
Improvements to the Linear Operations of
LowMC: A Faster Picnic

Daniel Kales1, Léo Perrin2, Angela Promitzer3, Sebastian Ramacher1, and
Christian Rechberger1

1 Graz University of Technology, Austria, firstname.lastname@tugraz.at
2 INRIA, France, firstname.lastname@inria.fr

3 angela.promitzer@gmail.com

Abstract. Picnic is a practical approach to digital signatures where the
security is primarily based on the existence of a one-way function, and
the signature size strongly depends on the number of multiplications in
the curcuit describing that one-way function. The highly parameterizable
block cipher family LowMC has the most competitive properties with
respect to this metric and is hence a standard choice. In this paper, we
study various options for efficient implementations of LowMC in-depth.
First, we investigate optimizations of the round key computation of
LowMC independently of any implementation optimizations. By decom-
posing the round key computations based on the keys’ effect on the S-box
layer and general optimizations, we reduce runtime costs by up to a fac-
tor of 2 and furthermore reduce the size of the LowMC matrices by
around 45 % compared to the original Picnic implementation (CCS’17).
Second, we propose two modifications to the reamining matrix mulit-
plication in LowMC’s linear layer. The first modification decomposes
the multiplication into parts depending on the their effect on the S-box
layer. While this requires the linear layer matrices to have an invertible
submatrix, it reduces the runtime and memory costs significantly, both
by up to a factor of 4 for instances used by Picnic and up to a factor of
25 for LowMC instances with only one S-box. The second modification
proposes a Feistel structure using smaller matrices completely replacing
the remaining large matrix multiplication in LowMC’s linear layer. With
this approach, we achieve an operation count logarithmic in the block
size but more importantly, improve over Picnic’s matrix multiplication
by 60 % while retaining a constant-time algorithm. Furthermore, this
technique also enables us to reduce the memory requirements for storing
LowMC matrices by 60 %.

Keywords: LowMC · lightweight block cipher · Picnic · post-quantum
digital signatures · efficient implementation

1 Introduction

Lightweight cryptographic primitives that only require a low number of multipli-
cations have many applications ranging from reducing costs for countermeasures



against side-channel attacks [DPVR00, GLSV14], over improving homomorphic
encryption schemes [ARS+15, MJSC16, CCF+16, DSES14, NLV11] and mul-
tiparty computation [GRR+16, RSS17], to SNARKs [AGR+16]. Additionally,
they also turned out to be useful to efficiently implement and reduce signa-
ture sizes of post-quantum signature schemes based on Σ-protocols [CDG+17a]
without requiring any structured hardness assumptions. The latter in particu-
lar builds upon LowMC [ARS+15, ARS+16], a highly parameterizable block
cipher with a low number of multiplications. Using LowMC in this context en-
ables further optimizations with respect to the signature size since the LowMC
parameters can be chosen to suit scenarios where an adversary can only ob-
serve one plaintext-ciphertext pair. Recently, the combination zero-knowledge
proofs and instantiations of symmetric-key primitives using LowMC also re-
sulted in the first privacy-preserving signature schemes without requiring struc-
tured hardness assumptions. Those constructions include post-quantum ring sig-
nature schemes [DRS18] and group signature schemes [BEF18].

We focus on the use of LowMC in the post-quantum digital signature
scheme Picnic [CDG+17a, CDG+17b] which is based on zero-knowledge proofs
of knowledge of pre-images of one-way functions. There, the one-way functions
are instantiated using LowMC. Picnic relies on a proof system called ZKB++,
which is based on the “MPC-in-the-head” [IKOS07] paradigm. To compute
proofs in ZKB++, the circuit of the one-way function is decomposed into three
branches where XOR gates and AND gates involving constants can be computed
locally, but AND gates require communication between the branches. Thus the
signature size depends on the total number of AND gates required the describe
the one-way function as a circuit.

From the use of LowMC in Picnic, diametral constraints emerge: First, the
total number of AND gates, which is a multiple of the number of rounds and
the number of S-boxes, directly relates to the signature size and is thus desired
to be kept small. Second, as one decreases the number of S-boxes, the number
of rounds increases which leads to a three-fold increase in the number of linear
layer operations, i.e. additional XORs. Thus LowMC instances used in Picnic
were selected to provide a trade-off between runtime and signature size. While
applications using plain LowMC could save half of the linear operations by
simply pre-computing round keys for multiple encryptions and decryptions, in
Picnic the key is shared into fresh secret shares before each round of the proof
system. Thus simple round key pre-computation cannot be applied to this use
case. Any improvements to LowMC that reduces the number of XORs required
to evaluate the linear layer thus allows one to target smaller signature sizes
without sacrificing performance.

In this work, we thus follow the direction of optimizing the number of XOR
gates which influences the overall performance of LowMC. This goal can be
achieved by finding a more efficient description of the LowMC encryption al-
gorithm. Asking for an alternative description or finding implementation tricks
which allow to improve the overall performance or make the use of the cipher
viable under certain constraints in the first place, is a natural question to ask.

2



This approach follows the line of work during and after the AES and others
competitions, where many authors worked on fast software implementations
[AL00, BS08], fast hardware implementations [SME16] but also on alternative
and more efficient descriptions of the algorithm [BBF+02, BB02].

The large number of XOR gates in LowMC arises from the two matrix multi-
plications involved in each round, where one is applied to compute the round key,
and the other is applied to the state. Consequently, any improvement to matrix-
vector multiplication algorithms directly applies to LowMC. Fast matrix-vector
multiplication over binary fields is especially interesting as lightweight cipher de-
signs such as LowMC and Rasta [DEG+18] trade multiplicative complexity for
large linear layers. Despite various improvements over the näıve matrix-vector
multiplication algorithm in last decades [ADKF70, Bar06, Ber09], a runtime of
O (nm/log(m)) for n × m matrices is currently the asymptotically best possible
option. However, with the advent of single instruction, multiple data (SIMD)
instruction sets the constant factors can be significantly decreased due the fact
that 128, 256 or even 512 bits can be processed simultaneously. As an alternative
to directly optimizing matrix-vector multiplication algorithms, we investigate
specialized Feistel networks, which behave similarly to a matrix-vector multi-
plication. The exploration of Feistel Networks is as old as block ciphers itself,
e.g., see [NPV17] for a recent overview. Following the line of work of Suzaki and
Minematsu [SM10], we present a new Feistel network for an arbitrary number
of branches with fast diffusion.

1.1 Contribution

The contributions of this work can be summarized as follows:

– We propose an alternative description of LowMC with a new structure to
compute round keys and apply round constants. The idea here is to split the
computation into linear and non-linear parts. This change allows us to re-
place all round key computations only affecting the linear part by exactly one
matrix multiplication. The remaining non-linear parts can then be computed
by much smaller round key matrices. The addition of the round constants
can also be considered as constants applied to the non-linear parts and linear
parts, making it possible to move all constants applied to the linear part to
the beginning. This new description of LowMC allows us to greatly reduce
the size of the LowMC constants. In the signature scheme use-case, this
optimization leads to performance improvements which range from a factor
of 1.5 for smaller block sizes to a factor of 2 for larger block sizes. Addition-
ally, this optimization is independent of implementation optimizations of the
matrix multiplication.

– We present an optimization to the matrix multiplication in the linear layer
of LowMC, where we employ similar techniques to split the computation
into linear and non-linear parts4. Again, this changes allow us to reduce the

4 Independently, Dinur proposed and analyzed a similar optimization [Din18].

3



overall number of multiplications by moving computations involving linear
parts of the state to the beginning of the encryption procedure. These opti-
mizations reduce the number of operations for the linear layer computations
as well as the memory requirements from r ·n2 to r ·(n2−(n−3·m)2)+n2, for
instances for LowMC with r rounds, blocksize n and m S-boxes. This opti-
mization is especially impactful for instances with low numbers of S-boxes.
We evaluate these improvements in the signature scheme use-case and re-
port significant performance improvements as the optimizations reduce the
runtime to a quarter of the original runtime.

– We present Fibonacci Feistel Networks (FFNs), a variant of Generalized Feis-
tel Networks, which provide very fast diffusion. Instantiating the network
with regular matrices as permutations we obtain a compact representation
of a larger matrix multiplication. The obtained equivalent of a matrix multi-
plication algorithm with logarithmic complexity can then be used to replace
the linear layer of LowMC. This technique reduces the size of the LowMC
matrices again by up to 60 %.

Albeit we focus on the Picnic use-case in the practical part of the work, both
contributions will also positively affect other use-cases of LowMC. The alter-
native description is likely to be useful for cryptanalysis purposes as well.

2 Preliminaries

In this section we briefly recall the core components of Picnic: LowMC and
the (2, 3)-decomposition of cuircuits.

2.1 LowMC

LowMC [ARS+15, ARS+16] is a very parameterizable symmetric encryption
scheme design enabling instantiation with low AND depth and low multiplicative
complexity. Given any block size, a choice for the number of S-boxes per round,
and security expectations in terms of time and data complexity, instantiations
can be found minimizing the AND depth, the number of ANDs, or the number of
ANDs per encrypted bit. Now let n be the block size,m be the number of S-boxes,
k the key size, and r the number of rounds, we choose round constants Ci←R Fn2
for i ∈ [1, r], full rank matrices Ki←R Fn×k2 and regular matrices Li←R Fn×n2

independently during the instance generation and keep them fixed. Keys for
LowMC are generated by sampling from Fk2 uniformly at random. LowMC
consists of key whitening in the beginning and multiple rounds composed of an
S-box layer, a linear layer, addition with constants and addition of the round
key. Algorithm 1 gives a full description of the encryption algorithm.

To reduce the multiplicative complexity, the number of S-boxes applied in
parallel can be reduced, leaving part of the substitution layer as the identity

4



Algorithm 1 LowMC encryption for key matrices Ki ∈ Fn×k2 for i ∈ [0, r],
linear layer matrices Li ∈ Fn×n2 and round constants Ci ∈ Fn2 for i ∈ [1, r].

Require: plaintext p ∈ Fn
2 and key y ∈ Fk

2

s← K0 · y + p
for i ∈ [1, r] do

s← SBOX(s)
s← Li · s
s← s+ Ci +Ki · y

end for
return s

mapping. We also note that this choice has little to no influence on the efficiency
of the S-box layer since a bit-sliced implementation can process all at once5.

2.2 (2, 3)-Decomposition of Circuits in Picnic

Circuit decomposition is a protocol for jointly computing a circuit, similar to
an MPC protocol but with higher efficiency. In a (2, 3)-decomposition there are
three players and the protocol has 2-privacy, i.e., it remains secure even if two
of the three players are corrupted. We discuss some definitions from [GMO16]
and the instantiation in Picnic [CDG+17a].

Definition 1 ((2,3)-decomposition). Let f be a function that is computed
by an n-gate circuit φ such that f(x) = φ(x) = y. Let k1, k2, and k3 be tapes of
length κ chosen uniformly at random from {0, 1}κ corresponding to players P1, P2

and P3, respectively. The tuple of algorithms (Share,Update,Output,Reconstruct)
are defined as follows:

Share(x, k1, k2, k3) : On input of the secret value x, outputs the initial views for
each player containing the secret share xi of x.

Update(view
(j)
i , view

(j)
i+1, ki, ki+1) : On input of the views view

(j)
i , view

(j)
i+1 and ran-

dom tapes ki, ki+1, compute wire values for the next gate and returns the

updated view view
(j+1)
i .

Output(view
(n)
i ) : On input of the final view view

(n)
i , returns the output share yi.

Reconstruct(y1, y2, y3) : On input of output shares yi, reconstructs and returns y.

Correctness requires that reconstructing a (2, 3)-decomposed evaluation of a cir-
cuit φ yields the same value as directly evaluating φ on the input value. The
2-privacy property requires that revealing the values from two shares reveals
nothing about the input value.

The Σ-protocol ZKB++ constructs the (2, 3)-decomposition of a circuit as
follows: Let R be an arbitrary finite ring and φ a function such that φ : Rm → R`

5 Given m S-boxes, the bit-sliced implementation can be implemented using 3 ·m bit
ANDs, ORs and shifts. Thus, as long as 3 ·m bit fit into a platform’s registers, the
m-fold S-box can be implemented apart from 4 masking values without any overhead
compared to a single S-box.

5



can be expressed by an n-gate arithmetic circuit over the ring using addition (re-
spectively multiplications) by constants, and binary addition and binary multi-
plication gates. A (2, 3)-decomposition of φ is then given by:

Share(x, k1, k2, k3) : Samples random x1, x2 ∈ Rm from k1 and k2 and computes
x3 such that x1 + x2 + x3 = x. Returns views containing x1, x2, x3.

Update
(j)
i (view

(j)
i , view

(j)
i+1, ki, ki+1) : Computes Pi’s view of the output wire of

gate gj and appends it to the view. For the k-th wire wk where w
(i)
k denotes

Pi’s view, the update operation is defined as follows:

Addition by constant (wb = wa + c): w
(i)
b = w

(i)
a + c if i = 1 and w

(i)
b =

w
(i)
a otherwise.

Multiplication by constant (wb = c · wa): w(i)
b = c · w(i)

a

Binary addition (wc = wa + wb): w
(i)
c = w

(i)
a + w

(i)
b

Binary multiplication (wc = wa · wb): w(i)
c = w

(i)
a · w(i)

b + w
(i+1)
a · w(i)

b +

w
(i)
a ·w(i+1)

b +Ri(c)−Ri+1(c) where Ri(c) is the c-th output of a pseudo-
random generator seeded with ki.

Outputi(view
(n)
i ) : Return the ` output wires stored in the view view

(n)
i .

Reconstruct(y1, y2, y3) : Computes y = y1 + y2 + y3 and returns y.

Note that Pi can compute all gate types with the exception of binary multipli-
cation gates locally as the latter requires inputs from Pi+1. In other words, only
outputs of binary multiplication gates need to be serialized, and thus the view
size and consequentially the signature size of Picnic depend on the size of the
ring R and the number of multiplication gates.

3 Optimizing Linear Operations

From the use of LowMC in Picnic, we obtain some constraints on the optimiza-
tions we are allowed to perform. The S-box serves as a synchronization point on
the first 3 ·m bits, i.e., the bits that are actually touched by the S-box. On the
other n− 3 ·m bits the S-box is simply the identity map, and their actual values
do not matter for S-box evaluations. Thus we have to ensure that the evaluation
of all AND gates stays invariant under all our optimizations. Secondly, we have
to assume that the secret key – or more precisely the shares representing it –
changes on every encryption.

3.1 Splitting the Round Key Computation and Round Constant
Addition

We start with the round key computation. Since the secret key is freshly shared
for each LowMC evaluation in Picnic, the round keys cannot be pre-computed
once during initialization. However, we can observe that due to the structure of
the S-box layer for n− 3 ·m bits of the round key, which coincide with the part
of the state where the S-box acts as identity map, it does not matter whether

6



those bits are added to the state before or after the application of the S-box.
Due to the linear nature of all operations involved in the computation after the
S-box, we can simply change the order of adding the round key and multiplying
the state with Li. We modify each round as follows:

– Modify s← Li · s+Ki · y + Ci to s← Li · (L−1
i ·Ki · y + s) + Ci.

– Now split L−1
i ·Ki · y into the lower 3 ·m bits (the “non-linear part”) and

the upper n − 3 · m bits (the “linear part”) and move the addition of the
upper n− 3 ·m bits before the S-box layer.

In the following we denote by ρji : Fn2 → Fj−i+1
2 the map sending n-dimensional

vectors to a vector consisting of the i to j-th coordinates, i.e. ρji (v1, . . . , vn) 7→
(vi, . . . , vj), to simplify some notation when referring to the linear and non-linear
part. In particular, we use ρL = ρn3·m+1 to identify the linear part and ρN = ρ3·m1

for the non-linear part, respectively.
Fig. 1 now demonstrates one round of LowMC with the above modifications.

Observe that this modification does not change the output of LowMC. Addi-
tionally, we can continue moving the addition of the linear part to the previous
round until all those additions have been moved at the start of the algorithm.

si

SBOX

· Li

Ci

Ki · y

si+1

si

ρL(L−1
i ·Ki · y)

SBOX

ρN (L−1
i ·Ki · y)

· Li

Ci

si+1

Fig. 1: One round of LowMC before (left) and after (right) the splitting of the
round key addition.

After iterating this procedure to move all linear parts of the round key before
the round, we end up with all additions of the linear parts of the round key before

7



the first round and are left with a reduced round key of 3 · m bits per round.

For the computation of the linear and non-linear part, the matrix L−1
i has to be

computed for each LowMC round i. By L−1
i we denote the inverse of the linear

layer matrix Li with the first 3 ·m rows of this inverse set to 0.
The linear part can be computed by calculating the matrix PL defined as

PL = L−1
1 ·K1 +

r∑
j=2

(
j∏

k=1

L−1
k

)
·Kj

and then multiplying it with the secret key y and adding the result to the initial
state s0. The matrix PL can be precomputed from the LowMC matrices before
any encryption and thus only the matrix multiplication with the secret key y and
the addition to the initial state s0 is required at the beginning of the encryption.
For the non-linear part we can define a similar matrix

PN,i = L−1
i ·Ki +

r∑
j=i+1

(
j∏
k=i

L−1
k

)
·Kj

for round i. This matrix PN,i of dimension (n × k) is then multiplied with the
secret key y and the first 3 ·m bits of this result are added to the state in the cor-
responding LowMC round after applying the S-box function to the state. How-
ever, this still implies that this multiplication PN,i · y is done in every LowMC
round, which can be avoided by using the following structure. As only 3 ·m bits
of PN,i · y are used, we can combine the first 3 · m rows of the matrix PN,i,

denoted as PN,i
3·m

, of all rounds i to one matrix PN of dimension (3 ·m · r× k)
given by

PN =


PN,i

3·m

...

PN,r
3·m


︸ ︷︷ ︸

k cols

}
3 ·m rows}
3 ·m rows

This matrix is then multiplied with the secret key y before the first round, which
results in a 3 ·m · r dimensional vector v. Now, the 3 ·m bits starting from bit
1 + 3 ·m · (i − 1) of the vector v are added to the non-linear part of the state
in round i. So, although the non-linear part remains in each LowMC round,
the computation effort is reduced from a (n × k) matrix-vector multiplication
and a n-bit XOR to a 3 · m-bit XOR in each round. The pre-computation of
PL and PN,i can be done independently of the secret key y during the LowMC
instance generation. The multiplications PL · y and PN · y have to be done once
at the start of the encryption algorithm with the specific shares of y for this
encryption. The same procedure can also be applied to the constants, leading to
constant vectoris CL and CN computed in the same way as PL and PN with Ki

replaced by Ci. Algorithm 2 depicts LowMC encryption with split round key
and constants.

8



Algorithm 2 LowMC encryption with the split round key for key matrix
K0 ∈ Fn×k2 , linear layer matrices Li ∈ Fn×n2 for i ∈ [1, r], and precomputed
matrices PL and PN and vectors CL and CN .

Require: plaintext p ∈ Fn
2 and key y ∈ Fk

2

v ← PN · y + CN

s← (K0 + PL) · y + p+ CL

for i ∈ [1, r] do
s← SBOX(s)
s← ρ3·m·i

1+3·m·(i−1)(v) + s
s← Li · s

end for
return s

The sizes of matrices for the unmodified LowMC algorithm and LowMC
with the reduced round key computation and constant addition (RRKC) are
presented in Table 1. From the memory required to store the matrices, it can
be seen that LowMC with RRKC reduces the memory consumption for the
round keys from r+ 1 (n× k) matrices to a (n× k) and a (3 ·m · r× k) matrix.
Additionally, the r n dimensional vectors used as round constants are now stored
as a n and a 3 ·m ·r dimensional vectors. These memory savings come at the cost
of computing an additional 3 ·m · r dimensional vector to store the non-linear
part for each specific encryption.

LowMC LowMC with RRKC

Linear layer r (n× n) r (n× n)
Round key matrices r + 1 (n× k) 1 (n× k) (linear part)

1 (3 ·m · r × k) (non-linear part)
Round constants r (n) 1 (3 ·m · r)

1 (n)
Additional memory 1 (3 ·m · r) (vector v)

Table 1: Matrices for general LowMC and LowMC with RRKC.

3.2 Reducing Linear Layer Computation

A similar modification can be applied to the linear layer matrices, where a sub-
stantial part of the linear layer computation can be moved to the first round.
We take the linear layer matrix Li and split it into 4 submatrices depending on
the number of S-boxes in the linear layer:

9



Ni Ai

Bi Li

{3 ·m columns {n− 3 ·m columns

}
3 ·m rows}
n− 3 ·m rows

Li =

We also split the state into the non-linear part sN (3 ·m bits) and the linear
part sL (n − 3 · m bits). We rewrite the standard linear layer multiplication
si+1 = Li · si into this submatrix form:si+1

N

si+1
L

 =

Ni Ai
Bi Li

 ·
siN
siL

 =

Ni · siN +Ai · siL
Bi · siN + Li · siL

 .
With the precondition that the submatrix Li is invertible, we can now move

the multiplication by Li before the other multiplications as follows:si+1
N

si+1
L

 =

Ni Ai · L−1
i

Bi I

 ·
 siN

Li · siL

 =

Ni · siN +Ai · siL
Bi · siN + Li · siL

 .
This process is depicted in Fig. 2. While this does not reduce the overall

multiplications for a single round of LowMC, we use the same technique as in
the splitting of the round keys and move the multiplication by Li even futher
back to the beginning of the previous round. We can repeat this process for
multiple rounds, allowing us to group all multiplications by Li together in a
single matrix Z0, which is precomputed and multiplied with the linear part of
the state before the first round. However, we need to take care to correct the
introduced differences that are a result of moving the matrices Li by modifying
the submatrices Ai and Bi accordingly. We create the new, modified linear-layer
matrices Zi as follows:

Zi =

 Ni Ai ·
∏r
k=i L

−1
k(∏r−(i+1)

k=0 Lr−k
)
· Bi I

 ,
and combine all multiplications by Li into a new matrix Z0:

Z0 =

I 0

0
∏r−1
k=0 Lr−k

 .
This reduced linear layer matrices Zi allow us to decrease the size of the

matrix multiplications in the algorithm, since the n−3 ·m×n−3 ·m submatrix

10



si

ρL(L−1
i ·Ki · y)

SBOX

ρN (L−1
i ·Ki · y)

· Li

si+1

si

ρL(L−1
i ·Ki · y)

· Li

SBOX

ρN (L−1
i ·Ki · y)

·Ni

· Ai · L−1
i

·Bi

si+1

Fig. 2: One round of LowMC before (left) and after (right) the splitting of the
linear layer computation.

of Zi is now the identity matrix. To be precise, we reduce the multiplications
from a n × n · n × 1 matrix-vector multiplication to a n × 3 · m · 3 · m × 1
and a 3 ·m × (n − 3 ·m) · (n − 3 ·m) × 1 matrix-vector multiplication. These
improvements are especially noticable when m is very small, meaning we have
a small amount of S-boxes per round. These instances are also the ones with
the lowest number of AND gates, and therefore the preferred instances for many
use-cases. Algorithm 3 depicts LowMC encryption with reduced linear-layer
matrices.

One downside to this approach is that it is not compatible with standard
LowMC, as the generation of the random matrices does not ensure that the
submatrix Li is indeed invertible. We can still try to apply this approach to
standard LowMC, using the standard Li matricies if Li is not invertible, and
use this optimization for any consecutive rounds where Li is invertible. However,
since the chance of a random Li being invertible is ≈ 1

3 , the potential for opti-
mization is pretty small. We therefore propose a new variant of LowMC, called
LowMC-I, with the only difference being that for a given instance with statesize
n, keysize k, number of S-boxes m and rounds r, we ensure while generating the
matrices Li that the submatrix Li of size (n−3 ·m)×(n−3 ·m) is invertible. We
however note that the matrices are still sampled at random where the sampling
algorithm gains an additional rejection condition in addition to the matrices be-
ing invertible. Thus the modification is still compatible with exsting LowMC

11



Algorithm 3 LowMC encryption with the split round key for key matrix
K0 ∈ Fn×k2 , reduced linear layer matrices Zi ∈ Fn×n2 i ∈ [1, r], precomputed
matrices PL, Z0 and PN , and precomputed vectors CL and CN .

Require: plaintext p ∈ Fn
2 and key y ∈ Fk

2

v ← PN · y + CN

s← (K0 + PL) · y + p+ CL

s← Z0 · s
for i ∈ [1, r] do

s← SBOX(s)
s← ρ3·m·i

1+3·m·(i−1)(v) + s
s← Zi · s

end for
return s

security analysis. The additional rejection condition increases the complexity of
the sampling algorithm at most by a constant factor of about 3.

LowMC LowMC with RRKC LowMC with RLL

Linear layer r (n× n) r (n× n) r (n× 3 ·m)
r (3 ·m× (n− 3 ·m))
1 ((n− 3 ·m)× (n− 3 ·m))

Round key matrices r + 1 (n× k) 1 (n× k) 1 (n× k)
1 (3 ·m · r × k) 1 (3 ·m · r × k)

Round constants r (1× n) 1 (3 ·m · r) 1 (3 ·m · r)
1 (n) 1 (n)

Additional memory 1 (3 ·m · r × 1) 1 (3 ·m · r × 1)

Table 2: Matrices for general LowMC, LowMC with RRKC and LowMC with
RRKC and RLL.

3.3 Fibonacci Feistel Network

Given that the cost of storing a binary matrix operating on n bits is proportional
to n2, it is possible to decrease the cost of a n × n matrix when it can be
implemented using several m × m matrices with m < n. In this section, we
describe a method for building large binary matrices using several smaller ones
while still ensuring that every output bit may depend on every input bit.

Our main idea is to borrow techniques from block cipher design, in particular
from Generalized Feistel Networks (GFN). In fact, we propose a new variant
of this structure, called Fibonacci Feistel Network (FFN), which provides very
fast diffusion. As its name indicates, this structure uses the Fibonaci sequence

12



{φi}i≥0 defined by the well-known induction formula:{
φ0 = 0, φ1 = 1

φi+1 = φi + φi−1,

so that φ0, φ1, φ2, φ3, φ4, φ5 = 0, 1, 1, 2, 3, 5. The smallest integer i such that
φi > b is denoted i = Λφ(b). For example, φ8 = 21 and φ9 = 34, so Λφ(32) = 9.

The Fibonacci-Feistel Structure. A FFN operates on 2× b×w bits, where
w ≥ 4 and b ≥ 2, using R rounds. The round functions are different in each round
although they always use the same overall structure: each round is a classical
2-branched Feistel round where the Feistel functions maps b × w bits to b × w
bits. The Feistel function used in round i, denoted Fi, works as follows:

1. the state is divided into b branches of w bits denotes as B0, . . . , Bb−1,
2. each branch goes through a w-bit L-Box, that is, a linear function mapping
w bits to w bits, and

3. the branches are rotated by φi, so that Bj ← Bj−φi (mod b).

Alternatively, let us denote the 2× b×w-bit internal state at round i as Xi and
its w-bit branch with index j as Xi

j . The full round function works as follows,
for j < b:

Xi+1
j+b = Xi

j , X
i+1
j = Xi

j+b ⊕ Lij−φi
(
Xi
j−φi

)
,

where j − φi is taken modulo b and where Lij is a w-bit L-Box. An example is
given in Fig. 4 in Appendix A.

Diffusion in a FFN. Diffusion is very fast in such a structure. The idea of
using something more sophisticated than a constant rotation for mixing the
branches is not new. In [SM10], Minematsu and Suzaki proposed using complex
permutations which significantly improve diffusion: for a structure operating on
k branches, only 2 log2(k) rounds are needed to achieve full diffusion while a
näıve constant rotation would need k rounds. Furthermore, the gain increases
as the number of rounds increases, making such methods even more appealing
on larger blocks. It was for example used to design the lightweight block cipher
Twine [SMMK12].

Unlike such GFN, the FFN needs a different permutation in each round.
However, it works for any even number of branches, we are not restricted to
powers of two. The permutations used are also much simpler and, as we explain
later, they can lend themselves well to constant-time software implementations
using only ANDs, XORs and rotations.

In what follows, we present two lemmas which quantify diffusion inside a FFN
more formally. Lemma 1 describes how a single word diffuses through several
rounds of FFN, while Lemma 2 highlights some invariant properties of such a
network. These two are put together in Corollary 1 to quantify how many rounds
are needed to have some form of full diffusion.

13



In the remainder of this section, we denote with Xi
j the word with index j

at the input of round i and we say that x influences y if the expression of y
involves the variable x. Our definition of diffusion is borrowed from [SM10]. In
particular, we consider that we have achieved “full diffusion” when any output
word is influenced by all input words.

Lemma 1. Consider a FFN with i rounds, where φi+1 ≤ b. Then the word X0
0

influences all words Xi
j with indices 0 ≤ j < φi+1 or b ≤ j < b+ φi.

The process behind Lemma 1 is illustrated in Fig. 3. A formal proof based on
this intuition is provided below.

Proof. We proceed by induction. Before round 0, i.e. at the beginning of the
application of the FFN, only X0

0 depends on X0
0 . After round 0 (where the

Feistel function contains a rotation by φ0 = 0), only X1
0 and X1

b depend on X0
0 ,

so that X1
j depends on X0

0 if and only if 0 ≤ j < φ2 or b ≤ j < b+ φ1.

Suppose now that Xi
j depends on X0

0 if and only if 0 ≤ j < φi or b ≤ j <

b+ φi−1. The round function with index i maps Xi to Xi+1 such that{
Xi+1
j = Xi

j+b ⊕ Lij−φi
(
Xi
j−φi

)
if j < b,

Xi+1
j = Xi

j−b if j ≥ b.

If j ≥ b, then Xi+1
j = Xi

j−b which, by the induction hypothesis, depends on X0
0

if and only if 0 ≤ j − b < φi, which is equivalent to b ≤ j < b + φi. Thus, the
lemma holds in this case.

If j < b, then Xi+1
j depends on both Xi

b+j and Xi
j−φi . By the induction

hypothesis, the first depends on X0
0 if and only if b ≤ b + j < b + φi, which is

equivalent to 0 ≤ j < φi. The second depends on X0
0 if and only if 0 ≤ j − φi <

φi+1 or, equivalently, φi ≤ j < φi + φi+1 = φi+2. Thus, for any j such that
0 ≤ j < φi+2, Xi+1

j depends on X0
0 . This dependence occurs via Xi

b+j for j < φi
and via Xi

j−φi for φi ≤ j < φi+2. We deduce that the lemma also holds in this
case. ut

The propagation of a word across several rounds is illustrated in Fig. 4 in
Appendix A. If we leave the details of the L-Boxes aside, a FFN is invariant
under rotation of the halves of the state. This is formalized by the following
lemma.

Lemma 2. Let Rk be a permutation of {0, ..., 2b− 1} such that

Rk(j) =

{
(j + k) mod b if j < b,

b+ ((j − b+ k) mod b) if j ≥ b,

meaning that applying Rk to the index of the branches of FFN rotates separately
the left and right branches by k. Let P be one round of FFN where all L-Boxes
are the same and let (y0, ..., y2b−1) = P (x0, ..., x2b−1). Then the following always
holds:

P (xRk(0), ...xRk(2b−1)) = (yRk(0), ...yRk(2b−1)).

14



φi+1 φi

φi φi + φi+1

φi+2 φi+1

Fi ⊕

Fig. 3: Influence of X0
0 on Xi

j for increasing i. The parts of the internal state

which depend on X0
0 are colored; those which do not are white.

Proof. If the L-boxes are identical, then all operations in a FFN are invariant
under a word rotations applied to both halves of the internal state. ut

We deduce the following corollary which quantifies the speed of diffusion.

Corollary 1. Consider a FFN with i rounds, where φi ≥ b. Then each left input
word X0

j , where 0 ≤ j < b, influences all output words Xi
j, where 0 ≤ j < 2b.

Proof. Let k ≤ i + 1 be such that φk−1 ≤ b < φk. By Lemma 1, we know that
after k − 2 rounds, X0

0 influences all words with indices j if 0 ≤ j < φk−1 or
b ≤ j < b+φk−2. After round k− 1, the words on the left all depend on X0

0 and
thus, after round k ≤ i + 1, all output words depend on X0

0 . By Lemma 2, we
can generalize this dependency to all input words from the left side. We conclude
that, after round k all output words depend on X0

j for all 0 ≤ j < b. ut

Lemma 3. Consider a FFN with Λφ(b)+1 rounds labelled −1, 0, 1, . . . , Λφ(b)−1
and where we set φ−1 = 0. Then each input words X−1

k , where 0 ≤ k < 2b,

influences all output words X
Λφ(b)
j , where 0 ≤ j < 2b.

Proof. After the initial round, each input word X−1
k (0 ≤ k < 2b) influences one

left word X0
k (mod b) which in turn (see Corollary 1) influences all output words

X
Λφ(b)
j , 0 ≤ j < 2b. ut

Efficient Implementation. In this section, we describe how we can build a
linear layer which can be evaluated using O (Λφ(b) · w) operations on a modern
processor, where 2×b×w = n. This linear layer provides full diffusion. Of course,
it uses a FFN with 2b branches of w bits each. The core trick is in the definition
and implementation of the L-Box layer composed with the rotation by φi.

Instead of using table lookups to implement the linear layer, we can use some
sort of in-place bit-sliced strategy for small branch sizes6, as follows. Let x be the

6 For larger branch sizes, e.g. w ≥ 32 we can fall back on optimized matrix-vector
multiplication algorithms and the branch rotation can simply be performed by index
arithmetic in arrays storing the state.

15



bw-bit input of Fi where Fi consists in a layer of w-bit L-Boxes and a rotation
by φi. Then we can write

Fi = M−1 ◦ ROTφi ◦ Li ◦M , where

– M maps the w-bit word with index j to the bits with indices congruent to
j modulo b. More formally, M is a bit permutation which maps x0, ...xbw−1

to x0, xb, x2b, ...x(w−1)b, x1, xb+1..., xbw−1, i.e. each bit of the first w-bit word
end up at positions k ≡ 0 (mod b), the bits of the second w-bit word at
positions k ≡ 1 (mod b), etc.

– Li is parametrized by w words of size bw denoted `ij . It maps a bw-bit word
y to a value equal to

Li(y) =

w−1⊕
j=0

`ij ∧ (y ≪ (j · b)) .

Thus, the output bit of Li with index k is a linear combination of w vari-
ables yk, yb+k, y2b+k, ..., y(w−1)b+k. The w output variables with indices k ≡ a
(mod b) depend only on the w input variables with indices k ≡ a (mod b):
Li is effectively an L-Box layer except that it operates on slices of the state
defined by k (mod b) rather than bk/bc.

Basically, M changes the representation of the words and Li evaluates the L-Box
layer on this alternative representation. In fact, we can simplify the functions M
in each round by applying M to each half of the input of the whole FFN and
M−1 to each half of its output. If the only aim is full diffusion, we can simply
remove them.

In the end, evaluating a linear FFN with full diffusion on 2b branches with
w-bit words requires Λφ(b) + 1 rounds, each of which requires

– w rotations by φi + b · k for all k ∈ {0, ..., w − 1} applied word-wide on a
bw-bit word,

– w ANDs applied word-wide on a bw-bit word, and
– w XORs applied word-wide on a bw-bit word to combine the `ij ∧ (x ≪
bk + φi) with the other branch.

Now let us consider a 256-bit linear layer of LowMC. For n = 256 = 2× 32× 4,
we can implement a bijective linear layer with full diffusion using 1+Λφ(32) = 10
rounds by composing a 9-round FFN with another round before it. The role of
this first round is to ensure that the left input of the FFN depends on both the
left and right words of the input of the structure. In this way, at the end of the
FFN, all output words depend on all input words. The rotation used in this first
round can be chosen freely. Evaluating such a linear layer requires 10 rounds
during which we perform:

– 4 copies of the left 128-bit half into 4 different 128-bit words;
– a rotation of each of these four 128-bit words by the following number of

bits: φi−1, 32 + φi−1, 64 + φi−1, 96 + φi−1; where we set φ−1 = 16 and where
φi for i ≥ 0 is the usual Fibonacci sequence;

16



– a AND of each of these four 128-bit words by 128-bit values derived from
the expression of Lij ;

– a XOR of each of these four 128-bit words into the right half of the internal
state; and

– a swap of the left and right words.

In total, we need 40 copies, 40 rotations, 40 XORs, 40 ANDs, and 10 swaps where
all operations are on 128-bit words. An example of 256×256 binary matrix which
can be implemented in this fashion is provided in Appendix B.

4 Performance and Memory Evaluation

To verify the expected performance and memory improvements, both suggested
optimizations were implemented and evaluated. Both optimizations were com-
pared against the Picnic implementation available on GitHub7.

4.1 Reduced Round Key Computation and Constant Addition

We start with the evaluation of the reduced round key computation and constant
addition introduced in Section 3.1. The matrix and vector pre-computations were
implemented on top of the LowMC reference implementation8. We performed
the benchmarks on an Intel Core i7-4790 running Ubuntu 17.04 and Raspberry
Pi 3 Model B running openSUSE Leap 42.2. All measurements were repeated
1000 times and then averaged, and are presented both as milliseconds and num-
ber of cycles. We only benchmarked the Fiat-Shamir transformed variant of
Picnic, since the Unruh transformed variant does not perform any additional
rounds of the proof system. Hence improvements to LowMC encryption apply
to Picnic-FS and Picnic-UR in the same way. For the benchmarks we use the
instances listed in Table 3 and denote as Picnic-n the instance for block size n
benchmarked for Picnic-FS.

Blocksize (n) S-boxes (m) Keysize (k) Rounds (r)

128 10 128 20
192 10 192 30
256 10 256 38

Table 3: LowMC parameters (data complexity d = 1) in Picnic [CDG+17b].

From the benchmarking results presented in Table 4, we can observe small
improvements with a factor of 1.1x for the 128-bit case and up to a factor of
1.8x for larger instances. The results on the Raspberry Pi 3 are presented in

7 https://github.com/IAIK/Picnic
8 https://github.com/LowMC/lowmc

17

https://github.com/IAIK/Picnic
https://github.com/LowMC/lowmc


w/o opt. with RRKC Improv. (old / new)
Parameters Sign Verify Sign Verify Sign Verify

Picnic-128 2.16 1.49 1.95 1.37 1.11x 1.09x
Picnic-192 10.51 7.45 6.84 4.78 1.54x 1.56x
Picnic-256 25.23 17.47 14.13 9.71 1.79x 1.80x

Table 4: Benchmarks without and with RRKC on Intel Core i7 (in ms).

Table 5 and show an even larger improvement of factors 1.6 to 2 for signing and
verifying with all instances. We also note that the numbers without the split
round key also show improvements over the numbers published in [CDG+17a].
Those improvements are obtained via general memory usage optimizations and
a more specialized optimization focusing only on the case with 10 S-boxes.

w/o opt. with RRKC Improv. (old / new)
Parameters Sign Verify Sign Verify Sign Verify

Picnic-128 17.08 11.61 10.36 7.12 1.65x 1.63x
Picnic-192 72.05 48.06 39.94 26.89 1.80x 1.79x
Picnic-256 172.86 115.42 84.27 56.45 2.05x 2.04x

Table 5: Benchmarks without and with RRKC on Raspberry Pi 3 (in ms).

To give one concrete example for the memory savings discussed in Section 3.1,
we calculate the memory requirements for parameter set Picnic-256. For the
round key calculations the general LowMC algorithm requires 38 + 1 matrices
of dimension 256 × 256, which correspond to 312 KB. LowMC with the split
round key computation only uses one 256 × 256, and one 1140 × 256 matrix.
The 38 256-bit round contstants, which consume 1.2 KB, are replaced with one
256-bit vector and one 1140-bit vector, which consume 0.17 KB. Hence, in the
parameter set Picnic-256 we achieve a reduction of the memory cost from 313.19
KB for the round key matrices and round constants to 43.8 KB. Thus RRKC
reduced the storage requirements for rounds matrices and constants by more
than 85 %. Taking the linear layer into account as well, we still save 43 % of the
memory. Therefore, we can conclude that our alternative description provides
both a significant performance boost and also saves a large amount of memory
required to represent LowMC.

4.2 Reduced Linear Layer

Next we implemented the reduced linear layer introduced in Section 3.2. In Ta-
ble 6 we present the numbers obtained from benchmarking all variants without
any hardware specific optimizations. When comparing an implementation with-
out any of the optimizations to an implementation with RLL, performance is

18



improved by up to a factor of 4 with the instances used in Picnic. Also com-
pared to RRKC, RLL improves the runtime performance significantly (up to a
factor of 3).

w/o opt. with RRKC with RLL Improv. (old / new)
Parameters Sign Verify Sign Verify Sign Verify Sign Verify

Picnic-128 11.11 7.24 8.45 4.46 4.73 3.21 2.35x 2.26x
Picnic-192 40.56 27.10 29.48 15.76 11.83 7.95 3.43x 3.41x
Picnic-256 94.43 67.48 71.07 38.97 22.70 17.26 4.16x 3.91x

Table 6: Benchmarks without optimizations, with RRKC, and RLL on Intel Core
i7 (in ms).

Even better results can be obtained when selecting LowMC instances with
m = 1. In Table 7 we present benchmarking results for encryption of LowMC
instances selected for the signature scheme use-case, i.e. with data complexity 1,
and m = 1, as well as the instances used in Picnic with m = 10. While RRKC
already reduces runtime of a single encryption to a half, which we would also
obtain by pre-computing the round keys, RLL further reduces the runtime for
m = 1 to 1

12 and 1
25 , respectively, of the original runtime. With these perfor-

mance improvements, choosing instances enabling the smallest possible signa-
ture sizes no longer comes with a significant performance penalty as conclued in
[CDG+17a]. When viewed relative to RRKC and round key pre-computation,
RLL reduces the runtime to around 1

6 and 1
13 , respectively. The performance

improvements for m = 10 are mostly consistent with those in Table 6.

w/o opt. with RRKC with RLL Improv. (old / new)

LowMC-128-128-1-182 94.32 48.95 7.50 12.58x
LowMC-128-128-10-20 10.70 6.27 4.97 2.16x
LowMC-192-192-1-284 344.91 194.73 13.46 25.62x
LowMC-192-192-10-30 37.45 21.61 8.23 4.55x
LowMC-256-256-1-363 443.11 216.98 17.51 25.31x
LowMC-256-256-10-38 45.18 25.22 11.23 4.02x

Table 7: Benchmarks of LowMC-n-k-m-r instances without optimization, with
RRKC, and RLL on Intel Core i7 (in µs).

Memory-wise we observe the same memory savings for RLL as for RRKC.
For example, for Picnic-256 the liner layer shrinks from 304 KB to 37.69 KB
by 87 %. For instances with m = 1 the savings are even better. For the 256-bit
instance from Table 7 the size of the linear layer is reduced from 2904 KB to 41.45
KB, so the matrices of the linear layer can be presented using only 2 % of their

19



original size. In practice, the effect of this optimization has some diminishing
returns when we have to perform operations that are not optimized for register
sizes in modern CPUs, so we do not achieve the full theoretical speedup.

4.3 Fibonacci Feistel Network

We also implemented the proposed Feistel network from Section 3.3 and bench-
marked it against an implementation of a constant-time matrix multiplication
available used by Picnic. All measurements were repeated 1000000 times and
averaged. Performance and memory consumption of a 256-bit block size Feistel
network and different branch sizes are shown in Table 8. The constant-time im-
plementation requires 2302 cycles for a 256 × 256 matrix-vector multiplication.
As Table 8 shows, the Feistel network performs 10 % better than the constant-
time implementation if 64 bit branches are used. The constant-time algorithm
consumes of 8192 bytes because to store the whole 256× 256 matrix, while the
FFN with 64 bit branches only uses 37 % less memory because the 256 × 256
matrix is represented by the 64 × 64 matrices. It is also possible to reduce the
memory requirements even further if a weaker performance is acceptable.

Instance Performance

2× b× w bits Rounds Cycles Memory (bytes)

2× 32× 4 bits 10 4463 640
2× 16× 8 bits 9 3224 1152
2× 8× 16 bits 8 2430 2048
2× 4× 32 bits 6 3231 3072
2× 2× 64 bits 5 2047 5120

Table 8: FFN instances for n = 256 bits benchmarked on Intel Core i7.

5 Discussion

The results we presented in Section 4 let us presume that all three optimizations
yield even better results for larger block sizes, e.g. larger instances as used by
LowMCHash-256 [AGR+16], which find its application in post-quantum ring
signature schemes [DRS18]. We note that for RRKC and RLL the number of
S-boxes is essential for the performance gain. If the number of S-boxes remains
constant, but the block size is increased, removing the multiplication of the
round key matrix by the secret key and reducing the cost of the linear layer
has a higher impact than if the number of S-boxes increased proportionally.
The smaller the number of S-boxes is relative to the block size, the higher the
expected performance gains are. If 3 ·m is almost as large as n, then we expect
no performance gain, because the modified matrices are almost as big as the

20



original round key and linear layer matrices and therefore the multiplication is
not much faster than implemetning an unmodified LowMC encryption.

Also, the proposed Feistel network will result in even higher performance
gains if the block size is increased. Table 9 shows the number of XOR operations
in the Feistel network and in a constant-time multiplication for increasing block
sizes. While the cost for the constant-time multiplication quadruples if the block
size doubles, the Feistel network less than triples the cost for doubled block
sizes. Additionally, the larger the block size the slower the cost grows with the
Fibonacci structure.

Instance # XORs

n = 2× b× w bits Rounds FFN ct. mul.

256 = 2× 2× 64 bits 5 640 1,024
512 = 2× 4× 64 bits 6 1,536 4,096

1024 = 2× 8× 64 bits 8 4,096 16,384
2048 = 2× 16× 64 bits 9 9,216 65,536
4096 = 2× 32× 64 bits 10 20,480 262,144

Table 9: Number of XOR operations using FFN with 64-bit branches and
constant-time multiplication for different block sizes.

From an implementation point of view the branch size for very large block
sizes, e.g. 1024 bit or more, can be extended to 128-bit, 256-bit or even 512-
bit using the SSE2 and NEON, AVX2 and AVX512, respectively, instruction
sets. This can be an interesting approach for very large block sizes, because the
number of branches and rounds can be reduced, which in turn allows to reduce
the number of rounds in the FFN. Additionally, the implementation of the FFN
is inherently constant-time without any dependencies on possibly secret state.

While LowMC is currently specified to use uniformly randomly sampled ma-
trices, the cryptanalysis suggests that the involved matrices need to provide full
diffusion [ARS+15, ARS+16]. By replacing these matrices with a FFN providing
full diffusion, we can significantly reduce the costs to store the matrices in mem-
ory and can also reduce the number of XORs. The analysis of FFNs presented in
Section 3.3 first of all gives a lower bound on the required number of rounds to
achieve full diffusion and secondly, the performance evaluation shows that there
is room for additional rounds if necessary.

Both our main contributions (improved implementation of random linear
layers and investigation of potential uses of structured replacements like FFN)
will likely also be useful for other cipher designs which heavily rely on large
linear layers such as the very recently proposed Rasta [DEG+18].

Acknowledgments. We thank Tyge Tiessen for interesting ideas and discus-
sions on optimizing LowMC’s round key computation. We also thank Christoph
Dobraunig, Maria Eichlseder and Eik List for comments on earlier version. S.

21



Ramacher, and C. Rechberger have been supported by H2020 project Pris-
macloud, grant agreement n◦644962. C. Rechberger has additionally been sup-
ported by EU H2020 project PQCRYPTO, grant agreement n◦645622.

References

ADKF70. V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. On economical
construction of the transitive closure of a directed graph. Soviet Math
Dokl., 1970.

AGR+16. Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. Mimc: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In ASIACRYPT (1), volume 10031 of
Lecture Notes in Computer Science, pages 191–219, 2016.

AL00. Kazumaro Aoki and Helger Lipmaa. Fast implementations of AES candi-
dates. In AES Candidate Conference, pages 106–120, 2000.

ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In EURO-
CRYPT (1), volume 9056 of Lecture Notes in Computer Science, pages
430–454. Springer, 2015.

ARS+16. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. IACR Cryptol-
ogy ePrint Archive, 2016:687, 2016.

Bar06. Gregory V. Bard. Accelerating cryptanalysis with the method of four
russians. IACR Cryptology ePrint Archive, 2006:251, 2006.

BB02. Elad Barkan and Eli Biham. In how many ways can you write rijndael? In
ASIACRYPT, volume 2501 of Lecture Notes in Computer Science, pages
160–175. Springer, 2002.

BBF+02. Guido Bertoni, Luca Breveglieri, Pasqualina Fragneto, Marco Macchetti,
and Stefano Marchesin. Efficient software implementation of AES on 32-bit
platforms. In CHES, volume 2523 of Lecture Notes in Computer Science,
pages 159–171. Springer, 2002.

BEF18. Dan Boneh, Saba Eskandarian, and Ben Fisch. Post-quantum group sig-
natures from symmetric primitives. IACR Cryptology ePrint Archive,
2018:261, 2018.

Ber09. Daniel J. Bernstein. Optimizing linear maps modulo 2. 2009. https:

//binary.cr.yp.to/linearmod2.html.

BS08. Daniel J. Bernstein and Peter Schwabe. New AES software speed records.
In INDOCRYPT, volume 5365 of Lecture Notes in Computer Science,
pages 322–336. Springer, 2008.

CCF+16. Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint,
Maŕıa Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers:
A practical solution for efficient homomorphic-ciphertext compression. In
FSE, volume 9783 of Lecture Notes in Computer Science, pages 313–333.
Springer, 2016.

CDG+17a. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primi-
tives. In CCS, pages 1825–1842. ACM, 2017.

22

https://binary.cr.yp.to/linearmod2.html
https://binary.cr.yp.to/linearmod2.html


CDG+17b. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
The Picnic Signature Algorithm Specification, 2017. https://github.com/
Microsoft/Picnic/blob/master/spec.pdf.

DEG+18. Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lalle-
mand, Gregor Leander, Eik List, Florian Mendel, and Christian Rech-
berger. Rasta: A cipher with low anddepth and few ands per bit. In
CRYPTO (1), volume 10991 of Lecture Notes in Computer Science, pages
662–692. Springer, 2018.

Din18. Itai Dinur. Linear equivalence of block ciphers with partial non-linear
layers: Application to lowmc. Cryptology ePrint Archive, Report 2018/772,
2018. https://eprint.iacr.org/2018/772.

DPVR00. Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rij-
men. Nessie Proposal: NOEKEON, 2000. http://gro.noekeon.org/

Noekeon-spec.pdf.

DRS18. David Derler, Sebastian Ramacher, and Daniel Slamanig. Post-quantum
zero-knowledge proofs for accumulators with applications to ring signatures
from symmetric-key primitives. In PQCrypto, volume 10786 of Lecture
Notes in Computer Science, pages 419–440. Springer, 2018.

DSES14. Yarkin Doröz, Aria Shahverdi, Thomas Eisenbarth, and Berk Sunar. To-
ward practical homomorphic evaluation of block ciphers using prince. In
Financial Cryptography Workshops, volume 8438 of Lecture Notes in Com-
puter Science, pages 208–220. Springer, 2014.

GLSV14. Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, and Kerem
Varici. Ls-designs: Bitslice encryption for efficient masked software imple-
mentations. In FSE, volume 8540 of Lecture Notes in Computer Science,
pages 18–37. Springer, 2014.

GMO16. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-
knowledge for boolean circuits. In USENIX Security Symposium, pages
1069–1083. USENIX Association, 2016.

GRR+16. Lorenzo Grassi, Christian Rechberger, Dragos Rotaru, Peter Scholl, and
Nigel P. Smart. Mpc-friendly symmetric key primitives. In ACM Confer-
ence on Computer and Communications Security, pages 430–443. ACM,
2016.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In STOC, pages 21–30.
ACM, 2007.

MJSC16. Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and
Claude Carlet. Towards stream ciphers for efficient FHE with low-noise
ciphertexts. In EUROCRYPT (1), volume 9665 of Lecture Notes in Com-
puter Science, pages 311–343. Springer, 2016.

NLV11. Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can ho-
momorphic encryption be practical? In CCSW, pages 113–124. ACM,
2011.

NPV17. Valérie Nachef, Jacques Patarin, and Emmanuel Volte. Feistel Ciphers -
Security Proofs and Cryptanalysis. Springer, 2017.

RSS17. Dragos Rotaru, Nigel P. Smart, and Martijn Stam. Modes of operation
suitable for computing on encrypted data. IACR Trans. Symmetric Cryp-
tol., 2017(3):294–324, 2017.

23

https://github.com/Microsoft/Picnic/blob/master/spec.pdf
https://github.com/Microsoft/Picnic/blob/master/spec.pdf
https://eprint.iacr.org/2018/772
http://gro.noekeon.org/Noekeon-spec.pdf
http://gro.noekeon.org/Noekeon-spec.pdf


SM10. Tomoyasu Suzaki and Kazuhiko Minematsu. Improving the generalized
feistel. In FSE, volume 6147 of Lecture Notes in Computer Science, pages
19–39. Springer, 2010.

SME16. Shady Mohamed Soliman, Baher Magdy, and Mohamed A. Abd El-Ghany.
Efficient implementation of the AES algorithm for security applications.
In SoCC, pages 206–210. IEEE, 2016.

SMMK12. Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita
Kobayashi. twine: A lightweight block cipher for multiple platforms. In
Selected Areas in Cryptography, volume 7707 of Lecture Notes in Computer
Science, pages 339–354. Springer, 2012.

A An Example of Fibonacci-Feistel Network

Fig. 4 depicts the propagation of the left-most bit through a 6 round FFN
structure.

B Example of Binary Matrices Corresponding to a FFN

The matrix presented in Fig. 5 has the following properties:

– It has full rank.
– 33585 ≈ 0.51× 216 of its coefficients are equal to 1.
– It can be evaluated using a 10-round FFN with 32 independent and random

4-bit linear permutations used as L-boxes in each round. A new L-box layer
is used for each round.

Its inverse has similar properties and is also depicted in Fig. 5.

24



φ0 = 0

⊕
⊕
⊕
⊕
⊕
⊕
⊕
⊕

φ1 = 1

⊕
⊕
⊕
⊕
⊕
⊕
⊕

⊕

φ2 = 1

⊕
⊕
⊕
⊕
⊕
⊕
⊕

⊕

φ3 = 2
⊕
⊕
⊕
⊕
⊕
⊕

⊕
⊕

φ4 = 3⊕
⊕
⊕
⊕
⊕

⊕
⊕
⊕

φ5 = 5
⊕
⊕
⊕

⊕
⊕
⊕
⊕
⊕

Fig. 4: 6 rounds of the FFN structure for b = 8. The rectangles correspond to
distinct L-Box calls. A branch is red if its value depends on the left-most word
of the input.

25



(a) The matrix M . (b) The inverse matrix M−1.

Fig. 5: A matrix M and its inverse M−1 corresponding to a 10-round 256-bit
FFN with b = 32, w = 4. Black means 1, white means 0.

26


	Improvements to the Linear Operations of LowMC: A Faster Picnic
	Introduction
	Contribution

	Preliminaries
	LowMC
	(2,3)-Decomposition of Circuits in Picnic

	Optimizing Linear Operations
	Splitting the Round Key Computation and Round Constant Addition
	Reducing Linear Layer Computation
	Fibonacci Feistel Network
	The Fibonacci-Feistel Structure.
	Diffusion in a FFN.
	Efficient Implementation.


	Performance and Memory Evaluation
	Reduced Round Key Computation and Constant Addition
	Reduced Linear Layer
	Fibonacci Feistel Network

	Discussion
	An Example of Fibonacci-Feistel Network
	Example of Binary Matrices Corresponding to a FFN


