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Abstract. Authenticated ciphers rely on the uniqueness of the nonces to
meet their security goals. In this work, we investigate the implications of
reusing nonces for three third-round candidates of the ongoing CAESAR
competition, namely Tiaoxin, AEGIS and MORUS. We show that an
attacker that is able to force nonces to be reused can reduce the security
of the ciphers with results ranging from full key-recovery to forgeries with
practical complexity and a very low number of nonce-misuse queries.
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1 Introduction

The CAESAR authenticated encryption competition was initiated to encourage
the design and analysis of authenticated encryption ciphers. Almost all authen-
ticated encryption schemes are nonce-based schemes [4]. A nonce is a public,
unique and (usually) fixed length number, which is necessary to hide plaintext
equality and introduce freshness into internal state parts. While nonces are not
necessarily random or unpredictable, these are two desirable properties, as they
can further reduce attack vectors. It is most important that a nonce is used only
once for a specific key. If this property is violated, many new attacks vectors can
surface. For example, a single known plaintext-ciphertext pair with the same
nonce is enough to forge valid ciphertext-tag pairs for arbitrary plaintexts when
using AES-GCM [1].

In this brief note, we analyze the impact of using a repeated nonce for three
of the third-round candidates of the CAESAR competition. We target the ciphers
Tiaoxin [3], AEGIS [6], and MORUS [5], which have a similar structure and thus
present similar angles of attack. We consider a chosen-plaintext attacker who
can force a small number of encryptions under the same nonce. Note that such a
nonce-misuse attacker voids the security claims of the analyzed designs. We show
that all three candidates investigated in this work are vulnerable to the proposed
attack scenario, and propose forgery, state-recovery, or key-recovery attacks. We
tested all attacks with practical implementations [2]. Finally, we emphasize that
none of our attacks threatens the security of the schemes in a normal setting as
specified by the designers.

Outline. We briefly describe the ciphers in Section 2, but refer to the respective
design documents for a full specification. A detailed description of the attacks
can be found in Section 3, and a summary of the results in Section 4.



2 Brief Description of CAESAR Candidates

2.1 Description of Tiaoxin

Tiaoxin-346 is an authenticated encryption scheme designed by Nikolić [3]. The
internal state consists of 13 words of 16 bytes each. The 13 words are divided
into three groups of 3, 4 and 6 words each (this is also the reason for the name
Tiaoxin-346). The state update function for Tiaoxin-346 absorbs a message block
of 32 bytes and produces a new internal state, as illustrated in Figure 1.
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Fig. 1: The Update operation (round function) of Tiaoxin-346. A represents one
AES round. A more detailed description can be found in the design document [3].

Each of the three groups of the internal state is initialized using the secret key
and the public nonce. Afterwards, a number of calls to the state update function
(with constants in place of the message) is performed, resulting in the initial
state for the encryption phase. The encryption part of Tiaoxin-346 can be briefly
summarized as follows: The message is padded and then divided into m blocks of
32 bytes each. Each message block Mi is divided into two parts (Mi = M0

i ||M1
i )

and the resulting ciphertext block Ci = C0
i ||C1

i is computed as follows:

for i = 1 to m

Update(T3, T4, T6,M
0
i ,M

1
i ,M

0
i ⊕M1

i )

C0
i = T3[0]⊕ T3[2]⊕ T4[1]⊕ (T6[3] ∧ T4[3])

C1
i = T6[0]⊕ T4[2]⊕ T3[1]⊕ (T6[5] ∧ T3[2])

Due to its structure, the round update function is fully invertible given the
plaintext. This means that if we can recover the internal state (either T3, T4
or T6) in our attack, we can apply the inverse round function and recover
the corresponding initial state after the initialization. Furthermore, since the
initialization phase of Tiaoxin-346 also entirely consists of calls to the round update
function, we can completely recover the initial state before the initialization phase,
which contains the secret key. Therefore, recovering the internal state for a known
plaintext is equivalent to recovering the secret key.



2.2 Description of AEGIS

AEGIS is a family of authenticated encryption algorithms by Wu and Preneel [6].
We only focus on the AEGIS-128 version of the algorithm, but the idea of the
attack can be extended easily to other versions. The internal state of AEGIS-128
consists of 5 words of 16 bytes each. The state update function consumes a
plaintext block of 16 bytes and produces the new internal state as in Figure 2.
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Fig. 2: The StateUpdate function of AEGIS-128. A represents one AES round. A
more detailed explanation can be found in the design document [6].

Like Tiaoxin, the internal state is initialized with the secret key and the public
nonce. To complete the initialization, the state is updated with a fixed number
of iterations of the StateUpdate function with constants in place of the message
words. The encryption phase of AEGIS-128 can then be summarized as follows:

for i = 1 to m

Ci = Mi ⊕ Si,1 ⊕ Si,4 ⊕ (Si,2 ∧ Si,3)

Si+1 = StateUpdate(Si,Mi)

In contrast to the state update function of Tiaoxin-346 (Figure 1), the state
update function of AEGIS-128 is not easily invertible. This means that recovering
the internal state does not allow us to recover the secret key.

2.3 Description of MORUS

MORUS is a family of authenticated encryption ciphers by Wu and Huang [5].
We only focus on the MORUS-640-128 version of the cipher, but as with the two
other ciphers before, the ideas of the attack are easily extended to the other
versions of the cipher. The internal state of MORUS-640-128 consists of 5 words of
16 bytes each. The state update function consumes a plaintext block of 16 bytes
and updates the internal state. A graphical representation of the state update
function of MORUS-640-128 can be seen in Figure 3. In contrast to Tiaoxin-346
and AEGIS-128, the state update function is not based on AES, but instead is
a custom construction using ANDs, rotations and XORs (ARX). It uses two
kind of rotations internally: A rotation of one full message word with different
constant rotation offsets (denoted by ≪ wi) and a second kind of rotation, where
one 16 byte internal state is split into four 4-byte blocks, which are rotated
independently (denoted by ≪∗ bi).
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Fig. 3: The state update function of MORUS-640-128. A more detailed explanation
can be found in the design document [5].

As with the two previous ciphers, the internal state is initialized with the secret
key and the public nonce. The internal state is then updated with a fixed number
of calls to the internal state function (with constants in place of the message
words). After the final initialization round, the secret key is again XORed to one
part of the internal state. This results in the initial state used for encryption. We
will now shortly summarize the encryption phase of MORUS-640-128:

for i = 1 to m

Ci = Mi ⊕ Si
0 ⊕ (Si

1 ≪ 96)⊕ (Si
2 ∧ Si

3)

Si+1 = StateUpdate(Si,Mi)

Like the state update function of Tiaoxin-346, the state update function of
MORUS is invertible given the internal state. The initialization phase, however,
is not, due to the fact that the key is XORed to a part of the state after the
initialization rounds.



3 Attack on the CAESAR Candidates

3.1 Similarities between Candidates and Basic Idea

All ciphers analyzed in this note use a similar approach to encrypt: The internal
state is initialized with the IV and key, and a few rounds of the state update
function are applied. For encryption, parts of the internal state (a, b, c and d) are
combined with a mix of linear and non-linear operations to obtain a key-stream
KS that is XORed with the plaintext P to generate the ciphertext C:

KS = a⊕ b⊕ (c ∧ d)

C = P ⊕KS .
(1)

After the encryption phase, the message tag is generated by applying a few
rounds of the state update function, before finally combining parts of the internal
state. By keeping a, b and c constant and varying d, we can recover c with the
following observation. Since XOR and AND operate on single bits, if we manage
to get the values d to include both 0 and 1 for a range of trials, we can observe
the following property for one bit of the xor of two trials:

KS0 ⊕KS1 = a⊕ b⊕ (c ∧ d0)⊕ a⊕ b⊕ (c ∧ d1)

= (c ∧ d0)⊕ (c ∧ d1) = (c ∧ 0)⊕ (c ∧ 1) = 0⊕ c = c .

If the values for the bit of d are equal, the result will always be 0, since all inputs
to the xor are equal. This means we need at least one pair of trials that have
different values for d. In the following section, we present attacks that make use
of these properties and allow recovery of the internal state.

3.2 Application to Tiaoxin

The encryption of Tiaoxin follows the structure in Equation (1):

C1
i = T6[0]⊕ T4[2]⊕ T3[1]⊕ (T6[5] ∧ T3[2]) .

We attack the generation of C1
2 with the following conditions: The state words

T6[0], T4[2] and T3[1] of S3 are kept constant, while a difference is introduced in
T3[2]. A graphical representation of the attack can be seen in Figure 4.

However, due to the AES call in the state update function, we cannot exactly
predict the final difference in T3[2] that is introduced by our chosen plaintext
difference ∆. This means we need to perform a higher number of trials to achieve
a high probability that at least one pair of message differences has a difference in
one bit of d. To get a reliable result for the attack, we use 128 random plaintexts.
Since the input to the AES block is random, and AES is not biased with respect
to its output, we get a probability of 1

2 for a single bit to be either 0 or 1. This
means the probability that one bit of the output is the same for all 128 messages
is 2−127. Combining the results for each of the 128 bits of the AES output block
gives us a total success probability of (1− 2−127)128 ≈ 1.



With smart choice of the message words, we can achieve the required properties
of the attack. If we choose a difference (referred to as ∆ in the following) for
M0

0 and no difference for M1
0 , this results in the same difference ∆ in M2

0 . If we
use the same values for the next message block M0

1 , M1
1 and M2

1 , the differences
cancel out for the most part. For the third round state S3, only T3[2] and T6[2]
contain any differences (see Figure 4).
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Fig. 4: Propagation of differences in the attack scenario for Tiaoxin.

Using this attack outline, we can recover one part of the internal state T6
after three rounds of encryption. Furthermore, we can repeat our attack for later
rounds: If we execute n rounds of encryption with a constant plaintext before
our attack, we can recover T6[5] of state S3+n. Additionally, the structure of the
update function tells us that T6[5] of S4 equals T6[4] of S3 and a similar relation
can be found for all parts of T6 of S3. So we can repeat our initial attack six times
with offsets 0, . . . , 5 and recover the internal state T6. As explained in Section 2,
this allows us to fully recover the secret key.

3.3 Application to AEGIS

The attack against AEGIS works according to the same general principle as the
attack against Tiaoxin. Again, the structure of the encryption of AEGIS follows
the structure in Equation (1):

Ci = Mi ⊕ Si,1 ⊕ Si,4 ⊕ (Si,2 ∧ Si,3) .



Figure 5 depicts the structure of the attack for AEGIS. We introduce a difference
∆ in the message word P1 and use the same difference ∆ in P2 to cancel most
of the effect. The only remaining difference propagates to the state word S2,1

and can be recovered from the encryption equation of C2, since the state words
S2,2, S2,3 and S2,4 are constant. The difference propagates to S3,2 and since the
difference in S3,1 is equal to the previously recovered difference S2,1 we can use
our approach to recover the state S3,3.
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Fig. 5: Propagation of differences in the attack scenario for AEGIS.

To recover more parts of the state, we have to repeat our attack one round
later. Recovering S4,3 in addition to S3,3 enables us to calculate S3,2 as can be
seen in Figure 6. However, the message word P1 has an influence on S3,2 and
therefore needs to be constant. This means we need to choose a fixed P1 for our
attack and can only recover a state for this choice of P1. Repeating this attack
for S5,3 and S6,3 in order to recover S3,1 and S3,0 in turn means we also have
to fix P2 and P3 for our attack, meaning we can recover the state for a 3-block
chosen-plaintext prefix. This enables us to create forged ciphertexts for messages
starting with the same 3-block chosen-plaintext prefix under the same nonce.

S3,2 S3,3

S4,3

⊕
A

known value

recovered

Fig. 6: Combining two recovered states to recover more parts of the internal state.



3.4 Application to MORUS

The attack on MORUS is based on the same principle as the previous attacks.
Again, the structure of the encryption of MORUS follows the structure in (1):

Ci = Mi ⊕ Si
0 ⊕ (Si

1 ≪ 96)⊕ (Si
2 ∧ Si

3) .

Since the state update function does not use a round of AES, but XOR, AND
and rotation operations instead, we can propagate desirable differences more
easily. Instead of using about 27 encryption oracle calls for one part of the state,
we can reduce the overall encryption oracle calls to below 32.

To recover the first part of the internal state, we choose a difference of
∆ = 1128 for the first plaintext block. This difference spreads to S1

0,1 and S1
0,2

while S1
0,3 stays constant, because the difference introduced by ∆ is canceled

between S0
3,3 and S0

4,3 (see Figure 7). This allows us to recover S1
0,3 with only 2

encryptions.
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Fig. 7: Propagation of differences to recover the first part of the MORUS state.



We can now recover an additional part of the state in a similar fashion. Taking
advantage of the rotations in the cipher, we are able to generate a plaintext
block that keeps half of S1

0,2 constant, while introducing a difference in the
corresponding half of S1

0,3 (see Figure 8). Repeating this process for the other
half allows us to fully recover S1

0,2 with only 2 additional encryptions.
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Fig. 8: Propagation of differences to recover the second part of the MORUS state.

For the other state blocks we have to attack the second round of encryption.
With the knowledge of the recovered state S1

0,2 we can now calculate a plaintext
block M1, so that the resulting state of S1

0,2 is equal to 0128. This disables the
AND gate in the first sub-step of the round update, meaning S1

0,1 has no influence
on S2

0,0. If we now calculate a second plaintext M1, so that S1
0,2 is equal to

132||096, we only allow one quarter of S1
0,1 to be propagated into S2

0,0. Due to the
nature of the state rotation and its different rotation values for each state part,
the newly introduced quarter block of ones only influences a specific quarter of
S2
0,0, but does not influence the same quarter in the other state parts S2

0,1−3. This



means by comparing the output of the second-round encryptions of these two
plaintexts, we can recover one quarter of S1

0,1, and repeating this process 3 more
times while setting different quarters of S1

0,2 to 132 allows us to fully recover S1
0,1.

The state S1
0,0 is then easily recovered with one known plaintext-ciphertext pair,

since it is the only unknown part of the encryption equation of MORUS.
The final state part S1

0,4 is then recovered by looking at the first and second
round of encryption. We can recover the state S2

0,1 by performing our attacks with
an offset of one constant plaintext block. Now we can obtain S1

0,4 by considering
the equation given by the second column of the state update function, in which
we already know the value of every variable except S1

0,4:

S2
0,1 = S1

0,1 ⊕ (S1
0,2 ∧ (S1

0,3 ≪ w0))⊕ S1
0,4 .

We can then apply the inverse round update function to get the state S0, but we
cannot recover the secret key, since the initialization phase cannot be reversed
without previous knowledge of the secret key. Nevertheless, knowledge of the
internal state allows forgery of ciphertext-tag pairs for arbitrary plaintexts.

3.5 Practical Implementation

We implemented all three attacks and verified the results using the designers’
reference implementations of the respective cipher. The run-time of all of the
three attack implementations is negligibly short (< 1 second each) and the success
probability is essentially 100%. The source code is available on GitHub [2].

4 Summary and Conclusion

Our results are summarized in Table 1, and underline the mportance of correct
nonce usage. The designers of all three algorithms stress that their security claims
are void in case of nonce misuse and this note confirms this assessment. Clearly,
misconfiguration or wrong usage of a cipher can weaken the security immensely,
and even a very small number of nonce misuses can suffice for key recovery or
forgery. Only a few CAESAR candidates make any security claims in a nonce
misuse scenario. However, among the nonce-based schemes, there seems to be
significant variance in the practical impact of “small-scale” nonce misuse, ranging
from drastic global impact (e.g., key recovery and universal forgery as in the
presented attacks) to much more local impact (e.g., confidentiality loss for some
blocks of the misuse plaintext in various duplex-based schemes).

Table 1: Summary of attack complexity and results.

Cipher Nonce-Misuse Queries Attack

Tiaoxin-346 210 Key recovery
AEGIS-128 29 Almost universal forgery
MORUS-640-128 25 Universal forgery
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