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Abstract. Key Exchange (KE) from RLWE (Ring-Learning with Errors) is a po-
tential alternative to Diffie-Hellman (DH) in a post quantum setting. Key leakage
with RLWE key exchange protocols in the context of key reuse has already been
pointed out in previous work. The initial attack described by Fluhrer is designed
in such a way that it only works on Peikert’s KE protocol and its variants that de-
rives the shared secret from the most significant bits of the approximately equal
keys computed by both parties. It does not work on Ding’s key exchange that uses
the least significant bits to derive a shared key. The Signal leakage attack relies
on changes in the signal sent by the responder reusing his key, in a sequence of
key exchange sessions initiated by an attacker with a malformed key. A possible
defense against this attack would be to require the initiator of a key exchange
to send the signal, which is the one pass case of the KE protocol. In this work,
we describe a new attack on Ding’s one pass case without relying on the signal
function output but using only the information of whether the final key of both
parties agree. We also use LLL reduction to create the adversary’s keys in such a
way that the party being compromised cannot identify the attack in trivial ways.
This completes the series of attacks on RLWE key exchange with key reuse for all
variants in both cases of the initiator and responder sending the signal. Moreover,
we show that the previous Signal leakage attack can be made more efficient with
fewer queries and how it can be extended to Peikert’s key exchange, which was
used in the BCNS implementation and integrated with TLS and a variant used in
the New Hope implementation.
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1 Introduction

Post-quantum cryptography refers to cryptographic algorithms (usually public key al-
gorithms) that are thought to be secure against an attack by a quantum computer. Ac-
cording to studies, a sufficiently large quantum computer can efficiently break most
widely used public-key algorithms such as RSA and ECDSA. In 1994, Shor devised a
quantum algorithm [26] that can be used to solve the Discrete Log Problem (the hard-
ness of which the security of different variants of Diffie-Hellman (DH) key exchange
algorithms are based on) in polynomial time with quantum computers [26]. This led to
the search for quantum resistant cryptographic protocols. Cryptographic primitives that
are believed to be resistant to quantum computer attacks include Multivariate, Hash
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based, Code based and Lattice based, that have their security based on mathematical
problems that are hard to solve with currently known efficient quantum algorithms. In
the recent years, lattice based cryptographic primitives have proven to have versatile
applications in Key Exchange, Signature, FHE (Fully Homomorphic Encryption) and
more. Key Exchange protocols allow two or more participants to derive a shared cryp-
tographic key, often used for authenticated encryption. RLWE (Ring-Learning With
Errors) key exchange is a lattice based variant of DH type protocol that also has prop-
erties like quantum resistance, forward and provable security that makes it a desirable
replacement for currently used DH protocols. In RLWE key exchange, the two par-
ties in a key exchange initially compute approximately equal values, after which one
of the parties sends information about the interval in which its computation of the key
value lies, to the other party. Then, both the parties use this information to derive a final
shared secret. This additional information, referred to as the signal was exploited by ac-
tive adversaries to retrieve the secret of a reused key as shown in [11] and applies to the
RLWE based key exchange protocol in [16] and all its variants [24],[7],[5]. The signal
function attack works when the responder (party that reuses its key) sends the signal
and can be defended against by requiring the initiator to send the signal. In this work,
we explore a new and more sophisticated attack to recover the secret without using the
signal function output by querying the party with reused key for mismatch of the final
shared key. The attack is set up for the one pass case of the protocol, when the initiator
(instead of the responder) performing the key exchange sends the signal to the other
party. The other details of the KE protocol remains the same as the two pass case. This
work is an attack description on the KE protocol in [16] which uses the least significant
bits of the computed keys to derive a shared secret key. The work in [12] focuses on an
attack on KE protocol in [24] and its variants [7],[5] that uses the most significant bits
to derive the shared key. With this attack description, we show that all RLWE based KE
protocols are vulnerable to attacks when keys are reused, excluding the ones designed
as IND-CCA KEMs (Key Encapsulation Mechanism).

The motivation for this work is the adaptability of post quantum RLWE based key
exchange in real applications, where key reuse is widely adopted for efficiency reasons.
Key exchange is a fundamental cryptographic primitive in secure protocols such as SSH
(Secure Shell), the Transport Layer Security (TLS) and IKE (Internet Key Exchange).
TLS 1.3 draft 7 [1] allows reuse of keys in a 0 RTT (Round Trip Time) mode that
maintains a long term public key which is sent through a ServerConfiguration
message to the client in the initial handshake. However, this was modified in the later
draft 13 of TLS 1.3 [3] to use a PSK (preshared key) identity that is sent to the client on
the initial handshake to be used for encrypting early data on future handshakes. Another
such instance of key reuse appears in the Internet Key Exchange (IKE). IKE is often
used in IPSec to establish a Security Association (SA) between nodes in the network to
agree on the cryptographic algorithms and keys to use for the algorithms. The first pair
of messages in an IKE session negotiate cryptographic algorithms, exchange nonces,
and do a Diffie-Hellman exchange. Currently with classical DH, some implementations
of IKE reuse the keys for improved computational efficiency and latency. Possibilities
of such key reuse in important Internet protocols calls for an analysis of its effect while
transitioning to quantum safe primitives.
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1.1 Previous Work

Key leakage in RLWE based key exchange with key reuse was pointed out in [17] but
without any concrete description of an attack to exploit the leakage. An attack was
described by Fluhrer in [12] with the attack strategy that tries to use the agreement of
final shared key to derive information about the secret but does not work in the case of
[16] where the final shared key is derived from the least significant bits.

Another attack presented in [15] is executed on the one pass case of the Authenti-
cated Key Exchange protocol from RLWE in [27] and exploits properties of the CRT
(Chinese Remainder Theorem) basis of Rq . It recovers every CRT coefficient of the
secret s of a key p = as + 2e in order to recover s, with an attack complexity of
q−1
2 (δ.qδ + q − δ.q

n ), where δ is a moderately large constant.
The signal function attack is used to recover information about the secret of a reused

key in an attack description in [11]. It works by looking at the number of times the signal
value of the key computation kB changes when varying k across all values in Zq in the
adversary’s public key of pA = asA + keA. The number of signal changes is expected
to be exactly 2 times the secret value by the choice of sA, eA and the definition of the
signal region. The secret is recovered with 2q queries to the party with the reused key.

1.2 Our Contributions

We present a new attack on RLWE based key exchange in the context of key reuse.
We focus on the one pass case of the KE protocol since the other case can already be
attacked with previous work. Thus, having the initiator send the signal is not a possible
defense against attacks with key reuse and unsuccessful key exchange sessions can
be used to reveal information about the secret. We carefully work through the details
of the adversary’s queries and perform an attack with query complexity O(n2α). The
query complexity is independent of q, making it more efficient than the signal function
attack. Here, α is the standard deviation of the error distribution. The goal of the work
is to show that RLWE keys when reused in key exchange can always be exploited and
broken. The success of such attacks comes from the hardness of distinguishing RLWE
samples from uniform. Section 3 reviews definitions and results that are relevant to
indistinguishability of RLWE samples. We have verified the success of our attacks with
experiments.

This attack does not rely on the leakage of the signal and can still be applied to
protocols in the case that the initiator is required to send the signal to avoid the signal
function attack. Although the attack approach is similar to [12] in using key mismatch
to compromise the secret, we use a different strategy for the attack. In [12], the attack
focuses on key exchange protocols that derive the most significant bits of the approxi-
mately equal key computed. The approach is to query for the boundary between 0 and
1, corresponding to the signal quadrants defined in the protocol. But this does not work
in the case of key exchange protocols that use the least significant bit to derive the fi-
nal shared key. In our attack, the attacker forces the other party to reveal information
about the secret from the final key mismatch. In practice, this is possible because a key
mismatch results in an unsuccessful key exchange. So, if the attacker uses his compu-
tation of the key, he cannot decrypt a message from the other party or does not get a
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desired response from the other party. The attacker creates his public key in such a way
that mismatch in the final shared key is linked with a change in sign of a particular
coefficient of the intermediate (approximately equal) key computed.

We choose a secret sA for the adversary such that the n − 1-th coordinate of the
key computation is small, by solving linear equations involving the reused public key
pB = asB + 2eB . Here, pB is an RLWE public key with secrets sB , eB sampled
from an error distribution and a uniform randomly sampled from the ring. To recover
useful information using success or failure of a session, the attacker’s secret needs to
be small. This is because the attacker only checks for match or mismatch of final key
in one coordinate to recover the secret sB but with a key exchange session failure, the
attacker cannot know which coordinates of the key did not match. So, keeping sA small
ensures that the other coordinates are computed following the protocol and matches for
both parties, implying that a key exchange session success or failure relies on match or
mismatch of the specific coordinate of the final key. To ensure that sA is small, we apply
the LLL reduction algorithm on the solution space of the system of linear equations
solved. We refer to this work as a complete attack since it fills the gap on available
attacks for all variants of RLWE based KE protocols and both cases where the initiator
and responder sends the signal. We also discuss the signal function attack to make it
more efficient in terms of the query complexity. Later, we discuss about extending the
signal attack to the key exchange in [24] which follows the same approach as in [16] and
uses a slightly different signal function, referred to as the cross rounding function. The
BCNS implementation uses the key exchange in [24]. The New Hope implementation
uses a modified version with a different error distribution and error reconciliation, and
was tested in Google Chrome Canary browser for its post quantum experiment [2].

2 Organization

In Section 3, We discuss some background on RLWE and the functions used in the key
exchange protocol. The protocol being attacked is reviewed in Section 4. The attack
is described in Section 5, which is divided into two parts - simplified and improved.
The simplified attack aims at providing a basic understanding of the attack assuming
that the attacker’s secret is 0. The improved attack further builds on the simplified case
to describe the actual attack strategy. Other subsections of this attack section discusses
query complexity and experiments we performed to verify the attack. Section 6 reviews
the signal function attack and describes how it can be applied to the KE protocol in [24].
Section 7 discusses about reducing the query complexity of the signal function attack.

3 Preliminaries

3.1 Notation

Let n be an integer and a power of 2. Define f(x) = xn+ 1 and consider the ring R :=
Z[x]/〈f(x)〉. For any positive integer q, we define the ring Rq = Zq[x]/〈f(x)〉 anal-
ogously, where the ring of polynomials over Z (respectively Zq = Z/qZ) we denote
by Z[x] (respectively Zq[x]). Let χα denote the Discrete Gaussian distribution on Rq ,
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naturally induced by that over Zn with standard deviation α. A polynomial p ∈ R (or
Rq) can be alternatively represented in vector form (p0, . . . , pn−1) corresponding to
its coefficients and p[i] = pi denotes the i-th coefficient of the polynomial. Let the
norm ‖p‖ of a polynomial p ∈ R (or Rq) be defined as the norm of the correspond-
ing coefficient vector in Z (or Zq). For a vector v = (v0, . . . , vn−1) in Rn or Cn and
p ∈ [1,∞), we define the `p norm as ‖v‖p = (

∑n−1
i=0 |vi|p)1/p and the `∞ norm as

‖v‖∞ = maxi∈[n]|vi|. The `2 norm corresponds to the `p norm with p = 2 and is de-
noted as ‖.‖ in this paper. In applying the norms, we assume the coefficient embedding
of elements from R to Rn. For any element s =

∑n−1
i=0 six

i of R, we can embed this
element into Rn as the vector (s0, . . . sn−1).

3.2 Learning with Errors and RLWE

A Lattice L(b1, . . . , bn) = {
∑n
i=1 xibi|xi ∈ Z} is formed by integer linear combi-

nations of n linearly independent vectors b1, . . . , bn ∈ Rn called the Lattice Basis.
In 1996, Ajtai’s seminal result [4] heralded the use of lattices for constructing crypto-
graphic systems, with the security based on hardness of problems such as the Shortest
Vector Problem (SVP) and Closest Vector Problem (CVP). The Learning with Errors
(LWE) problem introduced by Oded Regev in 2005 [25] is a generalization of the parity-
learning problem. The reduction from solving hard problems in lattices in the worst case
to solving LWE in the average case provides strong security guarantees for LWE based
cryptosystems, yet it is not efficient enough for practical applications due to its large key
sizes of O(n2). Ring-Learning with Errors (RLWE) is the version of LWE in the ring
setting, that overcomes the efficiency disadvantages of LWE. Similar to LWE, there is a
quantum reduction from solving worst case lattice problems in ideal lattices to solving
the RLWE problem in average case. The search version of RLWE is to find a secret s in
Rq given (a, as + e) for polynomial number of samples, where a is sampled uniform
fromRq and e is sampled according to the error distribution χα. An equivalent problem
of the search version is the decision version which is commonly used for security proof
of cryptographic algorithms based on RLWE. Let As,χα denote the distribution of the
pair (a, as+e), where a, s is sampled uniformly fromRq and e is sampled according to
the error distribution χα. The decision version of the RLWE problem is to distinguish
As,χα from the uniform distribution on Rq × Rq with polynomial number of samples.
We provide the definition of the Discrete Gaussian distribution (error distribution) here:

Discrete Gaussian Distribution

Definition 1. [27] For any positive real α ∈ R, and vectors c ∈ Rn, the continuous
Gaussian distribution over Rn with standard deviation α centered at c is defined by the
probability function ρα,c(x) = ( 1√

2πα
)nexp(−‖x−c‖

2

2α2 ). For integer vectors c ∈ Rn, let
ρα,c(Zn) =

∑
x∈Zn ρα,c(x). Then, we define the Discrete Gaussian distribution over

Zn as DZn,α,c(x) =
ρα,c(x)
ρα,c(Zn) , where x ∈ Zn. The subscripts s and c are taken to be 1

and 0 (respectively) when omitted.

In practice, we use a Spherical Gaussian distribution where each coordinate is sam-
pled independently from a one dimensional Discrete Gaussian distribution DZ,α.
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We recall two useful lemmas here:

Lemma 1 ([27]). Let f(x) and R be defined as above. Then, for any s, t ∈ R, we have
‖s · t‖ ≤

√
n · ‖s‖ · ‖t‖ and ‖s · t‖∞ ≤ n · ‖s‖∞ · ‖t‖∞.

Lemma 2 ([21, 14]). For any real number α = ω(
√

log n), we have Prx←χα [‖x‖ >
α
√
n] ≤ 2−n+1.

The normal form [9, 8] of the RLWE problem is by modifying the above definition
by choosing s from the error distribution χα rather than uniformly. It has been proven
that the ring-LWE assumption still holds even with this variant [6, 20].

Proposition 1 ([20]). Let n be a power of 2, let α be a real number in (0, 1), and q
a prime such that q mod 2n = 1 and αq > ω(

√
log n). Define R = Z[x]/〈xn + 1〉

as above. Then there exists a polynomial time quantum reduction from Õ(
√
n/α)-SIVP

(Short Independent Vectors Problem) in the worst case to average-case RLWEq,β with
` samples, where β = αq · (n`/ log(n`))1/4.

For the Key Exchange from RLWE presented in [16], the signal function is required
for the two parties in the key exchange to derive a final shared key. The signal func-
tion is usually sent by the responding party to the initiator of the key exchange, which
gives additional information about whether the respondent’s key computed lies in a spe-
cific region. The case when the initiator sends the signal is the One pass protocol. It is
formally defined as follows:

Definition 2. Signal function: Given Zq = {− q−12 , . . . , q−12 } and the middle subset
E := {−b q4c, . . . , b

q
4e}, we define Sig as the characteristic function of the complement

of E: Sig(v) = 0 if v ∈ E and 1 otherwise.

Definition 3. The final key is derived using the Mod2 function (Reconciliation) defined
as below: Mod2 : Zq × {0, 1} → {0, 1}:

Mod2(v, w) = (v + w · q − 1

2
) mod q mod 2.

To discuss the key exchange in [24], we recall the following definitions: Let I0 :=
{0, 1, . . . b q4e− 1}, I1 := {−b q4c, . . .− 1} and E′ := [− q8 ,

q
8 )∩Z. Let I ′0 = q

2 + I0 and
I ′1 = q

2 + I1.

Definition 4. The cross rounding function, < ·>2 : Zq → Z2 is defined as

<v>2 := b4
q
· vc mod 2.

Definition 5. The randomization function dbl : Zq → Z2q , which is used in the case of
an odd modulus q is defined as dbl(v) = 2v − ē, where ē is uniformly random modulo
2. In practice, ē is chosen such that Pr(ē = 0) = 1

2 and Pr(ē = ±1) = 1
4 .
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Definition 6. The final key derivation of the initiator of the key exchange uses the rec-
onciliation function, rec : Zq × Z2 → Z2 which is defined as

rec(w, b) =

{
0 w ∈ Ib + E (mod q),

1 otherwise.

Definition 7. The Modular rounding function b·e2 : Zq → Z2, is defined as

bxe2 = b2
q
· xe mod 2.

4 The Protocol

Let the notations be as defined in Section 3. We recall the key exchange protocol in [16].
Generate the parameters q, n, α for the protocol and choose public a← Rq uniformly.

Init : Party A chooses a secret sA ← χα and computes pA = asA + 2eA, where
eA ← χα. Party A then sends pA to party B.

Response : On receiving pA, party B chooses a secret element sB and eB , gB ← χα.
Party B then computes pB = asB + 2eB , kB = pAsB + 2gB and wB = Sig(kB),
sends pB , wB . party B obtains a shared key skB = Mod2(kB , wB).

Finish : On receiving pB , wB from party B, party A computes kA = sApB + 2gA,
where gA ← χα and obtains the shared key skA = Mod2(kA, wB).

Party A Party B

Sample sA, eA ← χα
Secret Key: sA ∈ Rq
Public Key: a, pA = asA + 2eA ∈ Rq

Sample sB , eB ← χα
Secret Key: sB ∈ Rq
Public Key: a, pB = asB + 2eB ∈ Rq

Sample gB ← χα
Set kB = pAsB + 2gB
Find wB = Sig(kB) ∈ {0, 1}n

Sample gA ← χα
Set kA = pBsA + 2gA

skA = Mod2(kA, wB) ∈ {0, 1}n skB = Mod2(kB , wB) ∈ {0, 1}n

pA

pB , wB

Fig. 1: Protocol from [16]
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Party A Party B

Sample sA, eA ← χα
Secret Key: sA ∈ Rq
Public Key: a, pA = asA + 2eA ∈ Rq

Sample sB , eB ← χα
Secret Key: sB ∈ Rq
Public Key: a, pB = asB + 2eB ∈ Rq

Sample gB ← χα
Set kB = pAsB + 2gB

Sample gA ← χα
Set kA = pBsA + 2gA
Compute wA = Sig(kA) ∈ {0, 1}n

skA = Mod2(kA, wA) ∈ {0, 1}n skB = Mod2(kB , wA) ∈ {0, 1}n

pA, wA

Fig. 2: Protocol from [16] - One pass case

5 New Attack Using Key Mismatch - one pass case

Suppose that party B reuses its public key pB and A is an active adversary with the
knowledge of pB and with the ability to initiate multiple key exchange sessions to query
party B. We present an attack in the one pass case of the KE protocol, in which the ad-
versary can initiate multiple key exchange sessions with party B and use key mismatch
in each session to retrieve the secret sB . We use the notation pA for the public key of
the adversary and sA, eA for the corresponding secret and error respectively.

5.1 Simplified Attack

We first consider the simpler case when party B does not add the error term gB to its
key computation kB , to explain the attack strategy and then extend to the case of adding
the noise.

Choice of sA and eA: The attacker chooses sA to be 0 in Rq (This is later improved
by choosing sA to be non-zero so that party B cannot verify that pA is malformed
trivially). For recovering the i-th coefficient sB [i], the attacker A chooses an eA with
coefficient vector that consists of all zeros, except for the coordinate n−1−i, for which
it is 1, and coordinate n−1−j, which is a small integer k. So, we have eA[i] = 0 for all
i = 0, . . . n−1 except i = n−1−i, n−1−j and eA[n−1−i] = 1, eA[n−1−j] = k.
He then performs the protocol honestly, except that he deliberately flips bit n− 1 of the
signal vector wA that he sends. The index j is chosen such that sB [j] = ±1. Thus, the
attacker first needs to identify such a j. This is explained in Section 5.4.

Remark 1. The attacker can actually flip any bit of the signal wA and use the corre-
sponding index of the final shared key to look for mismatch to recover the secret; we
use the bit n − 1 because that allows us to ignore the complications with signs dur-
ing polynomial multiplication in the ring, simplifying the attack. For example, if we
want to use the 0-th coefficient of the final shared key to recover value of sB [i], we can
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choose the (n− i)-th coordinate of the coefficient vector of eA to be −1 and (n− j)-th
coordinate to be −k and flip the 0-th bit of the signal wA that he sends.

If we look at party B’s computation of the key kB , we have kB = sBpA which
results in kB [n− 1] = 2sB [i] + 2ksB [j] = 2sB [i] + 2k by the choice of sA, eA of the
attacker. Since the (n − 1)-th coordinate of the signal wA received from the attacker
is flipped to be 1, we have skB [n − 1] = kB [n − 1] + q−1

2 mod q mod 2. Also, the
attacker’s final shared key is skA = 0 since sA = 0.

Constructing Oracle B: We build an oracle B that performs the action of partyB and the
adversary A has access to this oracle to make multiple queries. B takes (pA, wA, skA)
as input where pA, skA corresponds to the public key and the final shared key respec-
tively of A. wA corresponds to the signal sent by A with the n − 1 bit flipped to 1.
The oracle computes kB = pAsB and skB = Mod2(kB , wA). B then outputs 1 if
skB = skA and 0 otherwise.

From the construction of the oracle, it is clear that the oracle indicates if a key ex-
change session is successful or not. Then the attacker can invoke the oracle B with pA
corresponding to different values of k to check for key mismatch. Because the attacker
performs the protocol mostly honestly (and both sA and eA qualify as small vectors
until k remains small), the attacker can compute the value skB , except for index n− 1,
for which he flips the signal bit. The attacker can then determine the value of that bit by
guessing a skB that has a 0 in that position and the computed values elsewhere (In the
case of sA = 0, all other index values are also 0 but this is not the case when sA is not
0), and checking with the oracle B to see if his guess was correct.

Flipping the signal bit allows the attacker to force party B to change the parity of
the final skB [n− 1] before the mod 2 operation, in every instantiation of a session with
the attacker. This is useful in associating a change in output of B with a change from
positive to negative values of kB [n− 1] or vice versa as explained here:

Notice that the terms 2sB [i] + 2k of skB [n − 1] are even and also from the usual
choice of parameters for RLWE (following from Lemma 1) such that q = 1 mod 2n,
we have q−1

2 to be even. Thus, if sB [i] is negative, we have skB [n − 1] = 0 as long
as 2sB [i] + 2k is negative and there is no change in the parity. So, a query to B with
these values of (pA, wA, skA) results in an output of 1. As k increases in value, we can
see that kB [n − 1] changes from negative to positive values. As this happens, we have
skB [n − 1] = 1 since the addition of q−1

2 to a positive value changes its parity by the
representation of Zq to be {− q−12 . . . q−12 } and the output of B becomes 0. So, a change
from negative to positive values of kB [n − 1] results in a change of output from 1 to 0
of B.

Also, if sB [i] is negative, then as k varies, kB [n − 1] changes from negative to
positive values at the point when 2k is greater than the absolute value of 2sB [i] i.e,
k>|sB [i]|. Thus, the k value when there is a change in output of B reveals the value of
sB [i].

But if sB [i] is positive, skB does not change parity until k takes on larger values
(change only occurs when 2sB [i] + 2k>q by the representation of Zq). As k becomes
large, the output of B is no longer reliable to indicate the difference in the n−1-th index
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since the errors amplify and other indexes of skB are not guaranteed to match with that
of skA. To handle this, the query that the attacker sends modifies the eA chosen above
so that eA[n− 1− j] = −k, when sB [i] is positive.

So if sB [i] is positive, then we have kB [n−1] = 2sB [i]−2k and this value changes
from positive to negative as k increases when k>sB [i]. Also, skB [n − 1] = 1 as long
as kB [n− 1] is positive because of the change in parity of skB [n− 1] caused by adding
q−1
2 and results in the output of B to be 0. As the value changes to negative, the output

of B changes to 1.
The attack can be summarized with the following steps for every coefficient i of the

secret sB , i from 0 to n− 1:

Step 1: The first step is to create an eA as described above and thus involves identi-
fying a j such that sB [j] = ±1. This is discussed in detail in Section 5.4. The
consequent steps here assume that the attacker succeeds in finding such a j.

Step 2: Now, the attacker needs to resolve the sign of sB [i] to create queries accord-
ingly. The attacker queries B with pA, wA, skA. Here, pA = 2eA corresponds to
eA[n− 1− j] = k = 0 and will result in kB [n− 1] = 2sB [i]. wA and skA corre-
spond to the signal with the last bit flipped to 1 and final shared key of the attacker
with the guess for the n − 1 coefficient to be 0, respectively. This can be used by
the attacker to determine the sign of sB [i] since the sign of kB [n− 1] and sB [i] are
the same. If the output is 1 (i.e, the final keys match), the attacker concludes that
the sign of sB [i] is negative and if the output is 0, then the sign is positive. One
problem here is that if the coefficient value is 0, the output of B would still be 1.
So, to identify 0 values, the attacker can query again corresponding to k = 0 but
with eA[n − 1 − i] = −1 which results in kB [n − 1] = −2sB [i]. If the output of
B remains the same for both queries for a coefficient, then the coefficient value has
to be 0.

Step 3: If sB [i] is negative, as inferred from the previous step, the attacker creates eB
with eA[n − 1 − j] = k and varies k over values from 0 until there is a change in
the output of B. If sB is positive, eB is created with eA[n− 1− j] = −k.

Step 4: Looking for the k value when the output of B changes from 0 to 1 reveals the
exact value of a negative sB [i] and a change from 1 to 0 reveals the value of a
positive sB [i].
Note here that the output of B only gives information about whether the final shared
key of both parties agree or not. It is not possible for the attacker to know which
coordinates of the final key match and which ones don’t. But the attack works since
a change in the output bit of B for smaller values of k would mean that it is caused
by the n− 1-th index by the bit flip in the signal as sA and eA remain small. As k
becomes larger, there is no assurance for the keys to match in the other indexes.

Step 5 : The recovered secret sB can be verified by checking the distribution of pB −
asB .

Remark 2. Consider the case sA[j] = −1; by following the above logic, the attacker
can flip the sign of k in eA to recover sB [i].
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As we can repeat the above process for all i, this means we can read party Bs secret
key directly. The attack for one query is shown in Figure 3 to recover a negative sB [i].
Here, the adversary computes skA = 0 and B computes skB = 0 until kB [n − 1] is
negative.

Adversary A Party B

Choose sA = 0, eA = 0
Set eA[n−1− i] = 1, eA[n−1− j] = k
Public Key: a, pA = asA + 2eA ∈ Rq

Reused Public Key: a, pB = asB +
2eB ∈ Rq

Set kA = pBsA
Compute wA = Sig(kA) ∈ {0, 1}n
Flip wA[n− 1] = 1

Compute kB = pAsB

skA = Mod2(kA, wA) ∈ {0, 1}n skB = Mod2(kB , wA) ∈ {0, 1}n
pA, wA

Fig. 3: One instance of the attack in the simplified case choosing Adversary’s secret
sA = 0, when error gB is not added to the key computation kB

5.2 Extending the attack when adding the error gB

In this case, the number of queries required to recover sB [i] increases compared to
the steps above, due to the complexity involved in eliminating the effect of the noise
gB [n − 1]. The strategy here is to look at the distribution of k values when there is
a change in the output of B, while running the attack on the same coefficient of sB
multiple times. The error gB [n − 1] fluctuates kB but the k value when kB changes
from positive to negative or vice versa is centered around the actual value of sB [i] since
gB [n− 1] values are sampled from an error distribution(Discrete Gaussian) centered at
0. The oracle B can be modified to be contructed as follows:
Constructing Oracle B: B takes p, w, sk as input where p, sk corresponds to the public
key and the final shared key respectively of A. The oracle computes kB = psB + 2gB ,
where gB ← χα and skB = Mod2(kB , w). B then outputs 1 if skB = sk and 0
otherwise.

Thus, the steps for the attack in this case are the same as above except that step 3
is repeated a constant number of times and the distribution of k values reveal the exact
value of sB [i] for every coefficient i. For step 2, the attacker queries by modifying
(n − 1 − i)-th coordinate to be 2 so that kB [n − 1] = 4sB [i] ± 2k + 2gB [n − 1] to
override the effect of gB [n− 1] on the sign.

In our experiments, we queried for the same sB [i] coefficient 1000 times and derived
the value from the distribution of k values corresponding to a change in output of B,
obtained from each run. The number of runs 1000 is chosen to derive a reasonable
number of samples for analyzing the distribution of k with a certain confidence level
and is independent of the choice of parameters n, q, α for the protocol. For a confidence
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level of 95%, we estimated the number of samples to be ≈ 1000 with margin of error
3%. From the description of the attack, the distribution of k obtained for a coefficient
value of 7 (on the top) and −3 (on the bottom) are shown in Figure 4.

Fig. 4: Comparison of distribution of k while recovering coefficients 7 and −3 respec-
tively

The attacker can generate the distribution of k corresponding to different values of
a coefficient by running an initial attack, choosing a pB himself and then perform the
actual attack on party B.

5.3 Improved attack

Finally, a simple randomness check at party B’s end could protect B from this attack,
as the public key is just all 0s and non-zero in 2 coordinates. To avoid this, we perform
the attack when the attacker’s public key is of the form asA + 2eA with sA chosen as
follows. We believe that this makes it more difficult for party B to identify the attack.

We choose sA to be such that pBsA[n − 1] = 0. This way we can obtain an sA
such that for the index n − 1, the value of asBsA is small since pBsA = asBsA +
2eBsA, where eBsA is small. We require such a sA so that the asBsA[n − 1] term in
kB [n − 1] cannot override 2sB [i] + 2k and the attack strategy can still be used. Since
pB is known to the adversary, he can solve the polynomial equation to find sA such that
pBsA[n− 1] = 0. However, such an sA is not necessarily small. If sA is not small, the
errors amplify in the final key computed by the adversary and party B and the two final
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keys need not necessarily match. Thus, the adversary can no longer guess the final key
computation of party B. To handle this, we use LLL reduction on the solution space
of the equation pBsA[n − 1] = 0 to derive a small sA that satisfies the equation. We
achieved this in our implementation using Magma.
B’s computation of kB yields kB [n−1] = asBsA[n−1]+2(sB [i]+k+gB [n−1]).

Then, the attacker can perform the following process to recover the secret sB [i]:

Step 1 : To determine the sign of sB [i], the attacker queries with eA such that eA[n−
1− i] = 4 and eA[n− 1− j] = k = 0, so that the key kB can override the effect of
asBsA[n − 1] and gB [n − 1] on the sign of sB [i]. This is possible since we know
that asBsA[n− 1] is small, by the choice of sA. Querying B a constant number of
times, further counters the effect of gB [n − 1] and reveals the sign of sB [i]. If the
output of B is 1, then sB [i] is negative and if B output is 0, then sB [i] is positive.
Querying again with eA[n− 1− i] = −4 resolves the 0 value coordinates of sB .

Step 2 : Run the attack to obtain k value, denote k1 that recovers the value of asBsA[n−
1] + sB [i].

Step 3 : Repeat the attack by modifying eA such that eA[n− 1− i] = 2, which results
in party B’s computation of kB [n− 1] = asBsA[n− 1] + 2(2s

[
Bi] + k + gB [n−

1]). Recover k (denote k2) value corresponding to change in output of B, hence
recovering asBsA[n− 1] + 2sB [i].

Step 4 : Compute k2 − k1 to recover the value sB [i].

There is one possibility in the above attack that asAsB [n−1] = −2sB [i] in which case
kB [n− 1] = 2k+ 2gB [n− 1]. In this case, as we increase k, the mismatch of final keys
does not reveal the value of sB [i]. This case can be identified by querying with k = −1
and checking if the output of B is different from the output corresponding to k = 0.
Recovering every coefficient of sB by running the attack recovers the secret. With this
section, we show that there are other possible ways to improve the attack and it seems
to be very difficult to prevent it by just checking the randomness.

5.4 Determining index j such that sB[j] = 1

If sB [j] = 0, then modifying k doesnt affect index n − 1 at all and thus can be easily
identified. Also, this case is already identified while determining the sign of the coeffi-
cients.

We repeat for each coefficient j of sB , the following procedure until a j such that
sB [j] = 1 is identified, starting with the first positive coefficient, denote j1. Since we
can already determine the signs of every coefficient, it is enough to check through only
the positive coefficients for value 1.

Step 1 : Start with j = j1. Assuming sB [j1] = 1, perform the attack on other coeffi-
cients of sB .

If sB [j1] = 1, then running the attack would yield the correct secret sB . We can
verify that this value of sB recovered is actually the secret by verifying the distribution
of pB − asB . This is possible since a, pB are known and asB can be computed using
the recovered sB . Now, suppose sB [j1]>1, the key kB of party B recovers very small
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values since kB = asAsB [n − 1] + 2sB [i] + 2ksB [j1] + 2gB [n − 1] changes from
negative to positive faster when sB [j1] is greater than 1 and sB [i] is negative. The same
logic applies for sB [i] positive. Thus, all the coefficients recovered are very small and
pB − asB computed with this recovered sB does not follow the error distribution.

Step 2 : Repeat Step 1 through all positive coefficients until a j such that sB [j] = 1 is
found.

If none of the positive coefficients are 1, then we can follow the same process with
a different eA (sign of k flipped) to check through the negative coefficients to find a j
such that sB [j] = −1.

Remark 3. There exists an index j such that s[j] = ±1 with high probability when
s← χα.

Since the error distribution χα used is the Discrete Gaussian distribution and we
use the polynomial representation with two power cyclotomics, sampling an element
s ∈ Rq is equivalent to sampling each coordinate of its coefficient vector as a one
dimensional Discrete Gaussian. The probability density function of the continuous one
dimensional Gaussian distribution with mean 0 and standard deviation α is given by
φα(x) = 1√

2πα
e−x

2/2α2

.
For the parameter choice used in the experiments with q = 12289, α = 2.828, n =

1024, we have the probability of a coefficient s[i] of s← χα to be ±1 given by

Pr(s[i] = 1) + Pr(s[i] = −1) =

∑
z=1mod q ρα(z)∑

y∈Z ρα(y)
+

∑
z=−1mod q ρα(z)∑

y∈Z ρα(y)

=

∑∞
k=−∞

1√
2πα

e−
(qk+1)2

2α2∑∞
y=−∞

1√
2πα

e−
y2

2α2

+

∑∞
k=−∞

1√
2πα

e−
(qk−1)2

2α2∑∞
y=−∞

1√
2πα

e−
y2

2α2

=

∑∞
k=−∞

1√
2π(2.828)

e
− (12289∗k+1)2

2(2.828)2∑∞
y=−∞

1√
2π(2.828)

e
− y2

2(2.828)2

+

∑∞
k=−∞

1√
2π(2.828)

e
− (12289∗k−1)2

2(2.828)2∑∞
y=−∞

1√
2π(2.828)

e
− y2

2(2.828)2

≈ 0.265038

So, the failure probability of the vector s sampled from the error distribution not
having a coefficient ±1 is given by (1 − 0.265038)1024 u 0. This can also be verified
in general when n is large and α is small.

In the extreme case that there does not exist an index j for which s[j] = 1, the attack
can still be performed by choosing 2 indexes j1, j2 such that sB [j1]+sB [j2] = 1. In this
case, the public key of the attacker would be pA = asA + eA where the vector eA has
k in the n−1− j1 and n−1− j2 coordinates and 1 in the (n−1− i) coordinate. Thus,
we have pAsB [n− 1] = asAsB [n− 1] + 2sB [i] + 2k(sB [j1] + sB [j2]) = 2sB [i] + 2k.
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5.5 Adversary query complexity

To compute the query complexity of the attack, we compute the query complexity of
each phase of the attack: 1) Determining the sign of each coefficient, 2) Determining
index j such that sB [j] = ±1, 3) Determining a coefficient value sB [i] when the error
term gB is added to the key kB of party B when the attacker’s secret sA = 0, 4)
Recovering (using query complexity of 1, 2 and 3) the secret sB with sA non-zero.

1) The sign is determined by querying with pA corresponding to k = 0 a small con-
stant number of times (in our experiments, 10 queries were sufficient). Thus, the query
complexity here is constant for each coefficient, so the query complexity to recover the
signs of all the coefficients of sB is 2c′n ≈ 20n, where c′ is a constant.

2) sB is sampled from the error distribution that has standard deviation α. So, to
determine each coefficient, we need at most tα queries, where t is a constant. Thus,
to recover complete sB , we need ntα queries. Since the error distribution we consider
is the Discrete Gaussian and 99% of the values lie within 3 standard deviations of the
mean, in our experiments with α = 2.828, we run 16 queries for each coefficient,
allowing for fluctuations when error gB is added. Also, this is run at least 1000 times to
get the distribution of k, as described in Section 5.1 in attack extension. Thus, the attack
complexity in this case would be 1000ntα = Cnα, where C is the constant = 1000t.

3) Recovering the secret with sA of attacker non-zero: This is the actual attack
performed. In this case, the complete attack is run twice with different eA. So, the
number of queries required is 2Cnα.

4) Determining index j such that sB [j] = 1: This requires running the attack for
every coefficient i assuming that sB [j] = 1 starting with the first positive coefficient
until such a j is found. So, the best case query complexity is 2Cnα, when the first
positive coefficient turns out to be the required index with sB [j] = 1 The same applies
for searching −1. The worst case query complexity is 2Cn2α.

Thus the query complexity of the complete attack would be 2c′n + 2Cn2α ≈
O(n2α) in the worst case and 2c′n+ 2Cnα ≈ O(nα) in the best case.

5.6 Experiments

We have run experiments to verify the attack strategy. We use parameters n = 1024, q =
12289, α = 2.828, used in [5] implementation. We used C++ with NTL and pB value
hard coded to be fixed for the experiments on a Windows 10, 64 bit system equipped
with a 2.40 GHz Intel(R) Core(TM) i7-4700MQ CPU and 8 GB RAM. The LLL reduc-
tion to find an appropriate short secret sA of the attacker was executed using Magma3.
In our preliminary experiments, with the attacker’s key of the form p = asA+ 2eA, sA
non-zero chosen as described above, the time taken for running 1000 queries for one
coefficient value to get the distribution of k is 35.1 mins with FFT for polynomial mul-
tiplication without any optimization. This time taken is to run 16000 queries to party B
with queries varying k from 0 to 15 are run 1000 times to get the distribution of k for
one coefficient.

3 https://github.com/Saras16/PaperMagmaCode
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6 Extending Signal Function Attack

Protocol Review: We note that the signal function attack can also be extended to the
key exchange by Peikert [24] that was implemented in [7]. We review the key exchange
protocol in [24] that uses the cross rounding function (Signal) for sending the additional
information to compute the final shared key. Please refer to Section 3 for notations
and definitions of the functions used in the protocol. The key exchange is as described
below:

Party A : Set pA = asA + eA, where sA, eA ← χα and publish pA.
Party B : On receiving pA, choose sB , eB , gB ← χα and compute pB = asB + eB .

Then to obtain the shared key, compute kB = pAsB + gB . Let k̄B = dbl(kB),
wB =< k̄B >2 and output pB , wB to party A. The final shared key is skB =
bk̄Be2.

Party A : To finish the key exchange, compute kA = pBsA and the final shared key
skA = rec(2kA, wB).

The protocol and the signal functions are summarized in Figures 5 and 6.

Party A Party B

Sample sA, eA ← χα
Secret Key: sA ∈ Rq
Public Key: a, pA = asA + eA ∈ Rq

Sample sB , eB ← χα
Secret Key: sB ∈ Rq
Public Key: a, pB = asB + eB ∈ Rq

Sample gB ← χα
Set kB = pAsB + gB
Compute k̄B = dbl(kB),
wB =< k̄B >2∈ {0, 1}n

Set kA = pBsA

skA = rec(2kA, wB) ∈ {0, 1}n skB = bk̄Be2 ∈ {0, 1}n

pA

pB , wB

Fig. 5: KE Protocol from [24]

Fig. 6: Comparison of Signal in the two RLWE based key exchange protocols in [16]
and [24].
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The Attack: The attack here is very similar to the attack using the signal function in
[11]. In this case, the additional information required for agreeing on the final shared
key skA, skB is achieved by party B sending the value of the cross rounding function
< . >2. By definition, <v>2 returns 0 when v ∈ I0, I ′0 and 1 when v ∈ I1, I ′1, where
the sets I0, I ′0, I1 and I ′1 are as defined in Section 3. Thus, we refer to the output wB of
the cross rounding function <k̄B>2 as the signal. The variation here, compared to the
signal function in [16] is that the signal regions are defined as quadrants as opposed to
E,Ec in Definition 2 and the signal function is applied on dbl(kB). The dbl function is
applied on kB in the protocol to remove bias when q is odd, which is usually the case
in RLWE instantiations.

The strategy behind the initial signal function attack is that when the attacker’s key
is chosen in such a way that party B’s computation of kB = ksB for k values ranging
over all values in Zq , kB [i] value varies in multiples of sB [i] and the number of signal
changes is exactly 2sB [i] for every coefficient i. This is because there are 2 boundary
points (from the way the signal regions E,Ec are defined) where the signal bit flips.

In the key exchange described in Figure 5, the cross rounding function divides Zq
into quadrants resulting in 4 boundary points where the value of the signal flips. Thus,
following the same approach as the signal function attack in [11], the number of signal
changes while using the cross rounding function is exactly 4sB [i], for every coefficient
i. So, the secret can be compromised in 2q queries to the honest party reusing the key.
Essentially we get the signal values of party B’s secret with the error 2gB − ē causing
fluctuations in the signal changes with this protocol as well. This can be handled by not
counting the fluctuations as signal changes. The fluctuations are easier to identify since
the changes are within a smaller interval.

7 Signal Function Attack with Reduced Query Complexity

The signal function attack works by counting the number of times the signal bit Sig(kB)
changes for each coefficient of kB , for k across all values of Zq in the public key
pA = asA + keA of the adversary. The adversary specifically chooses sA to be 0 and
eA to be 1 in Rq in the simplified form of the attack.A then queries with his public key
as (1+x)pA to eliminate the ambiguity of the± sign of the coefficients recovered from
previous queries and determine the exact values. The attack is also then extended to the
case when sA is sampled from the error distribution χα so that the adversary’s public
key pA is an RLWE sample indistinguishable from uniform. This attack requires 2q
queries to party B to extract the exact value of the secret sB . For a detailed description
of the attack, refer to [11].

We now show that the attack can be more efficient with fewer queries. This comes
from the observation that it is not necessary to vary k through all the values of Zq to
determine the value of sB accurately. For each coefficient of the secret sB [i], as k varies
from 0 to q − 1, the key value kB [i] changes in multiples of sB [i]. Thus, depending on
the value of sB [i], the period of signal change varies and this can be used to perform
the attack more efficiently. We consider the different cases of the protocol here to see
how fewer queries can still successfully recover the secret.
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Case 1 : First, we consider the simplified case when the error term gB is not added to
the key computation kB and the secret of the adversary sA is 0, with public key
pA = k. It is then clear that determining the first k value when the signal changes
gives the value of sB [i] upto ± sign since the first flip of the signal bit happens
when k changes from b q

4sB [i]e to b q
4sB [i]e+ 1 by the definition of the signal region

E,Ec. Also, instead of querying for each coefficient separately, we can query for
all coefficients at once varying k from 0 to q/4 + 2. This is because the smaller
sB [i] values need more number of queries for counting the first signal change. For
example, sB [i] = ±1 needs q/4 + 2 queries, sB [i] = ±2 needs q/4 + 1 queries
and so on. Again using q/4 + 2 queries to party B with public key of adversary
pA = (1 + x)k, the ambiguity of ± sign is resolved. Thus, the adversary can re-
cover sB with 2(q/4 + 2) = q/2 + 4 queries thus reducing the query complexity
by a factor of 1/4 compared to previous complexity of 2q described above.

Case 2 : This is the case of the original protocol where the adversary only slightly
deviates from the protocol by choosing eA = 1, sA is chosen according to the error
distribution χα and pA = asA + keA = asA + k so that an attacker’s public key
cannot be distinguished from uniform. In this case, we cannot use the first k where
the signal flips to determine the value of sB since kB = asAsB + ksB + 2gB ; For
every coefficient i, we have asAsB [i] as a constant value that is unknown to the
adversary along with the noise gB , added to ksB [i]. In order to count the number of
signal changes here, the attacker varies k starting with k = 0 and records the first
signal change at k = k1. Then he can vary k for negative values and record the first
signal change in this direction at k = k2. Now, k1 − k2 is the span of the region E
or Ec in multiples of sB [i]. Thus, b q

2(k1−k2)e reveals the value of sB [i] upto± sign
since the period of the signal change is k1 − k2. When the error gB is added to the
key computation kB , the signal change does not happen in specific intervals due to
the fluctuations. Here, we can query a small constant number of times more than
q/2 until the signal stabilizes after a change. Thus, with q

2 + c queries where c is a
small constant, we can recover sB [i] upto sign. c is small since the values stabilize
when k increases and ksB [i] is away from the boundary points. So, to recover the
exact value of the secret requires q + c queries.

This is further illustrated with the help of an example in Appendix A.

8 Conclusion

In this work, we have presented a new attack on the RLWE key exchange showing
that even an unsuccessful key exchange session, when the final computed keys of both
parties do not match can be used to recover the secret of a fixed public key. We also
extend a previous attack based on the signal function to the KE protocol described in
[24]. This shows that reuse of keys should always be avoided while replacing a key
exchange protocol based on RLWE as a potential post-quantum alternative. This does
not apply to the case of IND-CCA KEMs using the Fujisaki-Okamoto transformation.
We also note that in the New Hope implementation, the public a is chosen at random for
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every new key exchange session. However, the active attacks on the KE protocols rely
on the fact that the public key is reused in certain Internet protocols. So, even if the New
Hope implementation is integrated into such protocols, a new amight not be chosen for
every key exchange session as suggested in the work and hence is vulnerable to such
attacks. The security risk associated with key reuse is acknowledged in the works of
New Hope and [24].
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from χα, let a = (−15, 69, 33,−57,
− 3, 87,−105, 7), sB = (2, 3, 0, 0,−5, 2, 3, 1) and eB = (−1,−5, 0, 2,−3, 3, 0, 3).
Then pB = asB + 2eB = (−122,−109,−103,−24, 106,−120,−28,−9). Here,
sB [7] = 1 and the attacker uses this information in creating his eA.
Step 1: Determining the signs of the coefficients: To determine the sign of each coeffi-
cient, query B with pA correponding to k = 0

eA kB [n− 1] B output

(0,0,0,0,0,0,0,1) 2sB [0] 0
(0,0,0,0,0,0,1,0) 2sB [1] 0
(0,0,0,0,0,1,0,0) 2sB [2] 1
(0,0,0,0,1,0,0,0) 2sB [3] 1
(0,0,0,1,0,0,0,0) 2sB [4] 1
(0,0,1,0,0,0,0,0) 2sB [5] 0
(0,1,0,0,0,0,0,0) 2sB [6] 0
(1,0,0,0,0,0,0,0) 2sB [7] 0

Table 1: Queries with k = 0

Table 1 indicates that the coefficients for i = 0, 1, 5, 6, 7 are positive and the coeffi-
cients i = 2, 3, 4 are negative. Now, we can run the queries again with eA that has −1
in the n− 1− i for coefficients i that are identified to be negative.

eB kB [n− 1] B output

(0,0,0,0,0,-1,0,0) −2sB [2] 1
(0,0,0,0,-1,0,0,0) −2sB [3] 1
(0,0,0,-1,0,0,0,0) −2sB [4] 0

Table 2: Queries to confirm the sign of coefficients

From the output of B in Table 2, the attacker can conclude that sB [4] is negative and
sB [2], sB [3] are 0 since the output of B remains the same in both cases of eA.
Step 2:To determine sB [0], choose eA = (−k, 0, 0, 0, 0, 0, 0, 1) and sA = 0. Then
pA = 2eA with coefficient vector (−2k, 0, 0, 0, 0, 0, 0, 2), kA = (0, 0, 0, 0, 0, 0, 0, 0)
and final key skA = (0, 0, 0, 0, 0, 0, 0, 0). The signal computed by A results in wA =
(0, 0, 0, 0, 0, 0, 0, 0) in which the last bit n−1 = 3 is flipped to be 1, so modified wA =
(0, 0, 0, 0, 0, 0, 0, 1). The attacker now queries B with pA = (−2k, 0, 0, 0, 0, 0, 0, 2),
wA = (0, 0, 0, 0, 0, 0, 0, 1), skA = (0, 0, 0, 0, 0, 0, 0, 0).
B computes kB = (−4k − 6,−6k, 0, 10,−4 + 10k,−4k − 6,−6k − 2,−2k + 4) and
the output for each iteration of k is as follows:

k kB skB B output

0 (-6,0,0,10,-4,-6,-2,4) (0, 0, 0, 0, 0, 0, 0, 1) 0
1 (-10,-6,0,10,6,-10,-8,2) (0, 0, 0, 0, 0, 0, 0, 1) 0
2 (-14,-12,0,10,16,-14,-14,0) (0, 0, 0, 0, 0, 0, 0, 0) 1
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Table 3: Queries to determine the coefficient sB [0]

Change in output of B at k = 2 reveals that sB [0] = 2, since the sign of the
coefficient value is already known from step 1.
Determining j: From step 1, we have identified that i = 0, 1, 5, 6, 7 are the positive
coefficients, we run the attack on all the coefficients assuming sB [0] = 1.
Run the attack on sB [1]: Then the attacker chooses eA = (0, 0, 0, 0, 0, 0, 1,−k) and
wA, skA as mentioned above. Querying with these values yield the following results:

k kB skB B output

0 (0,0,10,-4,-6,-2,4,6) (0, 0, 0, 0, 0, 0, 0, 1) 0
1 (6,0,10,-14,-2,4,6,2) (0, 0, 0, 0, 0, 0, 0, 1) 0
2 (12,0,10,-24,2,10,8,-2) (0, 0, 0, 0, 0, 0, 0, 0) 1

Table 4: Queries to determine sB [1] assuming sB [0] = 1

This reveals that sB [1] = 2. Repeating the attack on coefficients sB [i] for i =
4, 5, 6, 7 yields values −2, 1, 2, 1 respectively. Thus, the recovered secret is
sB = (1, 2, 0, 0,−2, 1, 2, 1) assuming sB [0] = 1. Now, compute and verify the distri-
bution of pB − asB =
(−9, 108,−40, 19, 77, 118,−63,−76). In practical implementations, the dimension n
is larger, usually 1024 that gives enough samples to verify the distribution. With this,
we can conclude that the assumption sB [0] = 1 is false. Continuing the same process
recovering the secret assuming one of the coefficient value is 1 finally gives the index
j = 7 for which sB [7] = 1.
Case 2: When error gB is added to kB : In this case, we have the key computation of
kB = 2eAsB + 2gB . Thus, the attacker queries as in step 2 above multiple times and
looks at the distribution of k to recover sB [0]. The distribution obtained for this exam-
ple is shown in figure below.

Case 3: When sA of the attacker is non-zero: Now, we solve the equation pBsA[7] = 0
and apply LLL reduction on the solution space to find such a small sA. This is found
to be (0,−1,−1, 0, 0, 0,−1, 0) using Magma. Now, the public key of the attacker is
pA = asA + 2eA, where eA is as above and sA is the computed value that satisfies the
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equation pBsA[7] = 0.
So, pA = (192, 222, 200, 242, 176, 67, 188, 206) + 2eA. To recover sB [0], we choose
eA = (−k, 0, 0, 0, 0, 0, 0, 1) as above. So, pA = (192−2k, 222, 200, 242, 176, 67, 188, 208).
Compute the signalwA = Sig(kA). we have kA = pBsA = (117, 89, 80, 92, 99, 166, 136, 0).
So,wA = (1, 1, 1, 1, 1, 1, 1, 0) and final key computation of attacker skA = (0, 0, 1, 1, 0, 1, 1, 0).
B’s key computation will be kB = pAsB = asAsB+2eAsB = (111, 77, 74, 76, 103, 158, 134, 253)+
2eAsB . Notice that asAsB [7] = −4 is small since we choose such an sA. Also,
pAsB [7] = asAsB [7] + 2sB [7]− 2k.
1. Determining the signs:

eA kB [n− 1] B output

(0,0,0,0,0,0,0,4) asAsB [7] + 8sB [0] 0
(0,0,0,0,0,0,4,0) asAsB [7] + 8sB [1] 0
(0,0,0,0,0,4,0,0) asAsB [7] + 8sB [2] 1
(0,0,0,0,4,0,0,0) asAsB [7] + 8sB [3] 1
(0,0,0,4,0,0,0,0) asAsB [7] + 8sB [4] 1
(0,0,4,0,0,0,0,0) asAsB [7] + 8sB [5] 0
(0,4,0,0,0,0,0,0) asAsB [7] + 8sB [6] 0
(4,0,0,0,0,0,0,0) asAsB [7] + 8sB [7] 0

Table 5: Queries to determine the signs of sB coefficients in the improved attack when
sA 6= 0

The coefficients with 0 value can again be identified the same way as in the previous
case.
2. Run the attack now for sB [0] with input pA = ((192−2k, 222, 200, 242, 176, 67, 188, 208)), wA =
(1, 1, 1, 1, 1, 1, 1, 1) (with the last bit flipped to 1), skA = (0, 0, 1, 1, 0, 1, 1, 0) to B for
different values of k. Now, B computes kB

k kB skB B output

-1 (109,83,74,86,89,156,138,2) (0, 0, 1, 1, 0, 1, 1, 1) 0
0 (105,77,74,86,99,152,132,0) (0, 0, 1, 1, 0, 1, 1, 0) 1

Table 6: Queries to determine sB [0] in the improved attack

Now, run the same attack as above with eA = (−k, 0, 0, 0, 0, 0, 0, 2). Then B com-
putes kB .

k kB skB B output

0 (99 77 74 96 95 146 130 4) (0, 0, 1, 1, 0, 1, 1, 1) 0
1 (95 71 74 96 105 142 124 2) (0, 0, 1, 1, 0, 1, 1, 1) 0
2 (91 65 74 96 115 138 118 0) (0, 0, 1, 1, 0, 1, 1, 0) 1

Table 7: Queries to determine sB [0] in the improved attack with eA[n− 1] = 2
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Here, running the attack with n − 1 − 0 coordinate of eA as 1 yields k1 = 0 to be
the value when there is a change in output of B. Similarly, we have k2 = 2 to be the
value where the output changes when the n − 1 − 0 coordinate is 2. So, the recovered
value of sB [0] here would be k2 − k1 = 2− 0 = 2. When the error gB is added to kB ,
these values of k1, k2 would be derived from the distributions of k values obtained by
running the above two iterations a constant number of times as in case 2 (1000 in our
experiments).
For illustrating the other two attacks with the help of an example, we use a smaller q
since this involves querying q times. The value of q is chosen to be small only for illus-
tration purposes. The attack still works for q values used in real applications.

Signal function attack with lesser queries: Let n = 4, q = 17, α = 1.6 (Choos-
ing such a value of α for the sake of the example to obtain reasonable sample val-
ues). Sampling a uniformly random from Rq and sB , eB from χα, let a = (9, 4, 9, 3),
sB = (−1, 0, 0, 2) and eB = (1,−1,−1, 0). Then pB = asB + 2eB = (2,−7, 0,−2).
The signal region E := {−b q4c, . . . , b

q
4e} = {−4,−3,−2,−1, 0, 1, 2, 3, 4}

Choose eA of the adversary to be 1. So pA = k.
Oracle B: On input of pA = k from the adversary, B computes kB = pAsB = ksB =
(−k, 0, 0, 2k) and wB = Sig(ksB), outputs wB .

k wB [3] kB [3]

0 0 0
1 0 2
2 0 4
3 1 6
4 1 8

Table 8: Lesser queries in the simplified case

Since the change in signal happens when k changes from b q
4sB [i]e to b q

4sB [i]e + 1 and
here the signal changes from k = 2 to k = 3, we have 2 = b q

4sB [3]e which gives
sB [3] = 2.
Case 2: When sA 6= 0: sample sA according to the error distribution χα gives sA =
(1, 0, 1, 1). Then, the attacker’s public key is pA = asA+keA = (−4+k,−8,−2,−1).
Oracle B: On input of pA = from the adversary, B computes kB = pAsB = (3 −
k,−5, 4,−7 + 2k) and wB = Sig(kB), outputs wB .



26 Ding J., Fluhrer S. and RV S.

k wB [3] kB [3]

-4 0 2
-3 0 4
-2 1 6
-1 1 8
0 1 -7
1 1 -5
2 0 -3
3 0 -1

Table 9: Lesser queries in the improved case

Here k = 2 is the value when the signal changes varying k over positive values and
k = −3 is the value when the signal changes while varying k in the opposite direction.
So, b q

2(k1−k2)e reveals sB [3] = b 17
2∗5e = 2

With the same example as above, when the error gB (sampled values 2,0,2,-1,-1,1,1,1,0
for gB [3] for the iterations below) is added to kB ,

k wB [3] kB [3]

-5 0 4
-4 0 2
-3 1 8
-2 0 4
-1 1 6
0 1 -5
1 0 -3
2 0 -1
3 0 -1

Table 10: Queries with the error gB

Here, we can see that the gB [3] term in kB [3] causes fluctuations between k = −1
and k = −4. So, we run more queries than in the previous case and see that the signal
changes happen at k = −4 and k = 1. So the recovered value is b q

2(1−(−4))e reveals
sB [3] = b 17

2∗5e = 2.

Signal function attack on the public key pB if the KE protocol used is from [24]:
Now, for the same example values of a, pB , we demonstrate the attack on the KE pro-
tocol in [24] to recover sB [0].
Choose sA, eA of the adversary to be 0, 1 respectively. So pA = k.
Oracle S: On input of pA = k from the adversary, S computes kB = pAsB + 2gB =
ksB + 2gB and k̄B = dbl(kB) and wB = Sig(k̄B), outputs wB .

The signal region I0, I ′0, I1, I
′
1 are as follows: I0 = {0, 1, 2, 3, 4, 5, 6, 7, 8},

I ′0 = {17,−16,−15,−14,−13,−12,−11,−10,−9},
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I1 = {−8,−7,−6,−5,−4,−3,−2,−1} and I ′1 = {9, 10, 11, 12, 13, 14, 15, 16}.

k kB [0] k̄B [0] wB [0]

0 0 0 0
1 -1 -2 1
2 -2 -5 1
3 -3 -5 1
4 -4 -8 1
5 -5 -9 0
6 -6 -12 0
7 -7 -15 0
8 -8 17 0
9 8 16 1

10 7 14 1
11 6 13 1
12 5 10 1
13 4 7 0
14 3 6 0
15 2 5 0
16 1 2 0

Table 11: Queries with Signal response

Now, if the error gB is added to the key computation kB , with gB values sampled
according to the error distribution χα (suppose gB [0] values are
0, 1, 1, 0,−1, 1, 0, 0,−1,−1,−2, 1, 0, 0, 2, 0, 0), we have the following results:
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k kB [0] k̄B [0] wB [0]

0 0 0 0
1 0 0 0
2 -1 -3 1
3 -3 -5 1
4 -5 -10 0
5 -4 -7 1
6 -6 -12 0
7 -7 -15 0
8 8 15 1
9 7 14 1

10 5 10 1
11 7 15 1
12 5 10 1
13 4 7 0
14 5 10 1
15 2 5 0
16 1 2 0

Table 12: Queries with fluctuations in signal

The fluctuations in signal change caused in the above example between k = 4 to
k = 5 and between k = 13 to k = 14 are due to the error gB and can be interpreted the
same way as in [11] to count the number of signals to be 4, thus revealing sB [0] = ±1.
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