same. Actually, they are tested separately in our experiments.

Computing Reconstruction Weight Matrix. Since we use Z?Zl w;;x; to approx-
imate x;, an error of reconstruction

2

n k
mine(W) = Z x; — Zwij:cj (15)
i=1 j=1

is between point x; and its neighbors. w;; here denotes the reconstruction weight of
data point z; and its neighborhood z;. If x; is not a neighborhood of z;, then w;; = 0.
Otherwise, w;; # 0 and Zle wi; = 1. In order to minimize the reconstruction error,
W satisfies symmetry. The complexity of computing reconstruction weight matrix is
O((D + k)k?n).

Computing Low Dimensional Embedding. In this step, the linear relationship
in local areas is established by using the weights obtained in Step 2. The low dimensional
space Y is obtained by minimizing the cost function:

2

n k
min o(V) =3 |l = S wyys|| = [ —w?|?
i=1 j=1

=tr(YMYT), (16)

where y; is the low dimensional mapping vector of z;, and y; is the mapping vector of z;
(the neighborhood of z;). Y satisfies 2Y' YT = I (I is the unit matrix), and Y1 | y; =
0. The above objective function can be transformed into calculating the eigenvectors of
matrix

M=(I-W)"T-W). (17)

If the eigenvalues of M are sorted in ascending order, the first one is about 0 and dis-
carded. Finally, the eigenvectors corresponding to the minimum d non-zero eigenvalues
of matrix M are chosen as low dimensional coordinate. The complexity of computing low
dimensional embedding is O(dn?). Similar to ISOMAP, LLE is also unsupervised. The
attacker only needs to set two parameters k and d.

4.3 Laplacian Eigenmaps

Laplacian Eigenmaps (LE), like LLE; is also a local feature preserving algorithm. It builds
a graph from neighborhood information of the data set. If two nodes ¢ and j are adjacent
in the original data space X, they are also adjacent in the subspace Y. The procedures
of LE are as follows:

Constructing Adjacency Graph. We put an edge between the node ¢ and node j
if two measurements x; and x; are "close". Two schemes, k-NN and € — ball can be used to
construct of the adjacency graph. For k-NN, nodes i and j are connected by an edge if ¢
is among n nearest neighbors of j or j is among the n nearest neighbors of i. For € — ball,
nodes i and j are connected by an edge if ||z; — ;|| < € where |-|| is the usual Euclidean
norm in RP. Finally, the adjacency graph G is constructed.

Computing Reconstruction Weight Matrix. For each point, the attacker com-
putes the weight coefficient .

wij:efult”‘ (18)
if nodes 7 and j are connected. Otherwise, w;; is set to 0. The parameter ¢ is an adjustable
parameter, which is always set to 2 in our experiments. The attacker can also simply set



wj; to 1 if nodes ¢ and j are connected. Otherwise, w;; is set to 0, of which the case also
corresponds to t = co.

Computing Low Dimensional Embedding. LE keeps the local property of mani-
fold structure in the mean sense, which depends on the distances between adjacent points.
The adjacent points in G are close after dimensionality reduction. Therefore, LE mini-
mizes the objective function:

o(y) = Z lly: — yj||2 Wi (19)

Let J denote a diagonal weight matrix, and its entries are column sums of w, J = (J;;) =
Zj wi; and L = J — W is the Laplacian matrix. If a constraint YJYT = I is added, the
objective function can be transformed into:

p(y) =2YLYT. (20)

This is equivalent to solving
LY = \JY. (21)

LE then sorts the eigenvalues of Laplacian matrix in ascending order and selects the d
eigenvectors corresponding to the d minimum eigenvalues. The obtained low dimensional
embedding coordinates are:

Y:{ylvaa"' ayn}ayiERd' (22)

The complexity of constructing adjacency graph is O(Dn?), the complexity of comput-
ing low dimensional embedding is O(dn?). Similar to LLE, d here denotes the number of
eigenvalues or eigenvectors. The complexity of computing reconstruction weight matrix
is less than O(kDn). So, compared to ISOMAP and LLE, LE only has a small amount
of computation, of which the calculation speed is high.

Compared to ISOMAP and LLE, LE not only needs to set k and d, but also needs
to set a parameter ¢ for the weight of hot kernel function (see Equation 18). In our
experiments, this parameter is set to 2. We have not done much research on the impact
of this parameter.

5 Experimental Results

In order to facilitate the evaluation, our experiments are performed on simulated traces.
Since the locations of shares and the noise are easy to control. Moreover, the lengths of
non-leaky areas can also be set shortly, so as to shorten the time for evaluation. Since the
complexity of ISOMAP, LLE and KDA are O(n®). When more than 8000 power traces
(300 points for each) are used, several hours are hard to get the experimental results for
a repetition. Let R denote the Gaussian distributed noise with mean 0.00 and variance
02, Z denote the intermediate value (e.g. the output of Sbox in the first round of AES),
and HW denote the Hamming weight function. The leakage model of the S-box output
implementation can be modeled as

£ =HW(Z) +R. (23)

Since we aim at higher-order attacks in this paper, we divide the intermediate values into
several shares using Equation 2. The leakage of each share satisfies the leakage model
described above. Here the variance of noise is set to 1.00. In this case, the SNR is about
2.00. Since the variance of Hamming weights is about 2.00. The leakage areas of shares in
masking implementation are often not adjacent. So, we use noise to simulate the non-leaky
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Figure 1: A simulated power traces with first-order mask.

areas that are not related to the operation of shares. The average power consumption is
0.00 and the noise standard deviation is 1.00 in these areas.

In our experiments, we insert a sample area of length 100 in front of and behind time
samples of each share. Leakage area of each share includes 10 time samples. A simulated
trace with first order mask is shown in Fig.1. The trace includes two leakage areas, of
which the time samples range from 100 to 110 and from 200 to 210 respectively. Since
Hamming weight model is used for the simulation, power traces are classified into 9 classes
according to the Hamming weights of the intermediate values in KDA. Compared to KDA,
our manifold learning solutions ISOMAP, LLE and LE are unsupervised, so dimensionality
reduction is directly performed on the simulated power traces. Then, first order CPA is
performed on the dimensionality reduced traces.

(1) CPA after performing ISOMAP (2) CPA after performing LLE

0.8 0.8
0.6 0.6
QU S8
0.4 0.4
0.2 0.2
0 0
0 50 100 150 200 250 0 50 100 150 200 250
guessing key guessing key

(3) CPA after performing LE

(4) CPA after performing KDA

0.8

0.6

0.4

0.2

0 50 100 150 200 250 0 50 100 150 200 250
guessing key guessing key

Figure 2: CPA after performing ISOMAP, LLE, LE and KDA on unprotected implemen-
tation respectively.

It is worth noting that nonlinear dimensionality reduction algorithms such as KDA
and manifold learning schemes firstly introduced in this paper can also be used for lin-
ear dimensionality reduction. As shown in Fig.2, when 300 power traces are used, the
correlation coefficients of the correct guessing key (213) are close to 1.00. This indicates



that both KDA and manifold learning schemes (ISOMAP, LLE and LE) are very efficien-
t when attacking unprotected implementations. However, this is not the focus of this
article. The purpose of Fig.2 is to compare correlation coefficients under first-, second-
and third-order attacks, and highlight the superiority of our manifold learning schemes
ISOMAP, LLE and LE in comparison with KDA. We compare the experimental results of
second-order attacks and third-order attacks on the simulated traces in Sections 5.1 and
5.2.

5.1 Second Order Attacks

1 is a very important parameter that needs to be optimized (see Equation 9). However,
Eleonora et al. did not give the detailed method to optimize it in their paper [5]. They
just tested u for several times and chose the best one. In this paper, we also test this
parameter several times and choose the best one, of which the results are shown in Table
1. We perform second-order attacks on 600 power traces and repeat this operation 200
times, the number of traces used to construct matrix M equals to 4000. The success rate
(SR)[28] is the highest and equals to 0.155 when p = 10. So, in our experiments, the
constant p is always set to 10.

Table 1: Success rate under different p-s.

p | 1079 [ 1077 ] 107° [ 1072 [ 107t | 10°
SR | 0.130 | 0.075 | 0.115 | 0.115 | 0.130 | 0.090
w | 10! 103 10° 107 109 | 10M
SR | 0.155 | 0.055 | 0.125 | 0.060 | 0.130 | 0.085

KDA is the first feasible supervised nonlinear dimensionality reduction scheme. It is
not very efficient when attacking masking implementations. Take the simulated second-
order masking implementation for example, to get a success rate close to 1.00, more than
3000 power traces are needed. If less than 1200 traces are used, the success rate is less
than 0.50. Enlarging the noise or lengthening the number of time samples on the power
traces reduces the success rate. Thus, the attacks require more traces.

(1) Success rate of KDA (2) Success rate of ISOMAP

09 0.9 k=6
— =]
08} 0.8 k=1
R
0.7r 0.7
L 2
T 0.6 T 06
? 2
05 405
8 ]
> 04r > 0.4
?° a°
03r 0.3
02r 0.2
01r 0.1
0 . . . . . . . . 0 . . . . . .
0 400 800 1200 1600 2000 2400 2800 3200 3600 200 400 600 800 1000 1200 1400 1600
Number of traces Number of traces

Figure 3: Success rates of KDA and ISOMAP when attacking second-order masking
implementation.

Compared to KDA, LLE and LE, ISOMAP is more time-consuming when running the
MATLAB code on our computer, the success rate of which is shown in Fig.3 (right). For
ISOMAP, 4000 traces need more than 20 minutes on our ThinkPad X250 laptop computer
with 2 Intel i5-5300U CPUs and 4GB RAM. This makes it very slow to use success rate
to evaluate KDA, ISOMAP, LLE and LE. So, For ISOMAP, LLE and LE, we only repeat

10



200 times. This makes the success rate fluctuate, but this does not affect our analysis.
As shown in Fig.3, the success rate of ISOMAP is much higher than that of KDA. The
choice of constant k is crucial. When the number of traces used is small, a small & makes
the attacker get a higher success rate. With increase of the number of power traces, k can
be enlarged properly. When £k is set to 6, 12, 18 and 24, and the number of traces is less
than 400, the success rates are almost the sample. When 400 < n < 600, the success rates
corresponding to k = 24 is lower than these of k = 12 and k£ = 18. This indicates that
if the threshold setting is too large, the attack efficiency will be affected. However, the
threshold is relative and not fixed. It can be increased appropriately with n to achieve a
higher success rate. When n > 600, the success rates corresponding to k = 18 and k = 24
are significantly higher than these corresponding to &k = 6 and k = 12.

(1) Success rate of LLE (2) Success rate of LE

o o
o

Success rate
o o
o

Success rate
IS}
=

. . . . . . . . : : 0 . . . . . . . . . . .
0 150 200 250 300 350 400 450 500 550 600 650 700 0 150 200 250 300 350 400 450 500 550 600 650 700
Number of power traces Number of power traces

Figure 4: Success rates of LLE and LE when attacking first-order masking implementa-
tion.

ISOMAP, LLE and LE is significantly more efficient than KDA. Compared to ISOMAP,
LLE and LE is faster. The success rates of them is significantly higher than that of
ISOMAP (as shown in Fig.4). When n = 550, the success rate corresponding to LE
approaches 1.00, compared to nearly 700 power traces used in LLE. It is worth noting
that the parameter k also needs to be set properly. If k is very small, the success rates of
LLE and LE are low, especially for LLE, of which the success rate is significantly lower
than these corresponding to k = 12, 18 and 24. However, if k is more than 12, the success
rate no longer significantly improves.

The correlation between the intermediate values and the combined leakages drops
very quickly. Similarly, correlation coefficient decrease rapidly in nonlinear dimensionality
reduction. We use 4000 power traces to perform KDA, ISOMAP, LLE and LE, the
success rates of which are about 1.00. However, the correlation coefficients of LLE and
LE are about 0.30 (as shown in Fig.5). The p-s of ISOMAP and KDA are very small, the
former is about 0.15, the latter is about 0.10. This is not a special case, the results are
representative. We find that the p-s of LLE and LE in many experiments are about 0.30,
and p-s of KDA and ISOMAP are close to 0.10. The small correlation coefficients can be
easily drowned out by the p-s corresponding to wrong keys. This also means that it is
difficult for the attacker to get success using the same number of traces. That’s to say, in
order to get the correct key, the attacker needs more power traces.

5.2 Third Order Attacks

The correlation between the intermediate values and the combined power consumption is
very weak in higher-order attacks, which makes the attacker need a large number of traces
to recover the key. Even if the attacker collects measurements with very small noise and
uses KDA, ISOMAP, LLE and LE introduced in this paper to perform dimensionality
reduction, this still happens. As shown in Fig.6, the correlation coefficients corresponding
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Figure 5: CPA after performing ISOMAP, LLE, LE and KDA on traces of first-order
masking implementation respectively.

to KDA, ISOMAP, LLE and LE are all smaller than 0.10 when third-order attacks are
performed on 4000 power traces.
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Figure 6: CPA after performing ISOMAP, LLE, LE and KDA on second-order masking
implementation respectively.

We get a conclusion similar to the one of second order attack in Fig.5: the attacker
will get higher correlation coefficients if he uses LLE or LE to perform dimensionality
reduction rather than KDA and ISOMAP. The attack efficiency of LLE and LE is still
much higher than that of KDA and ISOMAP in our third-order attack experiments. When
the number of nearest neighbors k is set to 24, the success rate of LE can reach 0.90 under
5000 power traces (as shown in Fig.7). Compared to LE, the success rate of LLE is less
than 0.40. k has great impact on the attack efficiency. For example, the success rate of
LLE is almost 0 under 5000 power traces if k is set to 6. When k is set to 18 or 24, the
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success rate is higher than 0.30. The similar impact of threshold k on attack efficiency
also happens in LE.

(1) Success rate of LLE

(2) Success rate of LE
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Figure 7: Success rates of LLE and LE when attacking second-order masking implemen-
tation.

We perform our experiments on 6000 power traces for each repetition to test the
success rate of KDA. However, the success rate is still very close to 0. So as to ISOMAP.
ISOMAP is very time-consuming in our experiments since it uses Dijkstra algorithm to
find the shortest path between any two power traces. So, we do not give the corresponding
graphs for both of them. This paper only considers using the most basic methods. A lot
of improvements have been proposed to enhance KDA, ISOMAP, LLE and LE, other
manifold learning schemes can also be used to reduce dimension. These work may also be
introduced into attacking masking implementations. There also exists other side channel
attacks more efficient than CPA. These improvements can be left as open problems here.

6 Conclusions

Informative extraction (e.g. POI detection scheme PP [10] and KDA) for masking imple-
mentation is one of the most challenging problems of side channel attacks. It is also crucial
for higher-order attacks and leakage assessment. However, it is rarely studied. In this case,
we think KDA in [5] is a milestone for informative extraction towards masking implemen-
tation, since it makes the dimensionality reduction of high-dimensional nonlinear leakage
samples practical for the first time. However, this scheme is supervised, noise-sensitive
and inefficient, requires a large number of power traces to perform attacks.

In this paper, we introduce manifold learning into nonlinear dimensionality reduction
for masking implementations. We use un-supervised schemes ISOMAP, LLE and LE to
realize this target. Compared to KDA, these three methods are much more efficient at
second-order attacks. The correlation between intermediate values and the components
after dimensionality reduction in these three schemes are higher than that of KDA, too.
We also compare ISOMAP, LLE and LE with KDA on third-order attacks. ISOMAP
is very time-consuming and the success rate of KDA is very low. In this case, LLE
and LE still work very well. Manifold learning schemes introduced in this paper are
unsupervised, which makes the attacks easy to perform. The attacker needs to set fewer
parameters. These above advantages make manifold learning meaningful when attacking
masking implementations.

In this paper, we directly use ISOMAP, LLE and LE to perform dimensionality re-
duction, any improvement is made. Moreover, original CPA is directly performed here.
This makes the correlation between intermediate values and dimensionality reduced sam-
ples drop quickly. Manifold learning towards masking implementations is still worthy of
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further study. For example, better kernel functions, more accurate intrinsic dimension es-
timation and more efficient dimensionality reduction algorithm implementations. It may
be the most efficient way to use non-linear dimensionality reduction methods to attack
the high-dimensional non-linear time samples of masked implementations.
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