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Abstract. In this paper, we present new key-recovery attacks on AES
with a single secret S-Box. Several attacks for this model have been pro-
posed in literature, the most recent ones at Crypto’16 and FSE’17. Both
these attacks exploit a particular property of the MixColumns matrix to
recover the secret-key.
In this work, we show that the same attacks work exploiting a weaker
property of the MixColumns matrix. As first result, this allows to (largely)
increase the number of MixColumns matrices for which it is possible to
set up all these attacks. As a second result, we present new attacks on 5-
round AES with a single secret S-Box that exploit the new multiple-of-n
property recently proposed at Eurocrypt’17. This property is based on
the fact that choosing a particular set of plaintexts, the number of pairs
of ciphertexts that lie in a particular subspace is a multiple of n.
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1 Introduction

A key-recovery attack is any adversary’s attempt to recover the cryptographic
key of an encryption scheme. As stated by the Kerckhoffs Principle, one common
assumption is that the security of a cryptosystem must lie in the choice of its keys
only: everything else (including the algorithm itself) should be considered public
knowledge. What happens if part of the crypto-system is instead kept secret?

This problem has been first introduced by Biryukov and Shamir [6], where
authors studied the security of AES-like ciphers which contain alternate (secret)
layers of invertible S-Boxes and (secret) affine mappings. In particular, they
analyzed an AES-like cipher with 128-bit blocks using eight-bit S-Boxes. An
attack was presented on five layers (SASAS, where S stands for substitution
and A stands for affine mapping) of this construction which finds all secret
components (up to an equivalence). Using the terminology of “rounds” as in the
AES, this version consists of two and a half rounds.

After this first work, several other results regarding cryptanalysis of ci-
phers with secret S-Boxes have been presented in literature. To cite some ex-
amples, Gilbert and Chauvaud [14] presented a differential attack on the cipher
Khufu (an unbalanced Feistel cipher), while Vaudenay provided cryptanalysis
of reduced-round variants of Blowfish [22]. Most recently, the lightweight cipher
PRESENT (standardized ISO) was cryptanalyzed by Borghof et al. [9] also in



the (extreme) case in which the S-Boxes are chosen uniformly at random for each
round. In [5], authors considered the ASASA scheme in order to design public
key or white-box constructions using symmetric cipher components.

Focusing on AES, several works considered the security of this cipher in the
case in which the S-Box is replaced by a secret S-Box, about which the adversary
has no knowledge. At FSE 2015 Tiessen et al. [21] presented the first attack up
to 6-round AES with a single secret S-Box, based on the integral technique [11].
At Crypto 2016, Sun et al. [20] proposed the first key-dependent distinguisher
on 5-round AES with a single secret S-Box, based on zero-correlation linear hulls
[8]. Such distinguisher has been then improved by Grassi et al. at FSE 2017 [16],
using a technique based on impossible differential cryptanalysis [2, 17, 3].

State of the Art and Our Contributions

Background. The Advanced Encryption Standard (AES) [12] is an iterated
block cipher using 10, 12, or 14 rounds depending on the key size of 128, 192,
or 256 bits. These variants are named AES-128, AES-192, and AES-256. In this
paper we focus on the cipher that is derived from the AES by replacing the
S-Box with a secret 8-bit S-Box while keeping everything else unchanged. If the
choice of S-Box is made uniformly at random from all 8-bit S-Boxes1, the size
of the secret information increases from 128 - 256 bits (the key size in the AES)
to 128 + log2(28!) = 1812 and 256 + log2(28!) = 1940 bits respectively.

To better understand the attacks on AES with a single secret S-Box, we
briefly recall few details of AES. Without going into the details here, AES is
a key-iterated block cipher that consists of the repeated application of a round
transformation on the state (called intermediate result). Each round transfor-
mation is a sequence of four steps, an S-Box (the only non-linear operation), a
ShiftRows (a permutation on the byte positions), a MixColumns matrix (a linear
operation) and the AddRoundKey.

The attacks on AES with a single secret S-Box present in literature can be
divided in two categories:

1. in the first case (e.g. [6] and [21]), the attacker first determines the secret
S-Box up to additive constants (that is, S-Box(x⊕a)⊕ b for unknown a and
b), and then she uses this knowledge and applies attacks present in literature
(e.g. the integral one) to derive the whitening key;

2. in the second case (e.g. [20] and [16]), the attacker exploits a particular
property of the MixColumns matrix (i.e. the fact that two elements for each
row of the matrix are equal) in order to find directly the secret key.

In this second strategy, no information of the secret S-Box is derived and/or
exploited to find the key. This second strategy is so generic that can be applied
to integral, truncated differential and impossible differential attack. In this case,
the idea of the attack is to choose a set of plaintexts that depends on some
guessed bytes of the key. Exploiting the fact that particular properties holds

1 For completeness, we mention that a randomly chosen S-Box is likely to have good
properties against differential and linear cryptanalysis, as shown in [21].
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Table 1. Comparison of attacks on round-reduced AES-128 with secret S-Box. Data
complexity is measured in number of required chosen plaintexts/ciphertexts (CP/CC).
Time complexity is measured in round-reduced AES encryption equivalents (E), mem-
ory accesses (M) or XOR operations (20 table look-ups ≈ 1-round encryption). Memory
complexity is measured in texts (16 bytes). The case in which the final MixColumns
operation is omitted is denoted by “r.5 rounds” - r full rounds + the final one. Symbol
? denotes an attack of the 1st category (as defined in the main text).

Attack Rounds Data Computation Memory Reference

I? 4.5 - 5 240 CC 238.7 E 240 [21]

I? 4.5 - 5 240 CP 254.7 E 240 [21, Sect. 3.5]

Mult-of-n 4.5− 5 253.25 CP 259.25 M ≈ 252.6 E 216 Sect. 5.2

Mult-of-n 4.5− 5 253.6 CP 255.6 M ≈ 248.96 E 240 Sect. 3.1

ImD 4.5− 5 276.37 CP 281.54 M ≈ 274.9 E 28 Sect. 5.1

ImD 4.5 - 5 2102 CP 2107 M ≈ 2100.4 E 28 [16]

I 5 2128 CC 2129.6 XOR small [20]

I: Integral, ImD: Impossible Differential, Mult-of-n: Multiple-of-n

with higher probability for the right key than for the wrongly guessed one, it is
possible to find the secret key.

Our Contributions. In this paper, we focus only on this second strategy, and
we propose the following contributions.

First Contribution. As first contribution, in Sect. 4 we generalize the strat-
egy proposed in [20] and in [16]. While attacks proposed in these papers exploit
the fact that two coefficients of each row of the MixColumns matrix are equal,
we show that the same attacks can also be mounted in the case in which the
XOR-sum of more than two coefficients of each row of the MixColumns matrix
is equal to zero. As main result, the strategies proposed in [20] and in [16] work
for a bigger class of MixColumns matrices. Moreover, in some cases this allows
to improve the data and/or the computational costs of some attacks proposed
in [20] and in [16], as the the impossible differential attack on 5-round AES with
a single secret S-Box (see Sect. 5.1 for details).

Second Contribution. Recently, Grassi et al. [15] present the first secret-key
distinguisher on 5-round AES which is independent of the secret key. By appro-
priate choices of a number of input pairs, it is possible to make sure that the
number of times that the difference of the resulting output pairs lie in a partic-
ular subspace2 is always a multiple of 8. In Sect. 5, we show how to exploit an
equivalent property to set up new (competitive) key-recovery attacks on 5-round
AES with a single secret S-Box. In particular, by appropriate choice of a set of

2 A pair of texts has a certain difference if and only if the texts belong to the same
coset of a particular subspace X .
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plaintexts (that depends on the guessed key), it is possible to guarantee that the
number of ciphertexts that belong to the same coset of a particular subspaceM
is a multiple of 2 or 4 with probability 1 for the rightly guessed key, while this
happens only with probability strictly less than 1 for wrongly guessed keys.

Potential Impact of Our Results

Round-Reduced AES as Part of New Designs. Many constructions em-
ploy reduced round AES as part of their design. Reduced versions of AES have
nice and well-studied properties that can be favorable as components of larger
designs. Only to cite some of them, in the on-going “Competition for Authenti-
cated Encryption: Security, Applicability, and Robustness” (CAESAR) [1] which
is currently at its third round, among many others, AEGIS [23] uses five AES
round-functions in the state update functions, while ELmD v1.0 [13] recom-
mends to use round-reduced AES including 5-round AES to partially encrypt
the data3. In a very different context, Mennink and Neves [19] propose a method
for transforming a dedicated block-cipher design into a dedicated PRF design.
The main proposal AES-PRF-128 is defined to be AES xored with the internal
state after 5 rounds, that is AES-PRF (·) = AES10(·)⊕AES5(·).

Since the security level of AES-like cipher with a single secret S-Box could
be very high (e.g. 1812-1940 bits) and since many constructions employ reduced
round AES as part of their design, a natural question arises: Could the number
of rounds of AES-like cipher be reduced to fewer than 10 rounds (as in AES-128)
in the case of secret S-Box? The answer seems to be negative, since our results
- together with the ones already present in literature - show that, despite the
increased size of the secret information in the cipher, key-recovery attacks on
round-reduced AES with a single secret S-Box are still possible.

MixColumns Matrix Design. The security of a block cipher depends on the
details of the S-Box function and of the mixing linear transformation. If one
chooses such functions carefully, the dedicated cipher based on the AES-like
structure can be resilient to both differential [4] and linear cryptanalysis [18].
For example, based on the fact that the branch number of the AES MixColumns
is 5, it is proved in [12] that the number of active S-boxes of 4-round AES is
at least 25. Since the maximal differential probability of the S-Box is 2−6, there
does not exist any differential characteristic4 of 4-round AES with probability
larger than 2−150.

Focusing only on the mixing linear transformation, in order to increase the
performance of a block cipher, designers usually use a circulant matrix whose
elements are restricted to low hamming weights in order to reduce the workload
of the multiplications over finite fields. Furthermore, not only the matrix are
always circulant, but also there are usually identical elements in each row.

3 We mention that 5-round AES has been replaced by 6-round AES in ELmD v2.0.
4 For completeness, we remark that bounding characteristic probability is not enough

to prove resistance against other kinds of differential and linear attacks.
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Most known cryptanalysis techniques don’t make use of these observations,
and there is little literature concentrating on the choices of these matrices in
constructing distinguishers of round-reduced AES. On the other hand, our results
- together with the ones already present in literature - show that some properties
of the MixColumns matrix can be exploited to set up key-recovery attacks on
AES-like cipher with a single secret S-Box. Thus, when designing an AES-like
cipher, it seems better to choose those MDS matrices MC s.t. no XOR-sum of
two or more coefficients of each row of both MC and MC−1 is equal to zero.

2 Preliminary

2.1 Description of AES

The Advanced Encryption Standard [12] is a Substitution-Permutation network
that supports key size of 128, 192 and 256 bits. The 128-bit plaintext initializes
the internal state as a 4 × 4 matrix of bytes as values in the finite field F256,
defined using the irreducible polynomial x8 + x4 + x3 + x + 1. Depending on
the version of AES, Nr round are applied to the state: Nr = 10 for AES-128,
Nr = 12 for AES-192 and Nr = 14 for AES-256. An AES round applies four
operations to the state matrix:

– SubBytes (S-Box) - applying the same 8-bit to 8-bit invertible S-Box 16 times
in parallel on each byte of the state (provides non-linearity in the cipher);

– ShiftRows (SR) - cyclic shift of each row ;
– MixColumns (MC) -multiplication of each column by a constant 4 × 4 in-

vertible matrix MMC (MC and SR provide diffusion in the cipher5);
– AddRoundKey (ARK) - XORing the state with a 128-bit subkey.

One round of AES can be described as R(x) = K ⊕MC ◦ SR ◦ S-Box(x). In
the first round an additional AddRoundKey operation (using a whitening key)
is applied, and in the last round the MixColumns operation is omitted.

The Notation Used in the Paper. Let x denote a plaintext, a ciphertext,
an intermediate state or a key. Then xi,j with i, j ∈ {0, ..., 3} denotes the byte
in the row i and in the column j. The secret key is usually denoted by k. We
denote by R one round6 of AES, while we denote r rounds of AES by Rr. As
last thing, in the paper we often use the term “partial collision” (or “collision”)
when two texts belong to the same coset of a given subspace X .

2.2 Subspace Trails

Let F denote a round function in a iterative block cipher and let V ⊕ a denote
a coset of a vector space V . Then if F (V ⊕ a) = V ⊕ a we say that V ⊕ a is
an invariant coset of the subspace V for the function F . This concept can be
generalized to trails of subspaces [16], recently introduced at FSE 2017.

5 SR makes sure column values are spread, MC makes sure each column is mixed.
6 Sometimes we use the notation Rk instead of R to highlight the round key k.
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Definition 1. Let (V1, V2, ..., Vr+1) denote a set of r+1 subspaces with dim(Vi) ≤
dim(Vi+1). If for each i = 1, ..., r and for each ai ∈ V ⊥i , there exist (unique)
ai+1 ∈ V ⊥i+1 such that F (Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1, then (V1, V2, ..., Vr+1) is sub-
space trail of length r for the function F .

This means that if F t denotes the application of t rounds with fixed keys, then
F t(V1 ⊕ a1) = Vt+1 ⊕ at+1. We refer to [16] for more details about the concept
of subspace trails. Our treatment here is however meant to be self-contained.

Subspace Trails of AES. Here we recall the subspace trails of AES presented
in [16], working with vectors and vector spaces over F4×4

28 . For the following, we

denote by {e0,0, ..., e3,3} the unit vectors of F4×4
28 (e.g. ei,j has a single 1 in row

i and column j). We recall that given a subspace X , the cosets X ⊕ a and X ⊕ b
(where a 6= b) are equivalent (that is X ⊕ a ∼ X ⊕ b) if and only if a⊕ b ∈ X .

Definition 2. The column spaces Ci are defined as Ci = 〈e0,i, e1,i, e2,i, e3,i〉.

For instance, C0 corresponds to the symbolic matrix

C0 =

{
x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 ∣∣∣∣ ∀x1, x2, x3, x4 ∈ F28

}
≡


x1 0 0 0
x2 0 0 0
x3 0 0 0
x4 0 0 0

 .
Definition 3. The diagonal spaces Di and the inverse-diagonal spaces IDi are
defined as Di = SR−1(Ci) and IDi = SR(Ci).

For instance, D0 and ID0 correspond to symbolic matrices

D0 ≡


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 , ID0 ≡


x1 0 0 0
0 0 0 x2
0 0 x3 0
0 x4 0 0


for each x1, x2, x3, x4 ∈ F28 .

Definition 4. The i-th mixed spaces Mi are defined as Mi = MC(IDi).

For instance, M0 corresponds to symbolic matrix

M0 ≡


0x02 · x1 x4 x3 0x03 · x2

x1 x4 0x03 · x3 0x02 · x2
x1 0x03 · x4 0x02 · x3 x2

0x03 · x1 0x02 · x4 x3 x2

 .
Definition 5. For I ⊆ {0, 1, 2, 3}, let CI , DI , IDI and MI defined as

CI =
⊕
i∈I
Ci, DI =

⊕
i∈I
Di, IDI =

⊕
i∈I
IDi, MI =

⊕
i∈I
Mi.
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As shown in detail in [16], for any coset DI ⊕ a there exists unique b ∈ C⊥I such
that R(DI ⊕ a) = CI ⊕ b. Similarly, for any coset CI ⊕ a there exists unique
b ∈M⊥I such that R(CI ⊕ a) =MI ⊕ b.

Theorem 1 ([16]). For each I and for each a ∈ D⊥I , there exists one and only
one b ∈M⊥I (which depends on a and on the secret key k) such that

R2(DI ⊕ a) =MI ⊕ b. (1)

We emphasize that b depends on the initial constant a and on the secret key k.
Observe that if X is a generic subspace, X ⊕ a is a coset of X and x and y

are two elements of the (same) coset X ⊕ a, then x⊕ y ∈ X . It follows that:

Lemma 1. For all x, y and for all I ⊆ {0, 1, 2, 3}:

Prob(R2(x)⊕R2(y) ∈MI |x⊕ y ∈ DI) = 1. (2)

We finally recall that for each I, J ⊆ {0, 1, 2, 3}, then MI ∩DJ = {0} if and
only if |I|+ |J | ≤ 4, as demonstrated in [16]. It follows that:

Proposition 1 ([16]). Let I, J ⊆ {0, 1, 2, 3} such that |I|+ |J | ≤ 4. For all x, y
with x 6= y:

Prob(R4(x)⊕R4(y) ∈MI |x⊕ y ∈ DJ) = 0. (3)

We remark that all these results can be re-described using a more “classical”
- but equivalent - truncated differential notation, as formally pointed out in [7].
To be more concrete, if two texts t1 and t2 are equal expect for the bytes in the
i-th diagonal7 for each i /∈ I, then they belong in the same coset of DI . A coset
of DI corresponds to a set of 232·|I| texts with |I| active diagonals. Again, two
texts t1 and t2 belong in the same coset of MI if the bytes of their difference
MC−1(t1 ⊕ t2) in the i-th anti-diagonal for each i /∈ I are equal to zero. Similar
considerations hold for the column space CI and the inverse-diagonal space IDI .

5-round Secret-Key Distinguisher proposed in [15]. For the following, we
briefly recall the property exploited in [15] to set up the first 5-round secret-key
distinguisher of AES (independent of the secret key).

Consider a set of plaintexts in the same coset of the diagonal space DI , that
is DI⊕a for a certain a ∈ D⊥I , and the corresponding ciphertexts after 5 rounds,
that is (pi, ci ≡ R5(pi)) for i = 0, ..., 232·|I|−1 such that pi ∈ DI⊕a for all i. The
5-round AES distinguisher proposed in [15] exploits the fact that the number of
different pairs8 of ciphertexts (ci, cj) that belong to the same coset of MJ for
a fixed J ⊂ {0, 1, 2, 3} (that is ci ⊕ cj ∈ MJ) has the special property to be a
multiple of 8 with prob. 1 independently of the secret key, of the details of the
S-Box and of the MixColumns matrix (assuming branch number equal to 5).

7 The i-th diagonal of a 4 × 4 matrix A is defined as the elements that lie on row r
and column c such that r− c = i mod 4. The i-th anti-diagonal of a 4× 4 matrix A
is defined as the elements that lie on row r and column c such that r+ c = i mod 4.

8 Two pairs (ci, cj) and (cj , ci) are considered equivalent.
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The proof of this property is based on the following argumentation. Given
two different texts t1, t2 ∈ DI ⊕ a, it is possible to prove that there exist other
two texts s1, s2 ∈ DI ⊕ a (related to t1 and t2) such that

R5(t1)⊕R5(t2) ∈MJ if and only if R5(s1)⊕R5(s2) ∈MJ .

3 MixColumns Property and Key-Recovery Attacks on
round-reduced AES-128 with a single Secret S-Box

Recently, new key-recovery attacks on AES with a single secret S-Box have been
presented in [20] and in [16]. Instead of finding the secret S-Box up to additive
constants (as in [21]), authors exploits a particular property of the MixColumns
matrix in order to find directly (i.e. without discovering any information of the
secret S-Box ) the secret key up to 232 variants. For the following, we recall the
details of such strategy, and we show how to combine it with the new multiple-
of-n property proposed in [15] just recalled.

MixColumns Matrix with Two Equal Coefficients: Strategy of the
Attack. The strategy proposed in [20] and [16] exploits the fact that two co-
efficients of each row of the MixColumns matrix are equal. The basic idea is
to choose a set of plaintexts which depends on the guessed key. The attacker
exploits the fact that when the guessed key is the right one, a certain property
holds after r rounds (in other words, a differential trail over r rounds is satisfied)
with a different probability than in the case in which the guessed key is wrong.

Fig. 1. Strategy of the attacks on AES with a secret S-Box proposed in [16]. A subset
of a coset of Di (which depends on the guessed values of the secret key) is mapped
after one round into a subset of a coset of DJ if the guessed values is correct - (1st)
case, or into a subset of a coset of Ci if the guessed values is wrong - (2nd) case. As a
consequence, the subspace trails up to the 5-th round are different for the two cases,
and this allows to set up various key-recovery attacks.

We limit here to recall a concrete example, and we refer to [16] for more
details. Let MMC be the AES MixColumns matrix, where MMC

0,2 = MMC
0,3 (sim-

ilar for the other rows). Let p1 and p2 two texts such that p1i,j = p2i,j for each

(i, j) 6= {(2, 2), (3, 3)} and assume p12,2 ⊕ p13,3 = p22,2 ⊕ p23,3 (note that such pair
of plaintexts belong to the same coset of D0). Denote the secret key by k. If
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p12,2 ⊕ p13,3 = p22,2 ⊕ p23,3 = k2,2 ⊕ k3,3, then after one round the two texts be-
long to the same coset of C0 ∩ D1,2,3 ⊆ D1,2,3 with prob. 1 - case (1) of Fig. 1,
otherwise they belong to the same coset of D1,2,3 only with prob. 2−8 - case (2)
of Fig. 1. Exploiting these different probabilities, it is possible to set up several
differential trails on 2-, 3-, 4- and 5-round AES that have a different probabilities
between cases (1) and (2), as illustrated in Fig. 1. This allows to recover the key.
We emphasize that no information on the S-Box is recovered or used.

As concrete example, consider the set of plaintexts-ciphertexts Vδ defined as

Vδ ={(pi, ci) for i = 0, ..., 28 − 1 | pi2,2 ⊕ pi3,3 = δ ∀i and

and pik,l = pjk,l ∀(k, l) 6= {(2, 2), (3, 3)} and i 6= j},
(4)

that is 28 plaintexts with 14 constants bytes and for which the difference on the
other two bytes is fixed and equal to a guessed value of the key. If the guessed
key is the correct one, then after 3 rounds the previous texts belong to the same
coset of M1,2,3 with probability 1, while this happens only with probability
2−8 for a wrong guessed key. Moreover, if the guessed key is the correct one,
then after 5 rounds the previous texts belong to the same coset of MI for each
I ⊆ {0, 1, 2, 3} for |I| = 1 with probability 0, while this happens with probability
2−94 for a wrongly guessed key. If the final MixColumns is omitted, it is sufficient
to replace MI with IDI .

3.1 Multiple-of-n Attack on 5-round AES with a secret S-Box

As first thing, we show how to adapt the previous strategy to set up an attack
on 5-round AES with a single secret S-Box which exploits the multiple-of-n
property proposed in [15]. The idea is choose a particular set of plaintexts Aδ
(which depends on a variable δ), such that only for a particular value of δ - which
depends on the secret key - the number of collisions among the ciphertexts in
the same coset of MI with |I| = 3 after 5 rounds is a multiple of 2 (i.e. it is an
even number) with probability 1. Since for all the other values of δ this event
happens only with probability 1/2, it is possible to discover the right key. Thus,
for a fixed a ∈ D⊥1 (i.e. a0,1 = a1,2 = 0), let Aδ be the set of plaintexts of the
form:

Aδ ≡
{
a⊕


y0 x 0 0
0 y1 x⊕ δ 0
0 0 y2 0
0 0 0 y3

 ∣∣∣∣∀x, y0, ..., y3 ∈ F28

}
. (5)

Given a set Aδ, we claim that if δ = k0,1 ⊕ k1,2 then the number of collisions
after 5 rounds in the same coset ofMI for a fixed I ⊆ {0, 1, 2, 3} with |I| = 3 is
a multiple of 2 with probability 1.

Proposition 2. Consider a set of plaintexts Aδ defined as in (5), and the cor-
responding ciphertexts after 5 rounds. If δ = k0,1 ⊕ k1,2, then the number of
different pairs of ciphertexts that belong to the same coset of MI for a fixed
I ⊆ {0, 1, 2, 3} with |I| = 3 is a multiple of 2.
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Proof. Let δ = k0,1 ⊕ k1,2. After one round, there exists b such that the set Aδ
is mapped into

R(Aδ) ≡
{
b⊕


z0 w 0 0
z1 0x03 · w 0 0
z2 0 0 0
z3 0x02 · w 0 0

 ∣∣∣∣∀w, z0, ..., z3 ∈ F28

}
.

Consider two elements z, z′ ∈ R(Aδ) generated respectively by z ≡ (z0, z1, z2, z3, w)
and z′ ≡ (z′0, z

′
1, z
′
2, z
′
3, w), and consider separately the two cases z1 6= z′1 and

z1 = z′1. The idea is to show that in the first case (i.e. the set of all the different
pairs of elements for which the condition z1,1 6= z′1,1 holds) the number of colli-
sions is a multiple of 2, while in the second case (i.e. the set of all the different
pairs of elements for which the condition z1 = z′1,1 holds) the number of collisions
is a multiple of 256. In particular, consider two elements z, z′ ∈ R(Aδ) generated
respectively by z ≡ (z0, z1, z2, z3, w) and z′ ≡ (z′0, z

′
1, z
′
2, z
′
3, w) with z1 6= z′1. For

a fixed I ∈ {0, 1, 2, 3} with |I| = 3, the idea is to show that R4(z)⊕R4(z′) ∈MI

if and only if R4(v)⊕R4(v′) ∈MI where the texts v, v′ ∈ R(Aδ) are generated
respectively by v ≡ (z0, z

′
1, z2, z3, w) and v′ ≡ (z′0, z1, z

′
2, z
′
3, w). Similarly, con-

sider the case z1 = z′1. For this case, the idea is to prove that z, z′ ∈ R(Aδ) satisfy
the condition R4(z) ⊕ R4(z′) ∈ MI if and only if each pair of elements v, v′ ∈
R(Aδ) generated respectively by v ≡ (z0, v1, z2, z3, w) and v′ ≡ (z′0, v1, z

′
2, z
′
3, w)

for each v1 ∈ F28 have the same property, that is R4(v) ⊕ R4(v′) ∈ MI . Since
there are 28 = 256 different values for v1, then the number of collisions must
be a multiple of 256. It follows that there exist n′, n

′′ ∈ N such that the total
number of collisions n can be written as n = 2 ·n′+ 256 ·n′′ = 2 · (n′+ 128 ·n′′).
In other words, the total number of collisions is a multiple of 2.

The details of the proof can be found in App. E. ut

Consider now the case δ 6= k0,1 ⊕ k1,2. In this case, the previous proposition
doesn’t hold and the number of collisions is a multiple of 2 only with probability
1/2. Indeed, let δ 6= k0,1 ⊕ k1,2. By simple computation, there exists a constant
b such that the set Aδ is mapped after one round into

R(Aδ) ≡ b⊕


z0,0 0x02 · S-Box(x⊕ k0,1)⊕ 0x03 · S-Box(x⊕ δ ⊕ k1,1) 0 0
z1,1 S-Box(x⊕ k0,1)⊕ 0x02 · S-Box(x⊕ δ ⊕ k1,1) 0 0
z2,2 S-Box(x⊕ k0,1)⊕ S-Box(x⊕ δ ⊕ k1,1) 0 0
z3,3 0x03 · S-Box(x⊕ k0,1)⊕ S-Box(x⊕ δ ⊕ k1,1) 0 0


for each x and for each z0,0, ..., z3,3. Note that this is a subset (not a subspace) of
a coset of C0,1. Thus, assume that two elements z, z′ ∈ R(Aδ) belong to the same
coset of MI after 4 rounds. Since the second column of R(Aδ) can take only a
limited number of values, working in the same way as before it is not possible to
guarantee that other pairs of elements - defined by a different combinations of
the variables - have the same property with prob. 1. It follows that in this case
the number of collisions is a multiple of 2 only with probability 1/2 (this result
has been practically verified).
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Note that each set contains 240 different texts, that is approximately 239 ·
(240 − 1) ' 279 different pairs of ciphertexts. Since the probability that two
ciphertexts belong to the same coset of MI for |I| = 3 is 2−32, the number of
collisions is approximately 279 · 2−32 = 247. We emphasize that for the right
key this number is exactly a multiple of 2 with probability 1, while for wrong
guessed keys this happens only with probability 1/2. Using these considerations,
it is possible to find the right key up to 232 variants.

Data Cost. To compute the data cost, we first analyze the case in which
the goal is to discover only one byte (in particular, the difference of two bytes)
of the right key with probability greater than 95%. A candidate value of δ can
be claimed to be wrong if there exists at least a set Aδ for which the number of
collisions after five rounds is an odd number. Since there are only 28−1 different
possible values for δ, one needs that such a set Aδ exists with probability higher
than (0.95)1/255 = 99.98% (since the tests for different δ are independent, the
total probability of success is higher than 0.9998256 = 0.95).

Since the probability that the number of collisions for a given set Aδ is odd
is 50%, 4 different sets Aδ (note that one can count the number of collisions
in MI for all the 4 different I with |I| = 3, for a total of 16 possible tests)
are sufficient to deduce the right δ with probability higher than 95%, since
2−16 ≤ 1−0.9998 = 2−12.3. It follows that the cost to find 1 byte of the key is of
4 (cosets) ·240 (number of texts in Aδ) ·28 (values of δ) = 250 chosen plaintexts.

In order to find the entire key up to 232 possible variants, the idea is to repeat
the attack 12 times, i.e. 3 times for each column. By analogous calculation9, it
follows that 16 tests (that is 4 different sets Aδ - note that there are four different
I with |I| = 3) are sufficient to deduce the right δ with total probability higher
than 95%. Thus, the data cost of the attack is of 12·250 = 253.6 chosen plaintexts.

Computational Cost. In order to count the number of collisions, one can
exploit data structure - the complete pseudo-code of such an algorithm is given
in Algorithm 1. This method allows to minimize the computational cost, which
is well approximated by 255.6 table look-ups or approximately 248.96 five-rounds
encryptions (20 table look-ups ≈ 1 round of encryption).

Practical Verification Using a C/C++ implementation10, we have practically
verified the attack just described on a small-scale variant of AES, as presented
in [10] - not on real AES due to the large computational cost of the attack. We
emphasize that Prop. 2 is independent of the fact that each word is composed
of 8 or 4 bits. Thus, our verification on the small-scale variant of AES is strong
evidence for it to hold for the real AES. The main differences between this
small-scale AES and the real AES regard the total computational cost.

9 In this case, one needs that for each one of the 28 − 1 wrong possible values for δ,
at least one set Aδ for which the number of collision is odd exists with probability
higher than (0.9998)1/12 = 99.99835%.

10 The source codes of this and the other attacks on AES with a secret S-Box are
available at https://github.com/Krypto-iaik/Attacks_AES_SecretSBox2

11



Data: 210 different sets Aδ defined as in (5) - 4 different sets for each δ - and
corresponding ciphertexts after 5 rounds

Result: k0,0 ⊕ k1,1
for each δ from 0 to 28 − 1 do

flag ← 0;
for each set Aδ do

let (pi, ci) for i = 0, ..., 240 − 1 be the 240 (plaintexts, ciphertexts) of Aδ;
for all j ∈ {0, 1, 2, 3} do

Let W [0, ..., 232 − 1] be an array initialized to zero;
for i from 0 to 240 − 1 do

x←
∑3
k=0MC−1(ci)k,j−k · 256k; // MC−1(ci)k,j−k denotes

the byte of MC−1(ci) in row k and column j − k mod 4
W [x]←W [x] + 1; // W [x] denotes the value stored in

the x-th address of the array W

end
n← 0;
for i from 0 to 232 − 1 do

n← n+W [i] · (W [i]− 1)/2;
end
if (n mod 2) 6= 0 then

flag ← 1 (next δ);
end

end

end
if flag = 0 then

identify δ as candidate for k0,0 ⊕ k1,1;
end

end
return Candidates for k0,0 ⊕ k1,1. // Only one candidate with Prob. 95%

Algorithm 1: Key-Recovery Attack on 5 rounds of AES with a single secret
S-Box. For simplicity, the goal of the attack is to find one byte of the key -
k0,0⊕k1,1. The same attack is used to recover the entire key up to 232 variants.

For simplicity, we limit here to report the result for an attack on a single byte
of the key, e.g. k0,0⊕k1,1. For small-scale AES, since there are only 24−1 possible
candidates, it is sufficient that for each wrong candidate of k0,0 ⊕ k1,1 a set Aδ
for which the number of collisions is odd exists with probability (0.95)2

−4

=
99.659%. It follows that 9 tests (that is 3 different sets Aδ) for each candidate
of k0,0⊕k1,1 are sufficient to find the right value. Using the same procedure just
presented based on data-structure, the theoretical computational cost is well
approximated by 4 · 3 · 24 · (220 + 2 · 216) ' 227.75 table look-ups.

Our tests confirm that 3 different sets Aδ are largely sufficient to find the
key. The average practical computational cost is of 226.3 table look-ups using a
data-structure. To explain the (small) difference with the theoretical value, note
that the theoretical value is computed in the worst case. As example, when a
candidate of the key is found to be wrong, it is not necessary to complete the
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verification for all the other sets Aδ or indexes I, but it is sufficient to discard
it and to test the next candidate.

4 A More Generic Strategy for Key-Recovery Attacks on
AES-like Ciphers with a Single Secret S-Box

As we have just recalled, the strategy proposed in [20] and in [16] exploits the fact
that two coefficients of each row of the MixColumns matrix are equal. Here we
show how to generalize such a strategy for a large class of MixColumns matrices.
Instead of exploiting the fact that two elements of each row of the MixColumns
matrix MMC are equal, we show that it is possible to mount similar attacks also
in the case in which the XOR-sum of 2 or more elements of each row of MMC is
equal to zero. That is, it is possible to set up an attack also in the case in which
for each row r (or for some of them) of MMC there exists a set Jr ⊆ {0, 1, 2, 3}
such that ⊕

j∈Jr

MMC
r,j = 0 (6)

As an example, each row of the AES MixColumns matrix MMC satisfies this
condition, e.g. for the first row

MMC
0,0 ⊕MMC

0,1 ⊕MMC
0,2 = 0x02⊕0x03⊕0x01 = 0, MMC

0,i 6= MMC
0,j ∀i, j ∈ {0, 1, 2}.

As a special case, if two elements MMC
r,j and MMC

r,k of a row r are equal (that

is MMC
r,j = MMC

r,k for j 6= k), then the previous condition is obviously satisfied
(vice-versa doesn’t hold). It follows that the following strategy includes the one
proposed in [20] and in [16] as a particular case.

To explain how to exploit property (6), we show how to adapt the attacks
described in [16] (just recalled) to this case. As we have already said, the idea of
those attacks is to choose a set of plaintexts Aδ which depends on a guessed key
δ. When δ assumes the “right” value (which depends on the secret key), then the
set Aδ is mapped after one round into a coset of DI for some I (where |I| ≤ 3)
with probability 1, while for other values of δ this happens only with probability
strictly less than 1. Since the idea is to exploit the same strategy, we limit here
to define the set Aδ in the case in which a sum of elements of each row of MMC

is equal to zero.

Proposition 3. Let MMC be the AES MixColumns matrix such that

MMC
i,0 ⊕MMC

i,1 ⊕MMC
i,2 = 0 i = {0, 1}.

Let p1 and p2 be two texts, s.t. p1i,j = p2i,j for all (i, j) 6= {(0, 0), (1, 1), (2, 2)} and

p1i,j ⊕ p1k,l = p2i,j ⊕ p2k,l ∀(i, j), (k, l) ∈ {(0, 0), (1, 1), (2, 2)} and (i, j) 6= (k, l).

If p10,0⊕ p11,1 = p20,0⊕ p21,1 = k0,0⊕ k1,1 and p10,0⊕ p12,2 = p20,0⊕ p22,2 = k0,0⊕ k2,2,
then R(p1) ⊕ R(p2) ∈ C0 ∩ D2,3 with probability 1 (i.e. after one round, p1 and
p2 belong to the same coset of C0 ∩ D2,3). This happens with probability 2−16 in
the other cases.
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Proof. Note that the two plaintexts p1 and p2 belong to the same coset of D0.
Since a coset of diagonal space DI is always mapped after one round into a
coset of a column space CI , after one round they belong to the same coset of
C0 with probability 1. To prove the statement, it is sufficient to prove that
[R(p1)⊕R(p2)]0,0 = [R(p1)⊕R(p2)]1,0 = 0.

By simple calculation

R(p1)0,0 =0x02 · S-Box(p10,0 ⊕ k0,0)⊕ 0x03 · S-Box(p11,1 ⊕ k1,1)⊕
⊕ S-Box(p12,2 ⊕ k2,2)⊕ S-Box(p13,3 ⊕ k3,3).

Since p10,0⊕p11,1 = k0,0⊕k1,1, it follows that S-Box(p10,0⊕k0,0) = S-Box(p11,1⊕k1,1)
and in a similar way S-Box(p10,0 ⊕ k0,0) = S-Box(p12,2 ⊕ k2,2). Since the sum of
the first three elements is equal to zero, then R(p1)0,0 = S-Box(p13,3 ⊕ k3,3),
and similarly R(p2)0,0 = S-Box(p23,3 ⊕ k3,3). Since p13,3 = p23,3, it follows that
R(p1)0,0 = R(p2)0,0. The same argumentation holds also for R(p1)1,0 = R(p2)1,0.

ut

This proposition can be easily generalized for a more generic MixColumns matrix
MMC for which the sum of three or four coefficients are equal to zero. Moreover,
given J fixed, if the sum

⊕
j∈JM

MC
r,j is equal to zero for more than a single row

r, the following Lemma follows immediately.

Lemma 2. Assume there exist J ⊆ {0, 1, 2, 3} and r, w ∈ {0, 1, 2, 3} with r 6= w
such that ⊕

j∈J
MMC
r,j =

⊕
j∈J

MMC
w,j = 0.

Let p1 and p2 defined as before. It follows that if p1j,j⊕p1l,l = p2j,j⊕p2l,l = kj,j⊕kl,l
for each j, l ∈ J , then p1⊕ p2 ∈ Ck ∩D{0,1,2,3}\{r,w} with probability 1, otherwise
this happens in general with probability 2−16.

To prove this lemma, it is sufficient to exploit the previous proposition and to
observe that if two plaintexts belong to the same coset of Ck ∩D{0,1,2,3}\{r} and
of Ck∩D{0,1,2,3}\{w}, then they belong to their intersections Ck∩D{0,1,2,3}\{r,w}.

To give a concrete example of this strategy, in App. B we show how to adapt
the attack presented in Sect. 3.1 in order to exploit the new property (6). In the
following - Sect. 5.2, we present another (a little more complicated) variant of
such attack which is more completive both for the data and computational cost.

What is the number of matrices that satisfy condition (6) with
respect to the number of matrices with two equal coefficients in each
row? Since we consider AES-like ciphers, we limit to practical count11 both
these numbers for the cases of circulant matrices in F4×4

2m for m = 4, 8. We
remember that the strategy just proposed works in the encryption direction if
the MixColumns matrix satisfies one of the two previous properties and/or in

11 The source codes are available at https://github.com/Krypto-iaik/Attacks_AES_
SecretSBox2
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Table 2. Practical Numbers for the case of Circulant Invertible Matrices. The second
column gives the number of invertible matrices MC for which MC or MC−1 has
two equal coefficients in each row, while the third one gives the number of invertible
matrices for which the sum of ≥ 2 the same row of MC or MC−1 is equal to zero.

F4×4
2m Number Invertible Matrices Two Equal Coeff. Zero-Sum of ≥ 2 Coeff.

m = 4 61 440 32 640 (53.125%) 45 600 (74.22%)

m = 8 4 278 190 080 165 550 080 (3.87%) 293 556 000 (6.87%)

Table 3. Practical Numbers for the case of Circulant MDS Matrices. The second col-
umn gives the number of MDS matrices MC for which MC or MC−1 has two equal
coefficients in each row, while the third one gives the number of MDS matrices for
which the sum of ≥ 2 elements in the same row of MC or MC−1 is equal to zero.

F4×4
2m Number MDS Matrices Two Equal Coeff. Zero-Sum of ≥ 2 Coeff.

m = 4 16 560 10 080 (60.87%) 12 480 (75.36%)

m = 8 4 015 735 920 126 977 760 (3.16%) 249 418 560 (6.21%)

the decryption direction if the inverse MixColumns matrix satisfies them. For
this reason, we compute the number of MixColumns matrices for which one of
the two previous properties is satisfied in the encryption direction (i.e. by MC)
or in the decryption direction (i.e. by MC−1). For completeness, in App. A we
list similar numbers in the case in which only one of the two directions (e.g.
encryption - MC) is considered.

In Table 2 we list our results limiting to consider invertible matrices, while
in Table 3 we list our results limiting to consider MDS (Maximal Distance Sepa-
rable)12 matrices. Observing the numbers in the tables, both for these two cases
and both for m = 4 and m = 8, the number of matrices that satisfy condition
(6) is (largely) higher than the number of matrices with two equal coefficients in
each row. E.g. for the case m = 8, this number increases of 77.32% (e.g. 227.3 vs
228.13) for the invertible matrices case, and of 96.42% (e.g. 226.92 vs 227.89) for
the MDS matrices case (that is, the number has doubled).

5 New Attacks on 5-round AES with a secret S-Box

In this section, we propose two attacks on AES with a single secret S-Box that
exploit the fact that the sum of some coefficients of the MixColumns matrix is
equal to zero. In particular, we show how to set up an impossible differential
attack up to 5 rounds of AES that exploits (6), which improves the impossible
differential attack presented in [16]. Then, we show how to adapt the attack
presented in Sect. 3.1 in order to exploit the new property just presented.

12 A matrix M ∈ Fn×n2m is called Maximum Distance Separable (MDS) matrix if and
only if it has branch number B(M) equal to B(M) = n+ 1. Equivalently, a matrix
M is MDS if and only if all square sub-matrices of M are of full rank. It follows
immediately that if a matrix is not invertible, it can not be MDS.
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5.1 Impossible Diff. Attack on 5-round AES with a secret S-Box

Here we show how to set up an impossible differential attack on 5-round AES
that exploits the fact that a sum of coefficients of the MixColumns matrix is
equal to zero (e.g. (6)), and improves the one presented in [16].

For a fixed a ∈ D⊥0 (i.e. ai,i = 0 for i = 1, 2, 3), consider a set of plaintexts
of the form:

Vδ ≡
{
a⊕


x 0 0 0
0 x⊕ δ1,1 0 0
0 0 x⊕ δ2,2 0
0 0 0 0

 ∣∣∀x ∈ F28
}

(7)

and let δ ≡ (δ1,1, δ2,2). Since

MMC
r,1 ⊕MMC

r,2 ⊕MMC
r,3 = 0 for r = 0, 1,

it follows by Prop. 3 that the set Vδ is mapped into a coset of C0 ∩ D2,3 with
probability 1 after one round if δ1,1 = k1,1 ⊕ k0,0 and δ2,2 = k2,2 ⊕ k0,0. In the
other cases, that is if δ1,1 6= k1,1 ⊕ k0,0 and/or δ2,2 6= k2,2 ⊕ k0,0 the set Vδ is
mapped into a coset of C0 with probability 1, and into a coset of C0 ∩ DI ⊆ DI
for a certain I with |I| = 2 with probability 6 · 2−16 = 3 · 2−15.

Since Prob(R4(x) ⊕ R4(y) ∈ MJ |x ⊕ y ∈ DI) = 0 for |I| + |J | ≤ 4 (Prop.
1), if δ1,1 = k1,1⊕ k0,0 and δ2,2 = k2,2⊕ k0,0, it follows that given two plaintexts
in the same coset of Vδ, then the corresponding ciphertexts after five rounds can
not belong to the same coset of MJ for |J | = 2:

Prob(R5(x)⊕R5(y) ∈MJ |x, y ∈ Vδ and δi,i = ki,i ⊕ k0,0 for i = 1, 2) = 0.

In the other cases - if δ1,1 6= k1,1 ⊕ k0,0 and/or δ2,2 6= k2,2 ⊕ k0,0, given two
plaintexts in the same coset of Vδ, then the corresponding ciphertexts after 5-
round belong to the same coset ofMJ for |J | = 2 with prob. 6 · 2−64 = 3 · 2−63.
The idea is to exploit this difference in the probabilities to recover the secret key.

Comparison with the Impossible-Differential Attack of [16]. For completeness,
we briefly discuss the difference with the attack proposed in [16]. In this last case,
a similar set Vδ is defined, and the idea is to exploit the fact two elements of
each row of the MixColumns matrix are equal. As before, for the right guessed
key and given two plaintexts in the same coset of Vδ, then the corresponding ci-
phertexts after 5-round can not belong to the same coset ofMJ for |J | = 1 The
main difference regards the case of a wrong guessed key, for which the previous
event happens with prob. 2−94. As a result, one needs more texts to detect the
wrong guessed keys.

Data and Computational Costs. The data and the computational costs
analysis are similar to the ones proposed in [16]. For this reason, we limit here
to report the data and computational costs of the attack, and we refer to App.
C for all the details. The total data complexity is approximately of 4 · 258.37 ·
216 + 4 · 257.73 · 28 = 276.374 chosen plaintexts, while - using the re-ordering

16



Fig. 2. 5-Round secret-key distinguisher for AES with a single secret S-Box. The choice
of the plaintexts (i.e. p0,0⊕pi,i = k0,0⊕ki,i for i = 1, 2) guarantees that after one round
there are only two bytes with non-zero difference instead of four, that is the plaintexts
belong to the same coset of C0 ∩D2,3. Thus, the probability the two ciphertexts belong
to the same coset of MK for |K| = 2 is zero. White box denotes denotes a byte with
a zero-difference, while a black box denotes a byte with non-zero difference.

algorithm proposed in Algorithm 3 (see App. C) - the computational cost is
well approximated by 4 · 4 · 258.37 · 216 · (log 28 + 1) = 281.54 table look-ups, or
approximately 274.9 five-round encryptions. For comparison, the attack proposed
in [16] requires 2102 chosen plaintexts and computational cost is of 2100.4 five-
round encryptions.

5.2 Improved Multiple-of-n Attack on 5-round AES with a secret
S-Box

Here we show how to adapt the attack proposed in Sect. 3.1 in order to exploits
the property that the sum of three coefficients of each row of the MixColumns
matrix MMC is equal to zero.
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For a fixed a, consider a set of plaintexts A′′δ which depends on the guessed
value of the key δ of the form:

A
′′

δ ≡
{
a⊕


0 y 0 0
0 x y ⊕ δ1,2 0
0 0 x⊕ δ2,2 y ⊕ δ2,3
0 0 0 x⊕ δ3,3

 ∣∣∣∣ ∀x, y ∈ F28

}
(8)

where δ ≡ (δ1,2, δ2,2, δ2,3, δ3,3). Given a set A′′δ , we claim that the number of col-
lisions among the ciphertexts in the same coset ofMI for a fixed I ⊆ {0, 1, 2, 3}
with |I| = 3 after 5 rounds is a multiple of 2. More formally:

Proposition 4. Consider a set of plaintexts A′′δ defined as in (8), and the corre-
sponding ciphertexts after 5 rounds. If δi,i = k1,1⊕ki,i and δj,j+1 = k0,1⊕kj,j+1

for i = 2, 3 and j = 1, 2 (the indexes are taken modulo 4), then the number
of different pairs of ciphertexts that belong to the same coset of MI for a fixed
I ⊆ {0, 1, 2, 3} with |I| = 3 is a multiple of 2.

Proof. Let δi,i = ki,i ⊕ k1,1 for i = 2, 3 and δj,j+1 = kj,j+1 ⊕ k0,1 for j = 1, 2.

By simple computation, there exists a constant b such that a set A′′δ is mapped
after one round into

R(A
′′

δ ) ≡
{
b⊕


0x03 · z 0 0 0

0 0 0 0
0 0x02 · w 0 0

0x02 · z 0x03 · w 0 0

 ∣∣∣∣∀z, w ∈ F28

}
.

Consider a pair of texts t1, t2 ∈ R(A′′δ ) generated respectively by t1 = (z, w)
and t2 = (z′, w′). The idea is to consider the following two cases separately: (1)
z = z′ and w 6= w′ (or vice-versa) and (2) z 6= z′ and w 6= w′, and to show that in
the first case (1) the number of collisions is a multiple of 256, while in the second
case (2) the number of collisions is a multiple of 2. In particular, consider a pair
of texts t1, t2 ∈ R(A′′δ ) generated respectively by t1 = (z, w) and t2 = (z′, w′)
with z 6= z′ and w 6= w′. The idea is to show that R4(t1) ⊕ R4(t2) ∈ MI if
and only if R4(s1) ⊕ R4(s2) ∈ MI for |I| = 3, where the texts s1, s2 ∈ R(A′′δ )
are generated respectively by s1 = (z, w′) and s2 = (z′, w). Similarly, consider
the case z 6= z′ and w = w′ (or vice-versa). As before, the idea is to prove
that t1, t2 ∈ R(A′′δ ) satisfy the condition R4(t1) ⊕ R4(t2) ∈ MI for |I| = 3

if and only if all the pairs of texts s1, s2 ∈ R(A′′δ ) generated respectively by
t1 = (z, s) and t2 = (z′, s) for all s ∈ F28 have the same property. Thus, there
exist n′, n

′′ ∈ N such that the total number of collisions n can be written as
n = 2 · n′ + 256 · n′′ = 2 · (n′ + 128 · n′′), that is n is a multiple of 2.

The details of the proof can be found in App. G. ut

While for δi,i = ki,i ⊕ k1,1 for i = 2, 3 and δj,j+1 = kj,j+1 ⊕ k0,1 for j = 1, 2
it is possible to guarantee that the total number of collisions is a multiple of
2 with probability 1, no analogous result holds for the other cases. That is, if
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δi,i 6= ki,i ⊕ k1,1 for i = 2, 3 or/and δj,j+1 6= kj,j+1 ⊕ k0,1 for j = 1, 2, then the
total number of collisions is a multiple of 2 with probability 50%.

Data and Computational Costs. Since the procedure of the attack is
completely equivalent to the one described in Sect. 3.1, we limit here to report
the data and computational costs of the attack and we refer to App. D for all the
details. The total data complexity is approximately of 2 · 252.248 + 12 · 216 · 216 =
253.25 chosen plaintexts, while - using the re-ordering algorithm proposed in
Algorithm 4 (see App. D) - the computational cost is well approximated by
2 · 4 · 19 · 232 · 216 · (log 216 + 1) ' 259.25 table look-ups, or approximately 252.6

five-round encryptions.

Practical Verification Using a C/C++ implementation, we have practically
verified the attack just described on a small-scale variant of AES [10] - not on real
AES due to the large computational cost of the attack. As before, we emphasize
that Prop. 4 is independent of the fact that each word is composed of 8 or 4 bits
and that our verification on the small-scale variant of AES is strong evidence for
it to hold for the real AES.

For simplicity, we limit here to report the result for the attack on four bytes
of the key, e.g. k2,2 ⊕ k1,1, k3,3 ⊕ k1,1, k0,1 ⊕ k1,2 and k0,1 ⊕ k2,3. For small-scale
AES, since there are (24)4 = 216 candidates for the four bytes of the key, it is
sufficient that a set A′′δ for which the number of collisions is odd exists for each

wrong candidate with probability higher than (0.95)2
−16

. Thus, 22 · 2 = 44 tests
(i.e. 11 different sets Aδ) for each candidate δ are sufficient to find the right value.
Re-ordering the texts as described previously, the theoretical computational cost
is well approximated by 11 · 216 · 4 · 28 · (log 28 + 1) ' 232.6 table look-ups.

Our tests confirm that 2 different sets Aδ are largely sufficient to find the key.
The average practical computational cost is of 229.7 table look-ups. As before,
the difference is explained by the fact that in general it is possible to discard
wrong candidates without considering all the corresponding 11 sets A′′δ .

6 Summary and Open Problems

In this work, we studied the impact of replacing the S-Box in the AES by a secret
S-Box unknown to the adversary. Despite the expected increase in difficulty
of recovering the secret information, we are able to mount (efficient) attacks
based on a new propriety of the MixColumns matrix combined with dedicated
techniques. It is an open problem if a weaker property of the MixColumns matrix
can be exploited to set up similar attacks.

Cryptanalysis of cipher derived from the AES (with known S-Box) by re-
placing the ShiftRows and the MixColumns operation with a secret linear (or -
more generally - affine) mixing transformation is still an open problem. In this
setting, is it possible to set up attacks on more than 6-round AES with a single
secret linear mixing transformation? What is the gap between the data/time
complexities of such attacks with respect to the cases of standard AES or/and
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AES with a single secret S-Box?
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A Number of Matrices with Particular Properties

What is the number of matrices that satisfy condition (6) with respect to the
number of matrices with two equal coefficients in each row? Since we consider
AES-like ciphers, we limit to practical compute both these numbers for the cases
of circulant matrices in F4×4

2m for m = 4, 8. We remember that the strategy just
proposed works in the encryption direction if the MixColumns matrix satisfies
one of the two previous property and/or in the decryption direction if the inverse
MixColumns matrix satisfies them. For this reason, in Sect. 4 we compute the
number of MixColumns matrices for which one of the two previous properties is
satisfied in the encryption direction (i.e. by MC) or in the decryption direction
(i.e. by MC−1). Here we list similar numbers in the case in which only one of
the two directions (e.g. encryption - MC) is considered.

Table 4. Practical Numbers for the case of Circulant Invertible Matrices. The second
column gives the number of invertible matrices for which there are two equal coefficients
in each row, while the third one gives the number of invertible matrices for which the
sum of two or more elements in the same row is equal to zero.

F4×4
2m Number Invertible Matrices Two Equal Coeff. Zero-Sum of ≥ 2 Coeff.

m = 4 61 440 21 120 (34.38%) 31 200 (50.78%)

m = 8 4 278 190 080 99 747 840 (2.33%) 165 036 000 (3.86%)

In Table 4 we list our results limiting to consider invertible matrices, while
in Table 5 we list our results limiting to consider MDS (Maximal Distance Sep-
arable) matrices. Observing the numbers in the tables, both for these two cases
and both for m = 4 and m = 8, the number of matrices that satisfy condition
(6) is largely higher than the number of matrices with two equal coefficients in
each row. E.g. for the case m = 8, this number increases of 65.45% (e.g. 226.571

vs 227.298) for the invertible matrices case, and of 98.01% (e.g. 225.925 vs 226.911)
for the MDS matrices case.
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Table 5. Practical Numbers for the case of Circulant MDS Matrices. The second col-
umn gives the number of MDS matrices for which there are two equal coefficients in
each row, while the third one gives the number of MDS matrices for which the sum of
two or more elements in the same row is equal to zero.

F4×4
2m Number MDS Matrices Two Equal Coeff. Zero-Sum of ≥ 2 Coeff.

m = 4 16 560 5 760 (34.78%) 8 640 (52.18%)

m = 8 4 015 735 920 63 745 920 (1.59 %) 126 218 880 (3.15%)

B Second Version of the Multiple-of-n Attack on 5-round
AES with a secret S-Box

In this section, we show how to adapt the attack of Sect. 3.1 in order to exploit
e.g. condition (6), i.e. the fact that a sum of elements that lie on the same row
of the MixColumns matrix are equal to zero.

Similar to before, the idea is to consider a set of plaintexts A′δ which depends
on the guessed value of the key of the form:

A′δ ≡
{
a⊕


0 y0 0 0
0 x y1 0
0 0 x⊕ δ2,2 y2
y3 0 0 x⊕ δ3,3

 ∣∣∣∣∀x, y0, ..., y3 ∈ F28

}
(9)

where δ = (δ2,2, δ3,3) and a ∈ D⊥0 (i.e. ai,i = 0 for i = 1, 2, 3) is a constant.
Given a set A′δ, we claim that if δi,i = k1,1 ⊕ ki,i for i = 2, 3 then the number
of collisions among the ciphertexts after 5 rounds in the same coset ofMI for a
fixed I ⊆ {0, 1, 2, 3} with |I| = 3 is a multiple of 4. More formally:

Proposition 5. Consider a set of plaintexts A′δ defined as in (9), and the cor-
responding ciphertexts after 5 rounds. If δi,i = k1,1 ⊕ ki,i for i = 2, 3, then the
number of different pairs of ciphertexts that belong to the same coset of MI for
a fixed I ⊆ {0, 1, 2, 3} with |I| = 3 is a multiple of 4.

Proof. Let δ2,2 = k1,1⊕k2,2 and δ3,3 = k1,1⊕k3,3. By simple computation, there
exists b such that the set A′δ is mapped after one round in

R(A′δ) ≡
{
b⊕


0x03 · w z0 0 0

0 z1 0 0
0 z2 0 0

0x02 · w z3 0 0

 ∣∣∣∣∀w, z0, ..., z3 ∈ F28

}
.

Consider two elements z, z′ ∈ R(A′δ) generated respectively by z ≡ (z0, z1, z2, z3, w)
and z′ ≡ (z′0, z

′
1, z
′
2, z
′
3, w). The idea is to consider separately the cases (1) z2 6= z′2

and z3 6= z′3, (2) z2 = z′2 and z3 = z′3 and (3) z2 = z′2 and z3 6= z′3 (or vice-versa),
and to show that in the first case the number of collisions is a multiple of 4, while
in the second case it is a multiple of 216 and in the third case it is a multiple of 29.
It follows that there exist n′, n

′′
, n
′′′ ∈ N such that the total number of collisions
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Data: 3 · 216 different sets A′δ defined as in (9) - 3 different sets for each
δ ≡ (δ2,2, δ3,3) - and corresponding ciphertexts after 5 rounds

Result: k2,2 ⊕ k1,1 and k3,3 ⊕ k1,1
for each δ2,2 from 0 to 28 − 1 and each δ3,3 from 0 to 28 − 1 do

flag ← 0;
for each set A′δ do

let (pi, ci) for i = 0, ..., 240 − 1 be the 240 (plaintexts, ciphertexts) of A′δ;
for all j ∈ {0, 1, 2, 3} do

Let W [0, ..., 232 − 1] be an array initialized to zero;
for i from 0 to 240 − 1 do

x←
∑3
k=0MC−1(ci)k,j−k · 256k; // MC−1(ci)k,j−k denotes

the byte of MC−1(ci) in row k and column j − k mod 4
W [x]←W [x] + 1; // W [x] denotes the value stored in

the x-th address of the array W

end
n← 0;
for i from 0 to 232 − 1 do

n← n+W [i] · (W [i]− 1)/2;
end
if (n mod 4) 6= 0 then

flag ← 1;
next δ;

end

end

end
if flag = 0 then

identify δ2,2 as candidate for k2,2 ⊕ k1,1 and δ3,3 as candidate for
k3,3 ⊕ k1,1;

end

end
return Candidates for k2,2 ⊕ k1,1 and k3,3 ⊕ k1,1.// Only one candidate with

Prob. 95%

Algorithm 2: Key-Recovery Attack on 5 rounds of AES with a single secret
S-Box. For simplicity, the goal of the attack is to find two bytes of the key -
k2,2 ⊕ k1,1 and k3,3 ⊕ k1,1. The same attack can be used to recover the entire
key up to 232 variants.

n can be written as n = 4 · n′ + 216 · n′′ + 29 · n′′′ = 4 · (n′ + 214 · n′′ + 27 · n′′′).
In other words, the total number of collisions is a multiple of 4.

The details of the proof can be found in App. F. ut

Note that the previous result doesn’t hold for the cases δ2,2 6= k1,1 ⊕ k2,2
and/or δ3,3 6= k1,1 ⊕ k3,3. In these cases, the number of collisions for δi,i 6=
k1,1 ⊕ ki,i is a multiple of 4 only with probability 1/4 = 25%.

Since the procedure of the attack is completely equivalent to the one just
described in App. 3.1, we limit here to give the details of the data and of the
computational costs of the attack.
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Working in the same way just described for the attack of App. 3.1, an attacker
can recover the secret key up to 232 variants. Note that in this case for each set
A′δ, the attacker has to test 216 different keys, i.e. she has to test 2 bytes of the
key (instead of 1 as before). Due to similar argumentation as before, for each
possible wrong candidate of the key δ, at least one set A′δ must exist for which
the number of collisions is not a multiple of 4 with a probability higher than
(0.95)2

−16 ' 99.999922%. Since given n sets A′δ the probability that a set with
the required property exists is 1−2−2n, one needs approximately n ≥ 11 different
tests (i.e. 3 different sets A′δ - remember that there are 4 different subspaceMI

with |I| = 3) for each δ in order to find the right key.
The idea is to use the same procedure to find the rest of the key. In particular,

one repeats the same procedure for each one of the four columns in order to
recover 8 bytes of the key (2 for each column). It follows that a set A′δ must exist

for each wrong guessed δ with probability higher than (0.95)2
−18 ' 99.99998%,

that is one needs approximately n ≥ 12 different tests (i.e. 3 different sets A′δ)
for each δ in order to find the right key. To find the final 4 bytes of the key,
the attacker repeats the previous procedure, noting that in this case one has
to guess only one byte of difference of the key instead of two, since the other
one is already known. Thus, for each one of the 4 · 28 possible candidates of the
key, one needs that at least a set A′δ for which the number of collisions is not

a multiple of 4 exists with probability higher than (0.95)2
−10 ' 99.995%, that

is approximately n ≥ 8 different tests (i.e. 2 different sets A′δ) for each δ are
sufficient in order to find the right key.

In conclusion, the data cost of the attack is well approximated by 4 (columns)
·3 (cosets) ·240 (number of texts in A′δ) ·216 (candidates of the key) +4 · 2 · 240 ·
28 = 259.6 chosen plaintexts. Using the same strategy proposed in Sect. 3.1
and described in details in Algorithm 2, the computational cost using data-
structure is well approximated by 4 · 4 · 3 · (240 + 2 · 232) · 216 ' 261.6 table
look-ups, that is approximately 254.96 five-round encryptions. For comparison,
the computational cost using a re-ordering algorithm is well approximated by
4 · 4 · 3 · 240 · (log 240 + 1) · 216 ' 266.9 table look-ups, that is approximately 260.26

five-round encryptions.

Practical Verification Using a C/C++ implementation, we have practically
verified the attack just described on a small-scale variant of AES, as presented
in [10] - not on real AES due to the large computational cost of the attack. We
emphasize that Prop. 5 is independent of the fact that each word is composed
of 8 or 4 bits. Thus, our verification on small-scale variant of AES is strong
evidence for it to hold for the real AES.

For simplicity, we limit here to report the result for the attack on two bytes of
the key, e.g. k1,1⊕ k2,2 and k1,1⊕ k3,3. For small-scale AES, since there are only
(24)2 = 28 possible candidates, it is sufficient that a set Aδ for which the number
of collisions is odd exists for each wrong candidate of (k1,1 ⊕ k2,2, k1,1 ⊕ k3,3)

with probability higher than (0.95)2
−8

= 99.98%. It follows that 7 tests (that is
2 different sets Aδ) for each candidate of (k1,1⊕k2,2, k1,1⊕k3,3) are sufficient to
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find the right value. Re-ordering the texts as described previously, the theoretical
computational cost is well approximated by 4 · 2 · 28 · 220 · (log 220 + 1) ' 235.32

table look-ups, while using data-structure is well approximated by 4 ·2 ·28 ·(220+
2 · 216) ' 231.17 table look-ups.

Our tests confirm that 2 different sets Aδ are largely sufficient to find the
key. The average practical computational cost is of 233.6 table look-ups using the
re-ordering algorithm and 230 table look-ups using data-structure. As before, the
difference with the theoretical value is justified by the fact that the this last one
is computed in the worst case.

C Impossible Differential Attack of Sect. 5.1 - Details

In Sect. 5.1 we show how to set up an impossible differential attack on 5-round
AES with a single secret S-Box that exploits the fact that a sum of coefficients
of the MixColumns matrix is equal to zero (e.g. (6)). We refer to that section
for all the details, and we limit here to describe the data and the computational
costs.

Data Cost. First of all, consider the attack on 2 bytes of the secret key.
In order to discard a wrong candidate δ of the key, it is sufficient that at least
one set Vδ for which a pair of ciphertexts belong to the same coset of MJ with
|J | = 2 exists (note that this can never happen for the right value of δ - the
secret key). Since there are 216 − 1 wrong candidates, in order to have a total
probability of success of 95%, such a set must exist for each δ with probability
higher than (0.95)2

−16 ' 99.999922%.
Given a set Vδ, it is possible to construct approximately 27 · (28 − 1) = 215

different pairs of ciphertexts. Since each pair can belong to the same coset of
MJ with a probability of 3 · 2−63, given n different pairs, the probability that
at least one of them belong to the same coset of MJ is 1 − (1 − 3 · 2−63)n. By
simple computation, the condition 1 − (1 − 3 · 2−63)n > 0.99999922 is satisfied
for n > 265.23. Since each set Vδ is composed of 215 pairs and since one has to
repeat the attack for each possible value of δ, the attacker needs approximately
265.23 · 2−7 · 216 = 274.23 chosen plaintexts to find two bytes of the secret key
(note that each set Vδ contains 28 texts, so 2−15 · 28 = 2−7).

The idea is to repeat this attack 4 times in order to find 8 bytes of the key (i.e.
2 for column). In this case, for each candidate δ of the key at least one set Vδ with

the previous property must exist with probability higher (0.95)2
−18 ' 99.99998%.

Using the same calculation as before, one needs approximately n > 265.37 pairs
of ciphertexts for each δ, that is approximately 250.37 different sets Vδ.

Finally, in order to find the final 4 bytes of the key (remember that we are
to find it up to 232 variants), the idea is to repeat again the previous attack.
However, note that in this case the attacker must guess only one byte of the
key for each diagonal instead of two (since two of three differences are already
known). Thus, for each wrong δ, at least one set for which two ciphertexts be-
long to the same coset of MJ with |J | = 2 must exist with probability higher
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Data: 274.4 different sets Vδ defined as in (7) - 258.4 for each δ ≡ (δ1,1, δ2,2) -
and corresponding ciphertexts after 5 rounds

Result: k0,0 ⊕ k1,1 and k0,0 ⊕ k2,2
for each δ1,1 from 0 to 28 − 1 and each δ2,2 from 0 to 28 − 1 do

flag ← 0;
for each set Vδ do

for each I ⊆ {0, 1, 2, 3} with |I| = 2 do
let (pi, ci) for 0 ≤ i ≤ 28− 1 be the 28 (plaintexts, ciphertexts) of Vδ;
re-order this set of elements w.r.t. the partial order � defined in
analogous way of Def. 6 s.t. ci � ci+1 ∀i; // � depends on I

for i from 0 to 28 − 2 do
if ci ⊕ ci+1 ∈MI then

flag ← 1;
next δ;

end

end

end

end
if flag = 0 then

identify δ1,1 as candidate for k0,0 ⊕ k1,1 and δ2,2 as candidate for
k0,0 ⊕ k2,2;

end

end
return Candidates for k0,0 ⊕ k1,1 and k0,0 ⊕ k2,2.// Only one candidate with

Prob. 95%

Algorithm 3: Impossible Differential Attack on 5 rounds of AES with a single
secret S-Box. For simplicity, the goal of the attack is to find two bytes of the
key - k0,0 ⊕ k1,1 and k0,0 ⊕ k2,2. The same attack on the other diagonals can
be used to recover the entire key up to 232 variants.

(0.95)2
−10 ' 99.995%. Using the same calculation as before, one needs approx-

imately n > 264.73 pairs of ciphertexts for each δ, that is approximately 257.73

different sets Vδ. It follows that the total data complexity is approximately of
4 · 258.37 · 216 + 4 · 257.73 · 28 = 276.374 chosen plaintexts.

Computational Cost. As for the impossible differential attack on 5-round
AES with a single secret S-Box presented in [16], using the re-ordering algorithm
proposed in Algorithm 3, the computational cost is well approximated by 4 · 4 ·
258.37 ·216 · (log 28 + 1) = 281.54 table look-ups, or approximately 274.9 five-round
encryptions (20 table look-ups ≈ 1-round of encryption13).

Such re-ordering algorithm exploits the following partial-order:

13 This approximation is not formally correct, since the size of the table of an S-Box
look-up is lower than the size of the table used for our proposed distinguisher. How-
ever, it allows to give a comparison between our distinguishers and the others cur-
rently present in the literature. Moreover, it is largely used in literature.
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Definition 6. Let I ⊂ {0, 1, 2, 3} with |I| = 3 and let l ∈ {0, 1, 2, 3} \ I. Let
t1, t2 ∈ F4×4

28 with t1 6= t2. The text t1 is less or equal than the text t2 with
respect to the partial order � (i.e. t1 � t2) if and only if one of the two following
conditions is satisfied (the indexes are taken modulo 4):

– there exists j ∈ {0, 1, 2, 3} s.t. MC−1(t1)i,l−i = MC−1(t2)i,l−i for all i < j
and MC−1(t1)j,l−j < MC−1(t2)j,l−j;

– MC−1(t1)i,l−i = MC−1(t2)i,l−i for all i = 0, ...., 3, and there exists i, j ∈
{0, 1, 2, 3} such that (1) MC−1(t1)k,l = MC−1(t2)k,l for all k, l ∈ {0, 1, 2, 3}
with k + 4 · l < i+ 4 · j and (2) MC−1(t1)i,j < MC−1(t2)i,j.

D Multiple-of-n Attack of Sect. 5.2 - Details

In Sect. 5.2 we show how to set up an attack on 5-round AES with a single
secret S-Box that exploits the multiple-of-n property and the fact that a sum
of coefficients of the MixColumns matrix is equal to zero (e.g. (6)). We refer to
that section for all the details, and we limit here to describe the data and the
computational costs.

Data Costs. Since the procedure of the attack is completely equivalent to
the one described in Sect. 3.1, we refer to that section for all the details and we
limit here to report the main differences.

First of all, note that each set A′′δ is composed of 216 or equivalently 215 ·
(216 − 1) = 231 pairs. Since the probability that each pairs belong to the same
coset of MJ for |J | = 3 is 2−32, the average number of collision among the
ciphertexts for each set is 2−1, that is on average there is at least one collision
in MJ for |J | = 3 for only one half of the sets A′′δ .

With respect to the previous attack, note that in this case an attacker has
to guess 4 bytes of the key instead of only 1. Thus, using the same calculation
as before, in order to discard all the wrong candidates of 4-bytes of the key with
probability higher than 95%, one needs that for each wrong candidate δ there
exists at least one set A′′δ for which the number of collision is odd exists with

probability higher than (0.95)2
−32

. It follows that one has to do approximately
37 different tests for each candidate δ. However, since on average there is (at
least) one collision among the ciphertexts only for half of these sets, the number
of tests must be double. As a result, one needs to do approximately 2 · 37 = 74
tests, that is one has to use approximately 19 different sets A′′δ for each wrong
candidate δ (remember that there are four different subspacesMJ with |J | = 3).
It follows that the data cost to find 4 bytes of the key is well approximated by
19 · 232 · 216 = 252.248 chosen plaintexts.

Using a similar procedure, one can find the entire key. In particular, one first
repeats the attack just presented on the third and on the fourth column. To
find other four bytes of the key, a set A′′δ with the previous property must exist

with probability higher than (0.95)2
−34

, that is approximately n ≥ 2 · 38 = 76
different tests (i.e. 19 different sets A′δ) for each δ are sufficient in order to find
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Data: 19 · 232 different sets A
′′′
δ defined as in (8) - 19 different sets for each

δ ≡ (δ2,2, δ3,3, δ1,2, δ2,3) - and corresponding ciphertexts after 5 rounds
Result: k2,2 ⊕ k1,1, k3,3 ⊕ k1,1, k0,1 ⊕ k1,2 and k0,1 ⊕ k2,3
for each δ do

flag ← 0;
for each set A

′′′
δ do

for each I ⊆ {0, 1, 2, 3} with |I| = 3 do

let (pi, ci) for i = 0, ..., 216− 1 be the (plaintexts, ciphertexts) of A
′′′
δ ;

re-order this set of elements w.r.t. the partial order � described in
Def. 6 s.t. ci � ci+1 for each i; // � depends on I
n← 0; // n denotes the number of collisions in MI

i← 0;
while i < 216 − 1 do

r ← 1 and j ← i;
while cj ⊕ cj+1 ∈MI do

r ← r + 1 and j ← j + 1;
end
i← j + 1 and n← n+ r · (r − 1)/2;

end
if (n mod 2) 6= 0 then

flag ← 1;
next δ;

end

end

end
if flag = 0 then

identify δ ≡ (δ2,2, δ3,3, δ1,2, δ2,3) as candidate for the 4-bytes of the key;
end

end
return Candidates for (k2,2 ⊕ k1,1, k3,3 ⊕ k1,1, k0,1 ⊕ k1,2, k0,1 ⊕ k2,3). // Only

one candidate with Prob. 95%

Algorithm 4: Key-Recovery Attack on 5 rounds of AES with a single secret
S-Box. For simplicity, the goal of the attack is to find four bytes of the key.
Exactly the same attack can be used to recover the entire key up to 232 variants.

the right key. As before, in order to find the final four bytes of the key (one per
column), the idea is to repeat the attack exploiting the knowledge of one byte
of the key for each column. Since in this case the attacker has to guess only two
bytes of difference of the key instead of four and using the same computation as
before14, approximately n ≥ 2 · 23 = 56 different tests (i.e. 12 different sets A′′δ )
for each δ are sufficient to find the right key.

14 For each one of the 216 possible candidates of the key, one needs that at least a set
A
′′
δ for which the number of collisions is not a multiple of 2 exists with probability

higher than (0.95)2
−18

.
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In conclusion, the total data cost is approximately of 2·252.248+12·216 ·216 =
253.25 chosen plaintexts.

Computational Costs. Using a re-ordering algorithm proposed in Algo-
rithm 4, the computational cost is well approximated by 2 · 4 · 19 · 232 · 216 ·
(log 216 + 1) ' 259.25 table look-ups, or approximately 252.6 five-round encryp-
tions. For comparison, the computational cost using data-structure as in Sect.
3.1 is approximately of 2 · 4 · 19 · 232 · (216 + 2 · 232) ' 272.25 table look-ups, that
is (much) worse than using a re-ordering algorithm (besides an higher memory
cost). Indeed, note that in this last case the size of the vector W - as defined in
Algorithm 1 - is (much) larger than the size of the sets A′′δ (i.e. 232 versus 216).

E Proof of Sect. 3.1

For a fixed a, consider a set of plaintexts Aδ of the form (5):

Aδ ≡
{
a⊕


y0 x 0 0
0 y1 x⊕ δ 0
0 0 y2 0
0 0 0 y3

 ∣∣∣∣∀x, y0, ..., y3 ∈ F28

}
.

Proposition 6. Consider a set of plaintexts Aδ defined as in (5), and the cor-
responding ciphertexts after 5 rounds. If δ = k0,1 ⊕ k1,2, then the number of
different pairs of ciphertexts that belong to the same coset of MI for a fixed
I ⊆ {0, 1, 2, 3} with |I| = 3 is a multiple of 2.

Proof. Let δ = k0,1 ⊕ k1,2. By simple computation, there exists b such that the
set Aδ is mapped after one round into

R(Aδ) ≡
{
b⊕


z0 w 0 0
z1 0x03 · w 0 0
z2 0 0 0
z3 0x02 · w 0 0

 ∣∣∣∣∀w, z0, ..., z3 ∈ F28

}
.

Consider two elements z, z′ ∈ R(Aδ) generated respectively by z ≡ (z0, z1, z2, z3, w)
and z′ ≡ (z′0, z

′
1, z
′
2, z
′
3, w). In the following, we consider separately the two cases

z1 6= z′1 and z1 = z′1. We show that in the first case (i.e. the set of all differ-
ent pairs of elements with z1,1 6= z′1,1) the number of collisions is a multiple of
2, while in the second case (i.e. the set of all different pairs of elements with
z1 = z′1,1) the number of collisions is a multiple of 256. It follows that there

exist n′, n
′′ ∈ N such that the total number of collisions n can be written as

n = 2 · n′ + 256 · n′′ = 2 · (n′ + 128 · n′′). In other words, the total number of
collisions is a multiple of 2.

Case: z1 6= z′1. Consider two elements z, z′ ∈ R(Aδ) generated respectively
by z ≡ (z0, z1, z2, z3, w) and z′ ≡ (z′0, z

′
1, z
′
2, z
′
3, w) with z1 6= z′1. For a fixed
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I ∈ {0, 1, 2, 3} with |I| = 3, the idea is to show that

R4(z)⊕R4(z′) ∈MI if and only ifR4(v)⊕R4(v′) ∈MI

where the texts v, v′ ∈ R(Aδ) are generated respectively by

v ≡ (z0, z
′
1, z2, z3, w) and v′ ≡ (z′0, z1, z

′
2, z
′
3, w).

The idea is to prove (1) that z, z′ ∈ R(Aδ) can exist such that R4(z)⊕R4(z′) ∈
MI and (2) that R2(z)⊕R2(z′) = R2(v)⊕R2(v′).

Step (1). First of all, note that if R2(z) ⊕ R2(z′) = R2(v) ⊕ R2(v′) and
if R4(z) ⊕ R4(z′) ∈ MI , then also R4(v) ⊕ R4(v′) ∈ MI . Indeed, if R4(z) ⊕
R4(z′) ∈ MI (i.e. R4(z) and R4(z′) belong to the same coset of MI), then
R2(z) ⊕ R2(z′) ∈ DI by Theorem. 1. By R2(z) ⊕ R2(z′) = R2(v) ⊕ R2(v′), it
follow that R2(v)⊕R2(v′) ∈ DI and so R4(v)⊕R4(v′) ∈MI .

Step (2). Secondly, one has to prove [R2(z)⊕R2(z′)]i,j = [R2(v)⊕R2(v′)]i,j
for each i, j. For simplicity, we limit to prove that [R2(z)⊕R2(z′)]0,0 = [R2(v)⊕
R2(v′)]0,0, i.e. we focus on the byte in position (0,0) - the proof for the other
bytes is analogous. By simple computation, there exist constants ci, di and ei for
i = 0, ..., 3 - which depend only on the secret key and by the constant b which
defines R(Aδ) - such that :

[R2(z)⊕R2(z′)]0,0 =

= 0x02 · S-Box
(
0x02 · S-Box(z0 ⊕ d0)⊕ 0x03 · S-Box(0x03 · w ⊕ e0)⊕ c0

)
⊕

⊕ 0x02 · S-Box
(
0x02 · S-Box(z′0 ⊕ d0)⊕ 0x03 · S-Box(0x03 · w′ ⊕ e0)⊕ c0

)
⊕

⊕ 0x03 · S-Box
(
S-Box(z3 ⊕ d3)⊕ 0x02 · S-Box(w ⊕ e1)⊕ c1

)
⊕

⊕ 0x03 · S-Box
(
S-Box(z′3 ⊕ d3)⊕ 0x02 · S-Box(w′ ⊕ e1)⊕ c1

)
⊕

⊕ S-Box
(
0x02 · S-Box(z2 ⊕ d2)⊕ 0x03 · S-Box(0x02 · w ⊕ e2)⊕ c2

)
⊕

⊕ S-Box
(
0x02 · S-Box(z′2 ⊕ d2)⊕ 0x03 · S-Box(0x02 · w′ ⊕ e2)⊕ c2

)
⊕

⊕ S-Box
(
S-Box(z1 ⊕ d1)⊕ c3)

)
⊕S-Box

(
S-Box(z′1 ⊕ d1)⊕ c3)

)
=

= [R2(v)⊕R2(v′)]0,0.

More generally, there exist some constants A,B,C ∈ F28 such that each byte of
[R2(z)⊕R2(z′)]i,j = [R2(w)⊕R2(w′)]i,j for i, j = 0, ..., 3 can be written as:

[R2(z)⊕R2(z′)]i,j = [R2(v)⊕R2(v′)]i,j = F (z0, z
′
0, z2, z

′
2, z3, z

′
3, w, w

′)⊕
⊕A · S-Box

(
B · S-Box(z1 ⊕ k1,0)⊕ C)

)
⊕A · S-Box

(
B · S-Box(z′1 ⊕ k1,0)⊕ C)

)
.

(10)

Thirdly, consider z, z′ ∈ R(Aδ) generated respectively by z ≡ (z0, z1, z2, z3, w)
and z′ ≡ (z′0, z

′
1, z
′
2, z
′
3, w). The two texts satisfy R2(z)⊕R2(z′) ∈ DI for |I| = 3

if four (particular) bytes (one per column) of R2(z) ⊕ R2(z′) are equal to zero
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(remember that the bytes of R2(z) ⊕ R2(z′) don’t depend on z1, z
′
1). Since the

two elements depend on 10 − 2 = 8 variables and only 4 conditions must be
satisfied, such elements z, z′ can exist. A similar argumentation holds also for
the case in which z1 = z′1. As a result, it follows that the number of collisions
for the case z1 6= z′1 is a multiple of 2.

Case: z1 = z′1. As second case, we consider two elements z, z′ ∈ R(Aδ)
generated respectively by z ≡ (z0, z1, z2, z3, w) and z′ ≡ (z′0, z

′
1, z
′
2, z
′
3, w) with

z1 = z′1.
First of all, note that if z1,1 = z′1,1, then z⊕z′ ∈ D0,2,3. By Prop. 3, note that

R4(z) ⊕ R4(z′) /∈ MI for all I ∈ {0, 1, 2, 3} with |I| = 1. However, for the case
|I| = 3 the idea is to prove that if z, z′ ∈ R(Aδ) satisfy the condition R2(z) ⊕
R2(z′) ∈ DI , then each pair of elements v, v′ ∈ R(Aδ) generated respectively by
v ≡ (z0, v1, z2, z3, w) and v′ ≡ (z′0, v1, z

′
2, z
′
3, w) for each v1 ∈ F28 have the same

property, that is R2(v)⊕R2(v′) ∈ DI . Since there are 28 = 256 different values
for v1, then the number of collisions must be a multiple of 256.

This follows immediately by the fact that each byte of R2(z)⊕R2(z′) doesn’t
depend on z1 = z′1. Indeed, if z1 = z′1, then each byte of R2(z)⊕R2(z′) doesn’t
depend on z1 = z′1, i.e. by (10) it can be re-written as

[R2(z)⊕R2(z′)]i,j = F (z0, z
′
0, z2, z

′
2, z3, z

′
3, w, w

′)

for a particular function F (·). For each pair of elements v, v′ ∈ R(Aδ) generated
respectively by v ≡ (z0, v1, z2, z3, w) and v′ ≡ (z′0, v1, z

′
2, z
′
3, w) follows immedi-

ately that R2(v)⊕R2(v′) = R2(z)⊕R2(z′) for all v1. That is, R2(v)⊕R2(v′) ∈ DI
if and only if R2(z)⊕R2(z′) ∈ DI for all v1. ut

F Proof of App. B

For a fixed a, consider a set of plaintexts A′δ of the form (9)

A′δ ≡
{
a⊕


0 y0 0 0
0 x y1 0
0 0 x⊕ δ2,2 y2
y3 0 0 x⊕ δ3,3

 ∣∣∣∣ ∀x, y0, ..., y3 ∈ F28

}

where δ = (δ2,2, δ3,3).

Proposition 7. Consider a set of plaintexts A′ defined as in (9), and the cor-
responding ciphertexts after 5 rounds. If δi,i = k1,1 ⊕ ki,i for i = 2, 3, then the
number of different pairs of ciphertexts that belong to the same coset of MI for
a fixed I ⊆ {0, 1, 2, 3} with |I| = 3 is a multiple of 4.

Proof. Let δ2,2 = k1,1⊕k2,2 and δ3,3 = k1,1⊕k3,3. By simple computation, there
exists b such that the set A′δ is mapped after one round into

R(A′δ) ≡
{
b⊕


0x03 · w z0 0 0

0 z1 0 0
0 z2 0 0

0x02 · w z3 0 0

 ∣∣∣∣∀w, z0, ..., z3 ∈ F28

}
.
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Consider two elements z, z′ ∈ R(A′δ) generated respectively by z ≡ (z0, z1, z2, z3, w)
and z′ ≡ (z′0, z

′
1, z
′
2, z
′
3, w). In the following, we consider separately the cases (1)

z2 6= z′2 and z3 6= z′3, (2) z2 = z′2 and z3 = z′3 and (3) z2 = z′2 and z3 6= z′3 (or
vice-versa). We show that in the first case the number of collisions is a multiple
of 4, in the second case it is a multiple of 216 and in the third case it is a multiple
of 29. It follows that there exist n′, n

′′
, n
′′′ ∈ N such that the total number of col-

lisions n can be written as n = 4·n′+216 ·n′′+210 ·n′′′ = 4·(n′+214 ·n′′+28 ·n′′′).
In other words, the total number of collisions is a multiple of 4.

Case: z2 6= z′2 and z3 6= z′3. Consider two elements z, z′ ∈ R(Aδ) generated
respectively by z ≡ (z0, z1, z2, z3, w) and z′ ≡ (z′0, z

′
1, z
′
2, z
′
3, w) with z2 6= z′2 and

z3 6= z′3. For a fixed I ∈ {0, 1, 2, 3} with |I| = 3, as before the idea is to show
that

R4(z)⊕R4(z′) ∈MI if and only if R4(v)⊕R4(v′) ∈MI

where the texts v, v′ ∈ R(Aδ) are generated respectively by the following com-
binations:

– v ≡ (z0, z1, z
′
2, z3, w) and v′ ≡ (z′0, z

′
1, z2, z

′
3, w);

– v ≡ (z0, z1, z2, z
′
3, w) and v′ ≡ (z′0, z

′
1, z
′
2, z3, w);

– v ≡ (z0, z1, z
′
2, z
′
3, w) and v′ ≡ (z′0, z

′
1, z2, z3, w).

For more details, let v and v′ defined as before. As before, it is sufficient
to prove that (1) R2(z) ⊕ R2(z′) = R2(v) ⊕ R2(v′) and (2) that z, z′ ∈ R(Aδ)
can exist such that R4(z) ⊕ R4(z′) ∈ MI . Since the proof of these two facts is
equivalent to that given in App. E, we refer to that section for more details and
we limit here to highlight the major differences.

By simple computation, the first point is due to the fact that there exist some
constants A,B,C,D,E, F ∈ F28 such that each byte of [R2(z) ⊕ R2(z′)]i,j =
[R2(v)⊕R2(v′)]i,j for i, j = 0, ..., 3 can be written as:

[R2(z)⊕R2(z′)]i,j = [R2(v)⊕R2(v′)]i,j = F (z0, z
′
0, z1, z

′
1, w, w

′)⊕
⊕A · S-Box

(
B · S-Box(z2 ⊕ k2,1)⊕ C)

)
⊕A · S-Box

(
B · S-Box(z′2 ⊕ k2,1)⊕ C)

)
⊕

⊕D · S-Box
(
E · S-Box(z3 ⊕ k3,1)⊕ F )

)
⊕D · S-Box

(
E · S-Box(z′3 ⊕ k3,1)⊕ F )

)
.

(11)

As an example, the first byte of [R2(z)⊕R2(z′)]0,0 (analogous for the others):

[R2(z)⊕R2(z′)]0,0 =

=0x02 · S-Box
(
0x03 · S-Box(z1 ⊕ d1)⊕ 0x02 · S-Box(0x02 · w ⊕ e0)⊕ c0

)
⊕

⊕0x02 · S-Box
(
0x03 · S-Box(z′1 ⊕ d1)⊕ 0x02 · S-Box(0x02 · w′ ⊕ e0)⊕ c0

)
⊕

⊕0x03 · S-Box
(
0x03 · S-Box(z0 ⊕ d0)⊕ 0x02 · S-Box(0x02 · w ⊕ e1)⊕ c1

)
⊕

⊕0x03 · S-Box
(
0x03 · S-Box(z′0 ⊕ d0)⊕ 0x02 · S-Box(0x02 · w′ ⊕ e1)⊕ c1

)
⊕

⊕S-Box
(
0x02 · S-Box(z2 ⊕ d2)⊕ c2

)
⊕S-Box

(
0x02 · S-Box(z′2 ⊕ d2)⊕ c2

)
⊕

⊕S-Box
(
0x02 · S-Box(z3 ⊕ d3)⊕ c3

)
⊕S-Box

(
0x02 · S-Box(z′3 ⊕ d3)⊕ c3

)
=

=[R2(v)⊕R2(v′)]0,0 =
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where the constants ci, di and ei depend only on the secret key and by the
constant b which defines R(A′δ).

Secondly, consider z, z′ ∈ R(Aδ) generated respectively by z ≡ (z0, z1, z2, z3, w)
and z′ ≡ (z′0, z

′
1, z
′
2, z
′
3, w). The two elements satisfy R2(z) ⊕ R2(z′) ∈ DI for

|I| = 3 if four (particular) bytes (one per column) of R2(z) ⊕ R2(z′) are equal
to zero (remember that the bytes of R2(z) ⊕ R2(z′) don’t depend on zi, z

′
i for

i = 2, 3). Since the two elements depend on 10− 4 = 6 variables and only 4 con-
ditions must be satisfied, such elements z, z′ can exist. A similar argumentation
holds also for the other cases.

Case: z2 = z′2 and z3 = z′3. As second case, we consider two elements
in z, z′ ∈ R(Aδ) generated respectively by z ≡ (z0, z1, z2, z3, w) and z′ ≡
(z′0, z

′
1, z
′
2, z
′
3, w) with z2 = z′2 and z3 = z′3.

In this case, the idea is to prove that if z, z′ ∈ R(Aδ) satisfy the condition
R2(z)⊕R2(z′) ∈ DI , then each pair of texts v, v′ ∈ R(Aδ) generated respectively
by v ≡ (z0, z1, v2, v3, w) and v′ ≡ (z′0, z

′
1, v2, v3, w) for all v2, v3 ∈ F28 have the

same property, that is R2(v)⊕R2(v′) ∈ DI . Since there are 28 ·28 = 216 different
values for v2, v3, then the number of collisions must be a multiple of 216.

As for the proof given in App. E, this follows by the fact that each byte of
R2(z) ⊕ R2(z′) doesn’t depend on z2 = z′2 and z3 = z′3. Indeed, if for z2 = z′2
and z3 = z′3 and by (11), each byte of R2(z)⊕ R2(z′) depends on the following
variables

[R2(z)⊕R2(z′)]i,j = F (z0, z
′
0, z1, z

′
1, w, w

′)

for a particular function F (·). For each pair of elements v, v′ ∈ R(Aδ) generated
respectively by v ≡ (z0, z1, v2, v3, w) and v′ ≡ (z′0, z

′
1, v2, v3, w) follows immedi-

ately that R2(v)⊕R2(v′) = R2(z)⊕R2(z′) for all v1. That is, R2(v)⊕R2(v′) ∈ DI
if and only if R2(z)⊕R2(z′) ∈ DI for all v1.

Case: z2 6= z′2 and z3 = z′3. As final case, we consider two elements z, z′ ∈
R(Aδ) generated respectively by z ≡ (z0, z1, z2, z3, w) and z′ ≡ (z′0, z

′
1, z
′
2, z
′
3, w)

with z2 6= z′2 and z3 = z′3 - analogous for z2 = z′2 and z3 6= z′3.

Using similar argumentations as before, in this case the idea is to prove that
if z, z′ ∈ R(Aδ) satisfy the condition R2(z) ⊕ R2(z′) ∈ DI , then each pair of
elements v, v′ ∈ R(Aδ) generated respectively by

– v ≡ (z0, z1, z2, v3, w) and v′ ≡ (z′0, z
′
1, z
′
2, v3, w);

– v ≡ (z0, z1, z
′
2, v3, w) and v′ ≡ (z′0, z

′
1, z2, v3, w);

for all v3 ∈ F28 have the same property. Since there are 28 different values for
v3, then the number of collisions must be a multiple of 2 · 28 = 512. ut
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G Proof of Sect. 5.2

For a fixed a, consider a set of plaintexts A′′δ of the form (8):

A
′′

δ ≡
{
a⊕


0 y 0 0
0 x y ⊕ δ1,2 0
0 0 x⊕ δ2,2 w ⊕ δ2,3
0 0 0 x⊕ δ3,3

 ∣∣∣∣∀x, y ∈ F28

}

where δ ≡ (δ1,2, δ2,2, δ2,3, δ3,3).

Proposition 8. Consider a set of plaintexts A′′δ defined as in (8), and the corre-
sponding ciphertexts after 5 rounds. If δi,i = k1,1⊕ki,i and δj,j+1 = k0,1⊕kj,j+1

for i = 2, 3 and j = 1, 2 (where the indexes are taken modulo 4), then the number
of different pairs of ciphertexts that belong to the same coset of MI for a fixed
I ⊆ {0, 1, 2, 3} with |I| = 3 is a multiple of 2.

Proof. Let δi,i = ki,i⊕ k1,1 for i = 2, 3 and δj,j+1 = kj,j+1⊕ k0,1 for j = 1, 2. By

simple computation, there exists a constant b such that A′′δ is mapped into

R(A
′′

δ ) ≡
{
b⊕


0x03 · z 0 0 0

0 0 0 0
0 0x02 · w 0 0

0x02 · z 0x03 · w 0 0

 ∣∣∣∣∀z, w ∈ F28

}
.

Consider a pair of texts t1, t2 ∈ R(A′′δ ) generated respectively by t1 = (z, w)
and t2 = (z′, w′). We consider the following two cases separately: (1) z = z′ and
w 6= w′ (or vice-versa) and (2) z 6= z′ and w 6= w′. We show that in the first case
(1) the number of collisions is a multiple of 256, while in the second case (2) the
number of collisions is a multiple of 2. Thus, there exist n′, n

′′ ∈ N such that the
total number of collisions n can be written as n = 2·n′+256·n′′ = 2·(n′+128·n′′),
that is n is a multiple of 2.

Case: z 6= z′ and w 6= w′. Consider a pair of texts t1, t2 ∈ R(A′′δ ) generated
respectively by t1 = (z, w) and t2 = (z′, w′) with z 6= z′ and w 6= w′.

Similar to the previous proofs, the idea is to show that

R4(t1)⊕R4(t2) ∈MI if and only if R4(s1)⊕R4(s2) ∈MI

for |I| = 3, where the texts s1, s2 ∈ R(A′′δ ) are generated respectively by

s1 = (z, w′) and s2 = (z′, w).

Since each coset of MI is mapped two round before into a coset of DI (i.e. for
each a ∈ M⊥I there exists unique b ∈ D⊥I such that R−2(MI ⊕ a) = DI ⊕ b),
it is sufficient to prove that R2(t1) ⊕ R2(t2) ∈ DI for |I| = 3 if and only if
R2(s1) ⊕ R2(s2) ∈ DI in order to guarantee that R4(s1) ⊕ R4(s2) ∈ MI . To
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do this, we show that each byte of R2(t1) ⊕ R2(t2) is equal to each byte of
R2(s1)⊕R2(s2), that is:

[R2(t1)⊕R2(t2)]i,j = [R2(s1)⊕R2(s2)]i,j

for i, j = 0, ..., 3. By simple computation, there exist constants c, d - that depend
only on the secret key and on b which defined R(A′′δ ) - such that:

R2(A
′′

δ ) ≡ c⊕MMC ×


S-Box(z0) 0 0 0

0 0 0 0
0 0 0 S-Box(w1)
0 S-Box(z1) S-Box(w0) 0


where

z0 = 0x03 · z ⊕ d0,0, z1 = 0x02 · z ⊕ d3,0,
w0 = 0x03 · w ⊕ d3,1 w1 = 0x02 · w ⊕ d2,1

for all z, w ∈ F28 . It follows that each byte of [R2(t1) ⊕ R2(t2)]i,j = [R2(s1) ⊕
R2(s2)]i,j for i, j = 0, ..., 3 can be re-written as:

[R2(t1)⊕R2(t2)]i,j =

=A0 · S-Box(B0 · S-Box(z0)⊕ C0)⊕A0 · S-Box(B0 · S-Box(z′0)⊕ C0)⊕
⊕A1 · S-Box(B1 · S-Box(z1)⊕ C1)⊕A1 · S-Box(B1 · S-Box(z′1)⊕ C1)⊕
⊕A2 · S-Box(B2 · S-Box(w0)⊕ C2)⊕A2 · S-Box(B2 · S-Box(w′0)⊕ C2)⊕
⊕A3 · S-Box(B3 · S-Box(w1)⊕ C3)⊕A3 · S-Box(B3 · S-Box(w′1)⊕ C3) =

=[R2(s1)⊕R2(s2)]i,j

(12)

for some constants Ai, Bi, Ci that depend only on the secret key and on c, d
which define R2(A′′δ ), that is the thesis.

Case: z 6= z′ and w = w′. Consider a pair of texts t1, t2 ∈ R(A′′δ ) generated
respectively by t1 = (z, w) and t2 = (z′, w′), with the condition z 6= z′ and
w = w′ (or vice-versa). By definition of DJ , the two elements belong to the same
coset of D0,3 (or more generally of DJ for |J | = 2). By Prop. 1, it follows that the
two texts can not belong to the same coset ofMI for |I| ≤ 2, but no restriction
holds for the case MI for |I| = 3.

Using similar argumentations of before, the idea is to prove that if t1, t2 ∈
R(A′′δ ) satisfy the condition R4(t1)⊕R4(t2) ∈MI for |I| = 3, then all the pairs

of texts s1, s2 ∈ R(A′′δ ) generated respectively by t1 = (z, s) and t2 = (z′, s)
for all s ∈ F28 have the same property. To do this, it is sufficient to show
that [R2(t1) ⊕ R2(t2)]i,j = [R2(s1) ⊕ R2(s2)]i,j for i, j = 0, ..., 3. By previous
considerations - see (12), it follows that if w = w′ then [R2(t1) ⊕ R2(t2)]i,j
depends only on z and z′, that is it is independent of w,w′. This implies the
thesis, that is the number of collisions for this case must be a multiple of 256. ut
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