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Abstract. Recently, Albrecht, Davidson and Larraia described a variant
of the GGH13 without ideals and presented the distinguishing attacks
in simplified branching program security model. Their result partially
demonstrates that there seems to be a structural defect in the GGH13
encoding that is not related to the ideal 〈g〉. However, it is not clear
whether a variant of the CGH attack described by Chen, Gentry and
Halevi can be used to break a branching program obfuscator instantiated
by GGH13 without ideals. Consequently this is left as an open problem
by Albrecht, Davidson and Larraia. In this paper, we describe a variant
of the CGH attack which breaks the branching program obfuscator using
GGH13 without ideals. To achieve this goal, we introduce matrix approx-
imate eigenvalues and build a relationship between the determinant and
the rank of a matrix with noise. Our result further strengthens the work
of Albrecht, Davidson and Larraia that there is a structural weakness in
‘GGH13-type’ encodings beyond the presence of 〈g〉.
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1 Introduction

Program obfuscation in cryptography makes programs unintelligible and keeps
their functionality. In 2013, Garg et al. [20] described the first candidate con-
struction for a general-purpose obfuscation. Since then many different obfus-
cators are constructed [20,7,9,5,22,30,22], and they are all based on the three
candidate graded encoding schemes (GES) (resp. GGH13, CLT13 and GGH15)
[19,15,21,16,24]. Unfortunately, the GGH13, CLT13 and GGH15 have been proven
to be vulnerable to zero attacks [19,13,10,6,25,17,14], attacks on the overstretched
NTRU [1,12,26], and annihilation attacks [28,11].

To immune the above attacks, Garg et al. [22] constructed a provably se-
cure obfuscation in a weak multilinear map model, which aims to prevent the
annihilation attack. However, Chen, Gentry and Halevi (CGH) [11] showed that
their immunization can not thwart the annihilation attack if the branch program
obfuscator is input partionable. It should be noted that the immunised construc-
tion in [22] can not be broken by the CGH attack since the dual-inputs used in
their construction are not input partionable. As well, Fernando, Rasmussen and
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Sahai [18] recently described a defense against input partitioning by applying
stamping functions. On the other hand, Albrecht, Davidson and Larraia (ADL)
[2] (added Pellet-Mary as author in the updated version in EPRINT [3]) investi-
gated a structural vulnerability of the GGH13 encoding scheme. They proposed
a variant of the GGH13 without ideals and presented the distinguishing attacks
in simplified branching program and obfuscation security models. However, it
is not clear whether a variant of the CGH annihilation attack by Chen, Gen-
try and Halevi can be used to break a candidate branching program obfuscator
instantiate by GGH13 without ideals [2,3].

1.1 Our work

Our main contribution is to describe a variant of the CGH attack which breaks
a branching program obfuscator using GGH13 without ideals. The framework
of our attack directly follows that of the CGH attack. The core step in the
CGH attack is to solve a basis of ideal 〈g〉, but we cannot perform this step
since there are no ideals in the ADL-based obfuscator [2]. Moreover, we cannot
find some exact ratios of the bundling scalars and distinguish the ADL-based BP
obfuscator by using the rank of a matrix. This is because each entry of the matrix
has noise. In order to implement the attack, we solve some approximate ratios
of the bundling scalars and build a relationship between the determinant and
the rank of a matrix with noise. Therefore, our result further indicates that the
structural vulnerability of GGH13 encodings are beyond the presence of ideal.

Our second contribution is to introduce approximate eigenvalues of a matrix
to solve the approximate ratios of the bundling scalars used in the ADL-based BP
obfuscator. In the BP obfuscator using GGH13 without ideals [2], the multiplica-
tive bundling scalars appear as an approximation factor. That is, when solving
the ratios of these bundling scalars in this variant obfuscator, there are noises
in the diagonal matrix consisting of the elements returned by the zero-testing
procedure. Consequently we can not directly apply the characteristic polynomi-
al of matrix to get the ratios of the bundling scalars, and also can no longer
compute their exact ratios. However, we observe that these matrices are diago-
nal dominated matrix with noise and their inverses are also diagonal dominated
matrix with noise. Using this matrix property, we can compute the approximate
eigenvalue of the diagonally dominant matrix with noise, and consider them as
the approximate ratio of the bundling scalars.

Our final contribution is to estimate the determinant of a matrix with noise.
Since in the IO using GGH13 without ideals [2] each term of matrices has noise,
as a result these matrices are all full rank with overwhelming probability. So,
we can no longer use the rank of matrix to distinguish two equivalent branch
program obfuscators. But we observe that the noise magnitude of the matrix in
the ADL-based IO is “small” relative to its principal component matrix. Conse-
quently the determinant of matrix is also “small” if the matrix decomposition
produces a non-full rank principal component matrix. To this end, we build a
relationship between the determinant and the rank of a matrix.
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In addition, in the process of attacking a branching program obfuscator us-
ing GGH13 without ideals, some matrix properties that we prove might be of
independent interest.

Organization. In Section 2 we first recall some preliminaries. In Section 3
we give a branching program obfuscator using GGH13 without ideals. In Section
4 we provide some matrix properties. In Section 5 we describe cryptanalysis of
the BP obfuscator using GGH13 without ideals. Finally we conclude the results
in this paper.

2 Preliminaries

2.1 Notations

Let Z,Q,R denote the ring of integers, the field of rational numbers, and the
field of real numbers. Let a positive integer n be a power of 2. Notation [n]
denotes the set {1, 2, ..., n}. Let R = Z[x]/〈xn + 1〉, Rq = Zq[x]/〈xn + 1〉, and
K = Q[x]/〈xn + 1〉. Vectors are denoted in bold lowercase (e.g. a), and matrices
in bold uppercase (e.g. A). We denote by a[j] the j-th entry of a, and A[i, j]
the element of the i-th row and j-th column of A. We denote by ‖a‖p the p-
norm of a and by ‖a‖ the ∞-norm. Similarly, for a ∈ R we let ‖a‖p (resp. ‖a‖)
denote the p-norm (resp. ∞-norm) of the coefficient vector corresponding to a.
For A ∈ Rd×d, we define ‖A‖∞ = max{‖A[i, j]‖, i, j ∈ [d]}.

Let [a]q = a mod q ∈ (−q/2, q/2]. Similarly, for a ∈ Zn (or a ∈ R ), [a]q
denotes each entry (or each coefficient) a[j] ∈ (−q/2, q/2] of a (or a).

Given c ∈ Rn , σ > 0, the Gaussian distribution of a lattice L is defined
as DL,σ,c = ρσ,c(x)/ρσ,c(L) for x ∈ L , where ρσ,c(x) = exp(−π‖x − c‖22/σ2)),

ρσ,c(L) =
∑

x∈L
ρσ,c(x). In the following, we will write DL,σ,0 as DL,σ . We

denote a Gaussian sample as x ← DL,σ (or d ← DI,σ ) over the lattice L (or
ideal lattice I ).

An element a ∈ R is called η-bounded if ‖a‖∞ ≤ η. Moreover, it is easy to ver-

ify that for any η-bounded elements a1, · · · ak ∈ R, the element a =
∏k

i=1
ai is

(nk−1η)-bounded. By the work in [27], the element x← DZn,σ,c is σ
√
n-bounded

with overwhelming probability. Therefore, we define the truncated Gaussian dis-
tribution DZn,σ,c by sampling elements from DZn,σ,c and repeating any samples
that are not σ

√
n-bounded.

2.2 Branching programs

Let λ be the security parameter, κ = κ(λ), l = l(λ) and d = d(λ). Let inp :
[κ] → [l]d be some fixed ‘input’ function. All current obfuscators only consider
branching programs with d = 1 or d = 2 [20,7].

Definition 2.1. A matrix branching program BP of length κ, input length
l and arity d is defined as follows:

BP := (κ, l, d, inp, {Ak,xinp(k)
}k∈[κ],inp(k)∈{0,1}d),
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where Ak,xinp(k)
∈ {0, 1}w×w and |inp(k)| = d.

The branching program is associated with the function fBP : {0, 1}l → {0, 1},
which is defined as

fBP(x) =

0, if
∏κ

k=1
Axk,inp(k) = I;

1, if
∏κ

k=1
Axk,inp(k) 6= I.

A branching program BP is input partionable if its input bits can be parti-
tioned into two or more independent subsets. We need the following observation
in [11].

Lemma 2.2 (Lemma 2.2 [11]). Let BP be an input-partitioned branching
program, [κ] = X||Y . If x, x′ ∈ {0, 1}l are two zeros of fBP that differ only in bits
that are mapped to steps in X. Then the product of the matrices corresponding
to X generates the same result in the evaluation of BP on x and x′, namely∏

k∈X
Ak,xinp(k)

=
∏

k∈X
Ak,x′

inp(k)
.

Similarly, if x, x′ ∈ {0, 1}l are two zeros of fBP that differ only in bits that

are mapped to steps in Y , then
∏

k∈Y
Ak,xinp(k)

=
∏

k∈Y
Ak,x′

inp(k)
.

2.3 GGH13 without ideals

GGH13 overview. The encoding space of GGH13 is Rq = R/qR where q is
some big integer, and its plaintext space Rg = R/gR such that g is a small
element in R and is kept secret. An encoding of GGH13 takes the form y =
(e+ rg)/z mod q, where z is a random secret element in Rq, e is the plaintext
element and r is some small random element.

The denominator z enables the levels of the GGH13 scheme. In this paper,
we only consider the asymmetric case of GGH13 that uses many different de-
nominators zi. We say the encoding y is encoded at level Si if the denominator
of y is zi. It is easy to see that additions and multiplications of encodings can
be carried out if they satisfy some level restriction. Namely, adding encodings
indexed at the same level Si generates an encoding at the level Si, and multiply-
ing two encodings, indexed at the disjoint levels Si, Sj , generates an encoding at
level Si ∪ Sj .

The GGH13 scheme also provides a public zero-testing parameter pzt =

h ·
∏κ

i=1
zi/g, where h ∈ R such that ‖h‖ � q. Given a top-level encoding

u indexed at level [κ], one can determine whether u encodes zero or not by
computing pzt · u and checking if the result is small.

However, a simplified candidate IO over GGH13 exists the annihilation attack
introduced by Miles, Sahai and Zhandry [28]. That is, their work constructs two
programs that are functionally equivalent, and show how to efficiently distinguish
between the obfuscators of these two programs by heuristically computing a basis
of 〈g〉. Then, Chen, Gentry and Halevi [11] extend the annihilation attack in [28]
to break the GGHRSW obfuscator instantiated by GGH13 [20] when a branching
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program has input partitioning. These works are all first to find a basis of the
secret element 〈g〉.
GGH13 without ideals. We adaptively describe a variant of GGH13 without
ideals in [2]. Let χ = DZn,σ be the error distribution. Let e ∈ R be a non-zero
element with small coefficients, and r ← χ a random element sampled from the
distribution χ. We sample zi uniformly from Rq for 1 ≤ i ≤ κ, and sample βi
such that κ+1

√
q < ‖βi‖ < κ

√
q.

An encoding of e indexed at level Si takes the form y = (e+r/βi)/zi mod q,
where zi, βi enables the level structure. Obviously, the encodings also supports
addition and multiplication operations. For addition, let y1, y2 be two encodings
indexed at same level S ⊂ [κ], then their sum results in the encoding y = y1 +y2
at the level S. For multiplication, given two encodings y1, y2 at level S1, S2 ⊂ [κ]
respectively, their product generates y = y1 · y2 at the level S1 ∪ S2.

In this variant, the zero-test parameter is defined as pzt =
∏κ

i=1
βizi. Sim-

ilarly, given a top-level encoding u, one can determine whether u encodes zero
or not by computing δ = pzt · u and checking if the result δ is small.

3 BP Obfuscator using GGH13 without Ideals

Let BP := (κ, l, d, inp, {Ak,b}k∈[κ],b∈{0,1}) be the branching program to be ob-
fuscated, where directly using d = 1 for notational simplicity. We obfuscate BP
by GGHRSW [20] using instantiation of GGH13 without ideals as follows:

Step 1: Dummy branch. We introduce a “dummy branching program”:

BP
′

:= (κ, l, d, inp, {A
′

k,b}k∈[κ],b∈{0,1}),

where every A
′

k,b = I is the identity matrix in {0, 1}w×w.
Step 2: Random diagonal entries and bookends. Let s = 2m + w,

where m = l + 3 in the original GGHRSW scheme.
For k ∈ [κ], we extend w × w-dimensional matrices into s × s-dimensional

matrices

Âk,b =

(
Ek,b 0

0 Ak,b

)
, Â

′
k,b =

(
E′k,b 0

0 A′k,b

)
,

where the diagonal matrices Ek,b,E
′
k,b ∈ R2m×2m

σ are chosen uniformly at ran-
dom from the plaintext space.

We also choose four “bookend” vectors as follows:Â0 =
(

0m, e0, s
)
,

Â
′
0 =

(
0m, e′0, s

′
)
,Âκ+1 =

(
eκ+1, 0

m, t
)T

,

Â
′
κ+1 =

(
e′κ+1, 0

m, t′
)T

,



6 Gu Chunsheng

where e0, e
′
0, eκ+1, e

′
κ+1 ∈ Rmσ , and s, s′, t, t′ ∈ Rwσ such that s · tT = s′ · t′T .

Step 3: Kilian randomization and bundling scalars. We first sample
random scalars {ε0, ε′0, εκ+1, ε

′
κ+1, εk,b, ε

′
k,b ← Rσ : k ∈ [κ], b ∈ {0, 1}} such that

αj,b =
∏

inp(k)=j
εk,b =

∏
inp(k)=j

ε′k,b,

α0 = ε0εκ+1 = ε′0ε
′
κ+1.

Then, we choose randomly unimodular matrices P0,P
′
0,Pk,P

′
k ∈ Rs×sσ , k ∈

[κ], and generate randomized matrices as follows:
Ã0 = ε0Â0P0

Ãk,b = εk,bP
−1
k−1Âk,bPk

Ãκ+1 = εκ+1P
−1
κ Âκ+1

,


Ã
′
0 = ε′0Â

′
0P
′
0,

Ã
′
k,b = ε′k,bP

′−1
k−1Â

′
k,bP

′
k,

Ã
′
κ+1 = ε′κ+1P

′−1
κ Â

′
κ+1

,

where k ∈ [κ], b ∈ {0, 1}.
Step 4: Encoding using GGH13 without ideals. For k = 0, · · · , κ+ 1,

we sample uniformly invertible random elements zk ∈ Rq, and βk ∈ R such that
κ+3
√
q < ‖βk‖ < κ+2

√
q. We then choose at random vectors R0,R

′
0,Rκ+1,R

′
κ+1 ∈

Rsσ, and matrices Rk,b,R
′
k,b ∈ Rs×sσ , and set

A0 = (Ã0 + R0/β0)/z0

Ak,b = (Ãk,b + Rk,b/βk)/zk

Aκ+1 = (Ãκ+1 + Rκ+1/βκ+1)/zκ+1 · pzt
,


A
′
0 = (Ã

′
0 + R′0/β0)/z0

A
′
k,b = (Ã

′
k,b + R′k,b/βk)/zk

A
′
κ+1 = (Ã

′
κ+1 + R′κ+1/βκ+1)/zκ+1 · pzt

,

where k ∈ [κ], b ∈ {0, 1}, and pzt =
∏κ+1

k=0
βkzk.

Step 5: Output the obfuscation of BP. The obfuscation BP consists of
the following matrices and vectors:{ {

A0, {Ak,b}k∈[κ],b∈{0,1},Aκ+1

}
,{

A
′
0, {A

′
k,b}k∈[κ],b∈{0,1},A

′
κ+1

}
.

Remark 3.1. (1) To perform Kilian randomization, we use the unimodular
matrices Pk,P

′
k. Since if choosing Pk randomly, then ‖P−1k mod βk‖∞ ≈ ‖βk‖

for k ∈ [κ]. Namely, by a change of variable transformation, we cannot rewrite
the encodings as

Ak,b = (εk,bP
−1
k−1Âk,bPk + Rk,b/βk)/zk

= (εk,bP
−1
k−1(Âk,b + R′k,b/βk)Pk)/zk,

such that ‖R′k,b‖∞ is ‘small’.
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Because in this case ‖R′k,b‖∞ = ‖ε−1k,bPk−1Rk,bP
−1
k mod βk‖∞ ≈ ‖βk‖.

This point is different from the GGH13 encoding since g is small and hence
so ‖P−1k mod g‖∞. However for the elements returned by zero-testing, we can
write R′k,b = ε−1k,bPk−1Rk,bP

−1
k since now all the operations are in the field K.

(2) Alternatively, when choosing randomly Pk we can also take its adjugate
matrix adj(Pk) instead of P−1k .

Evaluation. Given the obfuscation BP and an arbitrary input x ∈ {0, 1}l,
we compute an honest evaluation as follows:

δ = A0 ·
∏κ

k=1
Ak,xinp(k)

·Aκ+1

= (β0Ã0 + R0) ·
∏κ

k=1
(βkÃk,xinp(k)

+ Rk,xinp(k)
) · (βκ+1Ãκ+1 + Rκ+1),

= αβ · s
∏κ

k=1
Ak,xinp(k)t

T + o(β)

δ′ = A
′
0 ·
∏κ

k=1
A
′
k,xinp(k)

·A′κ+1

= (β0Ã
′
0 + R′0) ·

∏κ

k=1
(βkÃ

′
k,xinp(k)

+ R′k,xinp(k)
) · (βκ+1Ã

′
κ+1 + R′κ+1),

= αβ · s′t′T + o(β)

where α =
∏l

j=1
αj,xj and β =

∏κ+1

j=0
βj .

If
∏κ

k=1
Ak,xinp(k) = I, then ‖δ − δ′‖ < q

κ+1
κ+2 and BP(x) = 1. Otherwise,

BP(x) = 0.

4 Matrix Properties

In this section, we give some matrix properties. Let γ, δ be positive numbers

such that δ/γ ≤ 2−O(λ). For simplicity,we denote RA[i] =
∑

j 6=i
|A[i, j]| in the

following.
A permutation p = (p1, p2, · · · , pn) of the numbers (1, 2, · · · , n) is any re-

arrangement. The parity of a permutation p is the one of the number of inter-
changes to restore p to natural order. Consequently, the sign of a permutation p
is defined to be the number

π(p) =

{
+1 if the parity of p is even,

−1 if the parity of p is odd.

Given a n × n-dimensional matrix A = (A[i, j]), the determinant of A is
defined to be the scalar

det(A) =
∑
p

π(p)

n∏
i=1

A[i, pi], (1)
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where the sum is taken over the n! permutations p of (1, 2, · · · , n).

Lemma 4.1 Determinant Inequality. Suppose that A is an n×n-dimensional
matrix over Q such that γ ≤ |A[i, j]| ≤ cγ for i, j ∈ [n], where γ > 2λ and c > 1.
Then with overwhelming probability

γn ≤ |det(A)| ≤ n!(cγ)n.

Proof. According to the definition of determinant (1),

|det(A)| =
∣∣∣∣∑
p

π(p)

n∏
i=1

A[i, pi]

∣∣∣∣
= γn ·

∣∣∣∣∑
p

π(p)

n∏
i=1

A[i, pi]

γ

∣∣∣∣
= γn ·

∣∣∣∣∑
p

π(p)Ap

∣∣∣∣,
where Ap =

n∏
i=1

A[i,pi]
γ .

By γ ≤ |A[i, j]| ≤ cγ, we obtain |A[i,pi]
γ | ≥ 1 and 1 ≤ |Ap| ≤ cn. According to

Chernoff-Hoefding inequality,
∣∣∑
p

π(p)Ap
∣∣ ≥ 1 with overwhelming probability.

On the other hand,
∣∣∑
p

π(p)Ap
∣∣ ≤ ∑

p

|π(p)|cn = n!cn.

Definition 4.2 Matrix Decomposition (MDγ,δ). The decomposition
A = A1 + Aδ is called MDγ,δ if A1,Aδ are satisfied

|A1[i, j]| = Θ(γ), for all i, j ∈ [n]

|Aδ[i, j]| = O(δ), for all i, j ∈ [n].

Lemma 4.3 Determinant Estimate I. Suppose that A = A1 + Aδ is
MDγ,δ and rank(A1) < n. Then |det(A)| ≤ O(n · n! · δγn−1). In particular,
|det(A)| = O(δγn−1) when n is constant.

Proof. By the definition of determinant (1),

det(A) =
∑
p

π(p)

n∏
i=1

A[i, pi] =
∑
p

π(p)

n∏
i=1

(A1[i, pi] +Aδ[i, pi])

By rank(A1) < n, det(A1) = 0. That is,
∑
p

π(p)
n∏
i=1

A1[i, pi] = 0.
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We expand det(A) as follows:

det(A) =
∑
p

π(p)

n∏
i=1

(A1[i, pi] +Aδ[i, pi])

=
∑
p

π(p)(

n∑
j=1

Aδ[j, pj ]
∏
i 6=j

A1[i, pi]︸ ︷︷ ︸
Bp

+o(Bp))

So, |det(A)| ≤
∑
p

π(p)
n∑
j=1

O(|Aδ[j, pj ]
∏
i 6=j

A1[i, pi]|) ≤ O(n · n! · δγn−1).

Furthermore, |det(A)| ≤ O(δγn−1) when n is constant.
Remark 4.4. The result of Lemma 4.3 does not contradict that of Lemma

4.1. Because the former matrix A is randomly selected, and the latter matrix A
has a special structure such that the rank of the dominant matrix corresponding
to its decomposition is less than n.

Moreover, if we assume that the square submatrix obtained by the linearly
independent vectors of A1 in Lemma 4.3 satisfies the condition of Lemma 4.1.
Namely, the determinant of the square submatrix can be estimated by applying
Lemma 4.1. Accordingly, we can further improve the determinant estimation in
Lemma 4.3. Note that the following Lemma 4.5 is not used in this paper.

Lemma 4.5 Determinant Estimate II. Suppose that A = A1 + Aδ is
MDγ,δ and rank(A1) = k < n. Then |det(A)| ≤ n!(γ + δ

′
)k(δ

′
)n−k, where

δ
′

= nk!ckδ and c is a constant that depends on A. Furthermore, |det(A)| ≤
O(δn−kγk) when n is constant.

Proof. For brevity, A[i//j] represents the matrix of the i-th to k-th rows of
A, and A[i : j] the matrix of the i-th to k-th columns of A.

Without loss of generality, assume that the first k rows of A1 are linearly
independent since rank(A1) = k. So, the last n − k rows of A1 are linearly
dependent with its first k rows. That is, for j ∈ {k + 1, · · · , n},

A1[j, ·] =

k∑
i=1

yj [i]A1[i, ·].

Now, we write this relationship as matrix-vector form

A1[j, ·] = yjA
′

1 = yj(B1,B2),

where A
′

1 = A1[1//k],B1 = A
′

1[1 : k],B2 = A
′

1[k + 1 : n].
By Cramer’s rule, we compute

yj [i] =
det(B1,i)

det(B1)
,

where for i ∈ [k], B1,i =
(
B1[1//i− 1]//A1[j, ·]//B1[i+ 1//k]

)
.
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By |A1[i, j]| = Θ(γ), we have c1γ ≤ |A1[i, j]| ≤ c2γ.
Using Lemma 4.1, we yield

(c1γ)k ≤ |det(B1)| ≤ k!(c2γ)k,

(c1γ)k ≤ |det(B1,i)| ≤ k!(c2γ)k.

Let c = c2/c1. For j ∈ {k + 1, · · · , n}, i ∈ [k], we get

1

k!ck
< yj [i] < k!ck.

Now, we set

Y =


yk+1[1] yk+1[2] · · · yk+1[k]
yk+2[1] yk+2[2] · · · yk+2[k]

...
... · · ·

...
yn[1] yn[2] · · · yn[k]

 ,

P =

(
Ik 0
−Y In−k

)
.

Therefore,

PA = PA1 + PAδ =

(
A
′

1

0

)
+ Aδ′ ,

By Aδ′ = PAδ, we obtain

|Aδ′ [i, j]| = |
n∑
k=1

P [i, k]Aδ[k, j]| ≤ nk!ckδ

So, δ
′

= nk!ckδ.
By the definition of determinant (1),

det(A) = det(PA)

= det

((
A
′

1

0

)
+ Aδ′

)

=
∑
p

π(p)

k∏
i=1

(A1[i, pi] +Aδ′ [i, pi])

n∏
i=k+1

Aδ′ [i, pi]

Since |A1[i, pi]| ≤ γ and Aδ′ [i, pi] ≤ δ
′
, thus

|det(A)| ≤ n!(γ + δ
′
)k(δ

′
)n−k.

Obviously, |det(A)| ≤ O(δn−kγk) when n is constant.
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Definition 4.6 Approximate Eigenvalue. Let A = A1 + Aδ be a (γ, δ)-
matrix decomposition. The eigenvalues of A are called the approximate eigen-
values of A1.

Definition 4.7 Diagonally Dominant Matrix (DDM). An n×n-dimensional
matrix A is diagonally dominant if for all i ∈ [k],

|A[i, i]| ≥
∑

j 6=i
|A[i, j]|.

If using a strict inequality (>) instead (≥) in the above definition, then A is
called strict diagonally dominant matrix (SDDM).

Definition 4.8 (γ, δ)-Diagonally Dominant Matrix (DDMγ,δ). A is a
(γ, δ)-diagonally dominant matrix if A is satisfied

|A[i, j]| =

{
O(γ), if i = j

O(δ), if i 6= j.

Note that we only consider the approximate eigenvalue of diagonally domi-
nant matrix in this paper. In the following we will prove the inverse of a DDMγ,δ

matrix is a DDMγ′,δ′ matrix. Moreover, it is not difficult to verify that the prod-
uct of two DDMγi,δi , i ∈ [2] matrices is a DDMγ1γ2,δ1γ2+δ2γ1 matrix. By using
these properties we can compute the eigenvalues of a DDMγ,δ matrix as the
approximate eigenvalues of its diagonal dominant matrix.

Lemma 4.9. Suppose that A is a DDMγ,δ matrix. Then A−1 is a DDMγ−1,nδ/γ−2

matrix.

Proof. Since A is a DDMγ,δ matrix, we can write A = A1 + Aδ such that
A1 is a diagonal matrix and

|A1[i, i]| = O(γ), i ∈ [n]

|Aδ[i, j]| = O(δ), i, j ∈ [n].

So, A−11 = Diag(A−1[1, 1], · · · , A−1[n, n]).

Again since A is a DDMγ,δ matrix, we have |A[i, i]| = O(γ). Without loss of
generality, assume γ−1max = max

i∈[n]
{A−1[i, i]} = O(γ−1).

By ‖A−11 Aδ‖ ≤ ‖A−11 ‖‖Aδ‖ ≤ O(nγ−1maxδ) = O(nγ−1δ)� 1, we have

A−1 = (A1 + Aδ)
−1

= (I + A−11 Aδ)
−1A−11

= (I−A−11 Aδ + (A−11 Aδ)
2 − · · · )A−11

= A−11 + Aδ′

where Aδ′ = (−A−11 Aδ + (A−11 Aδ)
2 − · · · )A−11 .
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Again,

‖Aδ′‖ ≤ (‖A−11 Aδ‖+ ‖(A−11 Aδ)
2‖+ · · · )‖A−11 ‖

=

∞∑
i=1

(O(nγ−1δ))iO(γ−1)

=
O(nγ−1δ)

1−O(nγ−1δ)
O(γ−1)

= O(nδγ−2).

Consequently, |Aδ′ [i, j]| = O(nδγ−2) for all i, j ∈ [n], and hence

|A−1[i, j]| =

{
O(γ−1), if i = j

O(nδγ−2), if i 6= j
.

Therefore, A−1 is a DDMγ−1,nδ/γ−2 matrix.

Remark 4.10. Although the results of all the lemmas above are given over
the field Q, they can be directly extended to the field K = Q[x]/〈f(x)〉. Note
that in this case we require to use the norm of the elements in K, instead of
using the absolute value in Q.

5 Cryptanalysis

Since the BP obfuscator using GGH13 without ideals [2] no longer uses ideals,
we cannot obtain a basis of the ideal βk as that of the CGH attack. Also, we
cannot find some exact representatives of the bundling scalars due to the noise.
However, we can recover some approximate ratios of the bundling scalars by
applying the matrix properties described in the above section. Applying these
approximate ratios, we present a variant of the CGH attack to break the BP
obfuscator using GGH13 without ideals.

5.1 Branching program with input partitioning

We first adaptively recall the branching program with input partitioning in [11].
Let X||Y ||Z = [κ] be a 3-partition of the branching program steps. For a 3-
partition input f = xyz, we use Sx (resp. Sy,Sz) to denote the plaintext product
matrix of function branch in the X (resp. Y, Z) interval, and S′x (resp. S′y,S

′
z)

the plaintext product matrix of dummy branch in the X (resp. Y,Z) interval.
In addition, we denote by |S| the number of elements in a set S.
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For the function branch, it is easy to obtain

Sx = Ã0

∏
k∈X

Ãk,uinp(k)
= ε0αxÂ0 ×

∏
k∈X

Âk,uinp(k)
×Py1

= ε0αxÂ0 × Âx ×Py1 ,

Sy =
∏

k∈Y
Ãk,uinp(k)

= αyP
−1
y1 ×

∏
k∈Y

Âk,uinp(k)
×Pz1

= αyP
−1
y1 × Ây ×Pz1 ,

Sz =
∏

k∈Z
Ãk,uinp(k)

× Ãκ+1 = εκ+1αzP
−1
z1 ×

∏
k∈Z

Âk,uinp(k)
× Âκ+1

= εκ+1αzP
−1
z1 × Âz × Âκ+1.

Similarly, for the dummy branch we have

S′x = Ã
′
0

∏
k∈X

Ã
′
k,uinp(k)

= ε′0α
′
xÂ
′
0 ×

∏
k∈X

Â
′
k,uinp(k)

×P′y1

= ε′0α
′
xÂ
′
0 × Â

′
x ×P′y1 ,

S′y =
∏

k∈Y
Ã
′
k,uinp(k)

= α′yP
′−1
y1 ×

∏
k∈Y

Â
′
k,uinp(k)

×P′z1

= α′yP
′−1
y1 × Â

′
y ×P′z1 ,

S′z =
∏

k∈Z
Ã
′
k,uinp(k)

× Ã
′
κ+1 = ε′κ+1α

′
zP
′−1
z1 ×

∏
k∈Z

Â
′
k,uinp(k)

× Â
′
κ+1

= ε′κ+1α
′
zP
′−1
z1 × Â

′
z × Â

′
κ+1,

where the scalars αx, αy, αz, etc. are the product of all the εk,b in the corre-
sponding branch, and y1 = |X|, z1 = |(X||Y )|.

For these bundling scalars αx, αy, αz, etc., our attack requires to use the
following results in [11].

Lemma 5.1 (Lemma 2.3 [11]). Suppose that f (i,j,t) = x(i)y(j)z(t) are
some 3-partition inputs that are all zeros of the function. Then αx(1)/αx′(1) =
αx(2)/αx′(2) = · · · , and similarly αy(1)/αy′(1) = αy(2)/αy′(2) = · · · and αz(1)/αz′(1) =
αz(2)/αz′(2) = · · · .

5.2 Generating approximate ratios of the bundling scalars

Without loss of generality, we assume that the branching program is 3-partitioned.
Let f (i,b,j) = x(i)y(b)z(j) be a 3-partition input of the form X||Y ||Z that is an
input of a zero of the function. Let i, j range over 2s inputs and for b ∈ {0, 1},
then we first obtain the matrices:

Wb = XYbZ

=

 · · ·
βXSx(i) + Rx(i) ,−βXS′x(i) + R′x(i)

· · ·

×
(
βY Sy(b) + Ry(b) , 0

0 βY S′y(b) + R′y(b)

)
×
(
· · · , βZSz(j) + Rz(j) , · · ·

βZS′z(j) + R′z(j) ,

)
,
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where X,Yb,Z ∈ R2s×2s are full rank with high probability, and βX (resp. βY

and βZ ) is equal to the product
∏

k∈X
βk (resp.

∏
k∈Y

βk and
∏

k∈Z
βk).

Then, we compute the characteristic polynomial of W1W
−1
0 over K that is

equal to the characteristic polynomial of Y1Y
−1
0 .

Now we analyze Y1Y
−1
0 over K as follows:

Y1Y
−1
0 =

(
βY Sy(1) + Ry(1) , 0

0 βY S′y(1) + R′y(1)

)(
βY Sy(0) + Ry(0) , 0

0 βY S′y(0) + R′y(0)

)−1
According to the BP obfuscator construction, we have

βY Sy(0) + Ry(0) = βY αy(0)P
−1
y1 Ây(0)Pz1 + Ry(0)

= P−1y1 (βY αy(0)Ây(0)︸ ︷︷ ︸
A1

+ Py1Ry(0)P
−1
z1︸ ︷︷ ︸

Aδ

)Pz1 ,

where A1 is a diagonal matrix.
By the parameter settings, it is easy to verify that δ = ‖Aδ‖ = O(s2n1.5σ3)

and γ = max
i∈[n]
‖A1[i, i]‖ ≈ O(βY αy(0)) such that δ/γ ≤ 2−O(λ). So, by Lemma 4.9

we get

(βY Sy(0) + Ry(0))
−1 = P−1z1 (A−11 + Aδ′)Py1 ,

where δ′ = nδ/γ2.
Thus, we can compute the function branching part of Y1Y

−1
0 as follows:

(βY Sy(1) + Ry(1))(βY Sy(0) + Ry(0))
−1

= (βY αy(1)P
−1
y1 Ây(1)Pz1 + Ry(1))P

−1
z1 (A−11 + Aδ′)Py1

=
αy(1)

αy(0)
P−1y1 (Ây(1)Â

−1
y(0))Py1 + R

=
αy(1)

αy(0)
P−1y1

(
Ey(1) 0

0 Ay(1)

)(
Ey(0) 0

0 Ay(0)

)−1
Py1 + R

=
αy(1)

αy(0)
P−1y1

(
Ey(1)E

−1
y(0)

0

0 Ay(1)A
−1
y(0)

)
Py1 + R

≈
αy(1)

αy(0)
P−1y1

(
Ey(1)E

−1
y(0)

0

0 Ay(1)A
−1
y(0)

)
Py1 ,

where R = βY αy(1)P
−1
y1 Ây(1)Aδ′Py1+Ry(1)P

−1
z1 (A−11 +Aδ′)Py1 such that ‖R‖ ≈

O(β−1Y ).

By Lemma 2.2, we have Ay(1)A
−1
y(0)

= Iw×w. As a consequence,
α
y(1)

α
y(0)
∈ K is

an approximate eigenvalue of the function branch part of multiplicity at least

w. Likewise,
α′
y(1)

α′
y(0)
∈ K is an approximate eigenvalue of the dummy branch of
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multiplicity at least w. Again by Lemma 5.1,
α
y(1)

α
y(0)

=
α′
y(1)

α′
y(0)

, and therefore
α
y(1)

α
y(0)

is the approximate eigenvalue of Y1Y
−1
0 of multiplicity at least 2w.

Thus, we can find all roots of the characteristic polynomial of W1W
−1
0 over

K and consider at least 2w approximately equal roots as the approximate value

of
α
y(1)

α
y(0)

.

Remark 5.2. We observe that for two inputs x,x′ ∈ {0, 1}l that differ only
in xj = 1 and x′j = 0, if the branching program evaluates to zero for them,

namely δx = αxβ · stT + o(β) and δx′ = αx′β · stT + o(β). As a consequence,
if we take the setting of parameters with ‖δx‖, ‖δx′‖ < q according to [2], then
αj,1
αj,0
≈ δx

δx′
. The advantage of this simple attack method is that it has not related

to the input-partition of the branching program. However, it is not difficult to
avoid this attack by setting ‖β‖ ≥ q. Note that its updated version [3] has set
the parameters such that ‖δx‖, ‖δx′‖ > q.

5.3 Annihilation attack

Chen, Gentry and Halevi [11] have extended the annihilation attack introduced
by Miles, Sahai and Zhandry [28] to break the GGH13-based branching program
obfuscators with the padded random diagonal entries by using the ratios of
the bundling scalars. However, it is not clear whether the CGH attack can be
extended to attack the BP obfuscators over GGH13 without ideals [2]. Here
we further generalize the CGH attack to break this candidate IO over GGH13
without ideals by applying the approximate ratios of the bundling scalars.

To simplify our attack description, we use the same running example used
by Chen, Gentry and Halevi [11].

Example 5.3 (Example 3.1 [11]). The two programs B,B′ have the iden-
tity matrix for both 0 and 1 in all the steps except for the two steps u,w that are
a permutation matrix P and its inverse P−1 for B′. Here we require the steps
u, v, w belong to the interval Y such that u < v < w and the input bit j2 does
not control any steps before u or after w. The programs B,B′ that compute the
constant-zero function concretely define as follows:

B= 0: I · · · I I I I I · · · I
1: I · · · I I I I I · · · I

B ’= 0: I · · · I I I I I · · · I

1: I · · · I P I P−1 I · · · I
Steps 0: X u v w Z

Input bits 1: * · · · * j1 j2 j1 * · · · *

Unlike [11], in the above subsection we can only compute the approximate
ratios of α1/α0 and α′1/α

′
0, not their exact ratios. Since these ratios are approx-

imate, consequently we cannot compute four scalars v0, v1, ζ00, ζ11 ∈ R as that
in [11]. However, we here are working on K, not mod 〈g〉 and hence we can take

v0 = 1, v1 ≈ α′1/α′0 and ζ00 = 1, ζ11 ≈ α1α
′
1/α0α

′
0
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We let f
(i,j)
µν = x(i)µνz(j) be an input for a zero of the function, where x(i) is

the bits controlled in the step interval X, µν the two distinguished bits controlled
in the step interval Y , and z(j) the bits controlled in the step interval Z. We

denote by Eval(f
(i,j)
µν ) the value returned by honest evaluating the obfuscated

BP on the input f
(i,j)
µν :

Eval(f (i,j)µν ) = A0 ·
∏κ

k=1
Ak,xinp(k)

·Aκ+1 −A
′
0 ·
∏κ

k=1
A
′
k,xinp(k)

·A′κ+1

= (β0Ã0 + R0) ·
∏κ

k=1
(βkÃk,xinp(k)

+ Rk,xinp(k)
) · (βκ+1Ãκ+1 + Rκ+1)

− (β0Ã
′
0 + R′0) ·

∏κ

k=1
(βkÃ

′
k,xinp(k)

+ R′k,xinp(k)
) · (βκ+1Ã

′
κ+1 + R′κ+1)

To perform our attack, we select many different inputs f
(i,j)
µν that are all zeros

of the function, and for each i, j we set

A[i, j] = Eval(f
(i,j)
11 ) · ζ00 · v1v0 − Eval(f

(i,j)
10 ) · ζ00 · v1v1

− Eval(f
(i,j)
01 ) · ζ11 · v0v0 − Eval(f

(i,j)
00 ) · ζ11 · v0v1,

where all the computations are operated in K. Choosing enough inputs f
(i,j)
µν ,

we can obtain a matrix A.

In the following, we first analyze the rank of the submatrix corresponding to
the interval Y in the matrix A. Then we show that A has a non-full rank matrix
decomposition for the program B, whereas for the program B′, there is no such
decomposition with high probability. Finally, we describe a distinguishing attack
between the programs B and B′.

5.4 Analysis

5.4.1 The Matrix DY

Assume that the step interval Y only consists of the steps u, v, w, namely |Y | = 3,
and µν ∈ {0, 1}2 are any two input bits corresponding to Y . For simplicity, let
β = max

0≤k≤κ+1
{βk} such that ‖β‖ = max

0≤k≤κ+1
{‖βk‖}. We write βuv = βuβv, and

similarly for βuw, βvw.
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Then the matrix in the function branch of Y has the form

Aµν
Y =

∏
k∈Y

(βkÃk,xinp(k)
+ Rk,xinp(k)

)

= (βuÃu,µ + Ru,µ)(βvÃv,ν + Rv,ν)(βwÃw,µ + Rw,µ)

= αµα
′
ν ·P

−1
u−1 ·

(
βuÂu,µ +

1

εu,µ
Pu−1Ru,µP−1u︸ ︷︷ ︸

:=R̂u,µ

)
(
βvÂv,ν +

1

εv,ν
PuRv,νP

−1
v︸ ︷︷ ︸

:=R̂v,ν

)(
βwÂw,µ +

1

εw,µ
PvRw,µP−1w︸ ︷︷ ︸
:=R̂w,µ

)
·Pw

= αµα
′
ν ·P

−1
u−1 ·

(
βY Âu,µÂv,νÂw,µ︸ ︷︷ ︸

:=CµνY

+
(
βuwÂu,µR̂v,νÂw,µ + βuvÂu,µÂv,νR̂w,µ + βvwR̂u,µÂv,νÂw,µ︸ ︷︷ ︸

:=Dµν
Y

)

+O(β
|Y |−2

)Eµν
Y

)
·Pw

= αµα
′
ν ·P

−1
u−1 ·

(
Cµν
Y + Dµν

Y +O(β)Eµν
Y

)
·Pw,

where all the computations above are operated in K. Notice that in the above
‖Eµν

Y ‖ = λO(1), and αµ = εu,µεw,µ, α
′
ν = εv,ν .

By Dµν
Y we define

DY = D11
Y −D10

Y −D01
Y + D00

Y

=
(
βuwÂu,1R̂v,1Âw,1 + βuvÂu,1Âv,1R̂w,1 + βvwR̂u,1Âv,1Âw,1

)
−
(
βuwÂu,1R̂v,0Âw,1 + βuvÂu,1Âv,0R̂w,1 + βvwR̂u,1Âv,0Âw,1

)
−
(
βuwÂu,0R̂v,1Âw,0 + βuvÂu,0Âv,1R̂w,0 + βvwR̂u,0Âv,1Âw,0

)
+
(
βuwÂu,0R̂v,0Âw,0 + βuvÂu,0Âv,0R̂w,0 + βvwR̂u,0Âv,0Âw,0

)
.

(2)

Now it is completely analogous to the method in [11] to show DY ∈
(
∗ ∗
∗ 0w×w

)
when evaluating B, but not with high probability when evaluating B′.

Similarly, we can define the matrix D′Y in the dummy branch for the step

interval Y , and use the same method to prove D′Y ∈
(
∗ ∗
∗ 0w×w

)
regardless of

whether the branching program is B or B′.

5.4.2 The Matrix A
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To analyze A, we letX = {x1, x2, · · · , xx}, Y = {u, v, w}, Z = {z1, z2, · · · , zz}.
We denote by αx(i) (resp. αz(j) ) the product of the bundling scalars of the func-
tion branch corresponding to X (resp. Z), and similarly for α′x(i) , α′z(j) corre-
sponding to the dummy branch. Moreover by Lemma 5.1, we have αx(i)αz(j) =
α′x(i)α′z(j) and denote this product by α(i,j). We also write βXk = βX/βk and
βZk = βZ/βk.

Similar to the simplification of Aµν
Y in the function branch corresponding to

Y , it is easy to simplify all the matrices associated to the intervals X,Y, Z as
follows: 

Ai
X = αx(i) ·P−10

(
Ci
X + Di

X +O(β
|X|−2

)Ei
X

)
Pu−1,

Aµν
Y = αµα

′
ν ·P

−1
u−1

(
Cµν
Y + Dµν

Y +O(β
|Y |−2

)Eµν
Y

)
Pw

Aj
Z = αz(j) ·P−1w

(
Cj
Z + Dj

Z +O(β
|Z|−2

)Ej
Z

)
Pκ,

A′
i
X = α′x(i) ·P′−10

(
C′

i
X + D′

i
X +O(β

|X|−2
)E′

i
X

)
P′u−1,

A′
µν
Y = αµα

′
ν ·P′

−1
u−1

(
C′

µν
Y + D′

µν
Y +O(β

|Y |−2
)E′

µν
Y

)
P′w

A′
j
Z = α′z(j) ·P′

−1
w

(
C′

j
Z + D′

j
Z +O(β

|Z|−2
)E′

j
Z

)
P′κ.

(3)

In Equ. (3), except for the unspecified small noise matrices Ei
X ,E

′i
X ,E

j
Z ,E

′j
Z ,

we also use the following notations

Ci
X = βX ·

∏
k∈X

Âk,uinp(k)
, C′

i
X = βX ·

∏
k∈X

Â
′
k,uinp(k)

,

Cj
Z = βZ ·

∏
k∈Z

Âk,uinp(k)
, C′

j
Z = βZ ·

∏
k∈Z

Â
′
k,uinp(k)

,

Di
X =

∑
k∈X

βXkÂx1,uinp(x1)
· · · Âk−1,uinp(k−1)

R̂k,uinp(k)
Âk+1,uinp(k+1)

· · · Âxx,uinp(xx)
,

D′
i
X =

∑
k∈X

βXkÂ
′
x1,uinp(x1)

· · · Â
′
k−1,uinp(k−1)

R̂
′
k,uinp(k)

Â
′
k+1,uinp(k+1)

· · · Â
′
xx,uinp(xx)

,

Dj
Z =

∑
k∈Z

βZkÂz1,uinp(z1)
· · · Âk−1,uinp(k−1)

R̂k,uinp(k)
Âk+1,uinp(k+1)

· · · Âzz,uinp(zz)
,

D′
j
Z =

∑
k∈Z

βZkÂ
′
z1,uinp(z1)

· · · Â
′
k−1,uinp(k−1)

R̂
′
k,uinp(k)

Â
′
k+1,uinp(k+1)

· · · Â
′
zz,uinp(zz)

,

where

R̂k,uinp(k)
=

1

εk,uinp(k)

Pk−1Rk,uinp(k)
P−1k ,

R̂
′
k,uinp(k)

=
1

εk,uinp(k)

P′k−1R
′
k,uinp(k)

P′
−1
k .

Thus, we now can simplify Eval(f
(i,j)
µν ) as follows:
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Eval(f (i,j)µν )

= α0α(i,j)αµα
′
ν ·
((

β0Â0︸ ︷︷ ︸
:=C0

+R̂0

)(
Ci
X + Di

X +O(β
|X|−2

)Ei
X

)
(
Cµν
Y + Dµν

Y +O(β
|Y |−2

)Eµν
Y

)(
Cj
Z + Dj

Z +O(β
|Z|−2

)Ej
Z

)(
βκ+1Âκ+1︸ ︷︷ ︸

:=Cκ+1

+R̂κ+1

)
−
(
β0Â

′
0︸ ︷︷ ︸

:=C
′
0

+R̂
′
0

)(
C′

i
X + D′

i
X +O(β

|X|−2
)E′

i
X

)(
C′

µν
Y + D′

µν
Y +O(β

|Y |−2
)E′

µν
Y

)
(
C′

j
Z + D′

j
Z +O(β

|Z|−2
)E′

j
Z

)(
βκ+1Â

′
κ+1︸ ︷︷ ︸

:=C
′
κ+1

+R̂
′
κ+1

))

= α0α(i,j)αµα
′
ν ·
(

C0

(
Ci
X + Di

X

)(
Cµν
Y + Dµν

Y

)(
Cj
Z + Dj

Z

)
Cκ+1

+ R̂0C
i
XCµν

Y Cj
ZCκ+1 + C0C

i
XCµν

Y Cj
ZR̂κ+1

−C
′

0

(
C′

i
X + D′

i
X

)(
C′

µν
Y + D′

µν
Y

)(
C′

j
Z + D′

j
Z

)
C
′

κ+1

− R̂
′
0C
′i
XC′

µν
Y C′

j
ZC′κ+1 −C′0C

′i
XC′

µν
Y C′

j
ZR̂
′
κ+1 +O(β

κ
)

)
= α0α(i,j)αµα

′
ν ·
(

C0

(
Ci
XCµν

Y Dj
Z + Ci

XDµν
Y Cj

Z + Di
XCµν

Y Cj
Z

)
Cκ+1

+ R̂0C
i
XCµν

Y Cj
ZCκ+1 + C0C

i
XCµν

Y Cj
ZR̂κ+1

−C
′

0

(
C′

i
XC′

µν
Y D′

j
Z + C′

i
XD′

µν
Y C′

j
Z + D′

i
XC′

µν
Y C′

j
Z

)
C
′

κ+1

− R̂
′
0C
′i
XC′

µν
Y C′

j
ZC′κ+1 −C′0C

′i
XC′

µν
Y C′

j
ZR̂
′
κ+1 +O(β

κ
)

)
,

where

R̂0 =
1

ε0
R0P

−1
0 , R̂′0 =

1

ε′0
R′0P

′−1
0 ,

R̂κ+1 =
1

εκ+1
Pκ+1Rκ+1, R̂′κ+1 =

1

ε′κ+1
P′κ+1R

′
κ+1.

To further simplify A[i, j], we define

CY = C11
Y −C10

Y −C01
Y + C00

Y , C′Y = C′
11
Y −C′

10
Y −C′

01
Y + C′

00
Y

xi = C0C
i
X , x′i = C

′

0C
′i
X , zj = Cj

ZCκ+1, z′j = C′
j
ZC

′

κ+1

ei = C0D
i
X , e′i = C

′

0D
′i
X , fj = Dj

ZCκ+1, f′j = D′
j
ZC

′

κ+1

ri = R̂0C
i
X , r′i = R̂

′
0C
′i
X , wj = Cj

ZR̂κ+1, w′j = C′
j
ZR̂
′
κ+1
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By the definition of the bundling scalars and their approximate ratios that
solve in the above subsection, it is easy to verify that

α1α
′
1 · ζ00 · v1v0 ≈ α1α

′
0 · ζ00 · v1v1 ≈ α0α

′
1 · ζ11 · v0v0 ≈ α0α

′
0 · ζ11 · v0v1,

where the approximate accuracy is O(β
−1

).
As a consequence, we can incorporate these approximate scalars into the

matrices corresponding to x(i) and z(j) respectively and can rewrite A[i, j] as
follows:

A[i, j] =
(
xiCY zj + xiDY zj + eiCY zj + riCY zj + xiCY wj︸ ︷︷ ︸

:=F [i,j]

)
−
(
x′iC

′
Y z′j + x′iD

′
Y z′j + e′iC

′
Y z′j + x′iC

′
Y z′j + x′iC

′
Y w′j︸ ︷︷ ︸

:=F ′[i,j]

)
+O(β

κ
),

In the following we first analyze the matrix F generated by the term F [i, j]
from the function branch with i, j ∈ [ξ], where ξ ≥ 2m+ 1.

According to the construction structure of the obfuscated BP, for program

B we have the vectors xi,x
′
i, ei, e

′
i =

(
0m $m $w

)
, zj , z

′
j , fj , f

′
j =

(
$m 0m $w

)T
,

and the matrices

CY ,C
′
Y ∈

$m×m 0m×m 0m×w

0m×m $m×m 0m×w

0m×m 0m×m 0w×w

 , DY ,D
′
Y ∈

$m×m $m×m $m×w

$m×m $m×m $m×w

$m×m $m×m 0w×w

 .

Moreover, for the program B′ everything else is the same except that DY is
arbitrary by the analysis of DY in the previous subsection.

Thus for B we can write F by the block form and simplify it to determine
its rank as follows:

F = XCY Z + XDY Z + ECY Z + RCY Z + XCY W

=
(
0 X2 X3

)C1,1 0 0
0 C2,2 0
0 0 0

Z1

0
Z3

+
(
0 X2 X3

)D1,1 D1,2 D1,3

D2,1 D2,2 D2,3

D3,1 D3,2 0

Z1

0
Z3


+
(
0 E2 E3

)C1,1 0 0
0 C2,2 0
0 0 0

Z1

0
Z3

+
(
R1 R2 R3

)C1,1 0 0
0 C2,2 0
0 0 0

Z1

0
Z3


+
(
0 X2 X3

)C1,1 0 0
0 C2,2 0
0 0 0

W1

W2

W3


=
(
X2D2,1 + X3D3,1 + R1C1,1

)
Z1 + X2

(
D2,3Z3 + C2,2W2

)
(4)

Since the rank of Z1 and X2 is at most m, consequently the rank of F is at
most 2m.
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However, the rank of F for B′ is at least 2m+ 1 with high probability. Since
D3,3 is a non-zero block matrix, as a result with high probability F can not be
decomposed into the sum of two matrices with rank m.

Furthermore, the rank of F′ for B and B′ is at most 2m. The analysis of F′

is exactly similar to the analysis of F for B.

Theorem 5.4. Let ξ = 4m + 1, γ = ‖βκ+1‖ and δ = ‖βκ‖. Suppose there
exist sufficiently many inputs ui,jµν that are all the zero of the function. Then
when m is constant, with high probability

the program is

{
B′, if ‖det(A)‖ = O(γξ);

B, if ‖det(A)‖ = O(γξ−1δ).

When m = poly(λ), using heuristical assumption

the program is

{
B′, if ‖det(A)‖ = O(ξ! · γξ);
B, if ‖ det(A)‖ = O(ξ! · ξγξ−1δ).

Proof. According to the analysis of A, for the program B we have

A = F− F′︸ ︷︷ ︸
:=A1

+O(β
κ
)E︸ ︷︷ ︸

:=Aδ

,

where E is a matrix whose entries are polynomials with small norm over K.
Thus, for the program B there exists a (γ, δ)-matrix decomposition A =

A1 + Aδ. Since the rank of A1 is at most 4m < ξ, consequently when m is
constant we have ‖ det(A)‖ = O(γξ−1δ) by Lemma 4.3.

However, for the program B′ with high probability there is no such (γ, δ)-
matrix decomposition with a non-full rank A1. Therefore when m is constant
we get ‖ det(A)‖ = O(γξ) for B′ by Lemma 4.1.

When m = poly(λ) we heuristically assume that ‖ det(A)‖ is approximately
equal to O(ξ! · γξ) if A has no (γ, δ)-matrix decomposition such that A1 is a
non-full rank matrix. Note that this heuristic assumption is supported by our
computation experiment.

For B, therefore, we have ‖ det(A)‖ = O(ξ! · ξγξ−1δ) by Lemma 4.3, and for
B′ the result directly follows the heuristic assumption.

5.5 Analysis of Recent Immunization

To prevent the annihilation attack [28], Garg et al. [22] (a merged version of
[23,29]) constructed a variant of BP obfuscator whose security is proved in the
weakened idealized model. However, Chen, Gentry and Halevi [11] observed that
this variant can not thwart the annihilation attack if the branching program is
input partitioning. This attack result is not contradictory to the security proof
in [22], as their immunized variant only considers dual input branching programs
that are no input partitioning.
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Similarly, we can also extend our attack to this immunized variant using
instantiation of GGH13 without ideals. In this case, the variant uses fully random
2m×2m matrices Ek,b,E

′
k,b instead of the diagonal ones, and takes the bookend

vectors as Â0, Â
′
0 =

(
02m, $w

)
and Âκ+1, Â

′
κ+1 =

(
$2m, $w

)
.

Observe that the algorithm that solves approximate ratios of the bundling
scalars still works. Moreover, the analysis of the matrix DY in Equ. (2) remains
the same. For the rank of F in Equ. (4), we analyze F for the program B in
Example 5.3 as follows:

F = XCY Z + XDY Z + ECY Z + RCY Z + XCY W

=
(
0 X2

)(C1,1 0
0 0

)(
Z1

Z2

)
+
(
0 X2

)(D1,1 D1,2

D2,1 0

)(
Z1

Z2

)
+
(
0 E2

)(C1,1 0
0 0

)(
Z1

Z2

)
+
(
R1 R2

)(C1,1 0
0 0

)(
Z1

Z2

)
+
(
0 X2

)(C1,1 0
0 0

)(
W1

W2

)
=
(
X2D2,1 + R1C1,1

)
Z1,

(5)

where {Ci,j ,Di,j}i,j∈[2] are blocks of the matrices CY ,DY with dimension-
s (2m|w) × (2m|w), {Xi,Ei,Ri}i∈[2] are blocks of the matrices X,E,R with
dimensions ξ× (2m|w), and {Zj ,Wj}j∈[2] are blocks of the matrices Z,W with
dimensions (2m|w)× ξ. It is easy to verify that the rank of F is at most 2m. On
the other hand, for the program B′ we will add another matrix X2D2,2Z2 to F
in Equ. (5) since with high probability D2,2 is not a “0” matrix. Therefore, we
can use the same algorithm in Section 5.3 to distinguish between B and B′.

As well, we can also adapt the original variant proposed by Garg et al. [23]
to a new variant using GGH13 without ideals using β2

i instead of g2. It is not
difficult to verify that our attack can still generalize to this new immunized
variant instantiated by GGH13 without ideals if the branching program is input-
partitioning.

6 Conclusions

In this paper, we show how to break a branching program obfuscator using G-
GH13 without ideals by extending the CGH attack when the branching program
is input partionable. Consequently, we solve an open problem in [2] presented
by Albrecht, Davidson and Larraia. Our work demonstrates that the security of
the obfuscator using GGH13 without ideals [2] is essentially equivalent to that
of the GGH13-based obfuscator [20]. Furthermore, our work further strengthens
the work in [2,3] that there is a structural weakness in ‘GGH13-type’ encodings
beyond the presence of 〈g〉.

While the immunized construction in [22] proposed by Garg et al. can pre-
vent input-partitioning attack, their weakened graded encoding model does not
explicitly include this requirement of input non-partitioning. Therefore, it is still
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an open problem how to construct a branching program obfuscator with input-
partitioning or improve the weakened graded encoding model to enable this input
requirement.
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