Machine-Learning Attacks on PolyPUFs,
OB-PUFs, RPUFs, LHS-PUFs, and PUF-FSMs

Jeroen Delvaux

imec-COSIC, KU Leuven, Belgium,
Temasek Laboratories at Nanyang Technological University, Singapore,
jdelvaux@ntu.edu. ng

Abstract. A physically unclonable function (PUF) is a circuit of which the input—
output behavior is designed to be sensitive to the random variations of its manufac-
turing process. This building block hence facilitates the authentication of any given
device in a population of identically laid-out silicon chips, similar to the biometric
authentication of a human. The focus and novelty of this work is the development of
efficient impersonation attacks on the following five Arbiter PUF-based authentica-
tion protocols: (1) the so-called PolyPUF protocol of Konigsmark, Chen, and Wong,
as published in the IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems in 2016, (2) the so-called OB-PUF protocol of Gao, Li, Ma,
Al-Sarawi, Kavehei, Abbott, and Ranasinghe, as presented at the IEEE conference
PerCom 2016, (3) the so-called RPUF protocol of Ye, Hu, and Li, as presented at the
IEEE conference AsianHOST 2016, (4) the so-called LHS-PUF protocol of Idriss and
Bayoumi, as presented at the IEEE conference RFID-TA 2017, and (5) the so-called
PUF-FSM protocol of Gao, Ma, Al-Sarawi, Abbott, and Ranasinghe, as published
in the IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems in 2018. The common flaw of all five designs is that the use of lightweight
obfuscation logic provides insufficient protection against machine-learning attacks.

Keywords: physically unclonable functions - entity authentication - machine learning

1 Introduction

Since their advent in the early 2000s [LDT00, GCvDDO02], physically unclonable functions
(PUFs) have been used as a building block in numerous authentication protocols. The
authentication is either unilateral, i.e., one-way, or mutual, i.e., two-way, and usually takes
place between a low-cost, resource-constrained device hosting a PUF and a high-cost,
resource-rich server storing a selection of the input—output pairs of this PUF. The selected
pairs embody a shared secret between both parties, and a device is hence not required to
store a secret key in non-volatile memory (NVM). This way, physically invasive attacks
on NVM, such as optically scanning its cell contents or microprobing its bus [Sko05], are
precluded. The output of a PUF, however, is noisy and hinders the design of a serviceable
protocol. Moreover, to avoid the amplification of noise, a PUF is highly constrained in its
use of non-linear operations and is therefore prone to machine learning. Stated otherwise,
the level of diffusion and confusion that can be achieved by a PUF is no match for a
properly designed cipher.

TCopyright ©2019 IEEE. This article appears in the IEEE Transactions on Information Foren-
sics and Security (TIFS): https://ieeexplore.ieee.org/document/8603753. Digital Object Identi-
fier: 10.1109/TIFS.2019.2891223. Personal use of this material is permitted. However, permission
to use this material for any other purposes must be obtained from the IEEE by sending an email to
pubs-permissions@ieee.org.

mailto:jdelvaux@ntu.edu.sg
https://ieeexplore.ieee.org/document/8603753
pubs-permissions@ieee.org

2 Machine-Learning Attacks on Five PUF-Based Protocols

Delvaux et al. [Dell7, Chapter 5] analyzed the security and practicality of 21 PUF-based
authentication protocols, thereby revealing numerous problems to the extent that only six
candidates survive. In parallel, Becker [Becl5a, Bec15b] and Tobisch [TB15] pushed the
boundaries of machine-learning attacks on PUF-based protocols. The previous analyses,
however, are not up-to-date with proposals beyond the year 2014. In this work, we illustrate
that the research field of developing new PUF-based authentication protocols remains
a minefield. Efficient attacks on the PolyPUF protocol of Konigsmark et al. [KCW16],
the OB-PUF protocol of Gao et al. [GLM™16], the RPUF protocol of Ye et al. [YHL16],
the LHS-PUF protocol of Idriss and Bayoumi [IB17], and the PUF-FSM protocol of
Gao et al. [GMA 18] are presented. More precisely, our examination reveals that all five
designs are unsuccessful attempts to impede machine-learning attacks through the use of
lightweight obfuscation logic.

The remainder of this paper is organized as follows. Section 2 introduces the notation
and provides preliminaries. Section 3 specifies and obliterates the five protocols. Section 4
provides guidelines for future protocol designers such that the same mistakes are less likely
to reoccur. Section 5 concludes this work.

2 Preliminaries

2.1 Notation

As exemplified in Table 1, constants are denoted by characters from the Greek alphabet,
whereas random variables and their outcomes are denoted by characters from the Latin
alphabet. Scalars are denoted by normal lowercase characters. Vectors are denoted by
bold-faced, lowercase characters. All vectors are row vectors. The all-zeros vector is
denoted by 0. Matrices are denoted by bold-faced, uppercase characters. The A x A
identity matrix is denoted by In. A diagonal matrix is defined by listing the entries on its
main diagonal, e.g., Iy = diag(1, 1).

Table 1: Symbols used to denote constants and variables

Constant Outcomes of random variables A, B,C, - - -
Scalar «, (3,7, - a,b,c,---
Vector «,f8,7,--- a,b,c,---
Matrix A,B,I',--- A ,B,C,---

A set, often but not necessarily referring to all possible outcomes of a random variable,
is denoted by an uppercase, calligraphic character, e.g., X'. The set of all A\-bit vectors is
denoted by {0,1}*. A multivariate normal random variable X with mean g and covariance
matrix 3 is denoted by X ~ N(u,X). The expected value of a random variable X is
denoted by E,. x[X]. For binary vectors, bitwise inversion and bitwise modulo-2 addition
are denoted by —x and x; @ x5 respectively. Custom-defined functions are printed in a
sans-serif font, e.g., Hamming distance HD(x1,x3).

2.2 Arbiter PUF

A PUF maps a binary input, i.e., the so-called challenge c¢ € {0,1}*, to a binary, device-
specific output, i.e., the so-called response r € {0,1}". There is a special interest for PUFs
that support a large-sized challenge c, e.g., having A = 128, because this facilitates the
design of an authentication protocol considerably. Even those who are given unrestricted
access to such a PUF can neither gather nor tabulate all of its challenge—response pairs
(CRPs) within the lifetime of its hosting device. For the well-known Arbiter PUF [Lim04],
which quantizes the difference v between the propagation delays of two reconfigurable

Jeroen Delvaux 3

paths as is shown in Fig. 1, a large A can be supported. The challenge ¢ determines for
each out of A switching elements whether path segments are crossed or uncrossed.

R e P N B e v 1 r
_{ X X TU s0—
T T T T 7
C1 C2 C3 Cx—1 C
=0 =1 =1 =0 =1

Figure 1: An Arbiter PUF with X stages [Lim04].

If the delay difference v > 0, the single-bit response r = 1; otherwise, r = 0. To
resist brute-force attacks, protocols usually require a long response r, e.g., having n = 128.
This expansion can be achieved either by laying out 1 Arbiter PUFs in parallel, or by
concatenating the response bits 7 of a single Arbiter PUF that evaluates 1 challenges c.
Unfortunately, noise sources within the device, as well as changes to its external environ-
ment, imply that an initially generated response r slightly differs from its reproduction r.
The averaged bit error rate Ec. 1913 [HD(R, R)]/n typically lies between 5% and 15%. A
crucial insight is that the reproducibility of the response r to a given challenge ¢ increases
monotonically with the absolute value |v|. A continuous spectrum ranging from highly
stable to highly noisy response bits hence arises.

2.3 Additive Delay Model and Implied Correlations

Unfortunately, all 2 CRPs (c,r) of an Arbiter PUF are determined by the variability
of a limited number of circuit elements. To enable a prompt exposition of the implied
correlations, the sloped edges that characterize electrical signals in real-world circuits are
approximated by instantaneous transitions. Consequentially, only two variables per stage
affect the overall input—output behavior of an Arbiter PUF, as detailed in Fig. 2. Starting
from this set of 2 \ variables, the original design team [Lim04, Section 5.2.1] already derived
a more compact representation using only A\ + 1 variables. More precisely, the eventual
delay difference v can be described by a dot product: v = ms” in (1), where the variability
model m € R ! aggregates elementary delay differences, and where s € {—1, 1}**! is the
result of an invertible challenge transformation.

tin] Ttout = tin + i tin | % Ttout = —tin + i
T

CiZO Cizl

Figure 2: The delay behavior of a single stage of an Arbiter PUF. If for a given challenge c,
the delay difference between the upper and lower path accumulated to t;, after the first
i — 1 stages, then stage ¢ adds either ¢; o or ¢; 1, depending on the value of challenge bit ¢;.
Note that for ¢; = 1, the upper and lower paths are reversed, and the sign of ¢;,, is flipped
accordingly.

4 Machine-Learning Attacks on Five PUF-Based Protocols

v=ms’, wherem=1t®,

t=(tio ti1 too tz1 ... tao ta1), ¥ =
1 =10 0 0 0 000 0\"
1 1 1 =10 0 000 0
1lo o 11 1 -1 000 0
5 . .)
0 0 0 0 0 0 111 -1 (1)
00 0 0 0 0 001 1

_1)01@02@”-@@
(_1)02@0369“'@@

and s =

(-1
1

Not only to simulate Arbiter PUFs in software [RSST13], but also to study correlations
between CRPs, it is convenient to assume a distribution for the variability model M. Owing
to the central limit theorem, the outcomes of a complex physical process tend to obey a
normal distribution. For a population of ideally manufactured Arbiter PUFs, it can thus be
assumed that 7'~ N(0, 0?2 Iy). Upon application of the linear transformation in Eq. (1),
this multivariate normal distribution changes as given in Eq. (2). To illustrate that infinitely
large populations of Arbiter PUFs and random oracles [BR93] substantially differ in their
statistical properties, consider the probability paip = Em« as[R1 @ R2] for a given challenge
pair (cq,cz). For the population of Arbiter PUFs, where transformed challenges s capture
correlations more adequately, it can be derived that pg;, increases roughly proportionally
with HD(s1,s2) € [0, A] such that the interval [0, 1] is quasi completely covered [MKPOS,
Fig. 12]. For the population of random oracles, the probability pai, = 1/2 for any given
challenge pair (c1,cq) where ¢; # ca.

M~NO0®, 0] 0" 1, ¥)

~ N(0,07 diag(1/2,1,1,---,1,1/2)). @

So far, Arbiter PUFs were modeled as a deterministic functions. To incorporate the
effect of both internal noise sources and environmental changes, the latter of which are
assumed to be centered around a constant nominal value, the quantization can be extended
to (v+mn) < 0, where N ~ N(0,02) with respect to the infinite set of evaluations [Mae13].
Given that only the sign of the delay difference v matters in determining the nominal value
of its corresponding response 7, one may arbitrarily choose o2 = 1 as long as o2 is scaled
accordingly.

2.4 Machine Learning

Another manifestation of the correlated structure of an Arbiter PUF is that machine-
learning algorithms training on a relatively small set of CRPs, i.e., {(c1,71), (c2,72),

-, (€w,Tw)}, where w < 2}, can produce a model h that allows to accurately predict
the unseen response r,y; to any given challenge c,+1. The probability pa.. € [1/2,1]
that a prediction for a given Arbiter PUF is correct is referred to as the accuracy, and
usually increases monotonically with w. If pairs (s, r) instead of pairs (c,r) are used as
training data, the problem of learning m becomes quasi-linear, i.e., the quantization v < 0

Jeroen Delvaux 5

is the only remaining non-linearity, and hence straightforward to handle for numerous
algorithms. Through artificial neural networks (ANNs) [Mael2], support vector machines
(SVMs) [Lim04], and logistic regression [RSST13], it has been shown that for silicon
implementations of an Arbiter PUF with A\ = 64 stages, a set of w = 10®> CRPs (s, 7)
suffices to obtain accuracies Epm¢ s Pacc] > 90%.

Given that such experimental works all confirm the validity of the linear delay
model in Eq. (1), it has become a common practice to demonstrate the feasibility of
a machine-learning attack on randomly generated instances of the mathematical abstrac-
tion M [RSST13, Becl5a]. This favors both the reproducibility and the comparability of
results, and it also excludes the possibility that a flaw in the circuit or the layout of a
given Arbiter PUF implementation facilitates attacks. Noise sources, however, pollute
both training and testing data (s, r), so if omitted from the mathematical abstraction, the
reported learning efficiency is usually slightly higher than for experimental data.

2.5 Improving the Learning Resistance

In an attempt to resist machine-learning attacks, numerous variations of the Arbiter PUF
have been proposed. Unfortunately, such variations also increase the bit error rate and the
footprint of the PUF to the extent that serviceable, lightweight designs remain learnable.
For example, one version of the so-called x-XOR PUF [SD07, RSS*13] consists of x > 1
identically laid-out Arbiter PUFs that evaluate a common challenge c; the eventually
released response bit is determined as r =71 ®re @ - - - &1y Tobisch [TB15] demonstrated
that even for costly parameter values such as A = 64 and y = 9, machine-learning attacks
succeed. For the noise-based machine-learning attack of Becker [Becl5al, which involves a
repeated evaluation of each challenge ¢ such that bit error rate of its response bit r can be
estimated, the XOR operation is bypassed and even instances with A = 128 and y = 32
remain learnable. Noise sources might hence help rather than hinder an attacker.

An alternative or complementary line of defense, which is the topic of this paper, is the
design of authentication protocols that either keep the response bits r of a PUF internal
to its hosting device [GCvDDO02] or obfuscate the link between the public challenges ¢ and
the released response bits 7 [RMK™14]. The latter strategy usually entails the use of a true
random number generator (TRNG). Regardless of the chosen strategy, Becker [Becl5b]
and Tobisch [TB15] demonstrated that the release of variables that are correlated to r
might still enable a machine-learning attack. For example, if the protocol leaks the error
rate Perror Of a hidden response bit 7, an estimate of the absolute value |v| can still be
obtained. Once again, noise sources are thus shown to facilitate attacks.

2.6 Attacker Model

The analyzed authentication protocols adopt a frequently used attacker model [Dell7,
Chapter 5]. The enrollment of a PUF-enabled device takes place in a secure environment,
and afterwards, an interface for accessing the CRPs might have to be irreversibly disabled.
In the field, the protocols should resist both impersonation and denial-of-service attacks.
Given that the device comprises a smart card, a radio-frequency identication tag, or
another mobile entity, it is assumed that an attacker may obtain physical access. The
server, however, features both secure computations and secure storage. The communication
channel between both parties is assumed to be insecure. This implies that an attacker
may not only eavesdrop on a genuine protocol run, but also manipulate, inject, and block
messages.

6 Machine-Learning Attacks on Five PUF-Based Protocols

3 Protocols

To facilitate the understanding of the analyzed authentication protocols for a visually
oriented reader, Fig. 3 shows the hardware of a PUF-enabled device. The implementation
efficiency is evidently reflected but is of secondary importance in light of the newly revealed
security issues. For each protocol, we devise a method for training an accurate predictive
model m of the underlying Arbiter PUFs. This model m allows the attacker to successfully
impersonate the device an unlimited number of times, or at least every time the server opts
to initiate a protocol run. For the LHS-PUF [[B17] and PUF-FSM [GMA 18] protocols,
which both aim to provide mutual authentication, the server can be impersonated as
well. Although the protocols are specified and attacked in chronological order, there is no
problem in reading Sections 3.1 to 3.5 in a different order.

3.1 PolyPUF

3.1.1 Specification

The so-called PolyPUF protocol of Konigsmark, Chen, and Wong [KCW16], where “Poly”
stands for “Polymorphic”, is specified in Fig. 4. Fach device hosts A Arbiter PUFs that
evaluate a common challenge ¢’ € {0,1}*. Suggested values for \ are 32 and 64. To enroll
a given device, the server collects w CRPs (¢/,r’) and trains a predictive model th for each
Arbiter PUF. A suggested value for w is 5000. After the enrollment, direct access to the
CRPs (c,1’) is irreversibly disabled.

To preclude machine-learning attacks, a device that is deployed in the field XORs
the received challenge ¢ € {0,1}* with A/~ concatenated copies of a nonce n; € {0,1}”
in order to form the PUF input ¢’. Likewise, the released response r € {0,1}* is the
result of XORing the PUF output r’ with A\/§ concatenated copies of a nonce ny € {0,1}°.
Suggested values for v and § are 2 and 3 respectively. The authors do not comment on
the fact that A € {32,64} is not an integer multiple of § = 3; we therefore assume that one
copy of ny is truncated to mod(A,d) € {2,1} bits. To save resources, the v+ random bits
could be generated by XORing unstable responses bits r rather than through a dedicated
TRNG. This solution, however, requires that a well-chosen challenge ¢’ is programmed
into the device during the enrollment. To authenticate a device, the server checks whether
the response r to a randomly chosen challenge ¢ matches with at least one out of 270
possible responses . To account for the noisiness of the PUFs, only an approximate match
is required as reflected by the Hamming distance threshold e.

The authors experiment with ANNs in order to validate the security of their protocol.
Most notably, they attempt to exploit the statistical weaknesses of the underlying Arbiter
PUFs in gathering a set of w* training CRPs (¢;, r;) where the nonces (nj, ny) are supposed
to remain unchanged. For this purpose, challenge c; is chosen uniformly at random from
{0,1}*, and all other challenges c;, where i € [2,w*], are randomly chosen such that
HD(ci,c;—1) = 1. Out of 27+° unique responses r; € {0,1}*, the one value that minimizes
HD(r;,r;_1) is retained. The authors are delighted that, even with 7* = 10% device queries
and 10-30 neurons in the hidden layer, the obtained modeling accuracies p,.. do not
significantly exceed the ideal value of 50%.

3.1.2 Attack

We point out that the authors’ non-functional attack can be functionalized through a
minimal modification. Given a proper understanding of the challenge transformation in (1),
it is evident that an attacker should choose consecutive challenges (c;, c;—1) such that the
Hamming distance HD(s;,s;—1) = 1 rather than HD(c;,¢;—1) = 1. If nonce n; remains
unchanged, it holds for the former case that HD(s},s}_;) = 1, and the value of HD(r},r}_,)
is hence expected to be small. If nonce ns remains unchanged as well, it follows that an

Jeroen Delvaux 7

N2

T
ArbiterPUF —C
AritepUEH L :
ArbiterPUF -
= v c

e ¢ | LFSR = ArbiterPUF H— r
ArbiterPUF |- H TRNG |

r (c) RPUF of Ye et al. [YHL16].

(a) PolyPUF of Konigsmark et al. [KCW16].

r
ArbiterPUF

: C2,C3
ArbiterPUF Arb|terPUF‘ C1,C4,Cs

: [InsertPattern|
° c InsertPattern @_‘—) E

ArbiterPUF | [TRNG }Tn
(d) LHS-PUF of Idriss and Bayoumi [IB17].

(b) OB-PUF of Gao et al. [GLM'16].

T

C;

ArbiterPUF —

- a

P 2, 13

(e) PUF-FSM of Gao et al. [GMAT18].

Figure 3: The hardware of a PUF-enabled device for the analyzed authentication protocols.
Intermediary registers and control logic are not drawn. The symbol X on the boundary of
a device denotes a one-time interface that is irreversibly disabled after the enrollment.

equally small Hamming distance HD(r;,r;_1) is output by the device. Thus, an attacker
can assume that if HD(r;, r;—1) < &7, where €} is a well-chosen threshold, that nonces
(n1,1n9) remained unaltered.

The main concern, however, is that a single wrongly selected response r; could suffice
to corrupt the whole training set. The Monte Carlo experiment in Fig. 5 demonstrates that
corruptions are not likely to occur. For each out of 10° sets of A randomly generated PUFs
M ~ N(O, diag(1/2,1,1,--- 1, 1/2))7 a challenge pair (c¢;, c;—1) is randomly chosen such
that HD(s;,s;—1) = 1, and nonces n; ;1 and ng ;_; are chosen uniformly at random from
{0,1}7 and {0, 1}° respectively. For each combination of nonce differences (n; ; ®nj ;1) €
{0,1}” and (ng;@&ma ;1) € {0,1}°, the estimated probability mass function of HD(R;, R;_1)

8 Machine-Learning Attacks on Five PUF-Based Protocols

PUF-enabled device Everiﬁes Server

Enrollment
Ci ¢« TRNG(\)
for k< 1to A do Vi €
| 7}, < ArbiterPUF(c’) [1,w]
¥ (rrh e 1) ri
Disable direct access for k< 1to A do
toc and r’ 1y, < TrainModel(
L C/17T/1,k7 T ’Cinralu,k)
Authentication (co times)
c c < TRNG())
n; < TRNG(v)
cd+c®nng)
for £+ 1to A do
| 7, < ArbiterPUF(c’)
F e (77)
ny + TRNG(9)
F<©®(nyny) F
h+—A+1

foreach n; € {0,1}" do
cd+ce®nng)
for k< 1to A do
| 7 < Predict(1i, ')
JUCTENA
foreach n, € {0,1}° do
f'<—f"EB(n2n2)
B Lh < min(h,HD(%, #))
if h > ¢ then Reject

Figure 4: The PolyPUF protocol of Konigsmark et al. [KCW16].

is shown. It benefits an attacker that the first and the second curves from the left
can easily be distinguished. As a side note, the 1-bit offsets among the curves with
HD(ng;,no ;1) € {1,2} exist because A is not an integer multiple of ¢.

Moreover, an attacker can play safe and only add a new CRP (c;, r;) to the training
set if the difference between the smallest and the second smallest value of HD(R;,r;—1)
is greater than or equal to a well-chosen threshold 3. This way, Algorithm 1 is able to
produce a training set of w correctly linked CRPs (c;,r;) from sending 7* > w queries to
the PUF-enabled device. In order to maximize w for a given 7*, each received response r
is XORed with 2° possible patterns (ngmny - --). There are 27+ possible pairs of nonces
(n1,n) that may underlie the w training CRPs (c;, r;), and the attacker does not know
which pair. It can, however, arbitrarily be assumed that n; = 0 and ny, = 0, and the
corresponding pairs (s; = s}, r; = r}) are then used for training A\ predictive models 1, i.e.,
one for each Arbiter PUF. Given that the server iterates over 27+° possible pairs (n, ny)
to authenticate a device, the previous set of A models m always suffices for impersonation
purposes.

Jeroen Delvaux

0.3

Probability

n;;, =mny;1,

HD(ng;,m9,-1) =1

n;; =mny;-1,
Nng; =MN2;-1

ng; =nij;—1,
HD(ng;,ng ;1) =2

ng; 7& nj;—1

n;; =mny;-1,
ng; = M2 ;1

Hamming distance HD(r;, r;—1)

64

Figure 5: Feasibility study of an attack on the PolyPUF protocol, where A = 64, v = 2,

and 6 = 3.

Algorithm 1: PolyPUF training set

1w < 1
C1 < TRNG()\) ml 1 ml,?
r; < QueryDevice(c)
while i < 8* do R
G f+0 ™mo,1 | 0,2
while (f =0)A (j < 27) do
j—3+1
¢ < TRNG()) such that
HD(s,s,) =1 Figure 6: A pair of single-neuron networks.
r < QueryDevice(c)
k<0
foreach n2€{0,1}5 do . 1.0 T T T T T T T T T
k+—k+1 § 09|
ap < rd(ngng) %08*
hy < HD(ry, ay) B ' noiseless
s 0.7 ~ .
Sort h(l) < h(g) <... < h(25) 5 noisy
[+ (h(l) < 8’1() g 0.6 |- —
¥f<—f/\(h(2)_h(1)2€§) 05 2\ \\\\\\\13\ \\\\\\\14\\\\\\\\5
it 10 10 10 10
if f =1 then Number of queries 7*
w<—w—+1 . .
c ¢ Figure 7: The accuracy of modeling an
rw “a Arbiter PUF that is used in the PolyPUF
L - @ protocol, where A = 64, v = 2, and § = 3.

In spite of what Konigsmark et al. [KCW16] suggest, there is no need for the ANN to

have 10-30 neurons in the hidden layer. The bare minimum, i.e., a network consisting of
a single neuron, suffices to capture the dot product v = ms” that underlies an Arbiter
PUF. A minor inconvenience is that ANNs inherently serve a regression purpose rather
than a classification purpose. To overcome this issue, we use resilient backpropagation to
independently train two single-neuron networks that approximate response bits r and their
inverses —r respectively. As shown in Fig. 6, the real-valued outputs of the corresponding
activation functions are compared to obtain a prediction 7 € {0, 1}.

10 Machine-Learning Attacks on Five PUF-Based Protocols

Figure 7 shows the obtained modeling accuracies E[P,..] as a function of the approximate
number of device queries 7*. Fewer than 7* = 10° queries suffice to obtain accuracies
E[Pscc] > 90%, whereas Konigsmark et al. [KCW16] were unable to exceed the ideal value
of 50% using 7 = 10® queries. Each dot corresponds to five runs of Algorithm 1 using
different devices and hence displays the averaged accuracy of modeling 5\ = 320 Arbiter
PUFs; parameters were configured as €] = €5 = 14. For the noisy case, the standard
deviation o, = 0.325v/X so that the expected error rate between a nominal response r and
its reproduction 7 is approximately 10%. The responses r to 1000 testing challenges c are
all nominal values, which corresponds to the best-case scenario where the server stores
infinitely precise predictive models m of the A Arbiter PUFs that are hosted by a given
device.

For the sake of completeness, it is worth mentioning that although Algorithm 1 succeeds
as a deobfucation tool, its robustness and its efficiency might still be open for improvement.
One idea is to track all 27 = 4 values of nonce n; instead of a single value only. This implies
that, in each algorithm pass, an attacker stores four ordered responses r to the given
challenge c. Ultimately, the four tracks will have to be combined into a single training set
of CRPs. There are (27 —1)!(29)?'~! = 3072 non-equivalent combinations of which exactly
one results in server-acceptable predictive models m. A relatively small-sized search among
machine-learning experiments hence suffices to find the one. A complementary idea is to
store real-valued responses r € [0,1] that reflect the stability, given that multiple noisy
readings for each nonce n; € {0, 1} might be available anyway. The Hamming distance
computation HD(r,a) can be generalized to Z;‘\:1 la; —7j].

We emphasize that our attack cannot simply be mitigated by increasing the nonce sizes
v and §. It can be seen in Fig. 5 that the size of nonce n; € {0, 1}” has no effect on the two
peaks that are required to be distinguishable for Algorithm 1. Nonce ny € {0,1}°, however,
could be enlarged in order to create a larger number of non-centralized, equidistant peaks,
thereby decreasing the inter-peak distance that is relevant for the attack in its current
form. Unfortunately, a large § does not prevent an attacker from estimating the A bit
error rates corresponding to each input ¢’. As demonstrated by Becker [Becl5b], bit error
suffice to machine-learn an Arbiter PUF, i.e., the values of the responses are not required
to be known. Algorithm 1 can thus be simplified such that the deobfuscation of nonce ns
is not an objective anymore.

3.2 OB-PUF

3.2.1 Specification

The so-called OB-PUF protocol of Gao, Li, Ma, Al-Sarawi, Kavehei, Abbott, and Rana-
singhe [GLM™T16], where “OB” stands for “Obfuscated”, is specified in Fig. 8. Each device
hosts 7 Arbiter PUFs that evaluate a common challenge ¢’ € {0,1}*. A suggested value
for n is 3; a suggested value for A is 64. To enroll a given device, the server collects w
CRPs (c/,r) and trains a predictive model m for each Arbiter PUF. A value for w has
not been suggested. After the enrollment, direct access to the challenge ¢’ is irreversibly
disabled.

To prevent an attacker from training an accurate predictive model of its PUFs, a device
that is deployed in the field extends the received challenge ¢ € {0,1}*~° according to the
value of a nonce n € {0,1}7. For the suggested values A = 64, v = 1, and 6 = 5, each PUF
evaluates a challenge ¢’ € {(01010¢j ¢y -+ ¢59), (c1¢2 -+ 50 10101)}. To authenticate
a device, the server checks whether the response r to a randomly chosen challenge c is
equal to at least one out of 27 predicted responses t.

For the suggested response length n = 3, a randomly guessing attacker can impersonate
any given device with a success probability that lies in the interval [277,277"] = [1/8,1/4].
Unfortunately, the authors did not specify a functional method to scale their protocol to

Jeroen Delvaux 11

PUF-enabled device Everiﬁes Server

Enrollment
Ci ¢, « TRNG(\)

for k < 1 tondo Vi e
| 71 ArbiterPUF(c}) (L, w]
r; < (rirg --- 1) r;
Disable access to ¢’ for k<1 tondo

my, < TrainModel(

L C1, T ks 5 Cus T k)

Authentication (oo times)

c c < TRNG(\ —)
n < TRNG(~)
¢/ + InsertPattern(c, n)
for k < 1 ton do
| 71, < ArbiterPUF(c’)
F o (FLg - Ty) P
h<+mn
foreach n € {0,1}” do
¢/ + InsertPattern(c, n)
for k< 1 ton do
| 71, < Predict(ri, c’)
P (Prig - 7y)
h < min(h, HD(%, #))
if h > 0 then Reject

Figure 8: The OB-PUF protocol of Gao et al. [GLMT16].

a comfortable security level, e.g., 64 bit or more. Using their suggestion to execute the
protocol multiple times in series, such security levels would only be achievable for noiseless
PUFjs, i.e., an ideal abstraction. For example, under the conservative assumption that
the above success probability is a constant 1/4, a 64-bit security level can be achieved
through a sequence of [64/2] = 32 protocol runs, i.e., 32 CRPs (c,T) are transferred for
each authentication.

To obtain a comfortable security level in the presence of noise, thereby enabling a
meaningful further analysis, we assume that a fraction of the consecutive protocol runs is
allowed to fail. Given that the attacker is granted an identical fraction of wrong guesses,
more than 32 protocol runs would be required in order to maintain the aforementioned
64-bit security level. We emphasize that our assumption leaves the original protocol
in Fig. 8 intact, and does neither increase nor decrease the learning efficiency that a
machine-learning and device-querying attacker can obtain.

To validate the security of their protocol, the authors experiment with logistic regression.
For any given device, they collect the responses T to w* randomly chosen challenges c.
They consider it a success that even with w* = 105 training CRPs (c, ¥), the obtained
accuracy pacc does not exceed 72%.

12 Machine-Learning Attacks on Five PUF-Based Protocols

3.2.2 Attack

The authors assume that the mediocre accuracy of 72% supports their security claims, but
for a conservative cryptologist any value other than 50% is symptomatic of an underlying
weakness. Indeed, we now devise a learning strategy that is several orders of magnitude
more efficient. Consider an attacker who obtains physical access to a PUF-enabled device
and records its response ¥ to a randomly chosen challenge ¢ € {0,1}*~% not once but
Bt > 27 times. If a response bit 7, where k € [1,n], remains constant for all 8}
evaluations, it is likely that the corresponding Arbiter PUF has the same nominal value
for the response r to all 27 underlying challenges ¢’, and 27 transformed CRPs (s',r) can
hence be appended to a training set for that particular Arbiter PUF. Algorithm 2 applies
this mechanism to a list of w} randomly chosen challenges ¢ and all n Arbiter PUFs of a
given device. Constant €7, where €7 < 7, represents the maximum number of opposing
evaluations such that the nominal value of response r is still deemed constant.

Algorithm 2: OB-PUF training set I

w1, W, , Wy <0
for ¢ + 1 to wj do
C(—TRNG(/\—(S) 1.0 LI L R B) R B R R
h+<0 091 . .
for j < 1 to 37 do B | noiseless
' < QueryDevice(c) s 0.8
B h<h+r § 0.7
for k< 1 ton do = 0.6
if hk € [0767{] U [ﬂf - 5{76{]
then e OV E——

102 103 10* 10°

foreach n € {0,1}” do
{0.1} Number of evaluations 77 = wi 7}

wg — wg + 1
cl,
InsertPattern(c, n)

w
if hy € [0,7] then Figure 9: The accuracy of modeling an

Arbiter PUF that is used in the OB-PUF

T <0 protocol, where A = 64, n =3, and 7 = 1,
else
and 6 = 5.
L T, < 1

Figure 9 shows the obtained modeling accuracies as a function of the number of device
queries 77 = w} BF. For each dot, we generate 20 PUFs M ~ N(O,diag(l/z, 1,1,--- 1,
1/2)) and average the obtained accuracies. The machine-learning algorithm can be chosen
arbitrarily; we opted for linear regression, as specified later-on in (4). For the noiseless
case, where 57 = 8 and €7 = 0, it can be seen that the authors’ highest reported accuracy
of 72% can already be exceeded after 77 = 103 queries. From 75 = 10* queries onwards,
the accuracy reaches an upper bound of approximately 85%. To incorporate noise, we
choose the standard deviation o,, = 0.325v/\ so that the expected error rate between a
nominal response r and its reproduction 7 is approximately 10%. For g} = 8 and e} = 1,
it can be seen that learning efficiency is only slightly lower than for the noiseless case.

Increasing the value of 87 does not help in obtaining accuracies that exceed 85%.
Although we confirmed this statement experimentally, a more insightful explanation for
the case of a noiseless Arbiter PUF is that the probability that a training CRP (s,r) is
corrupted is 277171 &~ 0.2% and hence negligible already. Instead, the constraint that
the value of a response bit r remains constant for all ;7 evaluations is presumed to be
responsible for the upper bound on the accuracy. Although Algorithm 2 selects challenges c

Jeroen Delvaux 13

uniformly at random from {0,1}*~?, the subset of retained challenges c is not necessarily
uniform anymore and might hence not capture the integral behavior of an Arbiter PUF.
Optionally, one could use the obtained predictive models m as a deobfuscation tool
and gather the responses r to a more uniform set of challenges c. Algorithm 3 selects
challenges ¢ for which all 27 predicted responses are far apart from each other and hence
distinguishable.

Algorithm 3: OB-PUF training set II

w <+ 0
for i < 1 to 75 do
do
¢ + TRNG(\ —9)
n <0
foreach n € {0,1}” do
n<n+1
C’/n, % |nsertPattern(c7 n) 1.0 T T LA T T T TTTIT
for £+ 1 to n do
L 7y, < Predict(ihy) . 0.9 Moiseless .
R o R g 03 noisy |
| Bn = (Prfo - 7y) E ‘
for n; + 1 to 27 do 0.6 |
forn2<_n1+1t02’ydo 05 | Lol L1l
if}l;'D(f'nl7f'n2) < EE ’ 102 103 104
‘t c;n<_ 0 Number of evaluations 75 = w} (3
while f =0) .
- ; igure 10: e accuracy of modeling an
< QueryDevice(c) F 10: Th f model
Arbiter PUF that is used in the OB-PUF
f<0
for n < 1 to 27 do protocol, where A =64, n =3, y =1, and
if HD(#,,,F) < ¢} then 0=5
f<f+1
B nn
if f =1 then
w—w+1
cl, < ¢
B ry, < T

Figure 10 shows the obtained modeling accuracies as a function of the number of device
queries 75 = w3 B5. For each dot, we generate again 20 random PUFs, and average the
obtained accuracies. The 85% accurate predictive models for 73 = 10% were used. We used
constants €5 =1 = 3 and €5 = 2 It can be seen that accuracies exceeding 90% can now be
obtained.

3.3 RPUF

3.3.1 Specification

The so-called RPUF protocol of Ye, Hu, and Li [YHL16], where “R” stands for “Random-
ized”, is specified in Fig. 11. To prevent the machine learning of its Arbiter PUF, a device
either does or does not invert the bits of any received challenge ¢ € {0,1}* depending on

14 Machine-Learning Attacks on Five PUF-Based Protocols

the value of a nonce n € {0,1}7. Suggested values for A are 32, 64, and 128. For v = 1,
it holds that ¢’ € {c,—c}. For v = 2, Eq. (3) holds. Larger values of v are not deemed
necessary. The randomized challenge ¢’ is fed into a linear-feedback shift register (LFSR)
so that the 1-bit responses r to an expanded list of A challenges ¢’ can be concatenated
into a A-bit response r.

PUF-enabled device verifies Server

Enrollment
C; c; < TRNG(X)
PR
n < TRNG(~)
¢’ + InvertOrNot(c;, n) Vi €
(cf, -+ ,c¥) « LFSR(c') [1,w]
for k<1 to A do
| 7 < ArbiterPUF(c}) Vj €
ri,j < (7"1 Tg « - 7")\) T [176]
R; < Unique(
i1, 7ri,ﬁ)
1+ 0

Authentication (w times)

Ci 1+ i+ 1
-
n < TRNG(vy)
¢’ < InvertOrNot(c;, n)
(cf,---,c¥) < LFSR(c')
for £+ 1to A do
| 7 < ArbiterPUF(c})
T« (P12 - Ty) L

if #ir € R;, HD(r,)
< ¢ then Reject

Figure 11: The RPUF protocol of Ye et al. [YHL16].

c e {c,(crcp -+ Cx/2 7C /241 TCx /242 " —cy), 3)

(me1 ey - TCA/2Cx/241 Crj242 "t cx), ¢}

To enroll a device, the server requests the response r to each out of w randomly
generated challenges ¢ not once but 8 > 27 times and collects the 27 unique values. A
suggested value for § is 100. Evidently, slightly differing responses r are attributed to the
noisiness of the PUF and are not considered unique. To authenticate a device up to w
times, the server checks whether the response ¥ to a challenge c is sufficiently close to
one out of its 27 prerecorded values. The authors emphasize that the nonce N should be
uniformly distributed over {0, 1}7. Otherwise, frequency analysis would allow an active,
device-querying attacker to partition the unique responses r to each out of a challenges c
into 27 sets that each correspond to a given value of nonce n € {0,1}". In their security
analysis, the authors collect data from numerous protocol runs and conduct machine-
learning experiments that do not exceed an accuracy of ~ 75%. They, consequentially,
consider their protocol fit for deployment in practical use cases.

Jeroen Delvaux 15

3.3.2 First Attack

Analogous to the growth of cracks in solid materials, the mediocre accuracy of ~ 75%
should have been a warning of an imminent failure. Indeed, we now devise an alternative
learning strategy that is orders of magnitude more efficient. Given physical access to the
PUF-enabled device, an attacker can obtain the 27 unique responses r € {0,1}* to each
out of « arbitrarily chosen challenges ¢ € {0,1}*. There are hence (27!)* possibilities for
constructing a combined training and testing set that contains 27 o A transformed CRPs
(s”,r). When exhaustively applying a machine-learning algorithm to each out of these
sets, the one and only correct mapping can be observed to result in the highest accuracy.

Although the protocol allows for an active, device-querying attacker, it is worth
mentioning that a passive, eavesdropping attacker can obtain an accurate predictive model
in a similar manner despite facing a larger exhaustive search for the same number of
deobfuscated CRPs (s”,r). After eavesdropping on « genuine protocol runs, the latter
search space consists of 27 combined training and testing sets that contain o A transformed
CRPs (s”,r) each. Figure 12(a) shows that for both active and passive attackers, a relatively
limited computational effort corresponds to a relatively large number of CRPs.

=
o

< 26| B 'best
g 5 09
= passive §
- < 07l |
o
% 5| activeﬁ second best
Z 2 \ \ 0.5 1 | .
0 128 512 1,024 0 128 512 1,024

Figure 12: The first phase of an attack on the RPUF protocol, where A = 128 and
~ = 2. For an either passive or active attacker, subplot (a) shows the number of possible
mappings between a given number of transformed challenges s” and an equal number of
response bits 7. For each possible mapping, a predictive model is trained and subsequently
tested. Subplot (b) shows the accuracy of the best and second-best models, which are
obtained through linear regression according to (4). Both accuracies are averaged over
1000 randomly generated and noiseless PUFs M ~ N(O, diag(l/2,1,1,---,1, 1/2)). For any
given challenge ¢, we use round(0.8)\) = 102 and round(0.2\) = 26 transformed CRPs
(s”,r) for training and testing purposes respectively.

We apply linear regression [HTF09, 12th printing, Section 4.2] to each set of transformed
CRPs (s”,r). Although the learning capabilities of this deterministic approach are slightly
inferior to several randomized training algorithms, its speed is unparalleled and hence
favors exhaustive enumeration. As shown in (4), determining the least-squares solution of
a system of linear equations is all what is needed. Although Fig. 12(b) demonstrates that a
fairly limited brute-force effort already allows for an accuracy of 90%, we suggest adopting
a more efficient two-step approach to further improve the accuracy. First, numerous
repeated executions of a small-sized exhaustive search, e.g., using o = 1 every time, can be
used to deobfuscate the mapping between numerous transformed challenges s” and their
corresponding response bits r. Second, a potentially slower training algorithm with superior
learning capabilities can be applied to a single large set of deobfuscated pairs (s”,r). This
way, accuracies exceeding 99% can be achieved [RSST13].

16 Machine-Learning Attacks on Five PUF-Based Protocols
"
Sl 1 -y
1"
s r —r se AT " ~T
2 o 2 2 o 1, if sl iy >s . 1
Solve (] my) = ; predict e ;=< Wit w0
: 0, otherwise.
SZ)* Tw* T x

(4)

We emphasize that the previously elaborated attack cannot simply be mitigated by
increasing the value of security parameter v, given that both the server and the attacker
face a workload that scales exponentially with . Recall that for the server to enroll a device,
the response r to every challenge ¢ needs to be evaluated 5 > 27 times. Likewise, the
server needs to perform up to 27 Hamming distance measurements for each authentication.
For the attacker, the ratio of the size of the exhaustive search to the size of the combined
training and testing set follows a similar trend. A secure protocol would require an
asymmetric workload instead, e.g., scaling polynomially with « for the server and scaling
exponentially with « for the attacker.

3.3.3 Second Attack

For several PUF-based authentication protocols that were surveyed by Delvaux et al. [Del17,
Chapter 5], the use of an LFSR turned out to be exploitable. Similarly for the RPUF
protocol: depending on the non-specified internals of its LFSR, a straightforward deob-
fuscation method might be applicable. Our attack supports both Fibonacci and Galois
configurations; the same holds for all possible feedback polynomials. We only make the
intuitive assumption that the state has the same length as the randomized challenge

¢’ € {0,1}* by which it is seeded.

As illustrated in Fig. 13, starting from a seed-determined angle, the LFSR traverses
an arc of a circular sequence of states, thereby generating a stream of A? challenge bits
c’. Given that system specifications are public, an active attacker is able to choose two
challenges ¢ such that the two corresponding streams of A CRPs (¢”,7) partially overlap,
e.g., by 50%, as long as the value of nonce n € {0,1}7 remains unchanged. For v € {1, 2},

few queries are expected to be needed until responses (71,---,7x) and (¥ 241, -

;T30 /2)

eventually overlap. Subsequently, a third challenge c is repeatedly applied until the released
response (Fx41, - ,T2x) overlaps with its predecessor, and so forth. As the randomizing
effect of nonce n is bypassed through this sliding-window technique, an unprotected Arbiter

PUF remains.

Figure 13: A \-bit LFSR cycles through a maximum of 2* — 1 states, given that 0 is a
fixed point. Overlapping sequences of states, which are enclosed by boxes, are exploited in

the RPUF protocol.

3.3.4 New Protocol Version

Independently of the above third-party security analysis®, the authors of the RPUF
protocol [YHL16] continued their investigative efforts and were able to mount a successful

LA description of our two attacks on the original RPUF protocol [YHL16], i.e., the exhaustive search
among machine-learning experiments and the LFSR exploit, was uploaded to the Cryptology ePrint Archive

Jeroen Delvaux 17

machine-learning attack based on simulated annealing and ES [YGH'18]. In an attempt to
maintain the original security claim, they specified a lesser efficient version of the protocol.
Most notably, a large x-XOR PUF is deployed, whereas a single Arbiter PUF was deemed
suitable for practical use cases in the original protocol version. For nonce length v = 1 and
challenge length A = 64, the machine-learning attack succeeds up to x = 6. For v = 2 and
A = 64, the attack succeeds up to x = 4. A second change to the protocol specification is
that bitwise inversions are spread out over the complete challenge ¢ rather than clustered.
For nonce length v = 1, there is no difference, but for v = 2, Eq. (5) replaces Eq. (3). The
LFSR remains underspecified in the updated version of the RPUF protocol [YGHT 18],
and sliding-window exploits are still unanticipated.

¢’ €{c,(c1 cacg ey -+ a1 cy),
()
(mep ca ez ey - mCA—1 €x), TCH
Our exhaustive search among machine-learning experiments was not developed with
the intention of handling large XOR PUFs, but remains of theoretical interest. Suppose
that the linear regression in Eq. (4) is replaced by a learning method that is suitable
for XOR PUFs [TB15, Beclba]. If for any such learning method, the total number of
predictive models needed for a successful deobfuscation does not exceed, roughly speaking,
2277 then the security level of the protocol against brute-force attacks is lower than
intended by its designers. To gain an advantage for the given parameter values v = 2 and
A = 64, an active, device-querying attacker is constrained to the use of @ = 13 unique
challenges ¢ € {0,1}* and, therefore, a combined training and testing set of 3328 CRPs
(¢, 7). Given that accuracies of ~ 55% suffice for a two-step approach, small XOR PUFs
remain problematic [Mael2, Figure 4.4].

3.4 LHS-PUF

3.4.1 Specification

The so-called LHS-PUF protocol of Idriss and Bayoumi [IB17], where “LHS” stands for
“Lightweight Highly Secure”, is specified in Fig. 14. The authors do not instantiate their
protocol with a specific PUF design, but consistently refer to work on Arbiter PUFs and
their variations. To enable a quantitative analysis later-on, we assume the use of a basic
Arbiter PUF. This assumption is fair, considering that the LHS claim is presented as a
universal truth. To enroll a given device, the server collects w CRPs (¢, r) of the underlying
Arbiter PUF and trains a predictive model m. After the enrollment, direct access to the
response bits r is irreversibly disabled.

To preclude machine-learning attacks, response bits r are not directly exposed. Instead,
a protocol run releases challenge tuples (c1,co,c3,cq,c¢5) for which it is known that
r1 =ro@®rsy and ro = 14 r5. Long responses r € {0,1}" are obtained by concatenating
the 1-bit responses 7 to 7 randomly generated challenges ¢ € {0,1}*. Suggested values
for n are 64 and 128. To preclude trivial impersonation attacks using strongly correlated
CRPs, it is imposed for several challenge pairs that HD(c,c’) > &;.

3.4.2 Attack

A first flaw related to the minimum Hamming distance checks on various challenge pairs
(c,c’) is that these do not detect the use of strongly correlated CRPs in general. For Arbiter

(https://eprint.iacr.org/) on November 23, 2017 and appeared online as part of Report 2017/1134
a few days later. The key dates for the VTS 2018 article [YGHT 18], which updates the specification
of the RPUF protocol, were as follows: the initial paper submission was due on October 28, 2017, the
camera-ready version was due on February 9, 2018, and the paper was added to IEEE Xplore on May 31,
2018.

https://eprint.iacr.org/

18

Machine-Learning Attacks on Five PUF-Based Protocols

PUF-enabled device

Enrollment

r; < ArbiterPUF(c;)

Disable read-out of r;

Authentication (co times)

for k + 1 to n do
ci,x < TRNG())
71 < ArbiterPUF(cy 1)

By« (FriF2 oo Fip)

for k <+ 1 tondo

if (HD(CLk,Cng) S 81)
V(HD(c1 k,€3,%) < €1)
V(HD(ca,k,c3,1) < €1)

then Reject
To,5 < ArbiterPUF(ca 1)
| 73, < ArbiterPUF(c3 1)
Ty <+ (fz,l Too - 7:3’77)
P3¢ (Fo1T22 - T3p)
if (HD(£1,T2 P T3) > €2)
| then Reject
for k <+ 1 tondo
do ¢y + TRNG())
cs5k < TRNG(A)
a1 < ArbiterPUF(ca 1)
75,5 < ArbiterPUF(c3 1)
while (745, ® P51, # Fo1)
| [V(HD(cak,c5) < 1)

verifies Server
—

C; c; < TRNG()) } Vi €
-t
i [1,&)]
LN
m < TrainModel(cy, 1,

. 7varw)

init
Ci,1,
C1,2,
Cin

for k + 1 tondo

1,5 < Predict(ih, cq 1)
do cs . + TRNG())
€2.1; c3.k < TRNG())
22’;: 7A‘2’k — Predict(rﬁ, ngk)
c3:2’ fs, < Predict(in, cs 1)
o while (5 @ 3% 7 1,%)
C2q, | | V(HD(cop,c3%) < 1)
(‘33—,77 Py « (F122 -+ T2 y)
C4,1,
Cs,1,
C4,2,
C5,2,
)
C4.m,
C577,

for k + 1 tondo

if (HD(cok,ca) <e1)
V(HD(ca,k,C5,%) < €1)
V(HD(cyk,c5,) < €1)
then Reject

7~’4,k — Predict(rﬁ,c%k)

| 75,k < Predict(i, c5 1)

Py < (Fo1To2 -+~ T3p)

F5 < (Fo1T22 - T3)

if (HD(f‘Q, ry P f‘5) > 82)
| then Reject

Figure 14: The LHS-PUF protocol of Idriss and Bayoumi [IB17].

Jeroen Delvaux 19

PUFs and their variations, two-sided constraints on transformed challenge pairs (s,s’)
would be more appropriate, i.e., e1 < HD(s,s’) < A — ;. A second flaw is that not
sufficient challenge pairs are considered. Due to the dual role of response ry, an attacker
can successfully impersonate a device by transmitting arbitrarily chosen challenges c; ; and
replying (c4k,¢5%) = (€1,k;C3,%) O (Cak,C5%) = (C3k,€1,) for all response bit indices
k € [1,n]. Alternatively, an attacker can transmit challenges ¢1,1 = ¢1.9 = -+ = €14, which
implies (#1, '3, 3) € {(0,0,0), (0, =0, —0), (-0, 0,—0), (—0,-0,0)}, and thus has a 50/50
chance of successfully impersonating a device by sending replies c41 = c42 = -+ =cC4
and c51 = c52 = -+ = 5, later-on. By replaying the messages of the first successful
impersonation attempt, the success rate can later be increased to 100%.

The previously described problems are easy-to-fix, but this is not the case for the
misassumption that machine-learning attacks are precluded by releasing challenges ¢ only.
The modeling resistance is, in fact, equivalent to the serialized version [YHD*16] of a 3-XOR,
PUF, i.e., the attacker is given three challenges for which the response r = r; ®ro Hrs = 0.
However, given that training data for r = 1 is missing, predictive models might converge to
the equivalent of a biased Arbiter PUF that produces Os exclusively. Therefore, we invert
half of the training challenges, i.e., s’ = (—s1,—$2,...,—8, 1), and flip r accordingly.

We adopt a covariance matriz adaptation (CMA) variant of an evolution strategy
(ES) [Han06] and perform minimal changes to its open-source implementation in MATLAB.
Similar to Darwin’s theory on biological evolution, the fittest candidates in a population of
prospective models m recombine and mutate into a new and presumably fitter population.
Although default values suffice for all parameters, it is crucial to define an appropriate
fitness function, i.e., fitness : {0,1}**! — R. Results for the fitness function in (6) are
shown in Fig. 15. Because an accurate model m is not always obtained, we only retain the
best out of 10 runs.

—_

Accuracy
oo o 99
o oY N 00 ©

| L1
103 10*
Number of CRPs, w*

—_
s}
N

Figure 15: The accuracy of modeling the 3-XOR PUF equivalent of the Arbiter PUF in
the LHS-PUF protocol, where A = 64.

% (s),m” >0) & (sh, m" >0)

=1 (6)
a(sh,m" >0)er el

fitness(m) =

We emphasize that the exposed 3-XOR equivalence is generic, thereby providing a
shortcut for training predictive models of PUF designs other than, as per our assumption,
Arbiter PUFs. Although less practical PUF designs could harden the learning problem
solved in Fig. 15, the LHS-PUF protocol does not surpass earlier protocol proposals
where security arguments are intentionally rather than accidentally derived from y-XOR
PUFs [Beclba, RMK*14, YMVD14, YHD"16].

20 Machine-Learning Attacks on Five PUF-Based Protocols

3.5 PUF-FSM
3.5.1 Specification

The so-called PUF-FSM protocol of Gao, Ma, Al-Sarawi, Abbott, and Ranasinghe [GMA*18],
where “FSM” stands for “finite-state machine”, is specified in Fig. 16. Each device hosts
an Arbiter PUF with X\ challenge bits c¢. A suggested value for X is 64. To enroll a given
device, the server collects w CRPs (c,r) so that an accurate predictive model r can be
trained. A suggested value for w is 10%. Both response bits 7, which are the result of a
comparison v < 0, and their respective error rates perror, which decrease monotonically
with |v], can be predicted. After the enrollment, the interface for reading out response
bits r is irreversibly disabled.

PUF-enabled device , verifies = Server

Enrollment
C; c; < TRNG()) } Vi€
r; < ArbiterPUF(c;) Ti [1,w]
Disable read-out of r; m « TrainModel(cy, 1,
3y CuyTw)
Authentication (co times)
n, « TRNG()
c1,C2, (c1,71, - ,Cp, Ty, 2)
"Gy StablePath(1h, n;)
(n2,n3) < TRNG(")
for k <+ 1tondo
| 71, < ArbiterPUF(cy,)
F o (FLo - Ty)
(z, f) + FollowPath(r)
F o (FLfo - 7)
if f=0 a,
then a + TRNG() n,,
Lelse a + Hash(f, ny) ns
P (Prig - Fy)

if a # Hash(#, n2)
| then Reject
b b < Hash(f, n3)
if b # Hash(t, n3)
| then Reject

Figure 16: The PUF-FSM protocol of Gao et al. [GMAT18].

During any out of a virtually unlimited number of protocol runs, the server is restricted
to using the CRPs (c,r) that have the lowest error rates perror. Considering the noisiness
of their implemented Arbiter PUFs, the authors opt to maintain 1.8-10'7 out of 264 CRPs,
which corresponds to a retention rate pet ~ 1%. For a hardwired FSM, having one start
state and one end state as shown in Fig. 17, the server randomly selects one out of a large
number of paths from start to finish. The corresponding sequence of state transitions
defines a sequence of 1) response bits r, where a variable number of z < 7 bits suffices to

Jeroen Delvaux 21

reach the end state. A value for constant 1 has not been suggested. The proposed FSM
consists of # stages, where constant 0 is odd. A suggested value for 6 is 41. Odd- and
even-numbered stages, in turn, consist of 1 and ¢ > 1 states respectively. A suggested value
for ¢ is 3. Each state transition is defined by a d-bit substrings of response x € {0,1}"7. A
total of z € [(f — 1), n] response bits hence suffices for reach the end state. A suggested
value for § is 4. A flag f indicating whether or not the finish is reached is 1 and 0 for stage
0 and stages 1 to # — 1 respectively.

1 4
r =0111]|0110]|

1001(0011]|
11000000
11111010]

1001] ---

-+ [|1100]|

z
0000]/1100|

n
01110011

Figure 17: The FSM of Gao et al. [GMAT18].

For a given path-defining response (ryry ---), the server randomly selects a corre-
sponding sequence of 7 challenges ¢ that is subsequently transmitted to the device. The
latter party then reconstructs the path from newly generated response bits 7;. If the end
state is successfully reached, i.e., flag f = 1, the first z response bits are used to establish
a shared secret with the server. This secret, in addition to nonce ns or ngs, is then fed into
a cryptographic hash function to perform the authentication. To preserve the secrecy of
flag f, an attacker is not allowed to observe whether or not the authentication succeeds.
Otherwise, an attacker would be able to replace a server-determined challenge c; by an
arbitrary challenge c;, where c; # c;, and determine whether or not r; = ;. Observe that
a repeated execution of this swapping mechanism would allow the attacker to gather a
large training set of CRPs and hence model the Arbiter PUF such that only the sign of m
remains unknown.

3.5.2 Attack

It suffices for an attacker to eavesdrop on a single genuine protocol run in order to train
an accurate predictive model m of the underlying Arbiter PUF. Although the authors are
aware that not only the response bits 7 but also their corresponding error rates perror should
remain internal to the device, given a pre-existing attack by Becker [Bec15al, it is overlooked
that other variables that are correlated to the delay difference v are released. Most notably,
for each server-determined challenge c, it is known that the absolute value |v| is relatively
high. Given w* = 1 challenge ¢ € {0,1}*, having transformed version s € {—1,1}**1,

22 Machine-Learning Attacks on Five PUF-Based Protocols

the two best guesses for a predictive model are hence m = (51/2 s 83 --- sy $x+1/2) and
m = —(51/2 859 s3 -+ sy sx+1/2). The choice between these two models 1 corresponds to
an entropy of one bit, which is negligible in a system-level security analysis.

Figure 18(a) shows that for a retention ratio prt = 1%, the best out of two models
already exceeds an accuracy of 85%, which suffices to consider the protocol broken. For
cach dot, we generate 100 PUFs M ~ N (0,diag(1/2,1,1,---,1,1/2)) and average the best
accuracies P,.. for each out of two reproduced models m. Stated otherwise, we show an
estimate of E[max(Pycc, 1 — Pacc)], where P,e is the accuracy for one out of two possible
models m. For each individual modeling experiment, we select w* € [1,100] training and
1000 test challenges ¢ uniformly at random from the subset Cs:qp C C that contains the
challenges with the most stable responses r, where |Cstab|/|C| = pret- We emphasize that
for impersonation purposes, an attacker is only required to predict stable response bits r.

10 UL T T 1111 T T T 1177 T T T T T T
0.9
0.8

pret = 0.01

Accuracy

0.7
0.6

0'5% Lol Lol T L L] L]

0.001 0.01 0.1 1 1 10 100
pret w

(a) (b)

Figure 18: The accuracy of modeling an Arbiter PUF that is used in the PUF-FSM
protocol, where A = 64.

During a single protocol run, however, the server releases not one but n > 1 challenges c;.
There is hence plenty of margin to improve the accuracy of model m. Becker, Wild, and
Giineysu [BWG15] previously addressed a similar learning problem using CMA-ES, but
we require a fitness function of which the design is based on different principles, e.g., (7).

1 & 1 &
fitness(rh) = e Z’Sl rhT‘ > Z’Sref’i rﬁT| . (7)
i=1 i=1

The w* transformed challenges s; in the numerator originate from a genuine protocol
run and are hence known to have stable response bits r;. The a transformed challenges sycf,;
in the denominator are chosen uniformly at random from the set of all 2* transformed
challenges and hence have response bits r that cover the full spectrum of error rates perror-
To ensure that the fitness function allows for a fast evaluation, we use the same «
transformed challenges s,¢; for each evaluation and limit ourselves to o = 1000. The
scale invariance, i.e., Va € Ry, fitness(ah) = fitness(m), is desired for positive factors
a¢€ RS‘ , but the inclusion of negative factors a € R, once again implies that one bit of
entropy always remains present. Because the randomized training algorithm does not
always converge to an accurate model m, we only retain the best out of five trials. For a
retention ratio pret = 1% and w* = 10 server-defined challenges c;, Fig. 18(b) shows that
the best out of 2 -5 = 10 models approaches the ideal accuracy of 100%.

The previously presented modeling techniques are successful despite disregarding the
internal specifics of the FSM. For the sake of completeness, we briefly discuss how this
disregarded knowledge could facilitate CMA-ES. For a given model m and a given protocol
run, the prospective 7-bit response r could be computed. For this sequence of state

Jeroen Delvaux 23

transitions, the fitness of the best possible match with an available path can then be
computed. Numerous path-matching metrics could be devised but, given that our main
objective has already been achieved, we abstain from further exploration.

4 Aftermath

In the aftermath of five broken protocols, it is crucial to report the lessons learned such
that the same mistakes are prevented from being repeated in the future. Below, we
provide our recommendations through the elaboration of five universal themes, thereby
complementing the ten guidelines for designing a PUF-based authentication protocol as
outlined by Delvaux et al. [Dell7, Chapter 5].

4.1 Protocol Specifications

The claims of a protocol designer can only be verified by third parties upon providing a
complete, unambiguous specification of the protocol. The most notable omission is that for
the LHS-PUF protocol [IB17], the claims “Lightweight” and “Highly Secure” even make
up the name of the protocol, but its authors do not commit to an underlying PUF circuit.
A design choice that impacts both the resource consumptions and the machine-learning
resistance of the protocol is thus unmade. Furthermore, the authors of the OB-PUF
protocol [GLM™16] did not specify a mechanism for expanding and dealing with the noise
of its 3-bit responses r. Lastly, the LFSR used in the RPUF protocol [YHL16, YGH"18§]
is underspecified, even though its most intuitive instantiation would allow for overlapping
challenge streams and, consequentially, an impersonation attack.

Nevertheless, the authors of all five protocols deserve credit for their compliance with
Kerckhoffs’ principle [Ker83], i.e., the specification of the obfuscation logic is public. On
the contrary, Mispan, Su, Zwolinski, and Halak [MHZ17, MSZH18] recently proposed three
PUF-based authentication protocols of which the specification is private, i.e., they rely
on the almost universally rejected paradigm of security through obscurity. To be clear:
obscurity is the only protective measure, which differs from cases where obscurity augments
an inherently secure system. If the complete specification of either protocol would be
made public, the modeling resistance degrades to a conventional Arbiter PUF. It hence
only takes one disgruntled employee of the system provider, or one attacker who recovers
the netlist through the side-channel analysis or physical delayering of a device [RR13], to
instantly compromise all devices in the field.

4.2 The Interpretation of Semifunctional Attacks

For an impersonation attack to be practical and instantly applicable, accuracies of roughly
90% usually suffice. The exact number is, evidently, determined by the maximal noise
level that a given protocol is designed to tolerate for given values of parameters ¢, 7, etc.
Nevertheless, for the OB-PUF [GLM*16] and RPUF [YHL16] protocols, where machine-
learning experiments performed during the design phase resulted in accuracies of circa
70%, it was a mistake to be optimistic. Apart from the general tendency in cryptology that
semifunctional attacks develop into fully functional attacks, an aggravating factor is that
the fine-tuning of machine-learning attacks relies on trial and error. The infinite set of
all parameterized supervised learning models and their parameterized training algorithms
can only be traversed based on heuristics and personal experience. Any predictive model
obtained is thus naturally open for improvement. Moreover, a first, semi-accurate model
can be used as a deobfuscation tool, thereby facilitating the training of a second, more
accurate model. For future protocol designs, we recommend treating any aberration from
50% as a precursor of a total break.

24 Machine-Learning Attacks on Five PUF-Based Protocols

4.3 The Importance of Literature Study

Protocol designers should master the black-box behavior of all building blocks they use.
Moreover, until an encyclopedic knowledge of existing attack methodologies is gained,
protocol designers are unlikely to advance the state-of-the-art on secure system design.
Below, we illustrate that for the five protocols of interest, a lack of literature study is the
root, cause of most problems.

o For Arbiter PUFs, we observe that the delay model in (1) and the intricacies of its
implied correlations between CRPs are frequently misunderstood. The most notable
fallacy in this regard is that Hamming distances between challenges c are used a
measure of correlation, whereas transformed challenges s should be used instead. For
the PolyPUF protocol [KCW16], this meant the difference between a functional and a
non-functional attack. The OB-PUF proposal [GLM*16, Section III-C] builds upon
the same misconception, although we have not mentioned this earlier-on given that
our attack uses another pathway. Lastly, even though the authors of the LHS-PUF
protocol [IB17] do not commit to a PUF circuit, they overlook that a one-sided
Hamming distance check between challenges ¢ would fail to preclude impersonation
attacks for the most commonly used PUF circuits.

e Another frequent misconception is that keeping the response bits of an Arbiter-
like PUF internal to a device automatically precludes machine-learning attacks.
Becker [Bec15b, BWG15] already demonstrated this intuition to be deceiving, which
implies that the designers of the LHS-PUF [IB17] and PUF-FSM [GMA " 18] protocols
fell into a publicly documented pitfall.

o For the PolyPUF [KCW16], OB-PUF [GLM*16], and RPUF [YHL16] protocols,
the link between applied challenges and released responses is obfuscated instead.
However, given that the obfuscation mechanism is not proven to be stronger than for
two pioneering proposals, i.e., Slender PUFs by Rostami et al. [RMK™'14] and Noise
Bifurcation PUFs by Yu et al. [YMVD14], both of which were broken by Becker and
Tobisch [Becl5b, TB15] even when instantiated with a (costly) 4-XOR PUF, it is
unclear why one or more non-XORed Arbiter PUFs would suddenly suffice.

o For the RPUF protocol [YHL16, YGHT18], the exploitation of its LFSR is not
unexpected, given that Delvaux et al. [Dell7, Chapter 5] previously reported similar
problems for other PUF-based authentication protocols. The most notable resem-
blance is to the protocol of Van Herrewege et al. [VHKM'12], where an attacker
also takes advantage of the LFSR by generating overlapping challenge streams. To
preclude such attacks, Yu et al. [YHDT16] diffuse the entry points of the LFSR by
making the state larger than the seed. An evident drawback of this countermeasure
is that a larger LFSR requires more area and power.

4.4 Estimating and Comparing Resources

A fairly conservative approach to craft a PUF-based authentication protocol is to convert
a noisy response r € {0, 1}" into a stable secret key k € {0, 1}*, where 1 > k, and then
use a keyed cryptographic algorithm to perform the authentication [Dell7, Section 5.2]. A
fuzzy extractor [DORSO08] can perform this conversion. Its realizations are usually based
on an error-correcting code and require public helper data, which is stored either by the
PUF-enabled device or by the server. In the latter case, the helper data is transferred with
each protocol run. Under the assumption that response R is uniformly distributed over
{0,1}" and that the expected bit error rate E[Peor] < 15%, a few thousand response and
helper bits usually suffice to derive a uniformly distributed key k € {0,1}'28 such that its
reconstruction is expected to fail with probability E[Pr;] < 107° [vdLPvdS12, HYS16].

Jeroen Delvaux 25

Designers of PUF-based protocols frequently aim to save resources by avoiding the use
of an error-correcting code and/or the cryptographic logic, but as we have demonstrated
for five recent proposals, taking shortcuts might be fatal for the system security. The irony
is that for three out of five proposals, the obtained reductions in hardware footprint are
small, if existing at all, and might not even have justified taking the risk:

o The PUF-FSM protocol [GMA 18] requires each PUF-enabled device to implement
a cryptographic algorithm, so it suffices to compare the implementation efficiencies
of the FSM and an error-correcting code. Although monolithic, large-sized codes
require expensive decoders, it is a common practice to construct a large-size code
from the repeated execution of one or more small-sized and hence cheaper codes. This
refers, for example, to the sliding window of a convolutional code [HYS16] and to the
concatenation of a Golay and a repetition code [vdLPvdS12]. Moreover, so-called
reverse fuzzy extractors [VHKM™12, Mael2] only require a PUF-enabled device to
implement an encoder, which is considerably cheaper than the corresponding decoder.
Protocol-specific and more generic weaknesses for the reversed modus are known to
exist [Becl5b] [Dell7, Chapter 5], but several versions still hold up. Finally, each
run of the PUF-FSM protocol requires the transfer of more than 160 - 64 = 10240
challenge bits ¢, which is more expensive then storing or transferring the helper data
of a fuzzy extractor.

o The PolyPUF protocol [KCW16] requires each device to implement 64 Arbiter
PUFs having 64 stages each. Given that the estimated area of a 64-stage Arbiter
PUF [Roz16, Fig 7.1] is equivalent to 387 two-input NAND gates, consisting of four
transistors each, the whole array consumes 24 768 gate equivalent (GE). More area-
efficient implementations of an Arbiter PUF evidently exist, but the main observation
here is that a full-fledged PUF-based key generator easily fits within 5000 GE for the
given security level k & 64 [vdLPvdS12]. When basing all subsequent cryptographic
operations on a lightweight cipher such as KATAN64 [CDK09], which adds around
1000 GE to the system, it becomes clear that the conservative authentication approach
might be cheaper. For the sole purpose of performing area comparisons, Konigsmark
et al. [KCW16] conveniently switch to an alternative protocol version where a single
Arbiter PUF generates all 64 response bits. Recall that their machine-learning
experiments are all conducted on a harder-to-attack array of PUFs.

o The LHS-PUF protocol [IB17] might be area-efficient, but even for a modest security
level, e.g., n = A = 64, each protocol run entails the wireless transmission of 20480
challenge bits c. Moreover, the device-side TRNG is tasked with producing 12 288 of
these bits and is thus required to have a high throughput. Note that the use of a
pseudorandom generator [DSSDW16] to deterministically expand a truly random
seed is not a part of the proposal.

o On the bright side, the original version of the RPUF protocol [YHL16] allows for
an overall efficient implementation. To resist machine-learning attacks, however,
the modified protocol version [YGH 18] requires not one but five or more Arbiter
PUFs laid-out in parallel, thereby incurring a loss of competitiveness with respect to
PUFs-based key generation. For those who are looking for a small-sized alternative,

which remains unbroken to date, we refer to the so-called lockdown protocols of Yu
et al. [YHDT16].

o We were unable to assess the footprint of the OB-PUF protocol [GLM™16], given
that its authors did not specify mechanisms for expanding the response and handling
noise.

26 Machine-Learning Attacks on Five PUF-Based Protocols

4.5 Hindering Physical Attacks

The authors of the five analyzed protocols focus on purely mathematical attacks, thereby
deferring physical attacks as an implementation-level afterthought. As pointed out by Yu
et al. [YHD'16], however, several existing side-channel attacks on PUFs can be mitigated
at the protocol level. Most notably, a device-side and challenge-randomizing TRNG can
preclude those attacks that require the eventual PUF input to be repeatedly evaluated.
For example, Becker’s [Becl5a, Bec15b] highly efficient and noise-based machine-learning
attacks on Arbiter (XOR) PUFs are only functional if the noise level of each response
bit can be estimated through a repeated evaluation. Likewise, Tajik et al. [TDFT16]
capture the photonic emissions of an Arbiter (XOR) PUF for the purpose of measuring its
elementary propagation delays, but numerous evaluations of a given challenge are needed
to increase the signal-to-noise ratio to a workable level.

Although the five protocols already include a device-side TRNG with the intention
of providing device-generated freshness and/or precluding machine-learning attacks, the
opportunity to simultaneously preclude side-channel attacks is missed. Most notably, the
LHS-PUF [IB17] and PUF-FSM [GMA*18] protocols feature a deterministic challenge
path and thus do not attempt to counter a photonic-emission analysis. For the Poly-
PUF [KCW16], OB-PUF [GLM*16], and RPUF [YHL16] protocols, the challenge path
happens to be randomized, but given that only 1, 2, or 3 bits of randomness are inserted,
we conjecture that side-channel attacks become slightly more cumbersome at best. For
future protocols, it can only be hoped that countermeasures to physical attacks are an
intentional and full-fledged element of the design.

5 Conclusion

Through the use of custom-tailored machine-learning techniques, we were able to train
an accurate predictive model of the Arbiter PUFs that underlie the PolyPUF protocol of
Konigsmark et al. [KCW16], the OB-PUF protocol of Gao et al. [GLM*16], the RPUF
protocol of Ye et al. [YHL16], the LHS-PUF protocol of Idriss and Bayoumi [IB17], and
the PUF-FSM protocol of Gao et al. [GMAT18], and hence enable an impersonation
attack. Given that most of the revealed flaws could have been avoided through a proper
literature study, this manuscript is yet another reminder that learning from history is a
prerequisite for advancing the state-of-the-art. We also advocate for an improved risk
management: if machine-learning experiments performed during the design phase already
result in a semifunctional attack, the protocol should be reworked instead of published.
Likewise, if the protocol does not outperform the most efficient methods for authentication
through PUF-based key generation, the obfuscation approach is not a risk worth taking.

Acknowledgement

We thank Ingrid Verbauwhede for proofreading an earlier version of this manuscript. The
author is currently with NTU, but circa 50% of the work has been performed while affiliated
to KU Leuven. This work is partially funded by the Research Council of KU Leuven
through C16/15/058 and the European Research Council (ERC) through Advanced Grant
695305 (CATHEDRAL).

References

[Becl5a Georg T. Becker. The gap between promise and reality: On the insecurity of
XOR arbiter PUFs. In Tim Giineysu and Helena Handschuh, editors, 17th

Jeroen Delvaux 27

[Becl5b)

[BRO3]

[BWG15]

[CDK09]

[Del17]

[DORS08]

[DSSDW16]

[GCvDDO2]

[GLM*16]

[GMA*18]

[Han06]

Workshop on Cryptographic Hardware and Embedded Systems (CHES 2015),
volume 9293 of Lecture Notes in Computer Science, pages 535-555. Springer,
September 2015.

Georg T. Becker. On the pitfalls of using arbiter-PUFs as building blocks.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 34(8):1295-1307, August 2015.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In 1st Conference on Computer
and Communications Security (CCS 1993), pages 62-73. ACM, November
1993.

Georg T. Becker, Alexander Wild, and Tim Giineysu. Security analysis of
index-based syndrome coding for PUF-based key generation. In Symposium
on Hardware Oriented Security and Trust (HOST 2015), pages 20-25. IEEE,
May 2015.

Christophe De Canniere, Orr Dunkelman, and Miroslav Knezevic. KATAN
and KTANTAN — A family of small and efficient hardware-oriented block
ciphers. In Christophe Clavier and Kris Gaj, editors, 11th Workshop on
Cryptographic Hardware and Embedded Systems (CHES 2009), volume 5747
of Lecture Notes in Computer Science, pages 272—288. Springer, September
2009.

Jeroen Delvaux. Security Analysis of PUF-Based Key Generation and Entity
Authentication. PhD thesis, KU Leuven and Shanghai Jiao Tong University,
June 2017.

Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy
extractors: How to generate strong keys from biometrics and other noisy
data. SIAM Journal on Computing, 38(1):97-139, March 2008.

Yevgeniy Dodis, Adi Shamir, Noah Stephens-Davidowitz, and Daniel Wichs.
How to eat your entropy and have it too: Optimal recovery strategies for
compromised RNGs. Algorithmica, pages 1-37, November 2016.

Blaise Gassend, Dwaine E. Clarke, Marten van Dijk, and Srinivas Devadas.
Silicon physical random functions. In 9th Conference on Computer and
Communications Security, pages 148-160. ACM, November 2002.

Yansong Gao, Gefei Li, Hua Ma, Said F. Al-Sarawi, Omid Kavehei, Derek
Abbott, and Damith C. Ranasinghe. Obfuscated challenge-response: A secure
lightweight authentication mechanism for PUF-based pervasive devices. In

14th Conference on Pervasive Computing and Communications (PerCom
2016), pages 1-6. IEEE, March 2016.

Yansong Gao, Hua Ma, Said F. Al-Sarawi, Derek Abbott, and Damith C.
Ranasinghe. PUF-FSM: A controlled strong PUF. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(5):1104-1108,
May 2018.

Nikolaus Hansen. The CMA FEwvolution Strategy: A Comparing Review,
volume 192 of Studies in Fuzziness and Soft Computing, pages 75-102.
Springer, 2006.

28

Machine-Learning Attacks on Five PUF-Based Protocols

[HTF09)]

[HYS16]

[IB17]

[KCW16]

[Ker83]

[LDTO0]

[Lim04]

[Mael2]

[Mael3]

[MHZ17]

[MKPOS]

[MSZH18]

[RMK*14]

[Roz16]

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer, 2009.

Matthias Hiller, Meng-Day Yu, and Georg Sigl. Cherry-picking reliable PUF
bits with differential sequence coding. IFEFE Transactions on Information
Forensics and Security (TIFS), 11(9):2065-2076, September 2016.

Tarek Idriss and Magdy Bayoumi. Lightweight highly secure PUF protocol
for mutual authentication and secret message exchange. In Conference
on RFID Technology € Application (RFID-TA 2017), pages 1-6. IEEE,
September 2017.

Sven Tenzing Choden Konigsmark, Deming Chen, and Martin D. F. Wong.
PolyPUF: Physically secure self-divergence. IEEFE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 35(7):1053-1066, July 2016.

Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences mili-
taires, IX:58AS-83, January 1883.

Keith Lofstrom, W. Robert Daasch, and Donald Taylor. IC identification
circuit using device mismatch. In 2000 International Solid-State Circuits
Conference (ISSCC), pages 372-373. IEEE, February 2000.

Daihyun Lim. Extracting secret keys from integrated circuits. Master’s
thesis, Massachusetts Institute of Technology, May 2004.

Roel Maes. Physically Unclonable Functions: Constructions, Properies and
Applications. PhD thesis, KU Leuven, August 2012.

Roel Maes. An accurate probabilistic reliability model for silicon PUF's.
In Guido Bertoni and Jean-Sébastien Coron, editors, 15th Workshop on
Cryptographic Hardware and Embedded Systems (CHES 2013), volume 8086
of Lecture Notes in Computer Science, pages 73-89. Springer, August 2013.

Mohd Syafiq Mispan, Basel Halak, and Mark Zwolinski. Lightweight obfus-
cation techniques for modeling attacks resistant PUFs. In 2nd International
Verification and Security Workshop (IVSW 2017), pages 19-24. IEEE, July
2017.

Mehrdad Majzoobi, Farinaz Koushanfar, and Miodrag Potkonjak. Testing
techniques for hardware security. In International Test Conference (ITC
2008), pages 1-10. IEEE, October 2008.

Mohd Syafiq Mispan, Haibo Su, Mark Zwolinski, and Basel Halak. Cost-
efficient design for modeling attacks resistant PUFs. In Design, Automation
& Test in Europe Conference & Exhibition (DATE 2018), pages 467-472.
IEEE, March 2018.

Masoud Rostami, Mehrdad Majzoobi, Farinaz Koushanfar, Dan S. Wallach,
and Srinivas Devadas. Robust and reverse-engineering resilient PUF authen-
tication and key-exchange by substring matching. IEFE Transactions on
Emerging Topics in Computing, 2(1):37-49, March 2014.

Vladimir Rozié¢. Circuit-Level Optimizations for Cryptography. PhD thesis,
KU Leuven, September 2016.

Jeroen Delvaux 29

[RR13]

[RSS*13]

[SDO7]

[Sko05]

[TB15]

[TDF*16]

[vdLPvdS12]

[VHKM™*12]

[YGH*18]

[YHD*16]

[YHL16]

Matthieu Rivain and Thomas Roche. SCARE of secret ciphers with SPN
structures. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology
— ASTACRYPT 2013, volume 8269 of Lecture Notes in Computer Science,
pages 526-544. Springer, December 2013.

Ulrich Rithrmair, Jan Solter, Frank Sehnke, Xiaolin Xu, Ahmed Mahmoud,
Vera Stoyanova, Gideon Dror, Jiirgen Schmidhuber, Wayne Burleson, and
Srinivas Devadas. PUF modeling attacks on simulated and silicon data.
IEEFE Transactions on Information Forensics and Security, 8(11):1876-1891,
November 2013.

G. Edward Suh and Srinivas Devadas. Physical unclonable functions for
device authentication and secret key generation. In 44th Design Automation
Conference (DAC 2007), pages 9-14. IEEE, June 2007.

Sergei P. Skorobogatov. Semi-invasive attacks — a new approach to hard-
ware security analysis. Technical Report UCAM-CL-TR-~630, University of
Cambridge, Computer Laboratory, April 2005.

Johannes Tobisch and Georg T. Becker. On the scaling of machine learning
attacks on PUFs with application to noise bifurcation. In Stefan Mangard and
Patrick Schaumont, editors, RFIDSec 2015: Radio Frequency Identification,
volume 9440 of Lecture Notes in Computer Science, pages 17-31. Springer,
June 2015.

Shahin Tajik, Enrico Dietz, Sven Frohmann, Helmar Dittrich, Dmitry Ne-
dospasov, Clemens Helfmeier, Jean-Pierre Seifert, Christian Boit, and Heinz-
Wilhelm Hiibers. Photonic side-channel analysis of arbiter PUFs. Journal
of Cryptology, pages 1-22, April 2016.

Vincent van der Leest, Bart Preneel, and Erik van der Sluis. Soft decision
error correction for compact memory-based PUFs using a single enrollment.
In Emmanuel Prouff and Patrick Schaumont, editors, 14th Workshop on
Cryptographic Hardware and Embedded Systems (CHES 2012), volume 7428
of Lecture Notes in Computer Science, pages 268—282. Springer, September
2012.

Anthony Van Herrewege, Stefan Katzenbeisser, Roel Maes, Roel Peeters,
Ahmad-Reza Sadeghi, Ingrid Verbauwhede, and Christian Wachsmann. Re-
verse fuzzy extractors: Enabling lightweight mutual authentication for PUF-
enabled RFIDs. In Angelos D. Keromytis, editor, 16th Conference on Fi-
nancial Cryptography and Data Security (FC 2012), volume 7397 of Lecture
Notes in Computer Science, pages 374-389. Springer, February 2012.

Jing Ye, Qingli Guo, Yu Hu, Huawei Li, and Xiaowei Li. Modeling attacks
on strong physical unclonable functions strengthened by random number and
weak PUF. In 36th VLSI Test Symposium (VTS 2018), pages 1-6. IEEE,
April 2018.

Meng-Day Yu, Matthias Hiller, Jeroen Delvaux, Richard Sowell, Srinivas
Devadas, and Ingrid Verbauwhede. A lockdown technique to prevent machine
learning on PUFs for lightweight authentication. IEEE Transactions on
Multi-Scale Computing Systems (TMSCS), 2(3):146-159, July 2016.

Jing Ye, Yu Hu, and Xiaowei Li. RPUF: Physical unclonable function with
randomized challenge to resist modeling attack. In Ist Asian Hardware

30

Machine-Learning Attacks on Five PUF-Based Protocols

[YMVD14]

Oriented Security and Trust Symposium (AsianHOST 2016), pages 1-6.
IEEE, December 2016.

Meng-Day Yu, David M’Raihi, Ingrid Verbauwhede, and Srinivas Devadas.
A noise bifurcation architecture for linear additive physical functions. In 7th
Symposium on Hardware-Oriented Security and Trust (HOST 2014), pages
124-129. IEEE, May 2014.

	Introduction
	Preliminaries
	Notation
	Arbiter PUF
	Additive Delay Model and Implied Correlations
	Machine Learning
	Improving the Learning Resistance
	Attacker Model

	Protocols
	PolyPUF
	OB-PUF
	RPUF
	LHS-PUF
	PUF–FSM

	Aftermath
	Protocol Specifications
	The Interpretation of Semifunctional Attacks
	The Importance of Literature Study
	Estimating and Comparing Resources
	Hindering Physical Attacks

	Conclusion

