
Decoding Linear Codes with High Error Rate
and its Impact for LPN Security

Leif Both and Alexander May

Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

Faculty of Mathematics
leif.both@rub.de, alex.may@rub.de

Abstract. We propose a new algorithm for the decoding of random
binary linear codes of dimension n that is superior to previous algo-
rithms for high error rates. In the case of Full Distance decoding, the best
known bound of 20.0953n is currently achieved via the BJMM-algorithm
of Becker, Joux, May and Meurer. Our algorithm significantly improves
this bound down to 20.0885n.
Technically, our improvement comes from the heavy use of Nearest Neigh-
bor techniques in all steps of the construction, whereas the BJMM-
algorithm can only take advantage of Nearest Neighbor search in the
last step.
Since cryptographic instances of LPN usually work in the high error
regime, our algorithm has implications for LPN security.

Keywords: Decoding binary linear codes, BJMM, Nearest Neighbors,
LPN, Full Distance Decoding, Representations

1 Introduction

The NP-hard decoding problem for random linear codes plays a major role in
coding and complexity theory. It is especially suitable for the construction of
quantum-secure cryptographic systems like [McE78,Ale03,Reg05]. In view of the
upcoming NIST selection of post-quantum public-key cryptosystems [NIS] it is
of crucial importance for secure parameter selection to know the best decoding
algorithms.

A linear code C is a k-dimensional subspace of Fn2 . In the decoding problem
the attacker gets an erroneous version x = c + e of a codeword c for some
error vector e with Hamming weight ∆(e) = ω. His target is to find e in order
to recover the original codeword c. Sometimes, the weight ω is bounded by
the distance d of the code C (Full Distance Decoding) or by d

2 (Half Distance
Decoding).

Therefore the running time T (n, k, d) of any decoding algorithm is a function
of the parameters n, k and d. It is well known that the Gilbert-Varshamov bound
gives us k

n ≈ 1−H(dn) for random linear codes, where H(·) is the binary entropy
function H(p) := −p log(p) − (1 − p) log(1 − p). This results in a running time

T (n, k) which is a function of n and k only. Furthermore one often compares
worst case running times where we maximize the running time over all rates k

n
resulting in a running time T (n).

The best algorithmic paradigm that we know today for random binary linear
codes is a class of algorithms called Information Set Decoding (ISD). Here, for
simplicity we only compare ISD running times in the Full Distance Decoding
setting, but see also Fig. 1. For all ISD algorithms the maximal run time is
achieved at a rate k

n slightly below 1
2 .

Fig. 1: Comparison for Full/Half Distance of our work and other algorithms.

The first ISD algorithm is due to Prange [Pra62] and achieves worst case
running time 20.121n. This was improved by Stern and Dumer [Ste88,Dum91]
to 20.117n. Using the representation technique, May, Meurer, Thomae [MMT11]
and later Becker, Joux, May, Meurer [BJMM12] further decreased the run time
to 20.112n and 20.102n, respectively. The last is called BJMM algorithm and is
currently asymptotically the best algorithm for decoding of random linear codes.

In 2015, May and Ozerov [MO15] proposed some Nearest Neighbor (NN)
search that further sped up BJMM to 20.0967n, which was later optimized in [BM17b]
to 20.0953n.

Our results. As can be seen from Fig. 1, our new algorithm achieves in the
Full Distance Decoding setting 20.0885n, which is a quite remarkable improvement
over the current state of the art. However, the improvement for the Half Distance
Decoding is comparably small. As a rule of thumb, the larger the error rate, the
more significant our algorithm’s improvement.

As most promising in cryptographic settings, we currently see the application
of our algorithm for Learning Parity with Noise (LPN) instances. Every LPN
instance of dimension k with error τ is naturally a decoding problem for a random
linear code. As shown by Esser, Kübler, May [EKM17] in practice one currently
best solves large LPN instances by a hybrid approach. Namely, one first applies a
dimension reduction algorithm (such as BKW [GJL14]) at the cost of introducing
a large error close to 1

2 , followed by a decoding algorithm. Since our algorithm
works especially well in the high-error regime, it seems to be a perfect candidate
for solving these transformed LPN instances.

2

Our algorithm. ISD algorithms with representation technique such as MMT
and BJMM currently use a 2-step matching process, where in the first step one
does an exact matching of vectors (for eliminating representations) and in a
second step one does an approximate matching via NN search. We eliminate
this two-step process and perform only an approximate matching in all stages
of the algorithm.

This allows us to eliminate representations less restrictive, and to use the
full power of NN search in every step of our algorithm. Thus, our approximate
matching is in spirit similar to the Ball Decoding approach of Bernstein, Lange
and Peters [BLP11]. The heavy use of NN search might also explain the large
improvement (only) in the high error-regime, where NN search can show its full
strength.

This paper is organized as follows. In Section 2, we review some ISD algo-
rithms. Section 3 introduces a basic version of our new algorithm, whereas the
generalized version is given in Section 4. Our results are provided in Section 5.

2 Preliminaries

Syndrome Decoding. Let us start with some preliminaries on linear codes and
decoding algorithms. We denote the Hamming distance of two vectors x,y ∈ Fn2
by ∆(x,y). The Hamming weight ∆(x) of x is defined as the Hamming distance
of x to the zero vector 0.

A linear code C is a k-dimensional subspace of Fn2 . Its distance is defined by
d := minc6=c′∈C{∆(c, c′)}. We can specify C by a generator matrix G ∈ Fk×n2 or

a parity check matrix P ∈ F(n−k)×n
2 via

C := {xG ∈ Fn2 | x ∈ Fk2} or C := {c ∈ Fn2 | Pc = 0}.

Random linear codes have a random G or random P , where in both cases each
matrix entry is chosen uniformly at random from F2. For an arbitrary vector
y = c + e ∈ Fn2 , c ∈ C we define the syndrome of y as

s := Py = Pc + Pe = Pe. (1)

Definition 1 (Syndrome Decoding Problem). Let C be a linear code spec-

ified by some parity check matrix P ∈ F(n−k)×n
2 . Given P , an (erroneous) code-

word y ∈ Fn2 and a weight ω ∈ N, one has to find an error vector e ∈ Fn2 with
y + e ∈ C and ∆(e) = ω.

We call (P, s, ω) with s = Py an instance of the Syndrome Decoding Problem.
We say that e ∈ Fn2 solves (P, s, ω) iff s = Pe and ∆(e) = ω.

A fundamental algorithm for solving the Syndrome Decoding Problem was intro-
duced by Prange [Pra62]. This algorithm is the basis of all of today’s so-called In-
formation Set Decoding (ISD) algorithms [Ste88,Dum91,BLP11,MMT11,BJMM12].

3

In Prange’s algorithm, one reduces the dimension of the search space from n
down to k via Gaussian elimination.

In more detail, one chooses some invertible G ∈ F(n−k)×(n−k)
2 such that GP =

(P̄ | In−k), where In−k is the (n − k)-dimensional identity matrix. Therefore
Eq. (1) becomes

GPe = (P̄ | In−k)e = P̄e′ + e′′ = Gs =: s̄, with e = (e′, e′′) ∈ Fk2 × Fn−k2 . (2)

Thus, every instance (P, s, ω) with P ∈ F(n−k)×n
2 of the Decoding Problem has

some (non-unique) standard form (P̄ , s̄, ω) with P̄ ∈ F(n−k)×k
2 such that e ∈ Fn2

solves (P, s, ω) iff (P̄ | In−k)e = s̄.

Definition 2 (Standard form). For any instance (P, s, ω) ∈ F(n−k)×n
2 ×Fn−k2 ×

N of the decoding problem, we say that (P̄ , s̄, ω) ∈ F(n−k)×k
2 ×Fn−k2 ×N is a stan-

dard form of (P, s, ω) if there exists some invertible G ∈ F(n−k)×(n−k)
2 such that

GP = (P̄ | In−k) and Gs = s̄.

The underlying idea of all Information Set Decoding algorithm is to solve a
dimension-reduced standard form (P̄ , s̄, ω) of a Decoding Problem instance in-
stead of its original form (P, s, ω).

However, before transforming (P, s, ω) to its normal form one applies some
column permutation π to P to enforce a special weight distribution on e =
(e′, e′′) ∈ Fk2 × Fn−k2 . While Prange chooses ∆(e′) = 0, other ISD algorithms
enforce ∆(e′) = p for some parameter p ≥ 0 (see Algorithm 1 and 2). Thus it
is sufficient to find some e′ ∈ Fk2 , ∆(e′) = p such that after applying π and
converting to standard form the term P̄e′ is close to s̄, i.e.,

∆(P̄e′, s̄) = ∆(e′′) = ω − p.

Algorithm 1: ISD – Weight Distribution and Standard Form

Input : P ∈ F(n−k)×n
2 , s ∈ Fn−k

2 , ω ∈ N
Output: e ∈ Fn

2 with Pe = s and ∆(e) = ω
repeat

repeat
π ← random permutation on Fn

2

(· | Q)← π(P) (permute columns) . Q ∈ F(n−k)×(n−k)
2

until Q is invertible

(P̄ | In−k)← Gπ(P) and s̄← Gs . G ∈ F(n−k)×(n−k)

(e′, e′′) = ISDSolve(P̄ , s̄, ω) . See Algorithm 2.
until (e′, e′′) 6= ⊥
return π−1(e′||e′′)

4

Algorithm 2: ISDSolve

Input : P̄ ∈ F(n−k)×k
2 , s̄ ∈ Fn−k

2 , ω ∈ N
Output : (e′, e′′) ∈ Fk

2 × Fn−k
2

Parameters: choose optimal 0 ≤ p ≤ ω
for e′ ∈ Fk

2 with ∆(e′) = p do
e′′ ← He′ + s̄
if ∆(e′′) = ω − p then return(e′, e′′)

end
return ⊥

Dumer’s ISD-algorithm [Dum91] introduces another parameter ` and trans-
forms P into a different standard form

G′P =

(
P̄1 0
P̄2 In−k−`

)
, where P̄1 ∈ F`×(k+`)2 and P̄2 ∈ F(n−k−`)×(k+`)

2 .

Set s̄ := G′s = (s1, s2) ∈ F`2 × Fn−k−`2 . We can now write Eq. (2) as

P̄1e
(1)
1 = P̄1e

(1)
2 + s1 and (3)

∆(P̄2e
(1)
1 , P̄2e

(1)
2 + s2) = ω − p. (4)

splitting e′ = e
(1)
1 + e

(1)
2 with e′, e

(1)
1 , e

(1)
2 ∈ Fk+`2 . Hence, by Eq. (3) we have an

exact matching of P̄e′ and s̄ on ` coordinates, and by Eq. (4) an approximate
matching of the same vectors on the remaining n− k − ` coordinates.

The BJMM algorithm [BJMM12] solves the exact matching of Eq. (3). In a

nutshell, BJMM constructs solutions (e
(1)
1 , e

(1)
2) for Eq. (3) using some depth-3

binary search tree. For optimizing the depth of this search tree, see [BM17b].

All candidate solutions (e
(1)
1 , e

(1)
2) are then checked via Eq. (4).

For the approximate matching, May and Ozerov [MO15] proposed a Nearest
Neighbor (NN) search algorithm that, given two lists L1, L2, finds in time sub-
quadratic of the list lengths all elements (x1,x2) ∈ L1 × L2 within some given
Hamming distance ∆(x1,x2). Thus, May-Ozerov NN search can be used to speed
up the check of candidate solutions via Eq. (4) inside the BJMM algorithm.

Theorem 1 ([MO15]). Given two lists L1, L2 with elements taken uniformly at
random from Fn2 and length |L1|, |L2| ≤ 2λn. Then for any ε > 0 one can find all
but a negligible fraction of the pairs (x1,x2) ∈ L1×L2 satisfying ∆(x1,x2) ≤ γn
for some given 0 ≤ γ ≤ n

2 provided that λ < 1−H(γ2) in time

2(y(λ,γ)+ε)n, where y(λ, γ) := (1− γ)

(
1−H

(
H−1(1− λ)− γ

2

1− γ

))
.

Please notice that Theorem 1 can only be applied for parameters satisfying
the condition λ < 1 − H(γ2), which will not always be the case for our new

5

decoding algorithm. Whenever this condition is violated, we will choose one of
the following two simple NN search algorithms Alg. 3 or 4.

Algorithm 3: NN-Enumerate-Pairs

Input : L1, L2 ⊂ Fn2 , γ
Output: L
for (x1,x2) ∈ L1 × L2 do

if ∆(x1,x2) ≤ γn then L← (x1,x2)
end
return L

Since Algorithm 3 simply tests the distance of all pairs in L1×L2, it runs in
time quadratic in the list lengths

22λn. (5)

Notice that here, as in the rest of the paper, we neglect for ease of presentation
polynomial factors in the run time.

Algorithm 4: NN-Meet-in-the-Middle

Input : L1, L2 ⊂ Fn2 , γ
Output: L
L′2 ← ∅
for x2 ∈ L2 do

for e ∈ Fn2 with ∆(e) ≤ γ
2n do

L′2 ← L′2 ∪ (x2 + e,x2)
end

end
for x1 ∈ L1 do

for e ∈ Fn2 with ∆(e) ≤ γ
2n do

if (x1 + e,x2) ∈ L′2 then L← (x1,x2)
end

end
return L

Recall from Theorem 1 that L1, L2 contain random vectors from Fn2 . Thus,
for any pair (x1,x2) ∈ L1 × L2 we have Pr[∆(x1,x2) ≤ γn] =

(
n
γn

)
· 2−n. As a

consequence, using a union bound over all pairs we can upper bound the size of
the output list L for any NN algorithm by |L| ≤

(
n
γn

)
· 2(2λ−1)n.

This in turn shows that the running time of Alg. 4 is upper bounded by

max

{(
n
γ
2n

)
· 2λn,

(
n

γn

)
· 2(2λ−1)n

}
. (6)

Since our new decoding algorithm improves the decoding with high error
rate, it is best suited for attacking instances of the Learning Parity with Noise
Problem (LPN).

Definition 3 (LPN). Let τ ∈ [0, 12) be some error parameter, and let s ∈ Fk2
be a secret vector. In the LPNk,τ problem one has oracle access to samples of

6

the form

(ai, bi) := (ai, 〈ai, s〉+ ei), for i = 1, 2, . . .

where ai ∈R Fk2 and ei ∈ {0, 1} with Pr[ei = 1] = τ . The goal is to recover s.

Let us denote by n the number of samples, which can be freely chosen. We write
an LPN instance as a matrix-vector tuple

(A,b) ∈ Fn×k2 × Fn2 satisfying As = b + e,

where e = (e1, . . . , en) and the ith row of A and b represent the ith LPN sample.
Notice that A is by definition of LPN the generator matrix of a random

binary linear [n, k]-code, in which we are free to choose n ourselves. Thus, we
can make the rate k

n arbitrarily small.
Moreover, b is a noisy codeword that is decoded to b + e with an error

e ∈ Fn2 of (large) expected weight E[∆(e)] = τn. Typical parameters for τ in the
cryptographic setting are τ = 1

4 , or τ = 1
8 .

3 The Depth-2 algorithm

Our Goal. As described in Section 2, many ISD algorithms like Dumer or

BJMM do an exact matching using Eq. (3) P̄1e
(1)
1 = P̄1e

(1)
2 +s1 on ` coordinates,

and among the candidates (e
(1)
1 , e

(1)
2) ∈ Fk+`2 × Fk+`2 that fulfill Eq. (3), they

search for those, whose remaining n−k− ` coordinates approximately match by
Eq. (4).

As opposed to the BJMM algorithm, we really go back to the initial Eq. (2)

P̄e′ + e′′ = s̄. Splitting e′ = e
(1)
1 + e

(1)
2 for e

(1)
1 , e

(1)
2 ∈ Fk2 yields

P̄e
(1)
1 = P̄e

(1)
2 + s̄ on all n− k but ∆(e′′) = ω − p coordinates. (7)

Our goal is to directly construct e
(1)
1 , e

(1)
2 such that ∆(e

(1)
1 + e

(1)
2) = p and the

corresponding vectors P̄e
(1)
1 , P̄e

(1)
2 + s̄ approximately match on all n−k but ω−p

coordinates. This immediately yields a solution (e′, e′′) with e′′ = P̄e′ + s̄ and
∆(e′′) = ω − p for the Decoding problem in standard form.

In comparison to other ISD algorithms, our vectors e
(1)
1 , e

(1)
2 have length k

(like in Prange) instead of k+` (like in Dumer, BJMM). This decreases the search
space significantly. Moreover, it introduces a less restrictive weight distribution
on a solution (e′, e′′) ∈ Fk2 × Fn−k2 , since usually p� ω and we only need small
weight p on the first k coordinates instead of the first k+ ` coordinates. This in
turn means that we need less iterations in Alg. 1 to find a permutation π that
fulfills our weight distribution.

On the downside, our approximate matching routine is more costly than the
exact matching in other ISD algorithms. But as our analysis shows, the benefits
outweigh this disadvantage, especially when the weight of our solution is large
enough.

7

Recall that by Eq. (7) our goal is to construct two lists L
(1)
1 , L

(1)
2 in depth 1

of a search tree containing entries

(e
(1)
1 , P̄e

(1)
1) and (e

(1)
2 , P̄e

(1)
2 + s̄) such that

∆(e′) = ∆(e
(1)
1 + e

(1)
2) = p and ∆(e′′) = ω − p.

The two lists L
(1)
1 , L

(1)
2 are constructed in a recursive manner out of other lists

in a search tree of some depth m that has to be optimized. In this section, we
describe our algorithm for depth m = 2 only, since this already gives the main
ideas.

Let us introduce some useful notion, see also Fig. 2. For any vector v =
v1 . . . vn ∈ Fn2 and any positive lengths `1, . . . , `m+1 ∈ N with

∑m+1
j=1 `i = n,

we define by v[j] ∈ F`j2 the projection of v onto its coordinates (
∑j−1
i=1 `i +

1, . . . ,
∑j
i=1 `i). We also extend our notion to lists of vectors L ⊂ Fn2 . In L[j] we

project all elements v ∈ L to v[j].

Fig. 2: The projection v[j] of v.

Outline of depth-2 algorithm. Here we give a high-level overview of our
construction with a search tree of depth 2. The reader is advised to follow the
description via Fig. 3.

Among the n − k coordinates of e′′, we introduce another split into `1 and
`2 := n − k − `1 coordinates. In the final list L(2), we enforce some weight
ω1 on the first `1 coordinates of e′′ = (e′′[1], e

′′
[2]), and the remaining weight

ω2 := ω − p − ω1 on the remaining `2 coordinates. The parameters `1, ω1 are
subject to optimization.

For the construction of e′′[2] we use an NN search for the lists L
(1)
1 , L

(1)
2 on

level 1 that gives us weight ω2 on these coordinates.

In those lists L
(1)
1 , L

(1)
2 we furthermore enforce weight p1 ≥ p

2 on the coordi-

nates of e
(1)
1 and e

(1)
2 . The parameter p1 is again subject to optimization.

Analogously we restrict to only those P̄e
(1)
1 , P̄e

(1)
2 + s̄ whose first `1 coor-

dinates have a weight ω
(1)
1 . The weight ω

(1)
1 has to be optimized. Again, we

filter out all vector sums on level 2 whose weight is not exactly ω1 on these `1
coordinates.

The lists L
(1)
1 , L

(1)
2 are constructed out of four lists L

(0)
i , i = 1, . . . , 4 on

level 0. Here, we describe only the construction of L
(1)
1 , the construction of L

(1)
2

8

Fig. 3: Our depth-2 algorithm.

is analogous. In L
(0)
1 we enumerate all vectors e

(0)
1 ∈ Fk/22 × 0k/2 with weight

p1/2. For each of these vectors we compute P̄e
(0)
1 . Similary, in L

(0)
2 we enumerate

all vectors e
(0)
2 ∈ 0k/2×Fk/22 with weight p1/2 and compute P̄e

(0)
2 . We then run

a NN search on the first `1 coordinates to find all vector sums with weight ω
(1)
1

on these coordinates. Note that the vectors e
(0)
1 and e

(0)
2 automatically add up

to a vector of weight p1 as required for list L
(1)
1 .

This concludes the high-level description of our algorithm. More details can
be found in Alg. 5, which has to be used as an ISDSolve-subroutine in Alg. 1
to obtain a full fletched ISD algorithm, including column permutation π and
transformation to standard form.

List of objects. For completeness, we provide in the following a precise de-
scription of the lists. For the lists of level 0, we have

L
(0)
1 = {(P̄e

(0)
1 , e

(0)
1) ∈ Fn−k2 × Fk/22 × 0k/2 | ∆(e

(0)
1) = p1/2}, (8)

L
(0)
2 = {(P̄e

(0)
2 , (e

(0)
2) ∈ Fn−k2 × 0k/2 × Fk/22 | ∆(e

(0)
2) = p1/2},

L
(0)
3 = {(P̄e

(0)
3 , e

(0)
3) ∈ Fn−k2 × Fk/22 × 0k/2 | ∆(e

(0)
3) = p1/2},

L
(0)
4 = {(P̄e

(0)
4 + s̄, e

(0)
4) ∈ Fn−k2 × 0k/2 × Fk/22 | ∆(e

(0)
4) = p1/2}.

Thus, all lists on level 0 have size S0 =
(
k/2
p1/2

)
. Note that L

(0)
1 = L

(0)
3 . The lists

on level 1 are constructed via NN search on the first `1 coordinates such that we
obtain weight ω

(1)
1 on these coordinates. This yields

L
(1)
1 = {(P̄e

(1)
1 , e

(1)
1) ∈ Fn−k2 × Fk2 | ∆(e

(1)
1) = p1, ∆((P̄e

(1)
1)[1]) = ω

(1)
1 },

L
(1)
2 = {(P̄e

(1)
2 + s̄, e

(1)
2) ∈ Fn−k2 × Fk2 | ∆(e

(1)
2) = p1, ∆((P̄e

(1)
2 + s̄)[1]) = ω

(1)
1 }.

9

By the randomness of P̄ , both lists have expected size

S1 := E[|L(1)
i |] = S2

0 · Pr[weight ω
(1)
1 on the first `1 coordinates]

=

(
k/2

p1/2

)2

·

(`1
ω

(1)
1

)
2`1

for i = 1, 2.

Eventually, by an NN search on `2 bits for weight ω2 on the level-1 lists and
subsequent filtering for weight p on the last k coordinates and weight ω1 on the
first `1 bits, we obtain

L(2) = {(e′′, e′) ∈ Fk2 × Fn−k2 | ∆(e′) = p, e′′ = P̄e′ + s̄, ∆(e′′) = ω − p}.

Thus, any element (e′′, e′) of L(2) yields a solution (e′, e′′) of a Syndrome De-
coding Problem in standard form.

Algorithm 5: Depth-2-ISDSolve

Input : P̄ ∈ F(n−k)×k
2 , s̄ ∈ Fn−k2 , ω

Output : (e′, e′′) ∈ Fk2 × Fn−k2

Parameters: Optimize p, ω1, `1, p1, ω
(1)
1 .

Set ω2 = ω − p− ω1 and `2 = n− k − `1.

1 Create lists L
(0)
i , i = 1, 2, 3, 4 as defined in (8)

2 L
(1)
i ← NN-Search(L

(0)
2i−1, L

(0)
2i , 1, ω

(1)
1), i = 1, 2

. NN-Search(L1, L2, i, w) performs a NN search on (L1)[i], (L2)[i]

. with target weight w while keeping all other coordinates.

3 L(2) ← NN-Search(L
(1)
1 , L

(1)
2 , 2, ω2)

4 L(2) ← Filter(L(2), 1, ω1)) . Filter(L, i, w) filters L for elements

L(2) ← Filter(L(2), 3, p)) . with weight w on its projection in L[i].

if |L(2)| > 0 then return (e′, e′′) for some (e′′, e′) ∈ L(2)

else return ⊥

Notice that Alg. 5 can only succeed to output a solution (e′, e′′) 6= ⊥ if there
exists some e′ with weight p such that P̄e′ + s̄ = e′′ = (e′′[1], e

′′
[2]) with e′′[1], e

′′
[2]

having weights ω1 and ω2, respectively. This specific weight distribution has to
be induced by the column permutation π of Alg. 1.

Definition 4. Let e ∈ Fn2 with ∆(e) = ω and k, p ∈ N. Let `1, `2 ∈ N with
`1+`2 = n−k, and let ω1, ω2 ∈ N with ω1+ω2 = ω−p. We call a permutation π
good for e with respect to (p, ω1, `1, ω2, `2), if π(e) = (e′, e′′[1], e

′′
[2]) ∈ Fk2×F

`1
2 ×F

`2
2

with

∆(e′) = p, ∆(e′′[1]) = ω1 and ∆(e′′[2]) = ω2.

A random permutation π is good with probability

Pπ =

(
k
p

)(
`1
ω1

)(
`2
ω2

)(
n
ω

) .

10

It remains to show that on input a standard form Syndrome Decoding in-
stance (P̄ , s̄, ω) that stems from a good π, Alg. 5 constructs a non-empty list of
solutions L(2).

Lemma 1 (Correctness). Let e be a solution to the Syndrome Decoding Prob-
lem. Let π be good for e with respect to any fixed parameters (p, ω1, `1, ω2, `2)

as given by Definition 4. Whenever we run Alg. 5 with parameters p1, ω
(1)
1 ∈ N

satisfying (
p

p/2

)(
k − p

p1 − p/2

)
≥ 2`1(

ω1

ω1/2

)(`1−ω1

ω
(1)
1 −ω1/2

) , (9)

then on expectation we have (e′′, e′) ∈ L(2) for π(e) = (e′, e′′).

Thus, Lemma 1 shows that any (possibly unique) solution e to the Syndrom
Decoding Problem is constructed in our sub-routine of Alg. 5 at that point in
time when the full-fletched ISD Alg. 1 provides a good permutation π, under
the condition that (9) holds.

Before we prove Lemma 1, we would like to show that its statement is not

vacuous. Namely, there always exist p1, w
(1)
1 such that condition (9) holds.

Using the Binomial Theorem, we have(
n

n/2

)
<

n∑
i=0

(
n

i

)
= 2n < (n+ 1)

(
n

n/2

)
.

This implies
2n

n+ 1
<

(
n

n/2

)
< 2n.

Thus, up to a linear factor we can approximate
(
n
n/2

)
by 2n. Hence if we ignore

linear factors, condition (9) collapses for the setting p1 = k/2 and w
(1)
1 = `1/2

to
2p+k−p ≥ 2`1−ω1−(`1−ω1) ⇔ k ≥ 0,

which is trivially fulfilled. Thus, there always exist feasible parameters p, ω1, `1, p1, ω
(1)
1

that lead to a solution when running Alg. 5. Among these feasible parameters,
we will later minimize running time.

Proof (of Lemma 1). Let π(e) = (e′, e′′) be the solution of our Syndrome De-
coding problem in standard form. Since we have standard form, we conclude
that e′′ = P̄e′ + s̄ is fully determined by e′. Moreover, since we assume π to be
good, e′′ is of the correct form. Thus, it suffices to show that Alg. 5 constructs
the desired e′ ∈ Fk2 .

Notice that in our construction e′ = e
(1)
1 +e

(1)
2 , and in turn e

(1)
1 = e

(0)
1 +e

(0)
2

(and analogous for e
(1)
2).

Let us first argue that in our construction we obtain up to a polynomial

factor all
(
k
p1

)
vectors e

(1)
1 ∈ Fk2 on level 1. All vector sums e

(0)
1 + e

(0)
2 are by

11

the definition of e
(0)
1 , e

(0)
2 different. Up to polynomial factors (denoted by ≈),

we have by standard approximation via the binary entropy function
(
k/2
p1/2

)2
≈

22H(
p1
k)k/2 ≈

(
k
p1

)
vectors e

(1)
1 that we construct.

Now let us turn to the construction of e′ with weight p on level 2 via e
(1)
1 +e

(1)
2

with e
(1)
1 , e

(1)
2 having weight p1 ≥ p/2. We call (e

(1)
1 , e

(1)
2) a representation of e′

if e′ = e
(1)
1 + e

(1)
2 . Notice that our desired solution e′ has

R2 :=

(
p

p/2

)(
k − p

p1 − p/2

)
representations, (10)

since the set of 1-coordinates in e′ can be represented in
(
p
p/2

)
ways as 1 + 0 or

0 + 1, and the set of 0-coordinates in e′ can be represented in
(
k−p

p1−p/2
)

ways as
0 + 0 or 1 + 1.

From an algorithmic point of view, we do not care which of the R2 represen-
tations is eventually used for constructing e′. It is therefore sufficient that only 1

of these R2 representations is present in L
(1)
1 ×L

(1)
2 . Hence, for achieving minimal

run time we construct only a random 1/R2-fraction of all representations such

that on expectation one representation is present in L
(1)
1 × L

(1)
2 , and therefore

e′ appears in L(2).

For constructing only an 1/R2-fraction, we construct on level 1 only those

elements (P̄e
(1)
1 , e

(1)
1) ∈ L(1)

1 whose first `1 coordinates have weight ω
(1)
1 (analo-

gous for L
(1)
2). This means that we enforce ∆((P̄e

(1)
1)[1])) = ω

(1)
1 . Let E be the

event that there exists a representation of

e′′[1] = (P̄e
(1)
1 + P̄e

(1)
2 + s̄)[1] with ∆((P̄e

(1)
1)[1]) = ∆((P̄e

(1)
2 + s̄)[1]) = ω

(1)
1 .

By randomness of P̄ , we have

p2,2 := Pr[E] =

(
ω1

ω1/2

)(`1−ω1

ω
(1)
1 −ω1/2

)
2`1

,

since there are a total of 2`1 possible representations of the form e[1] = (P̄e
(1)
1 +

P̄e
(1)
2 + s̄)[1] out of which

(
ω1

ω1/2

)(`1−ω1

ω
(1)
1 −ω1/2

)
have the correct weight ω

(1)
1 for

(P̄e
(1)
1)[1], (P̄e

(1)
2 + s̄)[1] by the same argument as in Eq. (10).

Thus, the expected number of representations of e′ is R2 · p2,2. Hence on
expectation, we construct e′ in L(2) if R2 · p2,2 ≥ 1, which is equivalent to
condition (9). �

Complexity of the Depth-2 Algorithm. Our Alg. 5 starts with the con-

struction of lists L
(0)
i , i = 1, 2, 3, 4 (step 1) which takes time S0 =

(
k/2
p1/2

)
. By

Theorem 1 and Eq. (5), (6), the Nearest Neighbor search on (L
(0)
i)[1] (step 2)

12

takes time

T0 :=


2y(

log(S0)
`1

,
ω
(1)
1
`1

)`1 if log(S0)
`1

< 1−H(
ω

(1)
1

2`1
)

min{S2
0 ,max{

(`1
ω
(1)
1
2

)
· S0, S

2
0 ·

(
`1

ω
(1)
1

)

2`1
}} else

.

resulting in the lists L
(1)
1 , L

(1)
2 that have expected size S1 =

(
k/2
p1/2

)2
·
(

`1

ω
(1)
1

)

2`1
. These

lists are again combined via Nearest Neighbor search (step 3) in time

T1 :=

2y(
log(S1)

`2
,
ω2
`2

)`2 if log(S1)
`2

< 1−H(ω2

2`2
)

min{S2
1 ,max{

(
`2
ω2
2

)
· S1, S

2
1 ·

(`2
ω2

)
2`2
}} else

,

resulting in the final list L(2). The filtering (step 4) takes time S2 := |L(2)|. We

only need to store the lists L
(0)
i of size S0 as well as the lists L

(1)
1 , L

(1)
2 of size

S1. The total running time is

time T = max{T0, T1, S0, S2} = max{T0, T1},

since T0 ≥ S0 and T1 ≥ S2.

Total complexity of Decoding. Alg. 5 constructs a solution iff π is good
which happens according to Definition 4 with probability Pπ, resulting in a total
expected running time of T · P−1π for our full-fletched ISD algorithm.

In the following Theorem 2 we provide an upper bound for T for the impor-
tant setting of Full Distance (FD) Decoding, where we correct up to the distance
many errors, i.e. ω = d. This serves us a first benchmark for our algorithm.

In depth 2, we achieve T ≤ 20.0982n which already improves over the bound
20.102n of the original BJMM-algorithm [].

Theorem 2. Alg. 1 in combination with Alg. 5 solves Full Distance decoding
for random binary linear codes in expected time 20.0982n using 20.0717n space.

Proof. We achieve the worst-case running time at a rate of

k

n
= 0.43 with relative distance

ω

n
=
d

n
= H−1

(
1− k

n

)
= 0.1346.

For this rate, we minimize the running time by choosing the relative weights

p

n
= 0.03730,

p1
n

= 0.02645,

resulting in
R2 = 20.09254n

representations. Furthermore, we optimize

`1
n

= 0.1553 and
ω1

n
= 0.01970.

13

Using condition Eq.(9) from Lemma 1, we have

ω
(1)
1

n
= 0.01765.

The resulting list sizes are

S0 = 20.07168n, S1 = 20.06741n.

The running times are

T0 = 20.08483n, T1 = 20.08482n,

using May-Ozerov NN search. The probability for the correct weight distribution
satisfying Def. 4 is

Pπ = 2−0.01334n.

Thus the overall running time and space consumption are

T = 20.0982n and S = 20.0717n. ut

4 The Depth-m algorithm

Our algorithm with depth 2, as described in the previous Section 3, already illus-
trates the overall idea of approximate matching, but does not yet yield improved
running times compared to the BJMM algorithm. Therefore, we generalize to
arbitrary depth in this section, which is mostly straight-forward but still in-
cludes some subtleties how to proceed with approximate matchings - and their
respective weights - over many levels of a search tree.

Outline of depth-m algorithm. Let us start again with a high-level overview
for our algorithm with arbitrary depth m. The reader is advised to follow the
description via Fig. 4 which shows the algorithm for m = 3.

In the final list L
(m)
1 we now split the first n − k coordinates into m blocks

instead of only 2 blocks, i.e we have e′′ = (e′′[1], . . . , e
′′
[m]). Block e′′[i] has length

`i and weight ω
(m)
i . The parameters `i, ω

(m)
i are subject to optimization.

On level 0, there are a total of 2m lists L
(0)
1 , . . . , L

(0)
2m . The construction of

the 2m−1 lists L
(1)
1 , . . . , L

(1)
2m−1 on level 1 out of the level-0 lists is identical to the

construction in Section 3.
For the level-m lists, we have

L
(0)
j1

= {(P̄e
(0)
j1
, e

(0)
j1

) ∈ Fn−k2 × Fk/22 × 0k/2 | ∆(e
(0)
j1

) = p1/2}, (11)

L
(0)
j2

= {(P̄e
(0)
j2
, e

(0)
j2

) ∈ Fn−k2 × 0k/2 × Fk/22 | ∆(e
(0)
j2

) = p1/2},

L
(0)
2m = {(P̄e

(0)
2m + s̄, e

(0)
2m) ∈ Fn−k2 × 0k/2 × Fk/22 | ∆(e

(0)
2m) = p1/2}.

14

Fig. 4: Our algorithm for depth 3.

for j1 = 1, 3, . . . , 2m − 1 and j2 = 2, 4, . . . , 2m − 2. All lists on level 0 therefore
have size S0 =

(
k/2
p1/2

)
.

Starting from the level-0 lists, our algorithm combines two lists at a time
using NN search in a binary tree wise fashion until we reach the final list L(m).

On every level i = 1, . . . ,m − 1 we construct the first list L
(i)
1 via NN search

on the projected lists (L
(i−1)
1)[i], (L

(i−1)
2)[i] such that we obtain weight ω

(i)
i . We

furthermore filter for weight pi on the last k coordinates and a specific weight
distribution on the remaining coordinates such that we get

L
(i)
1 = {(P̄e

(i)
1 , e

(i)
1) ∈ Fn−k2 ×Fk2 | ∆(e

(i)
1) = pi , ∆((P̄e

(i)
1)[h]) = ω

(i)
h , h = 1, . . . , i}.

The other lists L
(i)
j , j = 2, . . . , 2i are created analogously. By randomness of

P̄ the projection (P̄e
(i)
1)[i] with weight ω

(i)
i is in our construction the sum

of two random vectors. For every h = 1, . . . , i − 1 the projection (P̄e
(i)
1)[h]

with weight ω
(i)
h is the sum of two random vectors of specific weight ω

(i−1)
h .

Fixing the first vector, there are
(`h
ω

(i−1)
h

)
possible second vectors out of which(ω

(i−1)
h

ω
(i−1)
h −ω(i)

h /2

)(`h−ω(i−1)
h

ω
(i)
h /2

)
yield the correct weight ω

(i)
h . Therefore, the expected

15

list sizes on layer i are upper bounded by

Si ≤ |{x ∈ Fk2 |∆(x) = pi}| · Pr
x∈F`i

2

[∆(x) = ω
(i)
i]

·
m−1∏
h=i+1

Pr
x,y∈F`h

2

[∆(x + y) = ω
(i)
h |∆(x) = ∆(y) = ω

(i+1)
h]

=

(
k

pi

)
·

(`i
ω

(i)
i

)
2`i

·
i−1∏
h=1

(ω
(i−1)
h

ω
(i−1)
h −ω(i)

h /2

)(`h−ω(i−1)
h

ω
(i)
h /2

)
(`h
ω

(i−1)
h

) .

Eventually, an NN search on `m = n − k −
∑m−1
i=1 `i bits for weight ω

(m)
m =

ω− pm−
∑m−1
i=1 ω

(m)
i , pm = p, on the level-(m− 1) lists and subsequent filtering

for weight pm on the last k coordinates and weight ω
(m)
i for every projection e′′[i],

i = 1, . . . ,m− 1, we obtain

L(m) = {(e′′, e′) ∈ Fn−k2 × Fk2 | ∆(e′) = pm, e
′′ = P̄e′ + s̄, ∆(e′′) = ω − pm}.

Thus, any element (e′′, e′) of L(m) yields a solution (e′, e′′) of a Syndrome De-
coding Problem in standard form.

More details can be found in Alg. 6, which has to be used again as an ISD-
Solve-subroutine in Alg. 1 to obtain a full fletched ISD algorithm.

Algorithm 6: Depth-m-ISDSolve

Input : P̄ ∈ F(n−k)×k
2 , s̄ ∈ Fn−k

2 , ω
Output : (e′, e′′) ∈ Fk

2 × Fn−k
2

Parameters: Optimize p1, . . . , pm, ω
(m)
1 , . . . , ω

(m)
m−1, `1, . . . , `m−1.

Compute ω
(m)
m = ω − pm −

∑m−1
i=1 ω

(m)
i , `m = n− k −

∑m−1
i=1 `i.

1 Define ω
(i)
i :=

ω
(i+1)
i
2

, i = 1, . . . ,m− 2.

Choose optimal ω
(i)
j such that condition (12) holds.

2 Create lists L
(0)
j , j = 1, . . . , 2m as defined in (11).

3 L
(1)
j ← NN-Search((L

(0)
2j−1)[1], (L

(0)
2j)[1], ω

(1)
1), j = 1, . . . , 2m−1

for i = 2, . . . ,m, j = 1, . . . , 2m−i do

4 L
(i)
j ← NN-Search((L

(i−1)
2j−1)[i], (L

(i−1)
2j)[i], ω

(i)
i)

5 L
(i)
j ← Filter(L

(i)
j , h, ω

(i)
h)), h = 1, . . . , i− 1

L
(i)
j ← Filter(L

(i)
j ,m+ 1, pi))

end

if |L(m)| > 0 then return (e′, e′′) for some (e′′, e′) ∈ L(m)

else return ⊥

Notice that Alg. 6 can only succeed to output a solution (e′, e′′) 6= ⊥ if
there exists some e′ with weight pm such that P̄e′+ s̄ = (e′′[1], . . . , e

′′
[m]) with e′′[i]

16

having weight ω
(m)
i for all i = 1, . . . ,m. This specific weight distribution has to

be induced by the column permutation π of Alg. 1.

Definition 5. Let e ∈ Fn2 with ∆(e) = ω and k, pm ∈ N. Let `1, . . . , `m ∈ N
with

∑m
i=1 `i = n− k, and ω

(m)
1 , . . . , ω

(m)
m ∈ N with

∑m
i=1 ω

(m)
i = ω − pm.

We call a permutation π good for e with respect to pm, (ω
(m)
i , `i)i=1,...,m, if

π(e) = (e′, e′′[1], . . . , e
′′
[m]) ∈ Fk2 × F`12 × · · · × F`m2 with

∆(e′) = pm, ∆(e′′[i]) = ω
(m)
i , i = 1, . . . ,m.

A random permutation π is good with probability

Pπ =

(
k
pm

)∏m
i=1

(`i
ω

(m)
i

)(
n
ω

) .

We now show that on input a standard form Syndrome Decoding instance
(P̄ , s̄, ω) that stems from a good π, Alg. 6 constructs a non-empty list of solutions
L(m).

Lemma 2 (Correctness). Let e be a solution to the Syndrome Decoding Prob-

lem. Let π be good for e with respect to any fixed parameters pm, ω
(m)
i , `i, i =

1, . . . ,m as given by Definition 5. Whenever we run Alg. 6 with parameters

pi, ω
(i)
j ∈ N, for j = 1, . . . , i, i = 1, . . . ,m− 1 satisfying

(
pi
pi/2

)(
k − pi

pi−1 − pi/2

)
≥

i−1∏
h=1

2`h(ω
(i)
h

ω
(i)
h /2

)(`h−ω(i)
h

ω
(i−1)
h −ω(i)

h /2

) , ∀i = 2, . . . ,m (12)

then on expectation we have (e′′, e′) ∈ L(m) for π(e) = (e′, e′′).

Analogous to Section 3, we can show that the setting pi = k/2 and w
(i)
h =

`h/2, for h = 1, . . . , i− 1, i = 2, . . . ,m, yields feasible parameters for Alg. 6 that
fulfill condition (12).

Proof (of Lemma 2). Let π(e) = (e′, e′′) be the solution of our Syndrome Decod-
ing problem in standard form. Similar to the reasoning in the proof of Lemma 1,
it suffices to show that Alg. 6 constructs the desired e′ ∈ Fk2 .

Notice that in our construction e′ = e
(m−1)
1 + e

(m−1)
2 , and in turn e

(i)
j =

e
(i−1)
2j−1 + e

(i−1)
2j , for all j = 1, . . . , 2i, i = 1 . . . ,m− 1.

Similar to the reasoning in the proof of Lemma 1, we obtain up to a polyno-

mial factor all
(
k
p1

)
vectors e

(1)
j ∈ Fk2 on level 1.

We now look at the construction of e
(i)
1 with weight pi on level i via e

(i−1)
1 +

e
(i−1)
2 with e

(i−1)
1 , e

(i−1)
2 having weight pi−1 ≥ pi/2. This goes analogously for

17

all vectors on this layer and all layers i = 2, . . . ,m− 1 as well as the final vector

e′ on level m. Notice that our desired vector e
(i)
1 has

Ri :=

(
pi
pi/2

)(
k − pi

pi−1 − pi/2

)
representations. (13)

It is sufficient that one of these representations is present in L
(i−1)
1 × L(i−1)

2 .
For constructing only a random 1/Ri-fraction of all representations, we com-

pute on level i − 1 only those elements (e
(i−1)
1 , P̄e

(i−1)
1) ∈ L

(i−1)
1) satisfying

∆((P̄e
(i−1)
1)[h])) = ω

(i−1)
h , h = 1, . . . , i− 1 (analogous for L

(i−1)
2). Let E be the

event that there exists a representation of

(P̄e
(i)
1)[h] = (P̄e

(i−1)
1 +P̄e

(i−1)
2)[h] with ∆((P̄e

(i−1)
1)[h]) = ∆((P̄e

(i−1)
2)[h]) = ω

(i−1)
h .

for h = 1, . . . , i− 1. By randomness of P̄ , we have

pi,m := Pr[E] =

i−1∏
h=1

(ω
(i)
h

ω
(i)
h /2

)(`h−ω(i)
h

ω
(i−1)
h −ω(i)

h /2

)
2`h

,

since there are a total of 2`h possible representations of the form (P̄e
(i)
1)[h] =

(P̄e
(i−1)
1 + P̄e

(i−1)
2)[h] out of which

(ω
(i)
h

ω
(i)
h /2

)(`h−ω(i)
h

ω
(i−1)
h −ω(i)

h /2

)
have the correct weight

ω
(i−1)
h for (P̄e

(i−1)
1)[h], (P̄e

(i−1)
2)[h] by the same argument as in Eq. (13).

Thus, the expected number of representations of e
(i)
1 is Ri · pi,m. Hence on

expectation, we construct e
(i)
1 in L

(i)
1 if Ri ·pi,m ≥ 1. Generalizing this condition

to all layers yields condition (12). �

Complexity of Alg. 6. The lists L
(0)
j , j = 1, . . . , 2m are created in time S0

(step 2). The NN search on those lists yields lists L
(1)
j , j = 1, . . . , 2m−1 (step 3).

Next, another NN search on the new lists returns lists L
(2)
j , j = 1, . . . , 2m−2

(step 4) which are subsequently filtered (step 5). These two steps of NN search
and filtering are repeated until only one list is left. By Theorem 1 and Eq. (5),
(6) the NN search layer on i = 0, . . . ,m− 1 takes time

Ti :=


2
y(

log(Si)

`i+1
,
ω
(i+1)
i+1
`i+1

)`i+1 if log(Si)
`i+1

< 1−H(
ω

(i+1)
i+1

2`i+1
)

min{S2
i ,max{

(`i+1

ω
(i+1)
i+1
2

)
· Si, S2

i ·
(

`i+1

ω
(i+1)
i+1

)

2`i+1
}} else

.

The filtering takes time Si on layer i = 2, . . . ,m − 1 and Sm := |L(m)| on layer
m.

On every level i of our search tree we consume time Ti and store lists of size
Si. Thus, we obtain

time T = max
i=1,...,m

{Ti}

using Ti ≥ Si for i = 0, . . . ,m− 1 and Tm−1 ≥ Sm.

18

Total complexity of Decoding. Alg. 6 constructs a solution iff π is good
which happens according to Definition 5 with probability Pπ, resulting in a total
expected running time of T · P−1π for our full-fletched ISD algorithm.

5 Results

Syndrome Decoding Problem. The best known complexity for Full Distance
decoding is currently 20.0953n using BJMM in depth 4 [BM17b], whereas for Half
Distance Decoding the best known bound is 20.0473n [MO15].

As stated in Theorem 3, we improve the bound for Full Distance Decoding to
20.885n. In the Half Distance Decoding setting, we achieve a small improvement
to 20.0465n.

Theorem 3. Alg. 1 in combination with Alg. 6 for m = 4 solves Full Distance
decoding for random binary linear codes in expected time 20.0885n using 20.0736n

space. Half Distance decoding is solved in exptected time 20.0465n using 20.0294n

space.

Proof. For Full Distance Decoding we achieve the maximal running time at code
rate

k

n
= 0.46 with relative distance

ω

n
=
d

n
= H−1

(
1− k

n

)
= 0.1237.

For this code rate, we minimize the running time choosing the relative weights

p1
n

= 0.00559,
p2
n

= 0.01073,
p3
n

= 0.02029,
p4
n

= 0.03460,

resulting in

R2 = 20.01357n, R3 = 20.02668n, R4 = 20.06028n

representations. Furthermore we set

`1
n

= 0.0366,
`2
n

= 0.0547,
`3
n

= 0.0911,

ω1

n
= 0.0066,

ω2

n
= 0.0099,

ω3

n
= 0.0114,

ω
(3)
1

n
= 0.0232.

Optimization showed that

ω
(1)
1 =

ω
(2)
1

2
, ω

(2)
2 =

ω
(3)
2

2

is a good choice which yields

ω
(1)
1

n
= 0.011515,

ω
(2)
1

n
= 0.023029,

19

ω
(2)
2

n
= 0.016676,

ω
(3)
2

n
= 0.033351,

ω
(3)
3

n
= 0.009993

using condition Eq.(12) from Lemma 2. The resulting list sizes are

S0 = 20.02179n, S1 = 20.03987n, S0.05939n
2 , S3 = 20.05975n.

The lists on layer 0 are combined with the NN search of Alg. 3 in time

T0 = 20.04359n,

as the condition for May-Ozerov is not satisfied and Alg. 4 is less efficient in this
case. On layer 1 we use Alg. 4 in time

T1 = 20.07356n,

which is also the space consumption for this step. On the remaining layers, we
use May-Ozerov NN search which yields

T2 = 20.07365n, T3 = 20.07359n.

The probability for the correct weight distribution satisfying Def. 5 is

Pπ = 2−0.01485n.

Thus the overall running time and space consumption is

T =
T2
Pπ

= 20.0885n and S = T1 = 20.0736n.

The complexity for Half Distance decoding can be shown analogously for a code
rate

k

n
= 0.47 with relative distance

ω

n
=
d

n
= H−1

(
1− k

n

)
= 0.06011

using the parameters

p1
n

= 0.002038,
p2
n

= 0.003855,
p3
n

= 0.007490,
p4
n

= 0.012200

`1
n

= 0.0125,
`2
n

= 0.0204,
`3
n

= 0.0350

ω1

n
= 0.0012,

ω2

n
= 0.0019,

ω1

n
= 0.0019

ω
(1)
1

n
= 0.003581,

ω
(2)
1

n
= 0.007161,

ω
(3)
1

n
= 0.0062

ω
(2)
2

n
= 0.005906,

ω
(3)
2

n
= 0.011812,

ω
(3)
3

n
= 0.002200.ut

20

Prange

BJMM D3

BJMM+NN D3

Our D3

Fig. 5: [Pra62], [BJMM12], [MO15] and our algorithm for varying code rates k
n .

While Theorem 3 states the run time for the worst-case rate, Fig. 5 illustrates
and compares the run time as a function of all constant rates k

n of our algorithm
to other decoding algorithms like Prange, BJMM and BJMM with NN-search,
called BJMM-NN.

We also provide the C-code for optimizing all these algorithms at
https://github.com/LeifBoth/Decoding-LPN.

Fig. 6 compares in more detail for varying depths m the complexity of our
algorithm to BJMM-NN, as analyzed in [BM17b]. Here, we consider FD, HD
and typical McEliece instances with k = 0.775 and ω = 0.02 [BLP08].

In the Full Distance (FD) setting, our algorithm is superior to BJMM-NN in
all depths m = 2, 3, 4. Already for depth m = 3, we beat the current FD record.
Moreover, the improvement of the exponent from 0.0953n to only 0.0885n is quite
significant. Another quite surprising benefit of our algorithm when compared to
BJMM-NN is its modest space consumption. We were not able to improve our
running times for m = 5, due to the large parameter space for optimization.
Whether further improvements are possible currently remains an open problem.

In the Half Distance (HD) setting, our algorithm also outperforms BJMM-
NN, slightly reducing the running time from 20.0473n to 20.0465n. Unfortunately
this improvement is not as significant as in the FD setting. The same happens
for McEliece instances with a typically small error weight way below HD, where
our improvement from 20.0350n to 20.0347n is only marginal.

21

https://github.com/LeifBoth/Decoding-LPN

We suspect that the strong dependency of our algorithm on the error-weight
is due to the heavy reliance on Nearest Neighbor search on every layer, which
needs a sufficiently large weight ω to show its strength. We will also see this
effect in the case of LPN.

[BM17b] Our algorithm
m log(T)/n log(S)/n log(T)/n log(S)/n
2 0.1003 0.0781 0.0982 0.0717
3 0.0967 0.0879 0.0926 0.0647 (FD)
4 0.0953 0.0915 0.0885 0.0736
2 0.0491 0.0309 0.0488 0.0290
3 0.0473 0.0363 0.0478 0.0290 (HD)
4 0.0473 0.0351 0.0465 0.0294
2 0.0362 0.0264 0.0360 0.0260
3 0.0350 0.0280 0.0360 0.0252 (McEliece)
4 0.0350 0.0280 0.0347 0.0251

Fig. 6: Running time and memory consumption of our algorithm compared to
the optimized BJMM-NN variant of [BM17b].

LPN Problem. Let us apply our algorithm to the LPNk,τ problem (Def. 3).
In LPNk,τ we have to solve a (n, k, ω)-decoding problem with expected weight
ω = τn and fixed k. However, we are free to choose the number of samples
n, and can therefore make the code rate k

n arbitrarily small. Thus, for every
fixed instance (k, τ) we minimize the running time T (n, k, τ) of our decoding
algorithm over all n. The optimal number of samples for our algorithm for the
cryptographically popular LPN512, 14

-instances is n ≈ 140.000.
In Fig. 7, we compare different decoding algorithms for directly attacking

LPN512, 14
, where we suppress polynomial overheads. Here BJMM-NN would take

2180 steps, our algorithm has complexity 2169.
It is however important to stress that stand-alone decoding is not the best

way to attack LPN instances. As shown by Esser, Kübler and May [EKM17] a
combination of the BKW algorithm [GJL14] and decoding algorithm is due to
its flexible memory requirements currently the best way to tackle LPN instances
in practice. Here, one first uses BKW to turn LPNk,τ instances into LPNk′,τ ′

instances with reduced dimension k′ < k at the cost of increased error τ ′ > τ .
Then in a second step, LPNk′,τ ′ is solved via decoding.

Since our decoding algorithm shows its strength for large errors τ ′, its seems
like a perfect choice in such a hybrid BKW-decoding algorithm. In a typical
attack on LPN512, 14

, like the ones described in [EKM17], BKW would turn
LPN512, 14

into LPN117, 255512
instances, which are subsequently decoded. The cal-

culations in Fig. 7 give us good indication that such instances with large error
τ ′ close to 1

2 can be much faster decoded by our new algorithm. However, the
full extent of our improvement has yet to be determined by real experiments.

22

LPN512, 1
4

LPN117, 255
512

log(T) log(S) log(T) log(S)

Prange [Pra62] 213 - 117 -
BJMM [BJMM12] 190 114 117 62
BJMM-NN [MO15] 180 122 117 64

Our algorithm 169 138 75 47

Fig. 7: Complexities of different decoding algorithms for LPN instances.

Fig. 8 shows the asymptotic behavior of our algorithm on LPN-instances for
varying weights τ , which also illustrates the strength of our algorithm in the
high error regime. Notice that the graph of our new algorithm’s complexity can
be very well approximated by a line, which yields the simple formula

TLPN (k, τ) = 21.3kτ .

Prange

BJMM+NN D3

Our D3

Fig. 8: Dependence on LPN error τ of [Pra62], [MO15] and our algorithm.

References

Ale03. Michael Alekhnovich. More on average case vs approximation complexity.
In 44th FOCS, pages 298–307. IEEE Computer Society Press, October 2003.

23

BJMM12. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. De-
coding random binary linear codes in 2n/20: How 1 + 1 = 0 improves infor-
mation set decoding. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 520–536. Springer, Hei-
delberg, April 2012.

BLP08. Daniel J Bernstein, Tanja Lange, and Christiane Peters. Attacking and
defending the mceliece cryptosystem. In International Workshop on Post-
Quantum Cryptography, pages 31–46. Springer, 2008.

BLP11. Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Smaller de-
coding exponents: Ball-collision decoding. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 743–760. Springer, Heidel-
berg, August 2011.

BM17a. Leif Both and Alexander May. Decoding linear codes with high error rate
and its impact for lpn security (full version). Cryptology ePrint Archive:
Report 2017/1139, 2017.

BM17b. Leif Both and Alexander May. Optimizing BJMM with nearest neighbors:
full decoding in 22n/21 and McEliece security. International Workshop on
Coding and Cryptography (WCC 2017), 2017.

Dum91. Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th
Joint Soviet-Swedish Int. Workshop Inform. Theory, pages 50–52, 1991.

EKM17. Andre Esser, Robert Kübler, and Alexander May. LPN decoded. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, vol-
ume 10402 of LNCS, pages 486–514. Springer, Heidelberg, August 2017.

GJL14. Qian Guo, Thomas Johansson, and Carl Löndahl. Solving LPN using cov-
ering codes. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 1–20. Springer, Heidelberg, December
2014.

McE78. RJ McEliece. A public-key system based on algebraic coding theory, 114-
116. deep space network progress report, 44. Jet Propulsion Laboratory,
California Institute of Technology, 1978.

MMT11. Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random
linear codes in Õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang, edi-
tors, ASIACRYPT 2011, volume 7073 of LNCS, pages 107–124. Springer,
Heidelberg, December 2011.

MO15. Alexander May and Ilya Ozerov. On computing nearest neighbors with
applications to decoding of binary linear codes. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,
pages 203–228. Springer, Heidelberg, April 2015.

NIS. NIST evaluation criteria. https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography. Accessed: 2017-11-24.
Pra62. Eugene Prange. The use of information sets in decoding cyclic codes. IRE

Transactions on Information Theory, 8(5):5–9, 1962.
Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and

cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

Ste88. Jacques Stern. A method for finding codewords of small weight. In In-
ternational Colloquium on Coding Theory and Applications, pages 106–113.
Springer, 1988.

24

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

	Decoding Linear Codes with High Error Rate and its Impact for LPN Security

