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Abstract

A new unconditionally secure multi-party quantum commitment is proposed in this paper by

encoding the committed message to the phase of a quantum state. Multi-party means that there

are more than one recipient in our scheme. We show that our quantum commitment scheme is

unconditional hiding and binding, and hiding is perfect. Our technique is based on the interference

of phase-encoded coherent states of light. Its security proof relies on the no-cloning theorem of

quantum theory and the properties of quantum information.
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1 Introduction

Commitment scheme is a fundamental cryptographic primitive that allows one to commit to a chosen
value or statement while keeping it hidden from others, with the ability to open the commitment later,
and has important applications in a number of cryptographic protocols, including coin tossing [1], zero-
knowledge proofs [2], oblivious transfer [3] and secure two-party computation [4]. Unconditionally
secure bit commitment was thought to be impossible [5] until recent theoretical protocols [6] that
combine with quantum mechanics and relativity were shown to elude previous impossibility proofs.

Informally speaking, commitment scheme is to think of a sender as putting a message in a locked
box, and giving the box to a recipient. The message in the box is hidden from the recipient who
cannot open the lock himself. Since the recipient has the box, the message inside cannot be changed,
merely revealed if the sender chooses to give them the key at some later time.

The scheme of quantum commitment (QC) has two stages: the commit stage and the reveal stage.

� In the commit stage, the sender transmits information related to a message in such a way that
the recipient learns nothing about the message (hiding property), at the same time, the sender
cannot change his mind later about this message (binding property).

� In the reveal stage, the sender reveals the message and proves that this is indeed the message
that he had in mind earlier.
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1.1 Related work

In 1984, the first quantum bit commitment scheme was introduced by Bennett [1]. In 1993, Brassard
et al.[4] presented an information-theoretically secure commitment scheme using quantum communi-
cation. In 1997, Mayers [5] claimed that information-theoretically secure quantum bit commitment
schemes are impossible. The scope of this general impossibility proof was analyzed in [6], and showed
that the impossibility proof cannot work as it stands. Two unconditionally secure bit commitment
schemes utilizing anonymous quantum states and decoy states were presented in [6]. In 2011, an
unconditionally secure bit commitment with flying qudits was proposed in [7]. Based on Minkowski
causality and the properties of quantum information, Kent [8] gave a new unconditionally secure bit
commitment scheme. In 2014, Liu et al. [9] designed an experiment to implement unconditionally
secure bit commitment, this experiment demonstrates the experimental feasibility of quantum com-
munication with relativistic quantum communication. In 2016, Unruh [11] gave the collapse-binding
definition and showed how to construct statistical hiding and collapse-binding commitments in the
random oracle model, later he [12] constructed collapse-binding commitment in the standard model
without the use of random oracles. Also, many other quantum bit commitment schemes were presented
in [10, 13].

1.2 Our contributions

In this paper, we propose an unconditionally secure QC scheme of classical messages. Our scheme is
implemented with quantum mechanism, its commit and reveal stages consist of classical messages.

First, We give a two-party QC scheme. And then we extend this scheme to a multi-party one.
Multi-party means that there are more than one recipient. What’s more, this scheme guarantees that
all recipients share the same coherent quantum state through a multiport. In this work, we cite the
techniques from the quantum digital signature in [14, 15].

In our scheme, the sender randomizes a message m and encodes it to the phase of coherent state
QuantComm. By interfering the phase-encoded coherent states of light, the recipient can authenticate
the commitment QuantComm in the reveal stage. We show that our QC scheme is unconditional
hiding and binding, and hiding is perfect.

The security proof of our scheme is based on the quantum mechanisms and mathematical tools. For
the hiding property of our QC scheme, the phase of coherent state QuantComm can not be measured.
So none can get the message m without the opening information r, this ensures that our commitment
scheme is unconditional hiding. If the recipient gets the information (m, r), then he can verify the
commitment. First, the recipient generates coherent quantum state ρr

⊗
ρm,r. Then he interferes them

individually with the coherent quantum state QuantComm. If the number of photodetection events
on his signal null-port arm is below the threshold value, the recipient accepts the message, otherwise
rejects it. For the binding property of our QC scheme, our key observation is that if m′ 6≡ m mod p,
where p is a prime, the following two equations

r′ ≡ r mod p, m′r′ ≡ mr mod p (1.1)

can not hold concurrently. This ensures that our commitment scheme is unconditional binding.
Our quantum commitment scheme is unconditional hiding and binding, and hiding is perfect.

Compared with the existing unconditionally secure quantum commitment schemes, our scheme allows
that there are more than one recipient, and the length of the committed message is more than one bit.
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1.3 Organization and notations

In section 1, we give an introduction of this paper. In section 2, we present a definition of QC
commitment and we construct an unconditionally secure two-party QC scheme. In section 3, we
construct an unconditionally secure three-party QC scheme. In Section 4, we compare our scheme
with the related protocols. In section 5, we conclude this work.

In this paper, we use λ to denote the security parameter, we use [p] to denote the set {0, 1, 2, · · · , p−
1}, and we use ⊗ to denote the tensor product of two quantum states.

2 Two-party Quantum Commitment

In this section, first we present a definition of QC commitment, and then we construct an uncondi-
tionally secure two-party QC scheme of classical messages, this scheme is implemented with quantum
mechanism, the commit and the reveal stages consist of classical messages.

2.1 Definition of QC commitment

First, we recall the basics of QC scheme. The following is taken verbatim from [11].
Commitment. A commitment scheme consists of algorithms Com and Verify . (C,u)← Com(1λ,m)
returns a commitment C and the opening information u for the message m. C alone is supposed not to
reveal anything about m (hiding property). To open the commitment, we send (m,u) to the recipient
who checks whether Verify(1λ,C,m, u) = 1. Com has classical input, and a well-defined message
spaceM that depends on the security parameter λ (e.g., {0, 1}λ). Furthermore, for technical reasons,
we assume that it is possible to find triples (C,m,u) with Verify(1λ,C,m, u) = 1 with overwhelming
probability.

Definition 1. Let (Com,Verify) be a commitment scheme, we define

� Completeness: for any m ∈M, the following probability is declining exponentially in terms of

the length of the QC

Pr[Verify(1λ,C,m,u) 6= 1 : (C,u)← Com(1λ,m)].

� Unconditional binding: for any computationally unlimited adversary A and m ∈ M, the

following probability is declining exponentially in terms of the length of the QC

Pr[Verify(1λ,C,m, u) = 1 ∧Verify(1λ,C,m′, u′) = 1 ∧m 6= m′ : (C,m,u,m′, u′)← A(λ)].

� Unconditional hiding: for any computationally unlimited adversary A and m ∈ M, the

following probability is declining exponentially in terms of the length of the QC

|Pr[m← A(1λ,C) : (C,u)← Com(1λ,m)]− 1

|M|
|.
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2.2 Our construction

In this subsection, we present an unconditionally secure two-party QC scheme with one sender Alice
and one recipient Bob, and we describe it as following.

1. Let p be a prime to be chosen later. To make a commitment of message m ≤ p to Bob, first Alice
chooses sequence r = (r1, r2, · · · , rL) from [p]L randomly and generates a sequence of coherent
states

ρk = |e
2rkπi

p α >< e
2rkπi

p α|, k = 1, · · · , L, (2.1)

ρmk = |e
2mrkπi

p α >< e
2mrkπi

p α|, k = 1, · · · , L. (2.2)

where α is a real positive amplitude, L is a polynomial of security parameter λ. Let

ρr =: (ρ1, · · · , ρL), ρm,r =: (ρm1 , · · · , ρmL ).

The vector r is called the opening information and QuantComm =: (ρr, ρm,r) is called the
commitment of message m. QuantComm is in 2L independent quantum registers, each register
does not interfere with each other. Then Alice sends QuantComm to Bob over an authenticated
channel.

2. To open the commitment, Alice sends (m, r) to Bob over an insecure channel. Bob generates
coherent states (ρr, ρm,r) of amplitude α with the relative phase defined by (m, r), and interferes
them individually with the states QuantComm. He counts the number of photodetection events
on his signal null-port arm and accepts this message m if the number of photodection events is
below 2saL, otherwise rejects it. The parameter sa is called the authentication threshold which
will be chosen later.

Intuitively, our commitment protocol is unconditionally secure, i.e. it’s security is independent of
the ability of the adversary. The following simple lemmas are useful for the proof of our commitment.

Lemma 1. Let p be a prime. For any a and b, the following equation

ax ≡ b mod p (2.3)

has at most one solution modulo p.

Lemma 2. [16] Let X1, ..., XL be independent random variables each attaining values 0 or 1. Let

X̄ = 1/L
∑
Xi be the empirical mean of the variables, and let E(X̄) be the expectancy of the empirical

mean. Then we have

P (X̄ − E(X̄) ≥ t) ≤ exp(−2t2L), (2.4)

P (|X̄ − E(X̄)| ≥ t) ≤ 2 exp(−2t2L). (2.5)

The above inequalities are called the Hoeffding’s inequalities. It is noted that the inequalities also
hold when the {X1, X2, · · · , XL} has been obtained using sampling without replacement, in this case
the random variables are not independent anymore.

Theorem 1. The two-party quantum commitment scheme is unconditional hiding and binding.
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Proof. We divide our proof into three parts: completeness, unconditional hiding and unconditional
binding.

For any integer 0 ≤ a, b ≤ p − 1, let ca,b denote the probability that causes a photodection event
on Bob’s signal null-port arm when the phase angle of the state he has in his quantum memory is 2aπ

p

and what Alice declare is 2bπ
p . Let X̄ = 1

2LX, X denotes the total number of photodetection events

on Bob’s signal null-port arm and E(X̄) denotes the expectancy of the variable X̄. Also, we let

c = max
a∈[p]
{ca,a}, (2.6)

ĉp1,p2 = p1 min
a∈[p]
{ca,a}+ p2 min

a,b∈[p],a 6=b
{ca,b}. (2.7)

And let g1 = ĉ 1
2
, 1
2
− c, by the experiment in Appendix A, we have that g1 > 0. Then we set

sa = ĉ 1
2
, 1
2
− βg1, where 0 < β < 1.

Completeness. If the two parties in this protocol are honest, by the experiment in Appendix A, we
have that

E(X̄) ≤ max
a∈[p]
{da,a} = c. (2.8)

It is easy to say that

Pr[Verify(1λ,C,m, u) 6= 1 : (C,u)← Com(1λ,m)] = Pr(Bob rejects) = Pr(X̄ > sa), (2.9)

then we can bound the probability that the committed message is rejected as

Pr(X̄ > sa) = Pr(X̄ > c+ (1− β)g1) ≤ Pr(X̄ > E(X̄) + (1− β)g1) ≤ exp(−4(1− β)2g21L). (2.10)

Unconditional hiding. None can get any extra information about the phase of a quantum commit-
ment by measuring. So for any adversary A, we have the following probability

Pr[m← A(1λ,C) : (C,u)← Com(1λ,m)] = 1/|M|. (2.11)

Hence, the commitment scheme is perfect hiding.
Unconditional binding. In order to prove that our QC scheme is unconditional binding, we need
to show that for any m′ 6= m and r′ = (r′1, · · · , r′L), the probability of Verify(QuantComm,m

′, r′) = 1
is declining exponentially in terms of the length of the QC.

By Lemma 1, if m′ 6≡ m mod p, the following two equations

r′ ≡ r mod p, (2.12)

m′r′ ≡ mr mod p (2.13)

can not hold concurrently. Hence, if m′ 6≡ m mod p, no matter how the adversary A chooses the
random sequence vector r′ = (r′1, · · · , r′L), there are at least L different entries modulo p between the
following two vectors

(r′1, · · · , r′L,m′r′1, · · · ,m′r′L), (r1, · · · , rL,mr1, · · · ,mrL).

In other words, the number of the following 2L equations that do not hold

r′i ≡ ri mod p, m′r′i ≡ mri mod p, 1 ≤ i ≤ L, (2.14)
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is at least L.
By the above discussions, we have

E(X̄) =
1

2L
E(X)

≥ 1

2L
(Lmin

a∈[p]
{ca,a}+ L min

a,b∈[p]
a6=b

{ca,b})

=
1

2
min
a∈[p]
{ca,a}+

1

2
min
a,b∈[p]
a6=b

{ca,b}.

(2.15)

It is easy to say that

Pr[Verify(QuantComm,m
′, r′) = 1] = Pr[Bob accepts] = Pr[X̄ ≤ sa]. (2.16)

By Lemma 2, we get

Pr[X̄ ≤ sa] ≤ Pr[X̄ − E(X̄) ≤ −βg1] ≤ Pr[|X̄ − E(X̄)| ≥ βg1] ≤ 2 exp(−4β2g21L). (2.17)

This probability is declining exponentially in terms of the length of the QC. Therefore, we complete
the proof of this Theorem. What’s more, the binding property guarantees that our scheme also can
resist forgery attack. �

3 Multi-party Quantum Commitment

In this section, we construct a QC scheme with one sender Alice and two recipients Bob and Charlie,
and this can be extended to multi-party QC scheme trivially. Charlie is the trusted third party who
can resist repudiation of other participants. The technique in this construction comes from quantum
digital signature [14]. It is required that the quantum channels between the sender and the recipients
are secure to ensure that the states won’t be tempered over these channels by any external adversary.

The scheme of QC has two stages: the commit stage and the reveal stage.

� In the commit stage, Alice sends the commitment C of the signed message m to Bob and Charlie.
Then two recipients perform symmetrisation of their states through the multiport and store the
outcomes.

� In the reveal stage, Alice sends m and opening information u to Bob, Bob authenticates the
commitment C. If fails, the protocol has to be aborted. Otherwise, Bob sends (m,u) to Charlie,
then Charlie performs an analogous procedure as Bob to verify the commitment C.

Now, we describe multi-party quantum commitment scheme as following.

1. The commit stage.

(a) To commit to a message m ∈ [p], first Alice chooses sequence r = (r1, r2, ..., rL) from [p]L

randomly and generates two sequences of coherent states

ρk = |e
2rkπi

p α >< e
2rkπi

p α|, k = 1, · · · , L, (3.1)

ρmk = |e
2mrkπi

p α >< e
2mrkπi

p α|, k = 1, · · · , L. (3.2)
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where α is a real positive amplitude, L is a polynomial of security parameter λ, p is a prime
depending on the properties of practical implementation. Let

ρr =: (ρ1, · · · , ρL), ρm,r =: (ρm1 , · · · , ρmL ).

The vector r is called the opening information of message m.

(b) Alice generates two copies of a sequence of coherent states QuantComm = (ρr, ρm,r).
The sequence of such coherent states QuantComm is called a commitment of message m.
QuantComm is in 2L independent quantum registers, each register does not interfere with
each other. She sends one copy of this commitment to Bob and the other to Charlie over
an authenticated channel.

(c) Bob and Charlie send the sequence of QuantComm through a multiport, saving the output
states in quantum memory.

2. The reveal stage.

(a) Alice sends the corresponding pair (m, r) to Bob over an insecure channel. To authenticate
the commitment, Bob generates coherent states of amplitude α with the relative phase
defined by the declared (m, r), and interferes them individually with the states he has in
his quantum memory. He counts the number of photodetection events on his signal null-
port arm and authenticates this commitment if the number of photodection events is below
2saL. The parameter sa is the authentication threshold .

(b) To prove to Charlie that he received the message m from Alice, Bob sends (m, r) to Charlie.
Charlie then performs an analogous procedure as Bob, and he verifies this commitment if the
number of photodection events is below 2svL, where sv is called the verification threshold,
with 0 < sa < sv < 1.

If any of the thresholds is breached, the protocol has to be aborted.
The following Lemma is useful for the proof of the security of our three-party QC scheme.

Lemma 3. In the QC scheme, we assume that Alice sends the same coherent quantum state σ cor-

responding to (m, r) to the adversary A and Charlie. In the commit stage, the adversary changes

his input through a multiport, then suppose the adversary A and Charlie share a quantum state σ′

corresponding to a vector

(a1, a2, ..., aL, b1, b2, ..., bL).

After getting (m, r), no matter how the adversary A chooses m′ 6≡ m mod p and r′, The probability

of the following case is negligible: there are more than 3L/2 identical entries modulo p between the

following two vectors

(a1, a2, ..., aL, b1, b2, ..., bL), (r′1, r
′
2, · · · , r′L,m′r′1,m′r′2, · · · ,m′r′L).

Proof. Before changing his input through a multiport, Bob has no idea about the original infor-
mation (m, r). Therefore the vector (a1, a2, ..., aL, b1, b2, ..., bL) is random to Bob. It is easy to see that,
the probability of the adversary A making each ai, bi with m′ 6≡ m mod p satisfy that m′ai ≡ bi mod p
is 1

p .
Let Et be the events that there are more than t equations hold in the following L equations

m′ai ≡ bi mod p, 1 ≤ i ≤ L. (3.3)
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It is not difficult to see

Pr(Et) =
L∑
k=t

CkL(
1

p
)k(1− 1

p
)L−k

≤ (
1

p
)t

L∑
k=0

CkL(1− 1

p
)L−k

≤ 2L

pt
.

(3.4)

Take t = L
2 , we have Pr(EL

2
) ≤ ( 2√

p)L, which completes the proof of this Lemma. �

Besides the requirement of completeness, unconditional hiding and binding, the three-party QC
scheme needs to resist Bob’s cheating. Now, we state our main result.

Theorem 2. The three-party quantum commitment scheme is unconditionally secure.

Proof. The proof of this Theorem is divided into four parts: completeness, unconditional hiding,
security against cheating of sender, security against cheating of recipients.

For any integer 0 ≤ a, b ≤ p−1, let ca,b denote the probability that causes a photodection event on
the recipient’s signal null-port arm when the phase angle of the state he has in his quantum memory is
2aπ
p and what the sender declared is 2bπ

p . Let X̄ = 1
2LX, X denotes the total number of photodetection

events on the recipient’s signal null-port arm, and E(X̄) denotes the expectancy of the variable X̄.
Also, we let

c = max
a∈[p]
{ca,a}, (3.5)

ĉp1,p2 = p1 min
a∈[p]
{ca,a}+ p2 min

a,b∈[p],a 6=b
{ca,b}. (3.6)

And g1 = ĉ 1
2
, 1
2
− c, g2 = ĉ 3

4
, 1
4
− c, by the experiment in Appendix A, we have that g1 > 0, g2 > 0.

We set sa = ĉ 1
2
, 1
2
− βg1, sv = ĉ 3

4
, 1
4
− γg2, where β, γ must satisfy that sa < sv and 0 < γ < β < 1.

Completeness. If the three parties in this protocol are honest, by the experiment in Appendix A,
we have that

E(X̄) ≤ max
a∈[p]
{ca,a} = c. (3.7)

It is easy to say that

Pr[Verify(1λ,C,m,u) 6= 1 : (C, u)← Com(1λ,m)] = Pr(the recipient rejects) = Pr(X̄ > sa), (3.8)

then we can bound the probability that the commitment is not be authenticated as

Pr(Bob rejects) = Pr(X̄ > c+ (1− β)g1) ≤ Pr(X̄ > E(X̄) + (1− β)g1) ≤ exp(−4(1− β)2g21L). (3.9)

Also, we can bound the probability that the commitment is not be verified as

Pr(Charlie rejects) = Pr(X̄ > sv) ≤ Pr(X̄ > sa) ≤ exp(−4(1− β)2g21L). (3.10)

Unconditional hiding. No one can get any extra information about the phase of a commitment by
measuring. So for any adversary A, we have the following probability

Pr[m← A(1λ,C) : (C,u)← Com(1λ,m)] = 1/|M|. (3.11)
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Hence, the commitment scheme is perfect hiding.
Security against cheating of sender. The proof of this part is the same as the proof of uncondi-
tional binding in Theorem 1.
Security against cheating of recipients. Now, we assume that Bob is dishonest. First, we draw
a clear distinction between passive attack and active attack. In passive attack, Bob behaves honestly
until the reveal stage in above three-party QC scheme. In active attack, Bob behaves dishonestly
throughout the whole stages, specifically he can tamper with his part of states that he sends to
Charlie throughout the multiport.

To forge a message, Bob has to generate a new opening information that can pass Charlie’s verifi-
cation. Because Bob had received the true (m, r) from Alice, the best way of forging for Bob is to find
a suitable (m′, r′) that can cause the number of photodetection events on Charlie’s signal null-port
arm is below 2svL.

In the passive attack, we need to prove that

Pr[Verify(QuantCommm,m
′, r′) = 1 : (m′, r′)← Bob]

is declining exponentially in terms of the length of the QC. The property of unconditional binding
guarantees that our QC scheme resists passive attack.

In the active attack, we need to prove that

Pr[Verify(QuantComm′m,m
′, r′) = 1 : (m′, r′)← Bob]

is declining exponentially in terms of the length of the QC. In this attack, Bob is allowed to alter the
states he sends to Charlie throughout the multiport, which modifies the states that Charlie stored
in his quantum memory. This means that Bob and Charlie share a new coherent quantum state
corresponding to a vector

(a1, a2, ..., aL, b1, b2, ..., bL).

Before changing his input through a multiport, Bob has no idea about the original information (m, r).
Therefore the vector (a1, a2, ..., aL, b1, b2, ..., bL) is random to Bob.

From Lemma 3, we know that no matter how Bob chooses the random sequence vector r′ =
(r′1, · · · , r′L) and m′ 6= m, except a negligible probability, there are at least L/2 different entries
modulo p between the following two vectors

(a1, a2, ..., aL, b1, b2, ..., bL), (r′1, · · · , r′L,m′r′1, · · · ,m′r′L).

Hence, we have

E(X̄) ≥ 1

2L
(
3L

2
min
a∈[p]
{ca,a}+

L

2
min

a,b∈[p],a6=b
{ca,b})

=
3

4
min
a∈[p]
{ca,a}+

1

4
min

a,b∈[p],a 6=b
{ca,b}.

(3.12)

It is easy to see that

Pr[Verify(QuantComm′m,m
′, r′) = 1 : (m′, r′)← Bob] = Pr[X̄ ≤ sv]. (3.13)

Then we have

Pr[X̄ ≤ sv] = Pr[X̄ ≤ ĉ 1
4
, 3
4
− γg2] ≤ Pr[|X̄ − E(X̄)| ≥ γg2] ≤ 2 exp(−4γ2g22L). (3.14)

This probability is declining exponentially in terms of the length of the QC, so we complete the proof
of this Theorem.�
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4 Compared with the Related Work

In this section, we compare our scheme with the main existing unconditionally secure commitment
schemes. Intuitively, the most important advantages of our scheme can be showed in two aspects:
efficiency and function.

In 1993, Brassard et al.[4] presented a bit commitment scheme using quantum communication
and claimed that the scheme is information-theoretically secure. Unfortunately, in 1997, Mayers [5]
proved that the bit commitment scheme in [4] is not correct. Based on the existence of quantum
one-way functions by fundamental principles of quantum physics, in 2004, Lu et al. [13] proposed the
first unconditionally bit commitment scheme. Later, many unconditionally secure bit commitment
schemes were presented [7, 8, 10] by applying different laws of quantum physics.

In this work, we provide the first unconditionally secure multiple bits commitment scheme based
on the interference of phase-encoded coherent states of light. Our method is to encode the committed
message to the phase of the commitment. Compared with the above schemes, our scheme allows that
there are more than one recipient and the length of the committed message is not limited to one
bit. To ensure that each recipient saves the symmetric output states in quantum memory, we use the
multiport.

In order to be more image and specific, we build a table with columns and rows to compare and
analyze as follows.

hiding binding the number of the recipient whether the agent is required the length of the committed message

[7] perfect unconditional one no one bit

[8] perfect unconditional one yes one bit

[11] perfect unconditional one no one bit

[13] perfect statistical one no one bit

our scheme perfect unconditional more than one no multiple bits

5 Conclusion

In this paper, we construct an unconditionally secure multi-party QC scheme for classical messages.
First, we present an unconditionally secure two-party QC scheme. Then we extend this scheme to an
unconditionally secure multi-party QC scheme. After that, we show that our quantum commitment
scheme is unconditional hiding and binding, and hiding is perfect. In addition, our technique is based
on the interference of phase-encoded coherent states of light. Its security proof relies on the no-cloning
theorem of quantum theory and the properties of quantum information.

Acknowledgement: We express our heartful thanks to reviewers for their useful comments which
improve our manuscript greatly.
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Appendix A. Experimental data of interfering phase

In the cost matrix C, the diagonal elements represent the cases when recipient uses the same phase
as sender, the off-diagonal elements represent the cases when recipient uses the phase different from
sender. In 2012, Clarke et al. [14] presented us a practical experimental data, the cost matrix C

11



realised by experimental set-up using 8 different phase states and with average photon number of
|α2| = 0.16 per pulse is given by

C =



3.89 4.40 5.24 5.95 6.35 6.00 5.29 4.39
4.56 3.88 4.43 5.29 6.04 6.39 6.02 5.20
5.28 4.60 3.89 4.42 5.29 6.02 6.37 5.95
5.68 5.22 4.58 3.90 4.40 5.24 5.91 6.30
6.36 5.68 5.27 4.59 3.89 4.43 5.24 6.01
5.62 6.36 5.66 5.23 4.57 3.89 4.41 5.30
5.26 5.68 6.40 5.70 5.22 4.60 3.88 4.40
4.61 5.24 5.65 6.36 5.68 5.22 4.56 3.88


× 10−3.

12


