
Fast Garbling of Circuits over 3-Valued Logic

Yehuda Lindell ? and Avishay Yanai ?

yehuda.lindell@biu.ac.il ay.yanay@gmail.com
Bar-Ilan University

Abstract. In the setting of secure computation, a set of parties wish to compute
a joint function of their private inputs without revealing anything but the out-
put. Garbled circuits, first introduced by Yao, are a central tool in the construc-
tion of protocols for secure two-party computation (and other tasks like secure
outsourced computation), and are the fastest known method for constant-round
protocols. In this paper, we initiate a study of garbling multivalent-logic circuits,
which are circuits whose wires may carry values from some finite/infinite set of
values (rather than only True and False). In particular, we focus on the three-
valued logic system of Kleene, in which the admissible values are True, False,
and Unknown. This logic system is used in practice in SQL where some of the
values may be missing. Thus, efficient constant-round secure computation of SQL
over a distributed database requires the ability to efficiently garble circuits over
3-valued logic. However, as we show, the two natural (naive) methods of garbling
3-valued logic are very expensive.
In this paper, we present a general approach for garbling three-valued logic,
which is based on first encoding the 3-value logic into Boolean logic, then using
standard garbling techniques, and final decoding back into 3-value logic. Interest-
ingly, we find that the specific encoding chosen can have a significant impact on
efficiency. Accordingly, the aim is to find Boolean encodings of 3-value logic that
enable efficient Boolean garbling (i.e., minimize the number of AND gates). We
also show that Boolean AND gates can be garbled at the same cost of garbling
XOR gates in the 3-value logic setting. Thus, it is unlikely that an analogue of
free-XOR exists for 3-value logic garbling (since this would imply free-AND in
the Boolean setting).

1 Introduction

1.1 Background – Three-Valued Logic

In classical (Boolean) propositional logic, statements are assigned a “truth-value” that
can be either True or False, but not both. Logical operators are used to make up a
complex statement out of other, one or more, simpler statements such that the truth value
of the complex statement is derived from the simpler ones and the logical operators that
connects them. For instance, given that the statement A is True and the statement B is
True we infer that the statement C =“A and B” (denoted by C = A ∧ B) is True as
well.
? Supported by the European Research Council under the ERC consolidators grant agreement

n. 615172 (HIPS) and by the BIU Center for Research in Applied Cryptography and Cyber
Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.

mailto:Yehuda.Lindell@biu.ac.il
mailto:ay.yanay@gmail.com

Another branch of propositional logic is the multivalent logic system. Multivalent
logic systems consider more than two truth-values, that is, they may admit anything
from three to an infinite number of possible truth-values. Among those, the simplest
and most studied sort is the three-valued logic (or ternary logic), which is a system
that admits three truth-values, e.g., “truth”, “falsity” and “indeterminancy”. Such a sys-
tem seems to suit many real life situations, for instance, statements about the future or
paradoxical statements like “this statement is not correct”, which must have an inde-
terminate truth-value. Note that in different applications, the third truth-value could be
interpreted differently, hence, different inference rules are derived1. The most common
three-valued logic system is Kleene’s Logic [7], in which statements are assigned with
either True, False or Unknown. For clarity, whenever we use the term three-valued logic
or 3VL we actually refer to Kleene’s Logic. We remark that although other three-valued
logic system exist, in this paper we focus only on Kleene’s logic since its use in real life
is the most prevalent; see the application example in Section 1.2.

The admission of Unknown requires one to expand the set of inference rules, to en-
able the computation of the truth-value of a complex statement from simpler statements,
even if one or more of them are Unknown. In Kleene’s logic, the inference process com-
plies with the way we usually make conclusions: It yields Unknown whenever at least
one statement that is necessary for deciding True or False is assigned with Unknown.
For example, the AND of True and Unknown is Unknown since if the Unknown were
False then the result would be false. However, the OR of True and Unknown is True
since it equals True irrespective of the Unknown variable’s value.

The 3VL inference rules are presented in Table 1 in the form of truth tables. In the
rest of the paper whenever we refer to the Boolean version of AND, OR, XOR and NOT
we use the usual notation ∧,∨,⊕,¬ and when we use their 3VL version we subscript
it with the number 3, e.g. ∧3,∨3,⊕3,¬3. We denote by T, F and U , the 3VL values
True, False and Unknown, respectively.

∧3 T U F

T T U F

U U U F

F F F F

∨3 T U F

T T T T

U T U U

F T U F

⊕3 T U F

T F U T

U U U U

F T U F

¬3

T F

U U

F T

Table 1. Definition of the functions ∧3 (AND), ∨3 (OR), ⊕3 (XOR) and ¬3 (NOT) using truth
tables. Note these functions are symmetric, that is, the order of the inputs makes no difference.

1.2 Applications in SQL

In SQL specifications [6] the NULL marker indicates the absence of a value, or alterna-
tively, that the value is neither True nor False, but Unknown. Because of this, compar-
isons with NULL never result in either True or False, but always in the third logical value:
Unknown. For example, the statement “SELECT 10 = NULL” results in Unknown. How-
ever, certain operations on Unknown can return values if the absent value is not relevant
to the outcome of the operation. Consider the following example:
SELECT ∗ FROM T1 WHERE (age > 30 OR height < 140) AND weight > 110

1 In fact, even the two traditional truth-values True and False could have other meaning in
different three-valued logic systems.

2

Now, consider an entry where the person’s age is missing. In this case, if the person’s
height is 150 then the OR subexpression evaluates to Unknown and so the entire result
is Unknown, hence, this entry is not retrieved. In contrast, if the person’s height is 120,
then the OR subexpression evaluates to True, and so the result is True if weight > 110,
and False if weight ≤ 110.

We remark that the main SQL implementations [2,11,10] (Oracle, Microsoft and
MySQL) conform to the Kleene’s three-valued logic described above. As such, if secure
computation is to be used to carry out secure SQL on distributed (or shared) databases,
then efficient solutions for dealing with three-valued logic need to be developed.

1.3 Naively Garbling a 3VL Gate

We begin by describing the straightforward (naive) approach to garbling a 3VL gate.
Let g3 be a 3VL gate with input wires x, y and output wire z, where each wire takes
one of 3 values, denoted T , F and U . The basic garbling scheme of Yao [14,9] works
by associating a random key with each possible value on each wire, and then encrypting
each possible output value under all combinations of input values that map to that output
value. Specifically, for each wire α ∈ {x, y, z}, choose random keys kTα , k

F
α , k

U
α . Then,

for every combination of βx, βy ∈ {T, F, U}, encrypt kg(βx,βy)
z using keys kβx

x , k
βy
y

and define the garbled table to be a random permutation of the ciphertexts. See Figure 1
for a definition of such a garbled gate.2

1 EkTx

(
EkTy

(
k
g(T,T)
z

))
2 EkTx

(
EkFy

(
k
g(T,F)
z

))
3 EkTx

(
EkUy

(
k
g(T,U)
z

))
4 EkFx

(
EkTy

(
k
g(F,T)
z

))
5 EkFx

(
EkFy

(
k
g(F,F)
z

))
6 EkFx

(
EkUy

(
k
g(F,U)
z

))
7 EkUx

(
EkTy

(
k
g(U,T)
z

))
8 EkUx

(
EkFy

(
k
g(U,F)
z

))
9 EkUx

(
EkUy

(
k
g(U,U)
z

))
Fig. 1. Garbling a 3VL gate di-
rectly using 9 rows.

This approach yields a garbled gate of 9 entries.
Using the standard garbled row reduction technique
[12], it is possible to reduce the size of the gate to 8
entries. This means that 8 ciphertexts need to be com-
municated for each gate in the circuit. However, this
garbling scheme requires four times more bandwidth
for three-valued logic gates than the state-of-the-art
for their Boolean ∧ counterparts [13]. Furthermore,
using the free-XOR paradigm [8] (as is also utilized
in [13]), XOR gates are free in the Boolean case but
require significant bandwidth and computation in the
three-valued logic case. (We remark that [8,13] do re-
quire non-standard assumptions; however, these tech-
niques do not translate to the 3VL case and so cannot
be used, even under these assumptions.)

Before proceeding, we note that another natural
way of working is to translate each variable in the 3VL
circuit into two Boolean variables: the first variable takes values T, F (true/false), and
the second variable takes valuesK,U (known/unknown). This method fits into our gen-
eral paradigm for solving the problem and so will be described later; as we will show,
this specific method is not very efficient.

2 Note that in a two-party protocol like Yao’s, the parties then run 1-out-of-3 oblivious transfers
in order for the evaluator to learn the keys that are associated with its input.

3

1.4 Our Results

The aim of this paper is to find ways of garbling three-valued logic functions that are
significantly more efficient than the naive method described in Section 1.3. Our meth-
ods all involve first encoding a 3VL function as a Boolean function and then utilizing
the state-of-the-art garbling schemes for Boolean functions. These schemes have the
property that AND gates are garbled using two ciphertexts, and XOR gates are garbled
for free [8,13]. Thus, our aim is to find Boolean encodings of 3VL functions that can
be computed using few AND gates (and potentially many XOR gates).

In order to achieve our aim, we begin by formalizing the notion of a 3VL-Boolean
encoding which includes a way of encoding 3VL-input into Boolean values, and a way
of computing the 3VL function using a Boolean circuit applied to the encoded input.
Such an encoding reduces the problem of evaluating 3VL functions to the problem of
evaluating Boolean functions. Our formalization is general, and can be used to model
other multivalent logic systems, like that used in fuzzy logic.

Next, we construct efficient 3VL-Boolean encodings, where by efficient, we mean
encodings that can be computed using few Boolean AND gates. Interestingly, we show
that the way that 3VL-variables are encoded as Boolean variables has a great influence
on the efficiency of the Boolean computation. We describe three different encodings:
The first encoding is the natural one, and it works by defining two Boolean variables xT
and xU for every 3VL-variable x such that xU = 1 if and only if x = U , and xT = 1 if
x = T and xT = 0 if x = F . This is “natural” in the sense that one Boolean variable is
used to indicate whether the 3VL-value is known or not, and the other variable is used to
indicate whether the 3VL-value is true or false in the case that it is known. We show that
under this encoding, 3VL-AND gates can be computed at the cost of 6 Boolean AND
gates, and 3VL-XOR gates can be computed at the cost of 1 Boolean AND gate. We
then proceed to present two alternative encodings; the first achieves a cost of 4 Boolean
AND gates for every 3VL-AND gate and 1 Boolean AND gate for every 3VL-XOR
gate, whereas the second achieves a cost of 2 Boolean AND gates both for every 3VL-
AND gate and every 3VL-XOR gate. These encodings differ in their cost tradeoff, and
the choice of which to use depends on the number of AND gates and XOR gates in the
3VL-circuit.

Given these encodings, we show how any protocol for securely computing Boolean
circuits, for semi-honest or malicious adversaries, can be used to securely compute
3VL circuits, at almost the same cost. Our construction is black-box in the underlying
protocol, and is very simple.

Finally, observe that all our encodings have the property that 3VL-XOR gates are
computed using at least 1 Boolean AND-gate. This means that none of our encodings
enjoy the free-XOR optimization [8] which is extremely important in practice. We show
that this is actually somewhat inherent. In particular, we show that it is possible to garble
a Boolean AND gate at the same cost of garbling a 3VL XOR gate. Thus, free-3VL-
XOR would imply free-Boolean-AND, which would be a breakthrough for Boolean
garbling. Formally, we show that free-3VL-XOR is impossible in the linear garbling
model of [13].

4

Brute-force search for encodings. It is theoretically possible to search for efficient 3VL-
Boolean encodings by simply trying all functions with a small number of AND gates,
for every possible encoding. Indeed, for up to one AND gate it is possible since the
search space is approximately 220 possibilites. However, if up to two AND gates are
allowed, then the search space already exceeds 250 possibilities. We ran a brute-force
search for up to one AND gate, and rediscovered our 3VL-XOR computation that uses
a single AND gate (in fact, we found multiple ways of doing this). However, our search
showed that there does not exist a way of computing 3VL-AND using a single AND
gate, for any encoding. See Appendix A for more details on the brute-force search
algorithm that we used.

2 Encoding 3VL Functions as Boolean Functions

2.1 Notation

We denote by T, V, U the 3VL values True,False and Unknown, respectively, and by
1, 0 the Boolean values True and False. We denote by F3 the set of all 3VL functions
(i.e. all functions of the form {T, F, U}∗ → {T, F, U}∗) and by F2 be the set of all
Boolean functions (i.e. all functions of the form {0, 1}∗ → {0, 1}∗). In addition, we
denote by F3(`,m) and F2(`,m) the set of all 3VL and Boolean functions, respectively,
that are given ` inputs and produce m outputs. We denote by xi the ith element in x
both for x ∈ {T, F, U}∗ and x ∈ {0, 1}∗.

2.2 3VL-Boolean Encoding

As we have mentioned, in order to utilize the efficiency of modern garbling techniques,
we reduce the problem of garbling 3VL circuits to the problem of garbling Boolean
circuits, by encoding 3VL functions as Boolean functions. Informally speaking, a 3VL-
Boolean encoding is a way of mapping 3VL inputs into Boolean inputs, computing a
Boolean function on the mapped inputs, and mapping the Boolean outputs back to a
3VL output. This method is depicted in Figure 2. The naive approach appears on the
left and involves directly garbling a 3VL circuit, as described in Section 1.3. Our ap-
proach appears on the right and works by applying a transformation Tr3→2 to map the
3VL input to a Boolean input, then computing an appropriately defined Boolean func-
tion, and finally applying a transformation Tr2→3 to map the output back. The Boolean
function is also defined by a transformation, so that a 3VL function f3 is transformed
to a Boolean function f2 via the transformation TrF , that is, f2 = TrF (f3), and this is
what is computed. As such, as we will see, it suffices to garble the Boolean function f2,
and if this function has few AND gates then it will be efficient for this purpose.

Fig. 2. Naive approach on the left side and our new approach on the right side.

5

Observe that since we map inputs from three-valued logic to Boolean logic, the
set sizes of all possible inputs are different. Thus, we define encodings via relations
and not via bijective mappings. Of course, the actual transformations Tr3→2 and Tr2→3

are functions. However, the mapping between inputs and outputs may be expressed as
relations; e.g., when mapping a single 3VL variable to two Boolean variables, it may be
the case that one of the 3VL variables can be expressed as two possible Boolean pairs.
This enables more generality, and can help in computation, as we will see below.

Although one could define a very general encoding from 3VL to Boolean values,
we will specifically consider encodings that map every single 3VL variable to exactly
two Boolean variables. We consider this specific case since it simplifies our definitions,
and all our encodings have this property.

The formal definition. Let f : {T, F, U}m → {T, F, U}n be a 3VL function. We begin
by defining the appropriate relations and transformations.

1. A value encoding is a relation R3→2 ⊆ {T, F, U} × {0, 1}2 that is left-total and
injective.3 For ` ∈ N, let R`3→2 ⊆ {T, F, U}` × {0, 1}2` be the relation defined by
extending R3→2 per coordinate.4

2. A valid input transformation is an injective function Trm3→2 : {T, F, U}m →
{0, 1}2m such that Trm3→2 ⊆ Rm3→2. Note that since R3→2 is a relation, there may
be multiple different input transformations.

3. A function transformation Trm,nF : F3(m,n) → F2(2m, 2n) is a function that
converts 3VL functions to Boolean functions with appropriate input-output lengths.

4. The output transformation Trn2→3 : {0, 1}2n → {T, F, U}n is the inverse of
R3→2. That is, Tr12→3((b1, b2)) = x for every (x, (b1, b2)) ∈ R3→2. Note that
since R3→2 is injective, this transformation is unique.

Observe that R3→2 is required to be injective since otherwise a Boolean value y could
represent two possible 3VL values x, z, and so the output cannot be uniquely mapped
back from a Boolean value to a 3VL value. Furthermore, note that by requiring Trm3→2 ⊆
Rm3→2, we have that the transformation constitutes a valid encoding according to the
relation.

Informally, a 3VL-Boolean encoding is such that the process of transforming the in-
puts, computing the transformed Boolean function, and transforming the outputs back,
correctly computes the 3VL function. Our definition of an encoding includes the value
encoding and function transformation only, and we require that it works correctly for
all input transformations; we discuss why this is the case below.

Definition 2.1. Let m,n ∈ N; let R3→2 be a value encoding, and let Trm,nF be a func-
tion transformation. Then, the pair (Rm3→2,Tr

m,n
F) is a 3VL-Boolean Encoding of

F3(m,n) if for every f3 ∈ F3(m,n), every valid input transformation Trm3→2, and ev-
ery x ∈ {T, F, U}m:

Trn2→3

(
f2
(
Trm3→2(x)

))
= f3(x) (1)

where f2 = Trm,nF (f3).

3 A relation R from X to Y is left-total if for all x ∈ X there exists y ∈ Y such that (x, y) ∈ R.
R is injective if for every x, z ∈ X and y ∈ Y , if (x, y) ∈ R and (z, y) ∈ R then x = z.

4 That is,
(
(A1, . . . , A`), ((b1, b2), . . . , (b2`−1, b2`))

)
∈R`

3→2 if and only if for every 1 ≤ i ≤`
it holds that (Ai, (b2i−1, b2i)) ∈ R3→2.

6

The above definition simply states that computing via the transformations yields
correct output. However, as we have mentioned, we require that this works for all input
transformations and not just for a specific one. It may seem more natural to define a
3VL-Boolean encoding in which the input transformation Trm3→2 is fixed, rather than
requiring that Eq (1) holds for every valid input transformation. However, in actuality,
it is quite natural to require that the transformed function work for every input transfor-
mation since this means that it works for every possible mapping of three-valued inputs
to their Boolean counterparts. More significantly, this property is essential for proving
the composition theorem of Section 2.3 that enables us to compose different function
encodings together. As we will see, this is important since it enables us to define in-
dependent encodings for different types of gates, and then compose them together to
compute any function.

2.3 Composition of 3VL Functions

In this section, we prove that encodings can be composed together. Specifically, we
prove that for any two 3VL functions g3 and f3 and any 3VL input x, computing g◦f(x)
yields the same value as when g, f, x are separately transformed into g′, f ′, x′ using any
valid 3VL-Boolean encoding, and then the output of g′ ◦ f ′(x′) is transformed back to
its 3VL representation. As we will see, this is very important since it enables us to define
independent encodings on different types of gates, and then compose them together to
compute any function. Formally:

Theorem 2.2. Let m, `, n be natural numbers, and let R3→2 be a value encoding. Let
E1 =

(
R3→2,Tr

m,`
F

)
and E2 =

(
R3→2,Tr

`,n
F

)
be two 3VL-Boolean encodings (with

the same relation R3→2). Then, for every f3 ∈ F3(m, `), every g3 ∈ F3(`, n), every
input transformation Trm3→2, and every x ∈ {T, F, U}m:

Trn2→3

(
g2
(
f2
(
Trm3→2(x)

)))
= g3(f3(x)),

where f2 = Trm,`F (f3) and g2 = Tr`,nF (g3). Equivalently,
(
R3→2,Tr

`,n
F ◦ Tr

m,`
F

)
is a

3VL-Boolean encoding of F3(m,n).

Before proving the theorem, we present the following claim which simply express
that if the output transformation of an encoding maps a Boolean value Ỹ to some 3VL
value y then there must exist a input transformation that maps y to Ỹ . Formally:

Claim 2.1 Let R3→2 be a valid value encoding and let Tr3→2,Tr2→3 be a valid in-
put and output transformations respectively such that for Ỹ ∈ {0, 1}2 it holds that
Tr2→3(Ỹ) = y and Tr3→2(y) = Y . Then there exists a valid input transformation
T̃r3→2 (with respect to R3→2) such that T̃r3→2(y) = Ỹ .

Proof: If Y = Ỹ then there is nothing to prove, i.e. T̃r3→2 = Tr3→2. Consider the
case of Y 6= Ỹ : This means that R3→2 maps the 3VL value y to both Boolean pairs
Y and Ỹ . Denote the other two 3VL values by y′ and y′′ and similarly the remaining

7

Boolean pairs by Y ′ and Y ′′ such that R3→2(y
′) = Y ′. It is immediate that the two

valid transformations (with respect to R3→2) are
Tr3→2 = {y′ 7→ Y ′, y′′ 7→ Y ′′, y 7→ Y } and

T̃r3→2 =
{
y′ 7→ Y ′, y′′ 7→ Y ′′, y 7→ Ỹ

}
Proof: [of Theorem 2.2] By the validity of encodings E1,E2 (Definition 2.1) it follows
that for value encoding R3→2 and every valid input transformations Tr`3→2,Tr

m
3→2, ev-

ery f3 ∈ F3(m, `), g3 ∈ F3(`, n) and every x ∈ {T, F, U}m:
g3 (f3 (x)) = Trn2→3

(
g2

(
Tr`3→2

(
Tr`2→3 (f2 (Tr

m
3→2 (x)))

)))
(2)

where f2 = Trm,`F (f3) and g2 = Tr`,nF (g3). This is true due to the following: Let
yf = Tr`2→3 (f2 (Tr

m
3→2 (x))). By Definition 2.1 yf is guaranteed to be equal to f3(x)

and yg = Trn2→3

(
g2

(
Tr`3→2 (yf)

))
is guaranteed to be equal to g3(yf). Concluding

that the right hand-side of Equation 2 equals g3(f3(x)). In the following we show that
we can remove the two intermediate transformations Tr`3→2,Tr

`
2→3 from the Equation

(2) and obtain the same result: Let
Y = f2(Tr

m
3→2(x)) and

ŷ = Tr`2→3(Y)

Let T̂r
`

3→2 be a valid input transformation (with respect toR3→2) such that T̂r
`

3→2(ŷ) =
Y (there must exist such a transformation from Claim 2.1). We get:

g3(f3(x)) = Trn2→3

(
g2

(
Tr`3→2

(
Tr`2→3 (f2 (Tr

m
3→2 (x)))

)))
= Trn2→3

(
g2

(
Tr`3→2

(
Tr`2→3(Y)

)))
= Trn2→3

(
g2

(
Tr`3→2 (ŷ)

))
= Trn2→3

(
g2

(
T̂r
`

3→2 (ŷ)
))

= Trn2→3 (g2 (Y))

= Trn2→3 (g2 (f2(Tr
m
3→2(x))))

as required. The 2nd equation follows from the definition of Y ; the 3rd follows from
definition of ŷ; the 4th follows from the fact that E2 is a valid encoding and must work

for every valid input transformation, in particular it must work with T̂r
`

3→2; the 5th

follows from the way we chose T̂r
`

3→2, i.e. T̂r
`

3→2(ŷ) = Y and the 6th equation follows
from the definition of Y . Concluding the correctness of the theorem.

We remark that it is crucial that the two encodings in Theorem 2.2 be over the same
relation and that the encodings be such that they work for all input transformations
(as required in Definition 2.1). In order to see why, consider for a moment what could
happen if the definition of an encoding considered a specific input transformation and
was only guaranteed to work for this transformation. Next, assume that f2 outputs a
Boolean pair that is not in the range of the input transformation specified for E2. In this
case, g2 may not work correctly and so the composition may fail. We remark that this

8

exact case occurred in natural constructions that we considered in the process of this re-
search. This explains why correctness is required for all possible input transformations
in Definition 2.1.

Using Theorem 2.2. This composition theorem is important since it means that we can
construct separate encodings for each gate type and then these can be combined in the
natural way. That is, it suffices to separately find (efficient) function transformations
for the functions ∧3,¬3 and ⊕3 and then every 3VL function can be computed by
combining the Boolean transformations of these gates. Note that since ¬3 is typically
free and De Morgan’s law holds for this three-valued logic as well, we do not need to
separately transform ∨3.

2.4 More Generalized Encodings

In order to simplify notation, we have defined encodings to be of the form that every
3VL value x ∈ {T, F, U} is mapped to a pair of Boolean bits; indeed, all of our encod-
ings in this paper are of this form. However, we stress that our formalization is general
enough to allow other approaches as well. In particular, it is possible to generalize our
definition to allow more general encodings from x ∈ {T, F, U}m to y ∈ {0, 1}` that
could result in ` < 2m. In addition, it is conceivable that mapping x ∈ {T, F, U} to
more than 2 bits may yield more efficient function transformations with respect to the
number of Boolean gates required to compute them. These and other possible encodings
can easily be captured by a straightforward generalization of our definition.

3 A Natural 3VL-Boolean Encoding

In this section we present our first 3VL-Boolean encoding which we call the “natural”
encoding. This encoding is natural in the sense that a 3VL value x is simply trans-
formed to a pair of 2 Boolean values (xU , xT), such that xU signals whether the value
is known or unknown, and xT signals whether the value is true or false (assuming that
it is known). Formally, we define

R3→2 =
{(
T, (0, 1)

)
,
(
F, (0, 0)

)
,
(
U, (1, 0)

)
,
(
U, (1, 1)

)}
,

and so U is associated with two possible values (1, 0), (1, 1), and T and F are each
associated with a single value. Note that R3→2 is left-total and injective as required by
the definition. We now define the input transformation function Tr3→2 which is defined
by mapping T and F to their unique images, and maps U to one of (1, 0) or (0, 1). For
concreteness, we define:

(xU , xT) = Tr3→2(x) =


(0, 1) x = T

(0, 0) x = F

(1, 0) x = U

.

We proceed to define the function transformation TrF . As we have discussed, it is
possible to define many such transformations, and our aim is to find an “efficient one”
with as few AND gates as possible. Below, we present the most efficient transformations
of ∧3,⊕3,¬3 that we have found for this encoding. As mentioned in Section 2.3, these

9

suffice for computing any function (and ∨3 can be computed using ∧3 and ¬3 by De
Morgan’s law).

Let x, y ∈ {T, F, U} be the input values, and let z be the output value. We denote
Tr3→2(x) = (xU , xT) meaning that (xU , xT) is the Boolean encoding of x; likewise
for y and z. We define the transformations below. All of these transformations work by
computing zT as the standard logical operation over the xT , yT variables (since these
indicate T/F), and compute the zU based on the reasoning as to when the output is
unknown. We have:

1. TrF (∧3) outputs the function ∧2(xU , xT , yU , yT) = (zU , zT), defined by
zU = (xU ∧ yU) ∨ (xU ∧ yT) ∨ (xT ∧ yU) and zT = xT ∧ yT .

As mentioned above, zT = xT ∧ yT which gives the correct result and will deter-
mine the value if it is known. Regarding zU , observe that zU = 1 if both x and y
equal U or if one of them is U and the other is T (which are the exact cases that
the result is unknown). Furthermore, if either of x or y equals F (and so the result
should be known), then zU = 0, as required.

2. TrF (⊕3) outputs the function ⊕2(xU , xT , yU , yT) = (zU , zT), defined by
zU = xU ∨ yU and zT = xT ⊕ yT .

Once again, zT = xT ⊕ yT which is correct if the value is known. Regarding zU ,
recall that for XOR, if either input is unknown then the result is unknown. Thus,
zU = xU ∨ yU .

3. TrF (¬3) outputs the function ¬2(xU , xT) = (zU , zT), defined by
zU = xU and zT = ¬xT ,

which is correct since zT is computed as above, and zU = xU since the output of a
negation gate is unknown if and only if the input is unknown.

Correctness. The formal proof that this is a valid encoding is demonstrated simply via
the truth tables of each encoding. This can be found in Appendix C.1.

Efficiency. The transformations above have the following cost: ∧3 can be computed at
the cost of 6 Boolean ∧ and ∨ gates (5 for computing zU and one for computing zT),
⊕3 can be computed at the cost of a single Boolean ∨ and a single Boolean ⊕ gate, and
¬3 can be computed at the cost of a single Boolean ¬ gate. (We ignore ¬ gates from
here on since they are free in all known garbling schemes.)

Concretely, when using the garbling scheme of [13] that incorporates free-XOR
and requires two ciphertexts for ∨ and ∧, we have that the cost of garbling ∨3 is 12
ciphertexts, and the cost of garbling ⊕3 is 2 ciphertexts. In comparison, recall that the
naive garbling scheme of Section 1.3 required 8 ciphertexts for both ∨3 and⊕3. In order
to see which is better, let C be a 3VL circuit and denote by C∧ and C⊕ the number of
∧3 and ⊕3 gates in C, respectively. Then, the natural 3VL-Boolean encoding is better
than the naive approach of Section 1.3 if and only if

12 · C∧ + 2 · C⊕ < 8 · C∧ + 8 · C⊕,
which holds if and only if C∧ < 1.5 · C⊕. This provides a clear tradeoff between the
methods. We now proceed to present encodings that are strictly more efficient than both
the natural 3VL Boolean encoding and the naive garbling of Section 1.3.

10

4 A More Efficient Encoding Using a Functional Relation

In this section we present a 3VL-Boolean encoding, in which the relationR3→2 is func-
tional.5 Since R3→2 is already left-total and injective, this implies that R3→2 is in fact
a 1–1 function. We defineR3→2 =

{(
T, (1, 1)

)
,
(
F, (0, 0)

)
,
(
U, (1, 0)

)}
. SinceR3→2

is a 1-1 function, there is only one possible input transformation (xT , xF) = Tr3→2 =
R−13→2. The intuition behind this encoding is as follows: The value x ∈ {T, F, U} is
mapped to a pair (xT , xF) so that if x is true or false then xT = xF , appropriately (i.e.,
if x = T then xT = xF = 1, and if x = F then xT = xF = 0). In contrast, if x is
unknown, then xT and xF take different values of 1 and 0, respectively, representing an
“unknown” state (both 1 and 0). We denote the Boolean values xT and xF because in
case that x = U then xT is assigned with True and xF is assigned with False.

As we will see, it is possible to compute ∧3, ⊕3 and ¬3 gates under this encoding
at a cost that is strictly more efficient than the natural encoding of Section 3. In order to
show this, in Section 4.1, we begin by presenting a simple transformation TrF for ∧3
and ¬3 gates. These are clearly complete, and furthermore are the most common con-
nectives used in the context of SQL (as above,¬3 is “free” and so∨3 can be transformed
at the same cost as ∧3). However, for the general case, an efficient transformation for
⊕3 gates is also desired since the naive method of computing ⊕ from ∧,∨,¬ is quite
expensive. We therefore show how to also deal with ⊕3 gates in Section 4.2.

4.1 An Efficient Function Transformation For ∧3,¬3 Gates

We now show how to transform ∧3 and ¬3 gates into Boolean forms at a very low cost:
∧3 gates can be transformed at the cost of just two Boolean ∧ gates, and ¬3 gates can be
transformed at the cost of two Boolean ¬ gates (which are free in all garbling schemes).

1. TrF (∧3) outputs the function ∧2(xT , xF , yT , yF) = (zT , zF), defined by
zT = xT ∧ yT and zF = xF ∧ yF .

2. TrF (¬3) outputs the function ¬2(xT , xF) = (zT , zF), defined by
zT = ¬xF and zF = ¬xT .

We now prove that these transformations are correct. We begin with TrF (∧3):

1. If x∧y = T then x = y = T and so xT = xF = yT = yF = 1. Thus, zT = zF = 1
which means that z = Tr2→3(zT , zF) = Tr2→3(1, 1) = T , as required.

2. If x ∧ y = F , then either x = F which means that xT = xF = 0, or y = F
which means that yT = yF = 0, or both. This implies that zT = zF = 0 and so
z = Tr2→3(zT , zF) = Tr2→3(0, 0) = F , as required.

3. Finally, if x ∧ y = U , then we have three possible cases:
(a) Case 1: x = y = U : In this case, xT = yT = 1 and xF = yF = 0, and thus

zT = 1, zF = 0 and z = Tr2→3(zT , zF) = Tr2→3(1, 0) = U , as required.
(b) Case 2: x = T and y = U : In this case, xT = xF = yT = 1 and yF = 0, and

thus zT = 1 and zF = 0, implying that z = U , as required.

5 Relation R from X to Y is functional if for all x ∈ X and y, z ∈ Y it holds that if (x, y) ∈ R
and (x, z) ∈ R then y = z. Stated differently, R is a function.

11

(c) Case 3: x = U and y = T : This case is symmetric to the previous case and so
also results in U , as required.

It remains to prove that TrF (¬3) is correct:

1. If x = T , then xT = xF = 1 and so zT = zF = 0. Thus, z = Tr2→3(0, 0) = F ,
as required.

2. If x = F , then xT = xF = 0 and so zT = zF = 1. Thus, z = Tr2→3(1, 1) = T ,
as required.

3. If x = U , then xT = 1 and xF = 0 and so zT = ¬xF = 1 and zF = ¬xT = 0.
Thus, z = Tr2→3(1, 0) = U , as required.

Efficiency. The transformations above are very efficient and require 2 Boolean AND
gates for every 3VL-AND (or 3VL-OR) gate, and 2 Boolean NOT gates for each 3VL-
NOT gate. Using the garbling scheme of [13], this means 4 ciphertext for each ∧3,∨3
gate, and 0 ciphertexts for ¬3 gates. This is far more efficient than any of the previ-
ous encodings. However, as we have mentioned above, we still need to show how to
compute ⊕3 gates.

4.2 An Efficient Function Transformation for⊕3 Gates

We now present the transformation for ⊕3 gates for the above functional relation. We
begin by remarking that the method above for ∧3 gates does not work for ⊕3 gates.

x y x⊕3 y xT xF yT yF (zT , zF) z

F F F 0 0 0 0 (0, 0) F
F U U 0 0 1 0 (1, 0) U
F T T 0 0 1 1 (1, 1) T
U F U 1 0 0 0 (1, 0) U
U U U 1 0 1 0 (0, 0) F
U T U 1 0 1 1 (0, 1) undefined
T F T 1 1 0 0 (1, 1) T
T U U 1 1 1 0 (0, 1) undefined
T T F 1 1 1 1 (0, 0) F

Fig. 3. The result of the transformation of⊕3 by (zT , zF) = (xT ⊕
yT , xF ⊕ yF)

For example, if we
define zT = xT ⊕
yT and zF = xF ⊕
yF , then the result is
correct as long as nei-
ther of x or y are un-
known: If both are un-
known then x = y, and
thus zT = zF = 0. The
result of transforming
(zT , zF) = (0, 0) back
to a 3VL is F rather
than U . If only one is
unknown then x 6= y,
and thus zT = 0 and zF = 1). The result of transforming (zT , zF) = (0, 1) is unde-
fined since the pair (0, 1) is not in the range of R3→2. In general, the truth table for the
transformation zT = xT ⊕ yT and zF = xF ⊕ yF appears in Fig. 3; the blue lines are
where this transformation is incorrect.

Our transformation must therefore “fix” the incorrect rows in Fig 3. We define
TrF (⊕3) that outputs the function ⊕2(xT , xF , yT , yF) = (zT , zF) defined by

z′T = (xT ⊕ yT)⊕
(
(xT ⊕ xF) ∧ (yT ⊕ yF)

)
and z′F = xF ⊕ yF

aux = ¬z′T ∧ z′F
zT = z′T ⊕ aux and zF = z′F ⊕ aux

12

Observe that the value (z′T , z
′
F) is just the transformation in Fig 3, with the addition that

z′T is adjusted so that it is flipped in the case that both x = y = U (since in that case
xT 6= xF and yT 6= yF). This therefore fixes the 5th row in Fig 3 (i.e., the input case of
x = y = U). Note that it doesn’t affect any other input cases since (xT⊕xF)∧(yT⊕yF)
equals 0 in all other cases.

In order to fix the 6th and 8th rows in Fig 3, it is necessary to adjust the output in
the case that (0, 1) is received, and only in this case (note that this is only received in
rows 6 and 8). Note that the aux variable is assigned value 1 if and only if z′T = 0 and
z′F = 1. Thus, defining zT = z′T ⊕ aux and zF = z′F ⊕ aux adjusts (z′T , z

′
F) = (0, 1)

to (zT , zF) = (1, 0) which represents U as required. Furthermore, no other input cases
are modified and so the resulting function is correct.

Correctness. The formal proof that this is a valid encoding is demonstrated simply via
the truth tables of each encoding. This can be found in Appendix C.2.

Efficiency. The transformation of ⊕3 incurs a cost of two Boolean ∧ gates and 6
Boolean ⊕ gates. Utilizing free-XOR and the garbling scheme of [13], we have that
4 ciphertexts are required for garbling ⊕3 gates.

Combining this with Section 4.1, we have a cost of 4 ciphertexts for ∧3 and ⊕3

gates, and 0 ciphertexts for ¬3 gates. This is far more efficient than the naive garbling of
Section 1.3 for all gate types. Next, recall that the natural encoding of Section 3 required
12 ciphertexts for ∧3 gates and 2 ciphertexts for ⊕3 gates. Thus, denoting by C∧ and
C⊕ the number of ∧3 and ⊕3 gates, respectively, in a 3VL circuit C, we have that the
scheme in this section is more efficient if and only if 4 ·C∧+4 ·C⊕ < 12 ·C∧+2 ·C⊕,
which holds if and only if C⊕ < 4 ·C∧. Thus, the natural encoding is only better if the
number of⊕3 gates is over four times the number of ∧3 gates in the circuit. In Section 5,
we present transformations that perform better in some of these cases.

5 Encoding Using a Non-Functional Relation

In this section, we present an alternative encoding that is more expensive for ∧3 gates
but cheaper for ⊕3 gates, in comparison to the encoding of Section 4. The value encod-
ing that we use in this section is the same as in Section 4, except that we also include
(0, 1) in the range; thus the relation is no longer functional. Since the motivation regard-
ing the relation is the same as in Section 4, we proceed directly to define the relation:

R3→2 =
{(
T, (1, 1)

)
,
(
F, (0, 0)

)
,
(
U, (0, 1)

)
,
(
U, (1, 0)

)}
.

Thus, R3→2 maps the 3VL value U to both Boolean pairs (0, 1) and (1, 0). As such,
there are two admissible input transformation functions Tr3→2. Both of them map T to
(1, 1) and map (0, 0) to F ; one of them maps U to (1, 0) the other maps U to (0, 1).
Recall that our function transformation needs to work for both, in order for the compo-
sition theorem to hold.

We use the same notation of (xT , xF) as in Section 4 for the Boolean pairs in the
range of R3→2. The motivation is the same as before; if x = T or x = F then both
values are the same; if x = U then the “true” bit xT is different from the “false” bit xF .

The transformation TrF for each gate type is given below.

13

1. TrF (∧3) outputs the function ∧2(xT , xF , yT , yF) = (zT , zF), defined by:
zT = xT ∧ yT

zF = (xF ∧ yF)⊕
(
(xT ⊕ xF) ∧ (yT ⊕ yF) ∧

(
¬(xF ⊕ yT)

))
Recall that in Section 4, it sufficed to define zT = xT ∧ yT and zF = xF ∧ yF .
However, this does not yield a correct result in this encoding in the case that x
and y are both unknown, and x is encoded as (0, 1) and y is encoded as (1, 0).
Specifically, in this case, z is computed as F instead of as U . We fix this case by
changing the second bit of z (i.e, zF) when the encodings are of this form. Observe
that the expression (xT ⊕ xF) ∧ (yT ⊕ yF) ∧ (¬(xF ⊕ yT)) evaluates to 1 if and
only if xT 6= xF and yT 6= yF and xF = yT , which is exactly the case that one of
the value is encoded as (1, 0) and the other is encoded as (0, 1).

2. TrF (⊕3) outputs the function ⊕2(xT , xF , yT , yF) = (zT , zF), defined by:
zT = (xT ⊕ yT)⊕

(
(xT ⊕ xF) ∧ (yT ⊕ yF)

)
zF = xF ⊕ yF

This is the same transformation of ⊕3 described in Section 4.2 for the functional
encoding of Section 4, except that here there is no need to switch the left and right
bits of the result in the case that they are (0, 1). This is due to the fact that (0, 1) is
a valid encoding of U under R3→2 used here.

3. TrF (¬3) outputs the function ∨2(xT , xF) = (zT , zF), defined by:
zT = ¬xT and zF = ¬xF

This is almost the same as the transformation of ¬3 in Section 4.1, excepts that we
do not exchange the order of the bits. Again, this is due to the fact that both (1, 0)
and (0, 1) are valid encodings of 0 and so the negation of U by just complementing
both bits results in U and is correct.

Correctness. The formal proof that this is a valid encoding is demonstrated simply via
the truth tables of each encoding. This can be found in Appendix C.3.

Efficiency. The Boolean function TrF (∧3) requires 4 AND gates, which translates to
8 ciphertexts using the garbling of [13]. The Boolean function TrF (⊕3) requires only
one AND gate, which translates to two ciphertexts using the garbling of [13]. Denote
by C∧ and C⊕ the number of ∧3 and ⊕3 gates in the 3VL circuit, then the encoding of
this section is better than that of Section 4 if and only if 8 ·C∧+2 ·C⊕ < 4 ·C∧+4 ·C⊕
which holds if and only if C⊕ > 2 · C∧. Observe also that the encoding in this section
is always at least as good as the natural encoding of Section 3; in particular, it has the
same cost for ⊕3 gates and is strictly cheaper for ∧3 gates.

6 Efficiency Summary of the Different Methods

We have presented a naive garbling method and three different encodings. We summa-
rize the efficiency of these different methods, as a function of the number of ciphertexts
needed when garbling, in Table 2.

14

Encoding Ciphertexts for ∧3 Ciphertexts for⊕3 Best in range
Section 1.3 – Naive 8 8 none
Section 3 – Natural 12 2 none
Section 4 – Functional 4 4 C⊕ < 2 · C∧
Section 5 – Non-Functional 8 2 C⊕ > 2 · C∧

Table 2. A summary of the garbling efficiency of the different methods

7 A Black-Box Protocol for Computing 3VL Circuits

In this section, we show how to securely compute 3VL circuits. Of course, one could
design a protocol from scratch using a garbled 3VL circuit. However, our goal is to be
able to use any protocol that can be used to securely evaluate a Boolean circuit, and
to directly inherit its security properties. This approach is simpler, and allows us to
leverage existing protocol optimizations for the Boolean case.

Before proceeding, we explain why there is an issue here. Seemingly, one could
compile any 3VL-circuit into a Boolean circuit using our method above, and then run
the secure computation protocol on the Boolean circuit to obtain the output. As we will
see, this is actually not secure. Fortunately, however, it is very easy to fix. We now
explain why this is not secure:

1. Output leakage: The first problem that arises is due to the fact that Definition 2.1 al-
lows R3→2 to be a non-functional relation. This implies that a value x ∈ {T, F, U}
might be mapped to two or more Boolean representations. Now, if a secure protocol
is run on the Boolean circuit, this implies that a single 3VL output could be rep-
resented in more than one way. This could potentially leak information that is not
revealed by the function itself. In Appendix B, we show a concrete scenario where
this does actually reveal more information than allowed. We stress that this leakage
can occur even if the parties are semi-honest.
This leakage can be avoided by simply transforming y to a unique, predetermined
Boolean value y∗ at the end of the circuit computation and before outputs are re-
vealed. This is done by incorporating an “output translation” gadget into the circuit
for every output wire.

2. Insecurity due to malicious inputs. Recall that the relation R3→2 does not have to
be defined over the entire range of {0, 1} × {0, 1}, and this is indeed the case for
the relation that we use in Section 4. In such a case, if the malicious party inputs
a Boolean input that is not legal (i.e., is not in the range of R3→2), then this can
result in an incorrect result (or worse).
This cheating can be prevented by incorporating an “input translation” gadget for
every input wire of the circuit that deterministically translates all possible Boolean
inputs (even invalid ones) into valid inputs that appear in the range of R3→2. This
prevents a malicious adversary from inputting incorrect values (to be more exact, it
can input incorrect values but they will anyway be translated into valid ones).

The key observation from above is that the solutions to both problems involve mod-
ifications to the circuit only. Thus, any protocols that is secure for arbitrary Boolean
circuits can be used to securely compute 3VL circuits. Furthermore, these input and

15

output gadgets are very small (at least for all of our encodings) and thus do not add any
significant overhead.

We have the following theorem6:

Theorem 7.1. Let π be a protocol for securely computing any Boolean circuit, let f3
be a 3VL function with an associated 3VL circuit C, and let C ′ be a Boolean circuit
that is derived from C via a valid 3VL-Boolean encoding. Then, Denote by C ′1 the
circuit obtained by adding output-translation gadgets toC ′, and denote byC ′2 the circuit
obtained by adding input-translation and output-translation gadget to C ′.

1. If π is secure in the presence of semi-honest adversaries, then protocol π with
circuit C ′1 securely computes the 3VL function f3 in the presence of semi-honest
adversaries.

2. If π is secure in the presence of malicious (resp., covert) adversaries, then pro-
tocol π with circuit C ′2 securely computes the 3VL function f3 in the presence of
malicious (resp., covert) adversaries.

Secure computation. The above theorem holds for any protocol for secure computa-
tion. This includes protocols based on Yao and garbled circuits [14,9], as well as other
protocols like that of [4].

8 Lower Bounds

One of the most important optimizations of the past decade for garbled circuits is that of
free-XOR [8]. Observe that none of the 3VL-Boolean encodings that we have presented
have free-XOR, and the cheapest transformation of ⊕3 requires 2 ciphertexts. In this
section, we ask the following question:

Can free-XOR garbling be achieved for 3VL functions?

We prove a negative answer for a linear garbling scheme, which is defined in the
Linicrypt model of [1]. Our proof is based on a reduction from any garbling scheme
for 3VL circuit to a garbling scheme for Boolean circuits. Specifically, we show that
any garbling scheme for 3VL-XOR can be used to garble Boolean-AND gates at the
exact same cost . Now, [13] proved that at least 2 ciphertexts are required for garbling
AND gates using any linear garbling method. By reducing to this result, we will show
that 3VL-XOR cannot be garbled with less than two ciphertexts using any linear gar-
bling method. Thus, a significant breakthrough in garbling would be required to achieve
free-XOR in the 3VL setting, or even to reduce the cost of 3VL-XOR to below two ci-
phertexts.

6 The proof of the theorem is straightforward and is thus omitted.

16

Reducing Boolean AND to 3VL XOR. It is actually very easy to compute a Boolean
AND gate given a 3VL XOR gate. This is due to the fact that 3VL XOR actually con-
tains an embedded AND; this is demonstrated in Figure 4.

Fig. 4. Shows that ⊕3 em-
beds the truth table of both
∧,∨ and ⊕.

This can be utilized in the following way. Let g̃ be a
garbled 3VL-XOR gate with input wires x, y and output
wire z. By definition, given keys kαx and kβy on the input
wires with α, β ∈ {T, F, U}, the garbled gate can be used
to compute the key kγz on the output wire where γ = α⊕3

β. Thus, in order to compute a Boolean AND gate, the
following can be carried out. First, associate the 3VL-value
F with the Boolean value 1 (True), and associate the 3VL-
value U with the Boolean value 0 (False). Then, given any
two of kUx , k

F
x and kUy , k

F
y the output of the garbled gate

will be kFz if and only if x = y = F , which is exactly a Boolean AND gate. (This is
depicted in the shaded square in Figure 4.) Observe that the 3VL-value T is not used in
this computation and so is ignored. The fact that this method is a secure garbling of an
AND gate follows directly from the security of the 3VL garbling scheme.

It follows that a (single) Boolean AND gate can be garbled at the same cost of a
3VL XOR gate. Thus, free-3VL-XOR would imply free-Boolean-AND, and even 3VL
XOR with just a single ciphertext would imply a construction for garbling a Boolean
AND gate at the cost of just one ciphertext. Both of these would be surprising results.
We now formalize this more rigorously using the framework of linear garbling.

Impossibility for linear garbling. The notion of linear garbling was introduced by [13],
who also showed that all known garbling schemes are linear. In their model, the garbling
and evaluation algorithms use only linear operations, apart from queries to a random
oracle (which may be instantiated by the garbling scheme) and choosing which linear
operation to apply based on some select bits for a given wire. They prove that for every
ideally secure linear garbling scheme (as defined in [13]), at least two ciphertexts must
be communicated for every Boolean AND gate in the circuit. Combining [13, Theo-
rem 3] with what we have shown above, we obtain the following theorem with regards
to garbling schemes for 3VL circuits in the same model.

Theorem 8.1. Every ideally secure garbling scheme for 3VL-XOR gates, that is linear
in the sense defined in [13], has the property that the garbled gate consists of at least
2n bits, where n is the security parameter.

This explains why we do not achieve free-XOR in our constructions in the three-
valued logic setting.

References

1. B. Carmer and M. Rosulek. Linicrypt: A Model for Practical Cryptography. In CRYPTO
2016, Springer (LNCS 9816), pages 416–445, 2016.

2. L. de Haan and J. Gennick. Nulls: Nothing to Worry About. Oracle
Magazine. http://www.oracle.com/technetwork/issue-archive/2005/
05-jul/o45sql-097727.html/, 2005.

17

http://www.oracle.com/technetwork/issue-archive/2005/05-jul/o45sql-097727.html/
http://www.oracle.com/technetwork/issue-archive/2005/05-jul/o45sql-097727.html/

3. O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, 2004.

4. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game – A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218–229, 1987. For
details see [3].

5. S. Gueron, Y. Lindell, A. Nof, and B. Pinkas. Fast Garbling of Circuits under Standard
Assumptions. In the 22nd ACM Conference on Computer and Communications Security
(ACM CCS), pages 567–578, 2015.

6. ISO/IEC. ISO/IEC 9075-2:2016. http://www.iso.org/iso/home/store/
catalogue_ics/catalogue_detail_ics.htm?csnumber=63556/, 2016.

7. S.C. Kleene. Introduction to Metamathematics. Bibliotheca Mathematica, 1952.
8. V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free XOR Gates and Applica-

tions. In ICALP 2008, Springer (LNCS 5126), pages 486–498, 2008.
9. Y. Lindell and B. Pinkas. A Proof of Yao’s Protocol for Secure Two-Party Computation. In

the Journal of Cryptology, 22(2):161–188, 2009.
10. Microsoft. Null and Unknown (Transact-SQL). https://msdn.microsoft.com/

en-us/library/mt204037.aspx/.
11. MySQL. MySQL 5.7 Reference Manual 13.3.3: Logical Operators. http://dev.

mysql.com/doc/refman/5.7/en/logical-operators.html/.
12. B. Pinkas, T. Schneider, N.P. Smart, and S.C. Williams. Secure Two-party Computation is

Practical. In ASIACRYPT 2009, Springer (LNCS 5912), pages 250–267, 2009.
13. S. Zahur, M. Rosulek, and D. Evans. Two Halves Make a Whole: Reducing Data Transfer

in Garbled Circuits Using Half Gates. In EUROCRYPT 2015, Springer (LNCS 9057), pages
220–250, 2015.

14. A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162–167, 1986.

A Exhaustive Search for Expressions with One Boolean AND

We present a simplified version of the technique that we used in order to search for a
Boolean expression with only one AND gate (and an unlimited number of XOR gates)
that implements the functionality of a 3VL AND and 3VL XOR. We actually used
several simple optimizations to this technique to make it run faster, but these are not of
significance to the discussion and so are omitted.

In this paper we focus on a specific set of possible 3VL-to-Boolean encodings,
specifically, we focus on encodings that map each 3VL value x (i.e. T, F, U) to a pair
of Boolean values (xL, xR) (L,R for left and right). Note that this means that either
the encoding is functional, which means that each 3VL value is mapped to exactly
one Boolean pair and hence there remains one invalid Boolean pair, or the encoding is
non-functional which means that one 3VL value is mapped to two Boolean pairs while
the other two 3VL values are mapped to a single Boolean pair. The total number of
possible encodings (functional and non-functional) is 60, as can be seen by a simple
combinatorical computation.

Let Enc be some 3VL-to-Boolean encoding. A Boolean implementation of 3VL-
AND (resp. 3VL-XOR) using Enc is given two pairs of Boolean values, (xL, xR) and
(yL, yR), and outputs a single pair of Boolean values (zL, zR), such that when given
encodings of the 3VL values x and y it outputs an encoding of x ∧3 y (resp. x ⊕3 y)
where ∧3 is a 3VL-AND (resp. ⊕3 is a 3VL-XOR). When Enc is non-functional, this

18

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=63556/
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=63556/
https://msdn.microsoft.com/en-us/library/mt204037.aspx/
https://msdn.microsoft.com/en-us/library/mt204037.aspx/
http://dev.mysql.com/doc/refman/5.7/en/logical-operators.html/
http://dev.mysql.com/doc/refman/5.7/en/logical-operators.html/

should hold for every possible encoding of x and y. This means that for a functional
encoding we test the correctness of 9 possibilities, and for a non-functional encoding
we test the correctness of 16 possibilities of (xL, xR) and (yL, yR).

Since we are interested in an implementation with a single Boolean AND gate, the
values of zL and zR are basically a Boolean expression over the four literals xL, xR, yL, yR
and the constant 1 (the constant 0 can be obtained by simply XORing the literal with
itself) with a single Boolean AND and unlimited number of Boolean XOR gates. Our
goal is to find a way to enumerate over all these expressions and test if they form a
correct implementation of the 3VL-AND and 3VL-XOR.

Fig. 5. The exhaustive search
process.

The exhaustive search process is depicted in Figure 5.
We set E0 = {xL, xR, yL, yR, 1}. This is the set of initial
values, from which the expressions for zL, zR are formed.
Before we apply a Boolean AND to the above values we
first want to obtain a set of all possible expressions us-
ing Boolean XOR gates only, we denote this set by E+

0 .
Note that E+

0 can be obtained by taking the XOR of each
non-empty subset of values from E0, which means that
|E+

0 | = |E0| +
∑5
i=1

(
5
i

)
= 36. Then, we can choose 2

expressions e1, e2 ∈ E+
0 and apply e3 = e1 ∧ e2. We

denote the set of possible expressions of this form by E1

and by counting we get that E1 =
(|E+

0 |
2

)
=
(
36
2

)
= 630.

Notice that E1 does not contain all possible expressions
with exactly one Boolean AND, since XOR operations
are only computed before the AND. Thus, for example,
xL ⊕ (xR ∧ yL) /∈ E1. In order to obtain the set of all
possible expressions, denoted E+

1 , we need to add another
layer of Boolean XORs after the AND. However, since we
want to test pairs of Boolean expressions for zL, zR us-
ing up to one Boolean AND gate, we may use the same
expression from E1 and apply XOR after it with two dif-
ferent expressions from E+

0 . Therefore, we have that E+
1 = E1 × (E+

0 × E
+
0). Note

that E+
1 also contains expressions with no Boolean AND at all. For example, for any

expression e without Boolean AND gates, E+
1 also contains e = (1 ∧ 1) ⊕ (¬e). We

therefore conclude that |E+
1 | = |E1| · |E+

0 |2 = 630 · 362 = 816480.
Putting it all together, we have 60 possible encodings. For each encoding, we have

816,480 possible pairs of expressions for zl, zR with up to one AND gate and for each
possible pair we need to test its correctness over 9 or 16 possible inputs. The total
number of tests is therefore 60 ·816480 ·9 = 440, 899, 200 ≈ 228.7 or 60 ·816480 ·16 =
783, 820, 800 ≈ 229.5.

B Insecurity of the Naive Protocol for Evaluating 3VL Functions

In this section we provide a concrete attack on a protocol that uses a valid Boolean
encoding, without adding the input/output gadgets described in Section 7. Consider the
3VL function f3 : {T, F, U}2 → {T, F, U}2 defined by f3(a, b) = a ⊕3 b; denote

19

the output by c. Now, consider a 2-party protocol for evaluating this function, where
P1 inputs both a and b, and P2 does not input anything. (Needless to say, this is a silly
example since such a function can be singlehandedly computed by P1 and the result
can be sent to P2. However, this illustrates the problem, and of course applies to more
“interesting” cases as well.)

Now, assume that the output of the function is U . In this case, a secure evaluation
of f does not reveal anything to P2 except the fact that (a, b) is either (U,U), (T,U),
(U, T), (F,U) or (U,F). Furthermore, consider the case that P1’s inputs are random.
In this case, each of these possible inputs occurs with probability 1

5 (assuming P2 has
no auxiliary information). Consider now what happens if a secure two-party protocol is
run to compute this function on the encoding, without applying an output transforma-
tion gadget as described in Section 7. For the sake of concreteness, consider the non-
functional relation encoding of Section 5. For this encoding U can be mapped to (1, 0)
or to (0, 1). Assume that Tr3→2(U) = (0, 1). Then, the possible outputs of the function
(since it is just a single XOR) are given in Table 3; the shaded rows are associated with
output U :

x y z xT xF yT yF (zT , zF) z

F F F 0 0 0 0 (0, 0) F

F U U 0 0 0 1 (0, 1) U

F T T 0 0 1 1 (1, 1) T

U F U 0 1 0 0 (0, 1) U

U U U 0 1 0 1 (1, 0) U

U T U 0 1 1 1 (1, 0) U

T F T 1 1 0 0 (1, 1) T

T U U 1 1 0 1 (1, 0) U

T T F 1 1 1 1 (0, 0) F

Table 3. TrF (⊕3)

Observe that if P2 receives (zT , zF) = (0, 1) for output, then it knows that P1’s
input was either (F,U) or (U,F). In contrast, if P2 receives (zT , zF) = (1, 0) for
output, then it knows that P1’s input was either (U,U) or (U, T) or (T,U). This is
clearly information that P2 should not learn (observe also that if P2 receives (0, 1) then
it know with full certainty that either a = F or b = F). This is therefore not a secure
protocol.

C Formals Proofs of Encodings Via Truth Tables

In this appendix, we provide the truth tables for each of our encoding methods. These
truth tables constitute a formal proof of correctness, since they show that the mapping
from input to output is correct for all possible inputs.

20

C.1 Correctness of the Natural
Encoding

x y z xT xU yT yU (zT , zU) z

F F F 0 0 0 0 (0, 0) F

F U F 0 0 0 1 (0, 0) F

F T F 0 0 1 0 (0, 0) F

F U F 0 0 1 1 (0, 0) F

U F F 0 1 0 0 (0, 0) F

U U U 0 1 0 1 (0, 1) U

U T U 0 1 1 0 (0, 1) U

U U U 0 1 1 1 (0, 1) U

T F F 1 0 0 0 (0, 0) F

T U U 1 0 0 1 (0, 1) U

T T T 1 0 1 0 (1, 0) T

T U U 1 0 1 1 (1, 1) U

U F F 1 1 0 0 (0, 0) F

U U U 1 1 0 1 (0, 1) U

U T U 1 1 1 0 (1, 1) U

U U U 1 1 1 1 (1, 1) U

Table 4. The Boolean encoding of 3VL-AND
in Section 3

x y z xT xU yT yU (zT , zU) z

F F F 0 0 0 0 (0, 0) F

F U U 0 0 0 1 (0, 1) U

F T T 0 0 1 0 (1, 0) T

F U U 0 0 1 1 (1, 1) U

U F U 0 1 0 0 (0, 1) U

U U U 0 1 0 1 (0, 1) U

U T U 0 1 1 0 (1, 1) U

U U U 0 1 1 1 (1, 1) U

T F T 1 0 0 0 (1, 0) T

T U U 1 0 0 1 (1, 1) U

T T F 1 0 1 0 (0, 0) F

T U U 1 0 1 1 (0, 1) U

U F U 1 1 0 0 (1, 1) U

U U U 1 1 0 1 (1, 1) U

U T U 1 1 1 0 (0, 1) U

U U U 1 1 1 1 (0, 1) U

Table 5. The Boolean encoding of 3VL-XOR
in Section 3

x ¬3(x) xT xU (zT , zU) z

F T 0 0 (1, 0) T

U U 0 1 (1, 1) U

T F 1 0 (0, 0) F

U U 1 1 (0, 1) U

Table 6. The Boolean encoding of 3VL-NOT
in Section 3

C.2 Correctness of the Encoding
Using a Functional Relation

x y z xT xU yT yU (zT , zU) z

F F F 0 0 0 0 (0, 0) F

F U F 0 0 1 0 (0, 0) F

F T F 0 0 1 1 (0, 0) F

U F F 1 0 0 0 (0, 0) F

U U U 1 0 1 0 (1, 0) U

U T U 1 0 1 1 (1, 0) U

T F F 1 1 0 0 (0, 0) F

T U U 1 1 1 0 (1, 0) U

T T T 1 1 1 1 (1, 1) T

Table 7. The Boolean encoding of 3VL-AND
in Section 4

x y z xT xU yT yU (zT , zU) z

F F F 0 0 0 0 (0, 0) F

F U U 0 0 1 0 (1, 0) U

F T T 0 0 1 1 (1, 1) T

U F U 1 0 0 0 (1, 0) U

U U U 1 0 1 0 (1, 0) U

U T U 1 0 1 1 (1, 0) U

T F T 1 1 0 0 (1, 1) T

T U U 1 1 1 0 (1, 0) U

T T F 1 1 1 1 (0, 0) F

Table 8. The Boolean encoding of 3VL-XOR
in Section 4

x ¬3(x) xT xU (zT , zU) z

F T 0 0 (1, 1) T

U U 1 0 (1, 0) U

T F 1 1 (0, 0) F

Table 9. The Boolean encoding of 3VL-NOT
in Section 4

21

C.3 Correctness of the Encoding
Using a Non-Functional Relation

x y z xT xU yT yU (zT , zU) z

F F F 0 0 0 0 (0, 0) F

F U F 0 0 0 1 (0, 0) F

F U F 0 0 1 0 (0, 0) F

F T F 0 0 1 1 (0, 0) F

U F F 0 1 0 0 (0, 0) F

U U U 0 1 0 1 (0, 1) U

U U U 0 1 1 0 (0, 1) U

U T U 0 1 1 1 (0, 1) U

U F F 1 0 0 0 (0, 0) F

U U U 1 0 0 1 (0, 1) U

U U U 1 0 1 0 (1, 0) U

U T U 1 0 1 1 (1, 0) U

T F F 1 1 0 0 (0, 0) F

T U U 1 1 0 1 (0, 1) U

T U U 1 1 1 0 (1, 0) U

T T T 1 1 1 1 (1, 1) T

Table 10. The Boolean encoding of 3VL-AND
in Section 5

x y z xT xU yT yU (zT , zU) z

F F F 0 0 0 0 (0, 0) F

F U U 0 0 0 1 (0, 1) U

F U U 0 0 1 0 (1, 0) U

F T T 0 0 1 1 (1, 1) T

U F U 0 1 0 0 (0, 1) U

U U U 0 1 0 1 (1, 0) U

U U U 0 1 1 0 (0, 1) U

U T U 0 1 1 1 (1, 0) U

U F U 1 0 0 0 (1, 0) U

U U U 1 0 0 1 (0, 1) U

U U U 1 0 1 0 (1, 0) U

U T U 1 0 1 1 (0, 1) U

T F T 1 1 0 0 (1, 1) T

T U U 1 1 0 1 (1, 0) U

T U U 1 1 1 0 (0, 1) U

T T F 1 1 1 1 (0, 0) F

Table 11. The Boolean encoding of 3VL-XOR
in Section 5

x ¬3(x) xT xU (zT , zU) z

F T 0 0 (1, 1) T

U U 0 1 (0, 1) U

U U 1 0 (1, 0) U

T F 1 1 (0, 0) F

Table 12. The Boolean encoding of 3VL-NOT
in Section 5

22

	Fast Garbling of Circuits over 3-Valued Logic

