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Abstract—Remote Attestation (RA) is a popular means of
detecting malware presence (or verifying its absence) on em-
bedded and IoT devices. It is especially relevant to low-end
devices that are incapable of protecting themselves against
infection. Malware that is aware of ongoing or impending
attestation and aims to avoid detection can relocate itself
during computation of the attestation measurement. In order
to thwart such behavior, prior RA techniques are either non-
interruptible or explicitly forbid modification of storage during
measurement computation. However, since the latter can be
a time-consuming task, this curtails availability of device’s
other (main) functions, which is especially undesirable, or
even dangerous, for devices with time- and/or safety-critical
missions.

In this paper, we propose SMARM , a light-weight tech-
nique, based on shuffled measurements, as a defense against
roving malware. In SMARM , memory is measured in a
randomized and secret order. This does not impact device’s
availability – the measurement process can be interrupted,
even by malware, which can relocate itself at will. We analyze
various malware behaviors and show that, while malware can
escape detection in a single attestation instance, it is highly
unlikely to avoid eventual detection.

1. Introduction

In the past, malware primarily targeted general-purpose
computers and smartphones. In recent years, the number
and variety of various specialized computing devices has
increased dramatically. This includes all kinds of embed-
ded devices, cyber-physical systems (CPS) and Internet-of-
Things (IoT) gadgets. They can be encountered in many
diverse “smart” settings, such as home, office, factory, au-
tomotive and public venues. Unfortunately, these devices
represent natural and attractive targets for malware, mainly
because they are often numerous, connected to the Internet
and/or inter-connected, and their security is poor or non-
existent.

As society becomes increasingly accustomed to being
surrounded by, and deriving benefits from, such devices,
their well-being becomes a paramount concern. In the con-
text of actuation-capable devices, malware can impact se-
curity and safety, e.g., as demonstrated by Stuxnet [16].
Whereas, for sensing devices, malware can undermine pri-

vacy by obtaining ambient information. Also, malware can
turn vulnerable IoT devices into zombies that can become
sources for DDoS attacks.1

Security is typically not a priority for low-end device
manufacturers, due to cost, size or power constraints, as
well as the rush-to-market syndrome. It is thus unrealistic
to expect low-end IoT devices to have the means to prevent
malware attacks. The next best thing is detection of malware
presence, which typically requires some form of Remote
Attestation (RA). RA is a security service that involves a
trusted entity (called Vrf) that securely verifies the status of
a remote device (called Prv) and detects malware presence
on the latter. If malware is detected, Prv’s software can be
re-set or rolled back and measures can be taken to prevent
similar infections.

1.1. Remote Attestation (RA)

RA techniques generally operate as follows: Vrf sends
an attestation request (that contains a challenge) to Prv.
Once it receives the request, Prv invokes some trusted
attestation code (AttC) that computes a measurement over
Vrf-specified memory region M . This measurement (of-
ten called an attestation token) is typically realized as a
Message Authentication Code (MAC) over M computed
using a secret key K, which is protected from unauthorized
access by the security architecture of Prv. (The goal of
Prv’s underlying security architecture is to prevent malware
Mal from forging measurements.) The measurement is then
returned to Vrf which, in turn, determines whether Vrf is in
a healthy or compromised state.

RA typically comes in three flavors: software-based,
hardware-based and hybrid. Since this work is related to
hybrid attestation, we refer to [4] for a discussion of the
other two types. Hybrid attestation refers to RA techniques
that aim to minimize hardware requirements on Prv, in
part to be suitable for low-end devices. Notable hybrid
attestation architectures are: SMART [7], TrustLite [12], and
TyTAN [2].

SMART is the first hybrid RA architecture. It stipulates
that attestation code AttC and attestation key K are stored
in ROM and guarded by hard-wired MCU access control

1. About a year ago, hackers used a multitude of compromised “smart”
cameras and DVRs to mount a massive-scale DDoS attack.



rules. These rules enforce that only AttC has access to K,
and that AttC is atomic, i.e., non-interruptible, and executed
as a whole.

TrustLite differs from SMART in that interrupts are
allowed and handled securely by the CPU Exception Engine.
Also, access control rules can be programmed using an
Execution-Aware Memory Protection Unit (EA-MPU). Ty-
TAN further builds on TrustLite, notably featuring dynamic
configuration of access control rules.

1.2. Motivation

Since low-end devices are often used in real-time and
safety-critical applications, it is important to minimize the
impact of security on normal operation (i.e., availability)
of such devices. In particular, it might be undesirable to
allow AttC on Prv to run without interruption, considering
that computing a measurement over a substantial amount of
memory might take a relatively long time. In other words,
AttC should be interruptible by a legitimate, time-critical
application.

However, Prv might have been compromised and the
same time-critical application might contain malware (Mal).
Mal presumably wants to evade detection. When confronted
with attestation, it may want to simply erase itself, perhaps
in order to reappear later. Alternatively, it might remain on
Prv and try to avoid detection by relocating itself during
attestation. This behavior corresponds to roving malware.

To this end, in this paper, we focus on reconciling two
seemingly contradicting objectives: resistance against roving
malware and minimizing the impact of attestation on Prv’s
availability.

Prior hybrid RA designs had different motivations.
SMART avoids roving malware by enforcing non-
interruptibility of the measuring process, which fully sac-
rifices interruptibility by a time-critical task. Although
TrustLite allows secure interrupts, it fails to detect roving
malware. Whereas, TyTAN protects against roving malware
by enforcing a rule that the process being measured can not
interrupt AttC, while other processes can. Nonetheless, this
approach lacks transparency of attestation, i.e., if a time-
critical process is being measured, it can not interrupt the
attestation process. Also, TyTAN might not detect roving
malware if process isolation is compromised (e.g., by a
kernel bug) resulting in process collusion. Furthermore,
TrustLite and (to a lesser degree) TyTAN require more
advanced hardware features than SMART, which translates
into extra cost for low-end platforms.

2. SMARM : RA via Shuffled Measurements

To mitigate the conflict between roving malware (Mal)
detection and critical mission of Prv, we adopt an approach
whereby the attestation process is interruptible, while the
order in which M is measured is determined randomly
and privately, by the attestation process. The rationale is
that, if Mal remains unaware of what portions of M have
been already measured (covered), it can not decide where

to relocate itself to escape detection.Mal’s optimal strategy
(i.e., where and when to relocate) depends on its knowledge
of the attestation coverage. However, based on reasonable
assumptions about security of the attestation architecture,
we show thatMal is detectable with significant probability.

Furthermore, since individual attestation instances are
independent, the compound probability for Mal to evade
detection can be made negligible. As discussed in Section 6
below, although this increased level of security comes at
the cost of running several measurements, no additional
hardware features are needed. This results in the first low-
cost and secure hybrid attestation technique that has no
impact on Prv’s availability during attestation.

Shuffled (or random) memory coverage has been al-
ready suggested in the context of software-based attestation,
However, it was done differently from SMARM , in several
ways. First, random coverage of memory in software-based
attestation is not secret, i.e., Mal is fully aware of the
sequence of memory blocks traversal. In contrast, SMARM
assumes secrecy of this traversal pattern (shuffling), since it
is generated based on Vrf’s one-time challenge and a secret
key shared by Vrf and Prv, which is inaccessible to Mal,
as part of the underlying SMART architecture. Also, as
described in [15], [14], [13], memory blocks are measured
several times before all are processed at least once. This
redundant coverage is likely due to size restrictions and non-
optimizable constraints of AttC.

In the rest of this paper, in the context of Prv imple-
menting SMARM , we analyze different evasion strategies
based on roving Mal’s varying degree of knowledge about
the progress of shuffled measurements.

3. SMARM : Model and Assumptions

We assume that Prv’s memory is divided into n blocks
M1, . . . ,Mn. We require Prv to conform to the SMART
architecture, as described in [7] and summarized above,
augmented by an anti-DoS extension proposed in [3], which
requires Prv to maintain either a reliable read-only clock
(RROC) or a monotonic secure counter. This is needed to
authenticate and detect replayed or reordered Vrf’s attesta-
tion requests. In addition, SMARM entails one important
change with respect to SMART:

We relax the atomicity requirement of SMART
such that the measurement process implemented
by AttC can be interrupted after it measures each
memory block.

Let σ be a permutation randomly selected for a given
attestation instance (measurement) of M . That is, block
Mσ(i) is measured at step i. Let t1, . . . , tn be the times at
which blocks Mσ(1), . . . ,Mσ(n) are measured, respectively.

Let M∗ be M in benign state. Let R∗ = FK(M∗) be the
measurement corresponding to the healthy state, computed
by the measurement routine F using key K. Finally, let R
be the measurement actually computed over M in a given
attestation instance2.

2. Since the measurement process takes a non-negligible amount of time
and since M can change during that time, we can not write R = F (M).



We define a benign measurement as the event R = R∗.
We further define the probability of Mal evading detection
with strategy S as:

PS = Pr(R = R∗ |M 6=M∗)

We assume that measurement of each block Mi is atomic,
i.e., uninterrupted. This can be guaranteed by the attestation
architecture, for instance by disabling/re-enabling interrupts
at the start/end of the measurement of a block. (This is
in contrast to SMART where the entire process is atomic.)
Potential interruptions by other tasks running on Prv must
thus be scheduled between the measurement of two blocks.
Let tmax denote the maximum non-interruptibility interval.
The size of a memory block Mi is thus set such that the
time to measure it is at most tmax.

4. Roving Mal Evasion Strategies

Since Mal’s goal is to avoid detection, it must restore
each block where it resides to a benign state before that
block is measured. This section considers the optimal strat-
egy for Mal, under various assumptions about its capa-
bilities and knowledge, and the associated probability of
detection.

We initially assume that Mal occupies a single block.
The case where it resides in multiple blocks is discussed
later in Section 5.3. Without loss of generality, we also as-
sume thatMal is active during the entire attestation process,
and can thus interrupt it and make changes to any block of
M at any point as long as it does so between the intervals
of attestation process measuring a single block. Reactive
Mal, and Mal with restricted number of interruptions are
discussed in Sections 5.4 and 5.5, respectively.

4.1. Erasure

One trivial evasion strategy for Mal is to simply erase
itself as soon as possible, perhaps to re-infect Prv at a
later time. Assuming that Mal is aware of the incoming
attestation request from Vrf, or it interrupts the attestation
process before it starts (or early on during its execution),
erasure seems difficult, if not impossible, to mitigate. In
the rest of this paper, we focus on strategies whereby Mal
attempts to remain on Prv while evading detection.

4.2. Relocation Techniques

Clearly, if Mal remains where it is, it can not escape
detection. Otherwise, it must relocate itself, at least once. We
identify and explore three intuitiveMal flavors (which vary
in the degree of knowledge) and their associated probabili-
ties of successful evasion. As mentioned earlier, we assume
below that Mal occupies a single memory block.

4.2.1. Knowledge of Future Volume (KFV). During at-
testation, the volume (size) of memory that has not yet
been measured is the least amount of actionable information

that Mal might have. This knowledge can be acquired by
measuring the time elapsed since the start of attestation and
estimating the number of memory blocks already measured.
This is based on a realistic assumption that Mal is aware
of: (1) time when attestation began, and (2) time to measure
one memory block. We refer to this degree of knowledge as
the KFV model.

Theorem 1. The optimal strategy for KFV Mal is to relo-
cate after every memory block is measured. It would thus
move a total of n−1 times, assuming that it can interrupt the
attestation process at each block boundary. The probability
of evasion is:

PFV =

(
1− 1

n

)n
≈ e−1 ≈ 0.37

Proof. Let Mmi denote the block containing Mal at ti, for
1 ≤ mi ≤ n. Having the ability to interrupt the attestation
process between ti and ti+1, Mal can either stay put or
relocate. Let pi be the probability of Mal getting “caught”
exactly at ti+1:

pi = Pr(mi+1 = σ(i+ 1) | mk 6= σ(k), 1 ≤ k < i),

for 1 ≤ i < n.
IfMal relocates, two outcomes may occur: either (1) its

new location Mmi+1 has been already measured (there are i
such blocks), in which case it will certainly not be caught,
or (2) Mmi+1 was not measured yet (there are n − i such
locations), in which case it will be caught with probability
1
n−i . Consequently:

pmove
i =

i

n
· 0 + n− i

n
· 1

n− i
=

1

n
. (1)

If Mal does not relocate, two situations may occur.
Let j be the last interval when Mal moved. (If it never
moved, j = 0.) Again, Mmi+1

= Mmj+1
might have been

already measured, in which case Mal will not be caught.
This occurs with probability j

n . Indeed, since Mmj+1
can

not have been measured in the last i − j steps (since we
assume Mal has not been detected so far), it must have
been measured in the j first ones.

Otherwise, if Mmj+1
has not been measured yet (which

occurs with probability 1 − j
n ), Mal will be caught with

probability 1
n−i (for the same reason as in Eq. (1)). Conse-

quently,

pstay
i =

j

n
· 0 + n− j

n
· 1

n− i
=

n− j
n(n− i)

If j < i, pstay
i > pmove

i . Therefore, it is always beneficial
for Mal to relocate. Interestingly, the new location Mmi+1

does not matter, as long as mi+1 6= mi. Relocation at each
interval leads to an overall evasion probability of:

PFV = (1− pi)n−1 · Pr(m1 6= σ(1)) =

(
1− 1

n

)n
Pr(m1 6= σ(1)) is the probability that the first block mea-
sured is not Mm1

. The approximation to e−1 results from
the limit definition of e.



4.2.2. Knowledge of Future Coverage (KFC). In addition
to knowing how many blocks have been measured, Mal
might also learn which blocks have been measured. That
is, after ti, Mal knows {σ(1), . . . , σ(i)}. Based on this,
Mal can infer {σ(i+ 1), . . . , σ(n)}. This is different from
knowing precise values σ(i+1), . . . , σ(n); see Section 4.2.3
below. We refer to this as the KFC model.

This greater knowledge might stem from a side-channel
vulnerability in the implementation of the attestation pro-
cess, e.g., if measured blocks can be distinguished from non-
measured ones from the point of view ofMal. Alternatively,
it could be the result of the attestation process carelessly
storing {σ(1), . . . , σ(i)} (See Section 7).

Theorem 2. The optimal strategy for KFCMal is to change
its location to Mσ(1) immediately after t1. The probability
of evasion is:

PFC = 1− 1

n

Proof. Since σ(1) is unknown before t1,Mal can not make
any informed decision, and thus would be discovered if
m1 = σ(1). After t1,Mal knows that Mσ(1) was measured.
Thus, it can safely relocate there and remain until the end.
The result follows trivially: Pr(m1 = σ(1)) = 1

n .

4.2.3. Knowledge of Future Order (KFO). In addition
to future coverage, Mal might know σ(i + 1), . . . , σ(n),
and thus also {σ(1), . . . , σ(i)}. Whether Mal also knows
the past order of coverage (σ(1), . . . , σ(i)) is irrelevant; see
Section 5.Mal might acquire this additional knowledge due
to σ(i+1), . . . , σ(n) being insecurely stored by the attesta-
tion process; see Section 5. The leakage can also occur due
to some vulnerability in the random block selection process,
e.g., in case of a weak random number generation. We refer
to this as the KFO model.

Theorem 3. The optimal strategy for KFO Mal is to
relocate to any Mj with j 6= σ(1) before t1 if Mσ(1) is
its initial location, and then to Mσ(1) immediately after t1.
The probability of evasion is:

PFO = 1

Proof. If Mal is located in σ(1) (the next block to be
measured), it must relocate. After t1,Mal knows that Mσ(1)

was measured, so it can safely relocate there and remain to
the end. Consequently, Mal must move once (or twice, if
Mσ(1) is its initial location) in order to evade detection.

5. Discussion

We now discuss the viability of aforementioned malware
flavors and several related issues.

5.1. Realistic Scenarios

We believe that KFV is quite realistic. It requires little
insight and sophistication from Mal. It is viable even with
a secure hybrid attestation framework and a secure handling

of σ. As discussed in Section 5.2, even when Mal’s timing
estimates are inaccurate, it can attain the probability of
evasion close to e−1. In contrast, KFC and KFOMal flavors
are more far-fetched, as long as σ is placed in secure storage,
or stored elsewhere in an encrypted and authenticated form;
see Section 7.3 Therefore, the rest of this paper focuses on
KFV Mal.

5.2. Unknown Timing

Recall that KFV Mal is assumed to know (t1, . . . , tn).
This may not always be the case in practice. For instance,
other active processes might distort the timing, or spurious
delays might be introduced by the AttC, as a potential
countermeasure.

One possible strategy for Mal is to relocate as often as
possible. As follows from the proof of Theorem 1, as long
as Mal relocates at least once between two blocks being
measured, the predicted probability of successful evasion
is reached. While precise values for (t1, . . . , tn) may not
be known, Mal can easily determine the lower bound on
the time to measure one block. If Mal relocates with a
frequency of that lower bound, it can attain the probability
evasion of e−1.

5.3. Mal in Multiple Blocks

Despite the earlier assumption, Mal might not fit in a
single memory block. Let s denote the number of blocks oc-
cupied by KFV Mal. Its evasion probability can be viewed
as evasion by s separate single-block pieces of malware,
with the probability of:

PFV(S = s) = PFV(S = 1)s ≈ e−s.

5.4. Active vs Reactive Malware

So far, we assumed that Mal is active throughout the
attestation process. We now broaden this to include Mal
which wakes up (becomes active) at some point during at-
testation. Let w be the number of memory blocks measured
thus far. Let Pactive(n, s) be the probability of evasion of an
activeMal of size s for a given strategy on measurement of
n blocks. The probability Preactive(n, s, w) ofMal following
the same strategy reacting after w blocks is:

Theorem 4.

Preactive(n, s, w) =

(
n−s
w

)(
n
w

) Pactive(n− w, s)

Proof. The (n−s
w )
(nw)

factor is the probability of none ofMal’s
s blocks being chosen in first w measurements. It is a special
case of a hypergeometric distribution. The second factor is
the probability that an active Mal escapes detection, with
n− w blocks remaining.

3. However, KFC or KFO might be possible if faulty AttC leaks
information about σ, or if σ is leaked via some other side-channel means.
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Figure 1: Effect of reactive malware.

It follows trivially that Preactive(n, s, 0) = Pactive(n, s).
Figure 1 shows the effect of Mal that is only active after
w steps.

5.5. Limited # of Interruptions

We now consider the case when KFVMal is limited to
at most k interruptions during the entire attestation process
instance. This might be motivated byMal aiming to reduce
its timing footprint. Indeed, one possible countermeasure for
the attestation process (with SMARM ) that suspects roving
Mal presence is to measure its total elapsed (wall-clock)
time. If it diverges significantly from the expected time, and
if there is no legitimate justification, it can be an indication
of activity by frequently relocating Mal.

Theorem 5. The optimal strategy for KFV Mal limited to
k interruptions is to change its location after each group of
n/(k+1) blocks is measured. It thus moves k times and its
probability of evasion is:

PFV(K = k) =

(
1− 1

k + 1

)k+1

Proof. See Appendix A.

6. Reliable Detection

Using SMARM , the probability that one measurement
does not detectMal presence is non-negligible. However, if
multiple measurements are taken, the overall false negative
probability decreases exponentially. Multiple measurements
can be obtained via: (1) independent consecutive attesta-
tion instances, (2) batch mode, e.g. Vrf sends m chal-
lenges at once and receives m measurements, or (3) self-
measurements by Prv itself, as described in [4]. Given m in-
dependent measurements, each with probability P of a false
negative, the overall false negative probability is Pm = Pm.
That is, with P = e−1 this gives, e.g., P7 < 10−3, and
P13 < 10−6.

7. Block Permutation in Practice

This section discusses a trial implementation of random
block shuffling and its security implications.

7.1. Permutation Computation and Storage

Recall that the random one-time permutation σ is com-
puted at the start of the attestation process, prior to measur-
ing any memory blocks. One way to compute it efficiently
is by using the well-known Fisher-Yates [8] (also known as
Knuth’s [11]) shuffle method.
Prv’s PRNG is seeded with H(c,K) where c is Vrf’s

challenge, K is the key securely stored by Prv (as part
of SMART), and H is a hash function. As mentioned at
the start of Section 3, we assume that Prv authenticates
each attestation request and, as part of that process [3],
establishes its freshness, i.e., detects replay attacks. Thus,
once an attestation request is validated, Prv knows that
c (contained therein) is guaranteed to be unique; hence,
H(c,K) is unique as well. This guarantees that random
values σi produced by PRNG are both fresh and secret,
i.e., unpredictable by Mal.

Once computed, σ = {σ(1), . . . , σ(n)} is stored in
secure memory. The underlying security architecture en-
sures that (similar to K), σ can be written and read only
by AttC. This requires ndlog n e bits of storage. When
the measurement of block Mσ(i−1) is completed (or when
attestation starts at i = 1), σ(i) is read and Mσ(i) is fed to
the MAC function. Once all blocks are measured, σ remains
in secure storage. It is then over-written at the start of the
next attestation instance.

If the size of the additional secure storage is a concern,
the following variant is an alternative. The permutation σ is
instead stored encrypted and authenticated in insecure stor-
age, and no additional secure storage is required. Each index
σ(i) is encrypted individually as a block of the block cipher.
Since efficiency is a concern, the block cipher operates in
CTR mode [5], so that random access to individual σ(i) is
possible. The counter is set to a concatenation of the Vrf
one-time challenge c and i. The encryption of σ(i) is thus
EK(c||i)⊕ σ(i).

In addition, a MAC of the encrypted σ(i) is concatenated
(cf. Encrypt-then-Mac [9]). A scenario where n > 2128

being unrealistic, using a block cipher and MAC with a
block size of 128 is sufficient. For instance, using AES-128
as E and a SHA-2-based HMAC means that σ is stored on
48n bytes. At the start of the measurement of each block,
the encrypted σ(i) is decrypted, its MAC verified, and the
corresponding block read.

This variant trades off secure storage for regular storage
and increased computation cost (see experiment results in
Section 8).

7.2. Memory Overhead

We estimate memory overhead for storing σ on I.MX6-
SabreLite [1], a popular and inexpensive development board
representative of low- to medium-end IoT devices.
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As discussed in Section 3, the maximum non-
interruptibility interval tmax influences block size and their
number. Given total memory size |M | and throughput θ
n = |M |

θtmax
. This allows us to predict the amount of storage

for σ. Figure 2 shows this overhead, for varying values of
tmax and |M |, with a throughput of θ ≈ 20.48MB/s.

Figure 3 shows the probability of evasion for KFV
Mal. It shows that a higher tmax decreases the chances of
escaping detection. As evident from Figure 2, it also requires
less storage. However, in order to guarantee good availability
on Prv, tmax should not be too high.

8. HYDRA Implementation

8.1. Overview

We implemented SMARM in the context of HY-
DRA [6] on an I.MX6-SabreLite. HYDRA implements a
hybrid RA design for devices with a Memory Management
Unit (MMU). It builds upon the formally verified seL4 [10]
microkernel, which ensures process memory isolation and
enforces access control to memory regions. Using the (math-
ematically) proven isolation features of seL4, access control
rules can be implemented in software and enforced by the
microkernel.

HYDRA stores K and AttC in a writable memory
region and configures the system such that no other process,
besides the measurement process, can access these mem-
ory regions. Access control configuration in HYDRA also
involves the measurement process having exclusive access
to its thread control block as well as to memory regions
used for key-related computations. The measurement pro-
cess starts with the highest maximum controlled priority
(MCP). This ensures execution of the measurement process
will run uninterruptedly as long as its “priority” remains
the highest. Note that, in seL4, a priority is the effective
priority of a process, which can be increased and decreased
at run-time as long as it does not exceed its MCP value. In
contrast, a process cannot increase its MCP after it is set
(but a decrease is possible).

The formally verified version of seL4 uses a simple
preemptive round-robin scheduler. Time is divided equally
in timeslices, and each timeslice is assigned a given process
to run, based on its priority.

The measurement procedure in the HYDRA-based
SMARM implementation is as follows. At the start of a
timeslice, the measurement process is set to highest priority
(so that it can not be interrupted). Once the measurement
of the block is done (this takes tmax seconds), the mea-
surement process decreases its priority and yields (via the
seL4_Yield system call) its remainder of the timeslice.
This effectively allows another process (which may include
Mal) to run immediately after each block’s measurement
with a fresh timeslice. Once the next timeslice of the mea-
surement process begins, the next block is measured 4.

8.2. Experimental Results: SMARM with/without
Secure Storage

We generate the random permutation σ using the Fisher-
Yates shuffle method, discussed in Section 7. The PRNG is
implemented using AES-256 in CTR Mode, seeded with
SHA-256(c,K). In the variant where secure storage is not
available, we implement the underlying block cipher and
MAC function as AES-128 and SHA-256-based HMAC
respectively.

4. Technically, each interrupting process besides the measurement pro-
cess is allowed one timeslice (round-robin scheduling). However, for sim-
plicity we assume a single (possibly infected) such process carrying out
Prv’s main task.
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Figure 4 shows overall runtime of these two variants (i.e.
SMARM with/without secure permutation storage) com-
pared to that of the baseline measurement. With enough
secure storage, SMARM incurs 41% overhead over the
baseline measurement with n = 2048 (or tmax = 0.006s).
This overhead decreases as n decreases; it achieves 0.8% at
n = 32 (or tmax = 0.4s). On the other hand, without secure
storage for σ, SMARM spends significant amount of time
performing additional encryptions and MAC computations.
The overhead in this case can be as high as 10,636% (at n =
2048) and as low as 2% (at n = 1). Thus, it might be more
beneficial to deploy a lower number of memory blocks if a
device does not have room for secure storage.

8.3. Experimental Results: Different tslice and tmax

Figure 5 illustrates the worst-case runtime of SMARM
on this HYDRA implementation, compared to the uninter-
rupted measurement of M , as a factor of tslice, tmax, and
|M |. The overall SMARM runtime: (1) increases as tslice
increases, and (2) decreases as tmax increases. We found that
the overhead can be up to a factor of 1+ tslice

tmax
, while another

process can run for up to tslice seconds every tslice + tmax

seconds.

9. Conclusion

This paper presents SMARM , an attestation technique
based on measuring Prv’s memory in a random and secret
order.

Contrarily to most hybrid attestation schemes, the mea-
surement process can be interrupted and the attested memory
modified. This makes attestation having no practical impact
on the availability of Prv for its main operation. This is a
requirement in time- and/or safety-critical applications.
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(a) Runtime as a factor of tslice and |M |. tmax is fixed to 100ms.
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(b) Runtime as a factor of tmax and |M |. tslice is fixed to 100ms.

Figure 5: Runtime comparison between SMARM (crosses,
black) and baseline measurement (green) with different tslice,
tmax and |M |; it is assumed that a single process exists
besides the measurement process.

Roving malware normally present a threat to interrupt-
ible measurement over malleable memory. However, since
in SMARM the memory is measured in unpredictable and
secret order, malware can not make informed decisions to
escape detection with certainty.

Using a secure framework, such as HYDRA, allows to
keep the permutation unknown to potential malware. This
caps the evasion probability to e−1 ≈ 37%. Since each at-
testation session is independent, the probability that a piece
of malware present on Prv consistently escapes detection
after multiple attestation sessions drops exponentially. After
13 checks, that probability is below 10−6.

SMARM thus results in: (1) increased time to attain a
negligible probability of false negatives, and (2) additional
memory to store the current permutation, as compared to



techniques using deterministic coverage order with non-
interruptibility or non-malleability. However, to the best of
our knowledge, SMARM is the only RA technique that
mitigates roving malware for time- and/or safety-critical
applications.
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Appendix

Proof of Theorem 5. Theorem 1 showed that relocating is
always preferable for Mal to remaining in the same block.
What remains to determine is when to optimally make theses
interruptions.

Let n1, . . . , nk be the number of blocks measured before
each interruption, and let nk+1 = n −

∑k
i=1 ni be the

remaining blocks after the last interruption. The probability
for Mal to escape detection is thus:

P =

k+1∏
i=1

(
1− ni

n

)
Let P be the probability pertaining to the strategy

n1, . . . , nk. Let an alternative strategy n′1, . . . , n
′
k (and the

corresponding probability P ′) be defined as:

n′i =


na + c if i = a

nb − c if i = b

ni else,

for a 6= b : na ≥ n/(k + 1), nb ≤ n/(k + 1). Such a pair is
guaranteed to exist because nk+1 = n−

∑k
i=1 ni. We thus

have:

P

P ′
=

(
1− na

n

) (
1− nb

n

)(
1− na+c

n

) (
1− nb−c

n

)
=

(
1− na

n

) (
1− nb

n

)(
1− na

n

) (
1− nb

N

)
+ c

n

(
nb

n −
na

n

)
− c2

n2

.

Since na ≥ nb, the denominator is smaller than the
numerator, and thus P ≥ P ′. This shows that any strategy
that diverges from ni = n/(k + 1) will be sub-optimal.

https://boundarydevices.com/product/sabre-lite-imx6-sbc/
https://boundarydevices.com/product/sabre-lite-imx6-sbc/
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