
Augmented Black-Box Simulation and Zero Knowledge
Argument for NP

Li Hongda, Pan Dongxue, Ni Peifang

The Data Assurance and Communication Security Research Center, School of Cyber Security,
University of Chinese Academy of Sciences, Beijing 100093, China

Abstract. The standard zero knowledge notion is formalized by requiring that
for any probabilistic polynomial-time (PPT) verifier V ∗, there is a PPT algorithm
(simulator) SV ∗ , such that the outputs of SV ∗ is indistinguishable from real pro-
tocol views. The simulator is not permitted to access the verifier V ∗’s private
state. So the power of SV ∗ is, in fact, inferior to that of V ∗.
In this paper, a new simulation method, called augmented black-box simulation,
is presented by permitting the simulator to have access to the verifier’s current
private state in a special manner. The augmented black-box simulator only has
the same computing power as the verifier although it is given access to the ver-
ifier’s current private state. Therefore, augmented black-box simulation is a rea-
sonable method to prove zero knowledge property, and brings results that hard to
obtain with previous simulation techniques. Zero knowledge property, proved by
means of augmented black-box simulation, is called augmented black-box zero-
knowledge.
We present a 5-round statistical augmented black-box zero-knowledge argument
for Exact Cover Problem under the Decision Multilinear No-Exact-Cover As-
sumption. In addition, we show a 2-round computational augmented black-box
zero-knowledge argument protocol for Exact Cover problem under the Deci-
sion Multilinear No-Exact-Cover Assumption and the assumption of the exis-
tence of hash functions. It is well known that 2-round zero knowledge protocols
does not exist under general zero knowledge notion. Besides, following [18], we
consider leakage-resilient property of augmented black-box zero knowledge, and
prove that the presented statistical zero-knowledge protocol has optimal leakage-
resilient property.

Key word: zero-knowledge proofs (arguments), black-box simulation, constant-
round, Exact-Cover problem, leakage-resilient.

1 Introduction

Zero-knowledge proofs were first introduced by Goldwasser, Micali, and Rackoff in
[20]. They are interactive proof systems executed by two parties, one is the prover P ,
and the other is the verifier V . Zero-knowledge property requires that P can convince
V of the correctness of the statement x ∈ L without providing V with any additional
information beyond the fact that the statement is true. Formally, zero-knowledge prop-
erty requires that for every probabilistic polynomial-time (PPT) verifier V ∗ there exists

2

a PPT algorithm (simulator) S, such that the two distribution, the output of S(x) and
the view of V ∗ in the real protocol, are indistinguishable. According to the relation be-
tween these two distributions, zero-knowledge property is divided into computational
zero knowledge and statistical zero knowledge, responding to computationally or statis-
tically indistinguishable condition. Besides, according to the limit on the power of the
prover, zero-knowledge protocols are divided into two types, zero-knowledge proofs
(ZKP) and zero-knowledge arguments (ZKA).

In fact, the original notion of zero knowledge in [20] is computational zero knowl-
edge and only considers the stand-alone setting, where the protocol runs in complete
isolation. Such zero knowledge property cannot be maintained when many protocols
are run concurrently. In order to construct more practical zero-knowledge protocols,
Dolev, Dwork and Naor [13] introduced non-malleable zero knowledge and [15] stud-
ied concurrent zero-knowledge. Following these two works, a lot of works, such as
[19, 27, 31, 11, 34, 30], devoted to studying protocols with concurrent zero-knowledge
property and non-malleable zero knowledge property.

Statistical zero-knowledge proofs have statistical zero-knowledge property and sta-
tistical soundness. Unfortunately, [16, 2] showed that no language beyond the languages
inAM∩coAM has statistical zero-knowledge proofs. [27] provided concurrent statisti-
cal zero-knowledge proofs for a variety of non-trivial problems without any complexity
assumption.

A weaker notion is statistical zero-knowledge arguments, first presented by Bras-
sard, Chaum, and Crepeau in [4]. G. Brassard gave the first perfect zero-knowledge
protocol for any statement in NP with constant rounds, which is a 6-round perfect zero-
knowledge argument for NP [5], where the perfect zero-knowledge property means that
the output of the simulator is identical to the real protocol views. Naor et al. [29] showed
a construction of a statistically hiding bit-commitment scheme and then obtained an effi-
cient perfect zero-knowledge argument, with non-constant round, for all of NP from any
one-way permutation. Their result gave the first general reduction that zero-knowledge
arguments for NP can be constructed given any one-way permutation. Nguyen et al
[28] constructed a relaxed variant of statistically hiding commitments, called 1-out-of-
2-binding commitments, and then obtained a statistical zero-knowledge argument for
NP with a polynomial number of rounds under the (minimal) complexity assumption
that one-way functions exist. There are also works [19, 30, 24] devoted to concurrent
statistical zero-knowledge arguments and non-malleable statistical zero-knowledge ar-
guments. In this paper, we also consider statistical zero-knowledge arguments for NP
and present a 5-round protocol. (reducing the round complexity)

Traditionally, zero-knowledge property is formalized by simulation, and two differ-
ent kinds of simulator, black-box simulator and non-black-box simulator, are used. The
black-box simulator is only given oracle access to the verifier’s strategy program but
can query it starting from any point. To simulate the real interaction between a prover
and a verifier, one of advantage of the black-box simulator is that it can rewind the
verifier’s strategy. By rewinding the simulator can extract some verifier’s private infor-
mation needed for the simulation. Unfortunately, there are some fundamental tasks that
cannot be achieved by black-box simulation, such as constant-round concurrent zero
knowledge etc.. The non-black-box simulator has more methods to make use of the

3

verifier’s strategy, such as to utilize its strategy description as Barak does in [3]. Un-
til Barak presented his non-black-box simulation technique, almost all zero knowledge
protocols are black-box zero knowledge. Under the existence of collision-resistant hash
functions,. Barak first gave a bounded concurrent constant-round zero knowledge ar-
gument for NP which was proved not to exist in black-box setting [3]. Subsequently,
a lot of works followed the Barak’s work [6, 33, 11, 26]. Specifically, [12] showed a
constant-round resettably-sound zero-knowledge argument based only on the existence
of one-way functions by non-black-box simulation.

Recently, Garg et al. [18] introduced leakage-resilient zero-knowledge (LRZK),
which guarantees the zero-knowledge property in stronger adversarial models where
an malicious verifier has the ability to obtain leakage of the secret states of the honest
prover by launching a side-channel attack. LRZK requires that for any cheating verifier
V ∗ that can obtain l bits of leakage information about the prover’s state via a series of
leakage queries f1, f2, ..., there exists a simulator S with the leakage oracle Lnw such
that the simulator can output an indistinguishable view of the malicious verifier and
simulate the leakage as well.

In this paper, we consider zero-knowledge property by a new simulation paradigm,
called augmented black-box simulation. The formal definition of zero knowledge under
this simulation paradigm is first presented in our another work. Roughly speaking, the
simulator in the augmented black-box setting is given not only an oracle access to the
verifier’s strategy program but also an access to the verifier’s current private information
in a special manner. Let 〈P, V 〉 be an interactive proof system for language L, the
augmented black-box simulation is formalized as follows.

Consider an extended verifier V̂ : V̂ has the same strategy and interacts with the
prover P as V , and simultaneously outputs V ’s current private state secretly on its pri-
vate output tape. The black-box simulator of 〈P, V̂ 〉 with oracle access to the extended
verifier V̂ and its private output tape is called the augmented black-box simulator of
the interactive proof system 〈P, V 〉. 〈P, V 〉 is known as augmented black-box zero-
knowledge if for any malicious V ∗, there exists an augmented black-box simulator SV̂ ∗ ,
such that the output of SV̂ ∗ is indistinguishable from the view of V ∗ in the execution
with P . The simulator is permitted to see all that the verifier currently has used, that is,
when the simulator receives a messagem from V ∗, it is simultaneously permitted to get
V ∗’s private information used by V ∗ to computes m. It is obvious that the augmented
black-box simulator only has the same computing power as the verifier although it given
access to the verifier’s current private state. Therefore, augmented black-box simulation
is a reasonable method to prove zero knowledge property. In addition, using augmented
black-box simulation can simplify proof of zero knowledge property, and help to bring
simpler and more efficient zero knowledge protocol that may be impossible to achieve
under the standard (non-)black-box simulation. It is obvious that any standard black-
box zero-knowledge proof for a promise problem Π is also augmented black-box zero
knowledge. Conversely, under a proper conditions, such as existence of knowledge of
zero-knowledge proof for NP, any augmented black-box zero-knowledge protocol can
also be translated into a general black-box zero-knowledge protocol.

4

1.1 Our results

In this paper, we present a 5-round statistical zero-knowledge argument and a 2-round
computational zero knowledge argument for Exact Cover problemΠ = (ECY , ECN),
a promise problem which is NP-complete, under the notion of augmented black-box
zero-knowledge. This notion of zero-knowledge is formalized by augmented black-box
simulation technique, where the simulator has oracle access to an extended verifier V̂ .
V̂ has one more private output tape than the verifier V . And V̂ outputs the message V
outputs together with V ’s current private state, from which the message is computed.

Our construction of the 5-round statistical zero-knowledge argument includes two
3-round interactive arguments for two Exact Cover problems. The construction consists
of three stages. In the first stage, the prover P and the verifier V execute the first two
round of the 3-round interactive argument protocol for x ∈ ECY . In the second stage,
P and V execute the 3-round interactive argument, in which V proves to P y ∈ ECY ,
where y is obtained by reducing part of the messages in the first stage to an Exact Cover
problem. And in the last stage, P proceeds the last round of the 3-round interactive
argument for x ∈ ECY , P completes the proof by sending a value (which can also be
computed by V) that is computed from the value specified by V in the first stage. V
accepts if and only if the value sent by P is correct. The soundness is guaranteed by the
Decision Multilinear No-Exact-Cover Assumption and the simulation is completed by
a PPT simulator with oracle access to V̂ . Hence then, S can obtain V ’s private state and
thus obtain the value specified by V in the first stage and use it to complete the proof.

Our 2-round computational zero-knowledge argument for Exact Cover Problem is
very simple. Except the Decision Multilinear No-Exact-Cover Assumption, the protocol
has used collision-resistant hash functions. Since in our protocol, a cheating verifier
cannot verify the correctness of the proof from an honest prover, the construction of
BPP simulator in [21] does not applicable for our 2-round zero-knowledge protocol.
Therefore, we claim that our result does not contradict with the well known lower-bound
of Goldreich and Oren [21], which says that 2-round auxiliary input zero knowledge
argument exists only for trivial languages.

In addition, we consider leakage-resilient property of augmented black-box zero
knowledge, and prove that the given statistical zero-knowledge argument is leakage-
resilient. The length of leakages obtained by the leakage-resilient simulator from the
leakage oracle is the same as that of the leakages obtained by the verifier.

1.2 Related work

Zero Knowledge Relevant to our work are the works on simulation techniques for zero
knowledge. Besides the black-box simulation and Barak’s non-black-box simulation
technique, there are some other non-black-box simulation techniques.

One another non-black-box simulation technique is based on the knowledge as-
sumption[23, 7, 1, 22, 34]. In essence, the KEAs require that if an adversary can com-
plete some task, it must have “knowledge” of the value specified by the task. In non-
black-box simulation based on KEAs, the simulator can extract the value from the ver-
ifier by an efficient algorithm and then complete the simulation.

5

Recently, based on the impossibility of program obfuscation, [9] gave a new non-
black-box simulation technique . Assuming that the malicious verifier chooses an un-
obfuscatable function, of which the properties consist of black-box unlearnablility and
non-black-box learnability. The prover interacting with the verifier has oracle access
to this function and thus the prover cannot learn this function from the query-answer
behavior. The simulator with the code of V ∗’s algorithm, in essence, is given an ob-
fuscation of V ∗’s algorithm. By the non-black-box learnability of the unobfuscatable
function, the simulator can learn this function and then simulate the verifier’s view. [10]
constructed robust unobfuscatable functions, by which they reduced the assumptions
required for resettably-sound zero-knowledge to one-way functions.

[14] promoted the simulator’s ability by using the “distinguisher-dependent” simu-
lator, which permits the simulator to know the possibly cheating verifier’s program V ∗,
the distinguisher T , and the distribution D on inputs. That is, for any V ∗ and PPT dis-
tinguisher T , there exists a simulator ST , such that for any distribution D, the output of
ST is indistinguishable from the real view for T . By the distinguisher-dependent sim-
ulator, C. Dwork et al. in [14] weakened the definition of zero-knowledge and proved
the existence of 3-round weak zero-knowledge argument for NP, which was recently
constructed from the obfuscation of point functions by Bitansky and Paneth [8].

Leakage-resilient Zero Knowledge In [18], Garg et al. showed a (1 + ε)-LRZK
proof system under a standard general assumption (the existence of statistically hiding
commitment scheme that is public-coin w.r.t. the receiver) for any ε > 0. That is, for any
ε > 0, there exists a proof system such that for any PPT verifier which can obtain l bits
leakage there exists a simulator, obtaining at most (1+ε)·l bits of leakage from the leak-
age oracle Lnw, can simulate the verifier’s view. The round complexity of the protocol in
[18] is at least ω(log n)/ε, where n is the security parameter. Pandey [32] constructed
the first constant-round LRZK argument with ε = 0 under the assumption of DDH and
collision-resistant hash functions. Very Recently, Kiyoshima [25] constructed the first
LRZK argument system only under the existence of the collision-resilient hash function
family.

1.3 Organization

Section 2 contains the standard definitions, cryptographic tools, and the relaxed notion
of zero knowledge used in our protocols. In section 3, we present a 5-round statisti-
cal zero-knowledge argument for Exact-Cover problem. In section 4, we first recall the
model of leakage-resilient zero knowledge, and prove the construction in section 3 is a
leakage-resilient zero-knowledge argument. In section 5, we show a 2-round computa-
tional zero-knowledge argument for Exact-Cover problem.

2 Preliminaries

In this paper, we use some standard notations. Let A(·) be a probabilistic algorithm and
let A(x) be the result of running algorithm A on input x, then we use y = A(x) (or
y ← A(x)) to denote that y is set as A(x). For a finite set S, we use y ∈R S to denote
that y is uniformly selected from S. We use [l] to denote the set {1, 2, · · · , l}. We write

6

neg(·) to denote an unspecified negligible function, poly(·) an unspecified polynomial.
We use “X c

= Y ” (“X s
= Y ”) to denote that probabilistic distributions X and Y are

computationally (statistically) indistinguishable. Unless otherwise stated, we use λ to
denote the security parameter.

We recall the following definitions.

2.1 Exact Cover problem

Recall the well-known NP-complete problem, Exact Cover problem: Given a finite set
X , and a collection of subsets of X , T = {T1, · · · , Tl : Ti ⊆ X}, decide whether
there is a subset T ′ ⊆ T such that every element of X lies in exactly one element of
T ′, which equals that whether there exists a subset I ⊆ {1, · · · , l} such that ∪i∈ITi =
X;∀i 6= j ∈ I, Ti ∩ Tj = ∅.

Let ECY and ECN be all “Yes” and “No” instances of the Exact Cover problem
respectively. A witness of an “Yes ” instance (X, T = {T1, · · · , Tl}) is the subset
I ⊆ [l] such that {Ti : i ∈ I} is a partition of X . The corresponding NP-relation is
denoted by REC .

2.2 Multi-linear map

Let G1, · · · , Gn be a sequence of groups of the same order p, and g1, · · · , gn be the
corresponding generators. Define a set of maps

ei,j : Gi ×Gj → Gi+j , i+ j ≤ n

satisfying ei,j(gai , g
b
j) = gabi+j for any a, b ∈ Zp. Then,

{ei,j : Gi ×Gj → Gi+j : i, j ≥ 1, i+ j ≤ n}
is called multilinear map. For convenience, we write ei,j(gai , g

b
j) as e(gai , g

b
j) = gabi+j .

Similarly, for any i1, · · · , it ∈ [n] with i1+ · · ·+ it ≤ n, we define multilinear map

e
(
g
ai1
i1
, · · · gaitit

)
= (gi1+···+it)

ai1 ···ait .

Assume there is a PPT generation algorithm G. The output of G(1λ, n; r), where
r ∈R {0, 1}poly(λ includes the description of a sequence of groups G1, · · · , Gn of the
same prime order p, the corresponding generators g1, · · · , gn, and a multilinear map e.
For simplicity, the out of G(1λ, n; r) is denoted by pp.

Definition 1. Decision Multilinear No-Exact-Cover Problem. [17] Let x = {X; T }
be a “No” instance of Exact Cover Problem (x ∈ ECN), where |X| = n. Let

((G1, g1), · · · , (Gn, gn), e, p)← G(1λ, n; r)

where the prime order p = p(λ) and λ is the security parameter. Let ` = |T | and

a1, · · · , an, r be uniformly selected from Zp. For every i ∈ [`], let hi = (g|Ti|)
∏
j∈Ti

aj .

Then, the Decision Multilinear No-Exact-Cover Problem is to distinguish between the
two distributions: (pp;h1, · · ·h`; ga1···ann) and (pp;h1, · · ·h`; grn).

7

Definition 2. Decision Multilinear No-Exact-Cover Assumption. [17] The Decision
Multilinear No- Exact-Cover Assumption is that for every instances x ∈ ECN , all
PPT algorithms A can solve the Decision Multilinear No-Exact-Cover Problem with
negligible probability.

2.3 Zero knowledge

Definition 3. Interactive Proof System. A pair of interactive Turing machines 〈P, V 〉
is called an interactive proof system for a language L if machine V is polynomial-time
and the following two conditions hold:

– Completeness: There exists a negligible function c such that for every x ∈ L,

Pr[〈P, V 〉(x) = 1] > 1− c(|x|)

– Soundness: There exists a negligible function s such that for every x /∈ L and every
interactive machine B, it holds that

Pr[〈P, V 〉(x) = 1] < s(|x|)

c(·) is called the completeness error, and s(·) the soundness error.

An interactive proof 〈P, V 〉(x) for a promise problem Π is zero-knowledge if the
possibly malicious verifier V learns nothing from the interaction with P except the fact
that x ∈ ΠY being proven is true. It implies that whatever V could learn from the
interaction could be obtained by V with an oracle OΠ . When being queried with an
instance x ∈ Π , OΠ returns 1 if x ∈ ΠY and returns 0 otherwise.

Let V iewPV (z)(x) denote the view of V with auxiliary input z in the real execution
of the protocol with P . Thus V iewPV (z)(x) includes the random coins of V and the
messages received from P . It is reasonable that whatever V learned from the interaction
can be computed from V iewPV (z)(x). Therefore, zero knowledge requires that for any
PPT V ∗, there is a simulator S with some advantage against P , such that the output of
S is indistinguishable from V iewPV ∗(z)(x).

Definition 4. Zero-knowledge Proof. Let 〈P, V 〉 be an interactive proof system for a
promise problem Π . 〈P, V 〉 is said to be zero-knowledge if for every PPT malicious
verifier V ∗ there exists a PPT algorithm S such that {V iewPV ∗(z)(x)}x∈ΠY ,z∈{0,1}∗
and {S(x, z)}x∈ΠY ,z∈{0,1}∗ are computationally indistinguishable.

If {V iewPV ∗(z)(x)}x∈ΠY ,z∈{0,1}∗ and {S(x, z)}x∈ΠY ,z∈{0,1}∗ are statistically in-
distinguishable, the interactive proof system 〈P, V 〉 is called statistical zero-knowledge.

2.4 Augmented black-box Zero knowledge

Let 〈P, V 〉 be an interactive proof system for a promise problem Π . Since the last
message of the execution is almost always sent to the verifier V by the prover P , assume
that the verifier V sends the first message. If in some protocols P sends the real first

8

message, we assume that the verifier V sends an empty string λ before P ’s. And we
assume that the round number of 〈P, V 〉 is 2k(n), where n is the security parameter
and k(n) is a positive polynomial. V ’s next message depends on its random coins and
all messages that have been received from P so far. And P ’s next message depends on
its private input, random coins, and all messages received. In the (2i − 1)th round, V
sends αi, and then receives βi responded by P in the (2i)th round, i = 1, · · · , k. We
use αi = ⊥ (βi = ⊥) to denote V (P) aborts. At the end of the interaction, the verifier
V decides whether to accept or reject the proof.

We use NextV (x, z; ·) to denote the next message function of V with common
input x and auxiliary z, and let rV = r1 · · · rk be V ’s all random coins. In (2i − 1)th
round, V first computes αi = NextV (x, z; i, ri, {βj}j∈[i−1]) with random coins ri
and all received messages {βj}j∈[i−1], and then sends αi to P , i ∈ [k]. V ’s private
information used to generate αi is denoted by state(i)V , which will be stored when V
sends αi.

To introduce the augmented black-box simulator, we first recall the definition of
the extended verifier V̂ (an imaginary verifier) for any V . V̂ does the same as V when
it interacts with P except that it records its secret state on the private output tape, the
tape V does not have. That is, in (2i − 1)th round, V̂ computes αi and then sends αi
to P as V , for i ∈ [k], and at the same time V̂ honestly writes state(i)V on its private
output tape. Obviously, the augmented verifier V̂ differs from V only in the output of
V ’s private information state(i)V , which is used to generate αi. Hence then, the next
message function of V̂ , denoted by NextV̂ (x, rV , ·, ·), is defined as follows:(

αi, state
(i)
V

)
← NextV̂

(
x, rV ; i, {βj}j∈[i−1]

)
, i = 1, · · · , k

where αi = NextV (x, rV , i, {βj}j∈[i−1]) is written on V̂ ’s communication output
tape, and V ’s private information state(i)V , used to generate αi, is written on V̂ ’s pri-
vate output tape. For any malicious verifier V ∗, the corresponding extended verifier V̂ ∗

computes αi with the next message function selected by V ∗.

1. Uniformly select rV , and set i = 1, β̃0 = λ.
2. Make a query to OΠ with x. It returns b.
3. Invoke OV̂ (x, rV ; ·) with

(
i, β̃i−1

)
, and receive

(
αi, state

(i)
V

)
.

4. Verify αi as an honest prover. If the verification fails, output(
x, rV , {β̃j}j∈[i−1]

)
and stop.

5. Else, verify that αi is computed correctly from state
(i)
V .

– If the verification succeeds and b = 1, prepare β̃i from x,
{statejV }j∈[i], {αj}j∈[i] and {β̃j}j∈[i−1], such that β̃i is acceptable
by V̂ . If no correct β̃i can be obtained, fail and stop.

– Else, randomly select β̃i from a proper set.
6. i← i+ 1 and return to step 3 if i ≤ k.
7. Output

(
x, rV , {β̃j}j∈[k]

)
.

Figure 1. Augmented black-box simulator SOΠ ,O
V̂ (x)

9

Let OV̂ be the oracle of the next message function of V̂ . OV̂ (x, r; ·) indicates V̂
with common input x and random coins r. That is, when being queried with messages
(i, {βj}j∈[i−1]), OV̂ (x, r; ·) first computes αi = NextV (x, r; i, {βj}j∈[i−1]) with the
private state state(i)V and then answers with (αi, state

(i)
V).

Then, the augmented black-box simulator S with oracle access to OV̂ (·) receives
both the verifier’s message αi and its private state state(i)V used to compute αi, and
then S can complete the simulation more effectively. For any V , the construction of the
PPT algorithm S with access to oracle OΠ , which outputs 1 when being queried with
x ∈ ΠY and outputs 0 otherwise, and oracle OV̂ , written by SOΠ ,OV̂ , is depicted in
Figure 1.

Therefore, the augmented black-box zero knowledge is formally defined by requir-
ing that for any verifier V ∗ with auxiliary input z (the corresponding extended verifier
is V̂ ∗), there is a PPT algorithm S with the oracles OΠ and O

V̂ ∗
, such that the output

of S(x, z) and the real protocol view V iewPV ∗(z)(x) are indistinguishable.

Definition 5. Augmented Black-box Zero-knowledge Proof. Let 〈P, V 〉 be an inter-
active proof system for a promise problem Π . 〈P, V 〉 is an called (auxiliary-input)
augmented black-box computational zero-knowledge proof if for every PPT V ∗, the
corresponding extended verifier is denoted by V̂ ∗, there exists an augmented black-box
simulator SOΠ ,OV̂ ∗ , such that

1) The probability that SOΠ ,OV̂ ∗ (x, z) fails is at most 1
2 .

2) Under the condition that the augmented black-box simulator does not fail, the
real protocol view V iewPV ∗(z)(x) and SOπ,OV̂ ∗ (x, z) are computationally indis-

tinguishable. That is,
{
SOπ,OV̂ ∗ (x, z)

} c
=
{
V iewPV ∗(z)(x)

}
If the simulation SOΠ ,OV̂ ∗ (x, z) is statistically closed or identical to the real pro-

tocol view V iewPV ∗(z)(x) under the condition that the augmented black-box simulator
does not fail, 〈P, V 〉(x) is an called statistical or perfect augmented black-box zero
knowledge proof.

3 Constant-round zero-knowledge arguments for Exact Cover
problem

The goal in this section is to construct constant-round augmented black-box zero-
knowledge argument protocols for Exact Cover problem ΠEC = (ECY , ECN), an
NP-complete promise problem, under the Decision Multilinear No-Exact-Cover As-
sumption.

Assume x = (X; T) ∈ Π , X = {x1, · · · , xn}, T = (T1, · · · , Tl). If x ∈ ECY
then we have ∃I ⊆ {1, · · · , l},∪i∈ITi = X;∀i 6= j ∈ I, Ti ∩ Tj = ∅.

Let G(1λ, n), where n = |X|, be a PPT generation algorithm such that the output of
G(1λ, n) consists of description of a sequence of groupsG1, · · · , Gn of the same prime
order q, where q is exponential in λ, the corresponding generators g1, · · · , gn, and a
multilinear map e. The output of G(1λ, n) is denoted by pp = ({(Gi, gi), }ni=1, e, q).

10

We start from a simple interactive proof for Exact-Cover problem. The construction
of 3-round interactive protocol is in figure 2.

The completeness of the protocol is easy to see, and the soundness come from the
Decision Multilinear No-Exact-Cover Assumption. The protocol is only honest verifier
zero knowledge because any simulator is unable to generates A = g

∏n
i=1 ai

n correctly
when the malicious verifier randomly picks Aj ∈ G|Tj |, being related to the prover’s
first message, even if it is an augmented black-box simulator.

P ((X, T); I) V (X, T)
1. Generate parameter
pp = ({(Gi, gi), }ni=1, e, q)
by G(1λ, n; r1) with r1 ∈
{0, 1}∗.

2. Select r ∈ Z∗q .
r1, RP = grn−−−−−−−−−→

1. Generate pp by G(1λ, n; r1)
with r1. Check the validity
of RP , abort if check fails.

2. Choose a1, · · · , an ∈ Z∗q .
3. Compute

Aj = (g|Tj |)
∏
i∈Tj

ai

where j = 1, · · · , `.
{Aj}kj=1←−−−−−−

1. Check the validity of Aj ,
abort if the check fails.

2. Otherwise, compute
Ã = e({Aj}j∈I)

D = Ãr−−−−−−→ 1. Accept iff D = R
∏n
i=1 ai

P

Figure 2: Interactive profs for Exact Cover Problem

In order to get zero knowledge property, we can require the verifier to prove {Aj}lj=1

is generated correctly after he sends {Aj}lj=1 to the prover. The prover sends the last
message only if the verifier’s proof is accepted. Specifically, for the instance x =
(X, T) and any given pp = ((G1, g1), · · · , (Gn, gn), e, q), define set

Lx−pp =
{
{Aj , Tj}lj=1 : Tj ∈ T ; ∃a1, · · · , an ∈ Z∗q , Aj = (g|Tj |)

∏
i∈Tj

ai , j ∈ [`]
}

.

To prove {Aj}lj=1 is generated honestly is to prove that {(Aj , Tj)}lj=1 ∈ Lx−pp.
To this end, reduce Lx−pp to Exact-Cover Problem ΠEC . Assume that y = (X ′, T ′) ∈
ΠEC is an instance of Exact-Cover Problem obtained from {(Aj , Tj)}lj=1, where |X ′| =
m and T ′ = {T ′1, · · · , T ′k}. It is known that {(Aj , Tj)}lj=1 ∈ Lx−pp iff y ∈ ECyes.
Therefore, to prove {Aj}lj=1 is honestly generated, the verifier and the prover can exe-
cute the above 3-round interactive proof.

11

P ((X, T); I) V (X, T)
1. Generate parameter
pp = ({(Gi, gi)}ni=1, e, q)
by G(1λ, n; r1), r1 ∈R {0, 1}∗.

2. Select r ∈ Z∗q and compute
RP = grn.

r1,RP−−−−→ 1. Generate pp by G(1λ, n; r1) with
r1. Check the validity of RP ,
abort if the check fails.

2. Pick a1, · · · , an ∈R Z∗q . Set a =∏n
i=1 ai.

3. Compute
Aj = (g|Tj |)

∏
i∈Tj

ai , j ∈ [`]

4. Reduce {(Aj , Tj)}lj=1 to ΠEC
and obtain y = (X ′, T ′), and
then obtain a witness I ′ reduced
from a1, · · · , an.

5. Generate pp’ by G(1λ,m; r2),
pp′ = ({(G′i, g′i)}mi=1, e

′, q′)
where r2 ∈ {0, 1}∗.

6. Pick r′ ∈ Z∗q′ . Compute RV =

g′m
r′

{Aj}lj=1←−−−−−
RV ,r2

1. Get y = (X ′, T ′) by reducing
{(Aj , Tj)}lj=1 to ΠEC .

2. Generate
pp′ = ({(G′i, g′i)}mi=1, e

′, q′)
by G(1λ,m; r2).

3. Check validity of {Aj}lj=1, RV ,
abort if the check fails.

4. Pick bi ∈R Z∗q′ , i ∈ [m],
compute
Bu = (g′

|T ′u|
)
∏
i∈T ′u

bi , u ∈ [k]
{Bu}ku=1−−−−−−→ 1. Check the validity of {Bu}ku=1,

abort if the check fails.
Otherwise, compute
B̃ = e′({Bu}u∈I′), C = B̃r

′
.

C←−−−−
1. If C = (RV)

∏m
i=1 bi , compute

Ã = e({Aj}j∈I) (P randomly
selects Ã when without any wit-
ness) and set
D1 = (b1, · · · , bm), D2 = Ãr .

2. Else, abort.
D1,D2−−−−→ 1. Verify {Bu}ku=1 and D2 = RaP .

Accept iff the verification
succeeds

Figure 3: Statistical augmented black-box ZKA for Exact Cover Problem

12

Our zero-knowledge argument 〈P, V 〉 consists of three stages. In the first stage, the
prover P and the verifier V execute the first two round of the 3-round interactive proof
protocol, and obtain y ∈ ΠEC by reducing Lx−pp to ΠEC ; In the second stage, P and
V execute the 3-round interactive proof to let V prove to P that y ∈ ECyes. In the last
stage, P proceeds the last round of the 3-round interactive proof, that is, P sends D to
V , when the proof in the second stage is accepted. The detailed construction is depicted
in Figure 3.

Theorem 1. Assume that Decision Multilinear No-Exact-Cover Assumption holds. The
construction in Figure 3 is an interactive argument for x ∈ ECY .

Proof. Completeness. It is obvious to see that, if P and V execute the protocol hon-
estly, V can computes C = e′({Bu}u∈I′)r

′
and P can computes D1 = RaP =

e({Aj}j∈I)r when x ∈ ECyes. And so, if x ∈ ECyes, P can always convince V
to accept.

Soundness. Suppose x = (X; T) ∈ ECN . Obviously, we only need to prove that
the probability that the malicious prover P ∗ outputs the correct D = Ãr is negligible.
And notice that if V accepts, it means {Bu}u are honestly generated, and so B̃r

′
=

Rb1···bmV can be computed from RV and D1 = (b1, · · · , bm), D2 = Ãr. Therefore, if
P ∗ can convince V , P ∗ must be able to compute A = g

∏n
i=1 ai

n from {Aj}lj=1. By
the assumption, it is impossible except for a negligible probability. Thus the soundness
follows. �

Theorem 2. Assume that Decision Multilinear No-Exact-Cover Assumption holds. The
construction in Figure 3 is statistical augmented black-box zero knowledge.

For any V ∗, the simulation is completed by a PPT simulator with oracles OΠ ,OV̂ ,
where OΠ returns 1 if x ∈ ΠY and 0 otherwise, and OV̂ is the next message function
of the extended verifier V̂ (see the details in subsections 2.3 and 2.4).

First, SOΠ ,OV̂ does the same as P to interact with V ∗ in the first stage and the
second stage. Next, if V ∗’s proof in the stage 2 is correct, the simulator computes A =
gan from the records of V ∗’s private state, where a =

∏n
i=1 ai. If it succeeds, set D2 =

Ar. Else, randomly select D2.

Proof. For any verifier V ∗, the augmented black-box simulator SOEC ,OV̂ ∗ (x,·;·) pro-
ceeds as follows:

1. Uniformly select rV ∗ ∈ {0, 1}poly(n) for O
V̂ ∗

(x, ·; ·).
2. Make a query to OEC with x and obtain its return δx.
3. Execute the first two round of the protocol.

– Randomly select r1 ∈ {0, 1}∗ and generate pp = ((G1, g1), · · · , (Gn, gn), e, q)
by G(1λ, n; r1). Select r ∈ Z∗q .

– Make a query to O
V̂ ∗

(x, rV ∗ ; ·) with (RP = grn, r1). If it aborts, stop and
output (x, rV ∗ , RP , r1). Else, receive ({Aj}lj=1, r2, RV). In addition, simula-

tor obtains V ∗’s current private state s1 = state
(1)
V ∗ , which is used to produce

({Aj}lj=1, r2, RV).

13

4. Get y = (X ′, T ′) from {Aj , Tj}lj=1, whereX ′ = {v′1, · · · , v′m} and T ′ = {Ti}ki=1,
by reducing Lx−pp to Exact-Cover problem.

5. Generate pp′ = ((G′1, g
′
1), · · · , (G′n, g′n), e′, q′) by G(1λ,m; r2)

6. If {Aj}j or RV is not valid, stop and output (x, rV ∗ , r1, RP).
7. Otherwise,

– Select b1, · · · , bm ∈R Z∗q′ , and set D1 = (b1, · · · , bm). Compute Bu =

(g′
|T ′u|

)
∏
i∈T ′u

bi , u = 1, · · · , k.
– Make a query to O

V̂ ∗
(x, rV ∗ ; ·) with ({Bu}u). If V ∗ aborts, stop and output

(x, rV ∗ , r1, RP , {Bu}u). Else, obtain V ∗’s return C and current private state
s2 = state

(2)
V ∗ .

8. If C 6= (RV)
∏m
i=1 bi , stop and output (x, rV ∗ , r1, RP , {Bu}u).

9. Else, compute Ã = g
∏n
i=1 ai

n from V ∗’s private state s1 and s2, which should con-
tain a1, · · · , an ∈ Z∗q from which {Aj}j is computed if the verifier is honest. If it
succeeds, set D2 = Ãr when δx = 1, or randomly select D2 ∈ Gn when δx = 0;
Otherwise, randomly select D2 ∈ Gn when δx = 0, or fail and stop when δx = 1

10. Output (x, rV ∗ , RP , r1, {Bu}u, (D1, D2)).

Next, we will prove that the output of the simulator {SOEC ,OV̂ ∗ (x,·;·)(x)} is sta-
tistically indistinguishable from the view {V iewP (x,I)

V ∗ (x)} of the verifier playing the
protocol with an honest prover P with witness for the proven statement x.

Lemma 1. The probability that the simulator fails without output is negligible.

Proof. Denoted byBadState the event that the simulator SOEC ,OV̂ ∗ (x,·;·) cannot com-
pute Ã = g

∏n
i=1 ai

n from V ∗’s private state s1 and s2. Notice the event “the simulator
fails and stops” takes place iff the event x ∈ ECyes ∧ BadState ∧ (C = RbV) takes
place. It is easy to see that

Pr[(x ∈ ECyes) ∧BadState ∧ (C = RbV)] ≤ Pr[BadState ∧ (C = RbV)]

Furthermore, if y ∈ ECyes but the verifier V ∗ does not have a witness I ′ for y ∈
ECyes (BadState takes place), then the probability that V ∗ can prove y ∈ ECyes is
negligible. Therefore,

Pr[(y ∈ ECyes) ∧ (C = RbV) ∧BadState] ≤ neg(·)
and we have

Pr[(C = RbV) ∧BadState]
= Pr[(y ∈ ECno) ∧ (C = RbV) ∧BadState]

+Pr[(y ∈ ECyes) ∧ (C = RbV) ∧BadState]
≤ Pr[(y ∈ ECno) ∧ (C = RbV)] + neg(·)

By Decision Multilinear No-Exact-Cover Assumption, Pr[(y ∈ ECno) ∧ (C =
RbV)] is negligible. All above, the probability that the simulator fails without output is
negligible. x ∈ ECyes means the prover P honestly computes Ã by Ã = e({Aj}j∈I)

Since the simulator acts as an honest prover before computing A, it is easy to see
that the following two lemmas hold.

14

Lemma 2. For any randomly selected (rV ∗ , r1, RP), we have

Pr
[
V iew

P (x,I)
V ∗ (x) = (x, rV ∗ , r1, RP)

]
= Pr

[
SOEC ,OV̂ ∗ (x,·;·)(x) = (x, rV ∗ , r1, RP)

]
Lemma 3. For any randomly selected (rV ∗ , pp,RP , (b1, . . . , bm)), we have

Pr
[
V iew

P (x,I)
V ∗ (x) = (x, rV ∗ , r,RP , {Bu}u)

]
= Pr

[
SOEC ,OV̂ ∗ (x,·;·)(x) = (x, rV ∗ , r1, RP , {Bu}u)

]
The only difference between the simulator and the prover is that, instead of com-

puting A from {Aj}j , the simulator need to compute A from the received state of
the verifier. So, the simulation will fail when the verifier’s malicious act in generating
{Aj}j . Concretely, the failure arises only under (C = RbV) ∧BadState (BadState is
defined in proof of Lemma 1), which takes place with a negligible .

Lemma 4. For any (r1, RP , {Bu}u, D = (D1, D2)), it holds that

Pr
[
V iew

P (x,I)
V ∗ (x) = (x, rV ∗ , r1, RP , {Bu}u, D)

]
= Pr

[
SOEC ,OV̂ ∗ (x,·;·)(x) = (x, rv∗ , r1, RP , {Bu}u, D)

]
± neg(·)

Proof. The probability that the simulator outputs (x, rV ∗ , r1, RP , {Bu}u, D), by the
Lemma 1–3, is almost equal to the probability that the view of V ∗ is in the form
(x, rV ∗ , r1, RP , {Bu}u, D) except for a negligible probability.

Because the simulator is same as an honest prover in step3-step7, the only differ-
ence between the output of the simulator and that of V ∗ is D2. For convenience, the
simulator’s output is denoted by (x, rV ∗ , r1, RP , {Bu}u, D′ = (D1, D

′
2)).

In the view of V ∗, D is computed by D2 = Ar or selected randomly from Gn, but
the simulator generates D′2 from V ∗’s state or selects randomly from Gn. It is known
that the simulator randomly select D′2 ∈ Gn iff δx = 0, that is x ∈ ECno. Since
P select D2 randomly from Gn when x ∈ ECno, we obtain that Pr[D′2 ∈R Gn] =
Pr[D2 ∈R Gn].

Next, we prove that D′2 has the same distribution as D2 when the simulator com-
putes D′2 with V ∗’s private state. The simulator computes D2 with V ∗’s private state
implies (x ∈ ECyes) ∧ (C = RbV), and then means D2 = e ({Aj}j∈I). So, let

Γgood = (x ∈ ECyes) ∧ (C = RbV) ∧ (¬BadState),
Γbad = (x ∈ ECyes) ∧ (C = RbV) ∧ (BadState),

we obtain

Pr[D′2 = D2|(x ∈ ECyes) ∧ (C = RbV)]

= Pr[¬BadState ∧ (D′2 = D2)|(x ∈ ECyes) ∧ (C = RbV)]

+Pr[BadState ∧ (D′2 = D2)|(x ∈ ECyes) ∧ (C = RbV)]

= Pr[¬BadState|(x ∈ ECyes) ∧ (C = RbV)] Pr[(D
′
2 = D2)|Γgood]

+Pr[BadState|(x ∈ ECyes) ∧ (C = RbV)] Pr[(D
′
2 = D2)|Γbad].

15

Furthermore, by the following fact:

Pr[D′2 = D2|Γgood] = Pr[D′2 = D2|(x ∈ ECyes) ∧ (C = RbV) ∧ (¬BadState)] = 1

Pr[D′2 = D2|Γbad] = Pr[D′2 = D2|(x ∈ ECyes) ∧ (C = RbV) ∧ (BadState)] = 0

we have
Pr[D′2 = D2|(x ∈ ECyes) ∧ (C = RbV)]

= Pr[¬BadState|(x ∈ ECyes) ∧ (C = RbV)]

= 1− Pr[BadState|(x ∈ ECyes) ∧ (C = RbV)] = 1− neg(·).

Combining with Pr[D′2 ∈R Gn|x ∈ ECno] = Pr[D2 ∈R Gn|x ∈ ECno], we
obtain

Pr[D′2 = D2|(C = RbV)] = 1− neg(·).

This Lemma is proved.

These four lemmas complete the proof of Theorem 2. �

4 Leakage-resilient zero-knowledge argument

We recall the notions of leakage-resilient zero knowledge in [18, 32, 25], show the
description of the augmented black-box simulator with access to leakage oracle, and
present the definition of leakage-resilient zero knowledge according to our another
work on augmented black-box zero-knowledge. We show a construction of statistical
leakage-resilient zero-knowledge argument according to this definition.

Recently, Garg et al. [18] introduced leakage-resilient zero-knowledge (LRZK) such
that in the setting where adversarial verifiers can obtain arbitrary leakage on the internal
state (including the witness and the random coins) of the honest prover throughout the
execution of the protocol. LRZK guarantees the zero-knowledge property in stronger
adversarial models where an malicious verifier has the ability to obtain leakage of the
secret states of the honest prover by launching a side-channel attack. In this model, a
malicious verifier makes a series of leakage queries throughout the execution of the pro-
tocol, and whenever the prover sends message, he sends answers to the leakage queries
as well. More concretely, let 〈P, V 〉 be an interactive proof for a promise problem Π .
In the prover’s round of the interaction, P sends a message to V , and then updates its
current private state state (at the beginning of the interaction, state is initialized to be
the private auxiliary input w) by setting state = state||r at that time, where r is a
random coin used by P in the current round. And then P responds with f(state) to the
leakage query f launched by V .

LRZK requires that for any cheating verifier V ∗ that can obtain l bits of leakage
information about the prover’s state via a series of leakage queries f1, f2, ..., there ex-
ists a simulator S with the leakage oracle Lnw such that the simulator can output an
indistinguishable view of the malicious verifier and simulate the leakage as well. The
leakage oracle Lnw is parametrized by the witness w of the proven statement and the
security parameter n. On inputing a computable leakage function f ′(·), Lnw(·) returns

16

f ′(w) to V , where f ′(·) is usually prepared by S from V ∗’s leakage query f ′(·, ·) about
the witness and randomness.

In [18], Garg et al. proposed λ-leakage-resilient zero knowledge, which requires that
for any V ∗ there exists a simulator S with leakage oracle Ln,λw (·) such that the output of
S and V iewV ∗ are indistinguishable and Ln,λw (·) sends at most `′S = λ`V ∗ bits leakage,
where `V is the total number of leaking bits received by V . Clearly, λ ≥ 1. And later
the work in [32, 25] reduces λ to 1. Next, we recall leakage-resilient zero knowledge
according to the definition of augmented black-box zero knowledge.

As assumed previously, let 〈P, V 〉 be a 2k(n)-round interactive proof system for a
promise problem Π . For i = 1, · · · , k, the verifier sends αi to the prover and receives
βi from the prover. However, the next message functions here in the leakage setting is
different. The verifier’s next message function takes the leakages received as a part of
input, while the prover’s next message function takes the current leakage query as a part
of input. That is, the prover P computes βi from the current private state state(i)P which
contains w (the witness for x ∈ ΠY) and his random coins, namely, βi = P (state

(i)
P),

and answers a leakage query fi on state(i)P issued by V . And the next message function
of V is as follows:

(αi, fi(·)) = NextV
(
x, rV , βi−1, Fi−1

)
, i = 1, · · · , k

where βi−1 = (β1, · · · , βi−1), Fi−1 = (f1(state
(1)
P), · · · , fi−1(state(i−1)P), and Fi−1

is all the leakage received by V . After sending αi to P , V receives βi and fi(state
(i)
P)

(if V does not issue any leakage query fi, set fi(state
(i)
P) to be the empty string λ). And

for any verifier V described above, the extended verifier V̂ is defined as in subsection
2.5, and so V̂ ’s next message function is as follows:(

αi, fi(·), state(i)V
)
= NextV̂

(
x, rV , βi−1, Fi−1)

)
, i = 1, · · · , k.

OV̂ (x, r; ·, ·) is also defined as in subsection 2.5. When queried with (i, βi−1, Fi−1),
OV̂ (x, r; ·) returns (αi, fi, state

(i)
V).

Leakage-resilient zero-knowledge proofs 〈P, V 〉(x) for a promise problem Π re-
quire that for any malicious verifier launching leakage attack, the verifier can learn
nothing beyond x ∈ ΠY and the leakage. To formulate this, for any verifier V ∗, the
construction of the leakage-resilient simulator with the oracles OΠ , O

V̂ ∗
(x, ·; ·) and

the leakage oracle Lnw, written as SOΠ ,OV̂ ∗ (x,·;·),L
n
w , is depicted in Figure 4.

Let LV iewP
V (z)

(x) consist of the view of V with any auxiliary input z and the
received leakage.

Definition 6. Leakage-resilient Augmented Black-box Zero-knowledge Proof (Argu-
ment). Let 〈P, V 〉 be an interactive proof system for some language L. 〈P, V 〉 is called
leakage-resilient augmented black-box zero-knowledge proof system if for any PPT ver-
ifier V ∗ with auxiliary z, the corresponding extended verifier is denoted by V̂ ∗, there
exists an augmented black-box simulator S with oracles OL, O

V̂ ∗
and Lnw, such that

LV iewPV ∗(z)(x) and SOL,OV̂ ∗ (x;·),L
n
w(x, z) are computationally indistinguishable.

17

If SOL,OV̂ ∗ (x;·),L
n
w(x) is statistically closed or identical to LV iewPV ∗(z)(x) when

it does not fail, 〈P, V 〉(x) is called statistical or perfect leakage-resilient augmented
black-box zero-knowledge proof (argument).

If the soundness security holds for an all powerful prover, 〈P, V 〉 is called an (sta-
tistical) leakage-resilient augmented black-box zero-knowledge argument.

1. Uniformly select rV for OV̂ (x, ·; ·),and set i = 1, β′0 = λ, f0 = λ.
2. Make a query to OΠ with x. It returns b.
3. Invoke OV̂ (x, rV ; ·) with

(
i, β′i−1, Fi−1

)
, where

β′i−1 = (β′0, · · · , β′i−1), Fi−1 = (f1(state
(1)
P), · · · , fi−1(state(i−1)P),

and then receive
(
αi, fi, state

(i)
V

)
.

4. Verify αi as an honest prover. If the verification fails or αi = ⊥, output(
x, rV , β

′
1, · · · , β′i−1, Fi−1

)
and stop.

5. Else, Verify that V ∗ computes αi correctly from state
(i)
V .

– If the verification succeeds and b = 1, prepare state(i)P corresponding
to state(i)V , β′i−1, and then compute β′i such that it is acceptable by V̂ .
If no such β′i can be obtained, fail and stop.

– Else, randomly select random coins of state(i)P to compute β′i.
– Construct f ′i(·) such that f ′i(w) is identical to fi(state

(i)
P) by letting

f ′i be residual function of fi with the random coins in state(i)P hard-
wired in. Then, query Lnw with f ′i(·) and receive the response f ′i(w).
Assuming that Lnw returns f ′i(w) to V ∗ simultaneously.

6. i← i+ 1. Return to step 3 if i ≤ k.
7. Output (x, rV , β′1, · · · , β′k, Fk).

Figure 4: Leakage-resilient simulator SOΠ ,O
V̂
(x,·;·),Lnw

Theorem 3. The construction presented in Figure 2 is a statistical leakage-resilient
augmented black-box zero-knowledge argument, if the conditions in Theorem 2 hold.

Proof. We need to construct leakage-resilient augmented black-box simulator. We can
see that it is easy to construct SOEC ,OV̂ ∗ (x,·;·),L

n
I by modifying SOEC ,OV̂ ∗ (x,·;·) defined

in the proof of Theorem 2. For any verifier V ∗, the leakage-resilient augmented black-
box simulator SOEC ,OV̂ ∗ (x,·;·),L

n
I proceeds as follows:

1. Uniformly select rV ∗ ∈ {0, 1}poly(n) for O
V̂ ∗

(x, ·; ·).
2. Make a query to OEC with x and obtain its return δx.
3. Execute the first two round of the protocol.

– Randomly select r1 ∈ {0, 1}∗ and generate pp = ((G1, g1), · · · , (Gn, gn), e, q)
by G(1λ, n; r1). Select r ∈ Z∗q .

– Make a query to O
V̂ ∗

(x, rV ∗ ; ·) with (RP = grn, r1). If it aborts, stop and
output (x, rV ∗ , RP , r1). Else, and receive ({Aj}lj=1, r2, RV) and a leakage
query f1(·, ·). In addition to, simulator obtains V ∗’s current private state s1 =

state
(1)
V ∗ .

18

– Generate leakage query function by setting f ′1(·) = f1(·, r). Query leakage
oracle LnI with f ′1 and obtain f ′1(I).

4. Get y = (X ′, T ′) from {Aj , Tj}lj=1, whereX ′ = {v′1, · · · , v′m} and T ′ = {Ti}ki=1,
by reducing Lx−pp to Exact-Cover problem.

5. Generate pp′ = ((G′1, g
′
1), · · · , (G′n, g′n), e′, q′) by G(1λ,m; r2)

6. If {Aj}j or RV is not valid, stop and output (x, rV , r1, RP ; f1(I)).
7. Otherwise,

– Select b1, · · · , bm ∈R Z∗q′ and set D1 = (b1, · · · , bm).

Compute Bu = (g′
|T ′u|

)
∏
i∈T ′u

bi , u = 1, · · · , k.
– Make a query to O

V̂ ∗
(x, rV ∗ ; ·) with {Bu}u. If V ∗ aborts, stop and output

(x, rV ∗ , r1, RP , {Bu}u, f1(I)). Else, obtain V ∗’s return C, a leakage query
function f2(·, ·) and current private state s2 = state

(2)
V ∗ .

– Generate leakage query function by setting f ′2(·) = f2(·, r, (b1, · · · , bm)).
Query leakage oracle LnI with f ′2 and obtain f ′2(I).

8. If C 6= R
∏m
i=1

V bi, stop and output (x, rV ∗ , r1, RP , {Bu}u, (f ′1(I), f ′2(I))).
9. Else:

– Compute Ã = g
∏n
i=1 ai

n from V ∗’s private state s1 and s2. If it succeeds, set
D2 = Ãr when δx = 1, or randomly selectD2 ∈ Gn when δx = 0; Otherwise,
randomly select D2 ∈ Gn when δx = 0, or fail and stop when δx = 1.

– Make a query to O
V̂ ∗

(x, rV ∗ ; ·) with D = (D1, D2) and receive a leakage
query function f3(·, ·).

– Generate leakage query function by setting f ′3(·) = f3(·, r). Query leakage
oracle LnI with f ′3 obtain f ′3(I).

10. Output (x, rV ∗ , RP , r1, {Bu}u, (D1, D2), (f
′
1(I), f

′
2(I), f

′
3(I))).

Notice that P ’s response is independent with the holding witness I (although P uses
I to compute his last message D2). So, the simulator’s leakages (f ′1(I), f

′
2(I), f

′
3(I))

are identical to the real leakages. By the proof of Theorem 2, the simulator’s out-
put {SOEC ,OV̂ ∗ (x,·;·),L

n
I (x)} is statistically indistinguishable from {LV iewP (x,I)

V ∗ (x)}.
That is, the theorem is correct.

5 2-round computational zero-knowledge arguments for Exact
Cover problem

The goal in this section is to construct a 2-round augmented computational black-box
zero-knowledge argument for Exact Cover problem EC = (ECY , ECN) under the
Decision Multilinear No-Exact-Cover Assumption and the assumption of the existence
of hash functions.

Let {HK}K be a family of hash functions, where K ← Gen(1λ) and HK : Gn →
{0, 1}∗. For any instance x = (X; T) ∈ EC, where |X| = n, |T | = l, and pp =
((G1, g1), · · · , (Gn, gn), e, q)← G(1λ, 1n; r), define the language

Lx−pp =

{
({Aj , Tj}lj=1,K, t) :1)∃a1, · · · , an ∈ Z∗q , Aj = (g|Tj |)

∏
i∈Tj

ai , j ∈ [`]

2)t = HK(g
∏
i ai

n)

}
.

19

Let G and G′ be two groups. For A ∈ G and B ∈ G′, A ⊕ B denotes the exclusive
OR operation on the its binary coded values. The details of the 2-round augmented
computational black-box zero-knowledge argument for Exact Cover problem EC =
(ECY , ECN) is depicted in Figure 5.

P (x = (X, T); I) V (x = (X, T))

({Aj}j , t)←−−−−−−−
(r1, α)

1. Select r1 randomly and set
pp← G(1λ, 1n; r1).

2. Select a1, · · · , an ∈ Z∗q .
3. Compute A = (gn)

∏n
i=1 ai

Aj = (g|Tj |)
∏
i∈Tj

ai , j ∈ [`].

4. Generate K: K ← Gen(1λ;α)
and compute t = HK(A).

1. Generate pp, K using r1 and α.
2. Check the validity of ({Aj}j , t).

If the check fails, abort.
Otherwise, proceed the following
steps.

3. Reduce Lx−pp to Exact Cover
Problem and obtain an instance
y = (X ′, T ′ = {T ′i}ki=1})

where |X ′| = m,T ′i ⊆ [m].
4. Select r2 ∈R {0, 1}∗, and set
pp′ ← G(1λ, 1m; r2), where
pp′ = ({(G′i, g′i)}mi=1, e

′, q′).
5. Select b1, · · · , bm ∈ Z∗q′ , and let

Bu = (g′
|T ′u|

)
∏
i∈T ′u

bi , u ∈ [k],

B = (g′m)
∏m
i=1 bi .

6. Compute Ã = e({Aj}j∈I) and
set D = HK(Ã⊕B).

{Bu}u, D−−−−−−−→
r2

1. Obtain y and a witness I ′ ⊆
[k] from ({Aj , Tj}lj=1,K, t) and
a1, · · · , an.

2. Generate pp′ ← G(1λ, 1m; r2)

3. Compute B̃ = e′({Bu}u∈I′)
4. Accept iff D = HK(A⊕ B̃)

Figure 5: 2-round computational ZKA for Exact Cover Problem

Theorem 4. Assume {HK}K is a family of collision-resist hash functions and that the
Decision Multilinear No-Exact-Cover Assumption holds. The construction in Figure 4
is an interactive argument for x ∈ ECY .

Proof. Completeness. It is obvious to see that if x ∈ ECY and V executes the pro-
tocol honestly, P can compute the committed value of {Aj}j by Ã = e({Aj}j∈I) =

g
∏
i∈[n] ai

n using the witness I for x ∈ ECY , and V can compute the committed value
of {Bu}u by B̃ = e′({Bu}u∈I′) = g′m

∏
i∈[m] bi using the witness I ′ for y ∈ ECY ,

hence then D = HK(Ã⊕B) = HK(A⊕ B̃). Thus, the completeness follows.

20

Soundness. If x = (X; T) ∈ ECN , the probability that the malicious prover P ∗

outputs the correct {Bu}u, D = HK(Ã ⊕ B) is negligible. In fact, by the Decision
Multilinear No-Exact-Cover Assumption, P ∗ can get Ã = gan only from the message
({Aj}j , t, r1, α) except for a negligible probability.

On the contrary, assume that there is a PPT adversary A that can obtain Ã = gan
from ({Aj}j , HK(A), pp,K) with non-negligible probability, then we can construct a
PPT distinguisherD that can distinguish ({Aj}j , gan) and ({Aj}j , gr̃n), where r̃ ∈R Z∗q ,
with non-negligible probability. D works as follows:

Given ({Aj}j , A∗ ∈ Gn, pp), D generates K ← Gen(1λ), and invokes A with
({Aj}j , HK(A∗), pp,K), if A outputs A∗, D outputs 1, and outputs 0 otherwise.

Since x = (X; T) ∈ ECN , if A∗ = gr̃n, HK(A∗) is independent of {Aj}j , the
property of the hash functions guarantees that no PPT algorithm can obtain A∗ from
HK(A∗) except for a negligible probability, thus D can distinguish ({Aj}j , gan) and
({Aj}j , gr̃n) with non-negligible probability. It contradicts the Decision Multilinear No-
Exact-Cover Assumption. Therefore, there is no PPT algorithm can obtain Ã = gan from
({Aj}j , t, r1, α) except for a negligible probability.

In a word, P ∗ can produce correct D = HK(Ã ⊕ B) with negligible probability
and make honest V accept his proof with negligible probability. Thus the soundness
follows.

This completes the proof. �

Theorem 5. Under the same condition as Theorem 4, the construction in Figure 5 is
augmented computational black-box zero-knowledge.

Proof. For any verifier V ∗, the augmented black-box simulator SOEC ,OV̂ ∗ (x,·;·) pro-
ceeds as follows:

1. Uniformly select rV ∗ ∈ {0, 1}poly(n) for O
V̂ ∗

(x, ·; ·).
2. Make a query to OEC with x and obtain its return bx.
3. Invoke O

V̂ ∗
(x, rV ∗ ; ·) and receive the message {Aj}j , t, (r1, α) and V ∗’s current

private state s1 = state
(1)
V ∗

4. Generate pp,K using r1 and α respectively. Check the validity of ({Aj}j , t). If the
check fails, abort. Otherwise, proceed the following steps.

5. Obtain y and pp′ as an honest prover.
6. Compute all {Bu}u and B as an honest prover.
7. Compute Ã from V ∗’s current state s1 such that t = HK(Ã). If it fails or bx = 0,

select Ã ∈R Gn. And then compute D = HK(Ã⊕B).
8. Output (x, rV ∗ , {Bu}u, r2, D).

Next, we will prove that in the condition that the verifier V ∗ plays the protocol
with an honest prover P holding witness for the proven statement x, the output of
the simulator {SOEC ,OV̂ ∗ (x,·;·)(x)} is computationally indistinguishable from the view
{V iewP (x,I)

V ∗ (x)} of the verifier V ∗.
Honest zero knowledge: If V ∗ produces ({Aj}j , t) honestly, V ∗’s private state s1

contains a1, · · · , an ∈ Z∗q such that Aj = (g|Tj |)
∏
i∈Tj

ai and t = HK(g
∏n
i=1 ai

n). So,
the simulator can get the same A as the prover will do. Therefore, Iif V ∗ is honest,for

21

any randomly selected (rV ∗ , r2, (b1, · · · , bm)), it holds that
Pr
[
V iew

P (x,I)
V ∗ (x) = (x, rV ∗ , {Bu}u, r2, D)

]
= Pr

[
SOEC ,OV̂ ∗ (x,·;·)(x) = (x, rV ∗ , {Bu}u, r2, D)

]
Zero knowledge: For the malicious verifier V ∗, {SOEC ,OV̂ ∗ (x,·;·)(x)} may differ

from {V iewP (x,I)
V ∗ (x)} only when V ∗ produces ({Aj}j , t) dishonestly. That is, V ∗’s

private state s1 does not contain a1, · · · , an ∈ Z∗q such that Aj = (g|Tj |)
∏
i∈Tj

ai and

t = HK(g
∏n
i=1 ai

n). In this condition, the prover P will compute Ã = e({Aj}j∈I) and
set D = HK(Ã⊕ B) while the simulator SOEC ,OV̂ ∗ (x,·;·) randomly selects Ã ∈R Gn
and sets D = HK(Ã⊕B).

If V ∗ produces ({Aj}j , t) dishonestly and y /∈ ECY , P randomly selects B and
computes D = HK(Ã ⊕ B) while the simulator randomly selects Ã and B, com-
putes D = HK(Ã⊕B). In this case, for Ã computed by P , ({Aj}lj=1, {Bu}ku=1, D =

HK(Ã⊕B)) and ({Aj}lj=1, {Bu}ku=1, D = HK(Ã⊕UG′m)) are indistinguishable, and
meanwhile, ({Aj}lj=1, {Bu}ku=1, D = HK(Ã⊕UG′m)) and ({Aj}lj=1, {Bu}ku=1, D =

HK(UGn⊕B)) are indistinguishable. Therefore, {SOEC ,OV̂ ∗ (x,·;·)(x)} is computation-
ally indistinguishable from the view of V ∗. Here, UGn (UG′m) is uniformly distributed
on Gn (G′m).

Assume V ∗ produces ({Aj}j , t) dishonestly but y ∈ ECY . This means that there

exist a1, · · · , an ∈ Z∗q such that Aj = (g|Tj |)
∏
i∈Tj

ai and t = HK(g
∏
i∈[n] ai

n). If

V ∗ is unable to get a1, · · · , an ∈ Z∗q , V ∗ will be unable to compute correct B̃ =

B. As above, we can obtain {SOEC ,OV̂ ∗ (x,·;·)(x)} is computationally indistinguishable
from the view of V ∗. If V ∗ is able to get a1, · · · , an ∈ Z∗q , the simulator can also
obtain a1, · · · , an ∈ Z∗q , then the simulator is the same as P . In the case that the
simulator cannot obtain a1, · · · , an ∈ Z∗q but V ∗ can, the simulator fails. This happens
with a negligible probability. On the contrary, if V ∗ computes a1, · · · , an ∈ Z∗q with
noticeable probability, V ∗ must can determine whether Tj ∈ I for any Tj ∈ T with
noticeable probability (for convenience, we consider when there exists only one witness
I for the statement x = (X; T)): V ∗ computes a1, · · · , an ∈ Z∗q from T − {Tj}, if
succeeds then accepts “Tj /∈ I”, otherwise, accepts “Tj ∈ I”.

Combining the cases above, {SOEC ,OV̂ ∗ (x,·;·)(x)} and {V iewP (x,I)
V ∗ (x)} are com-

putationally indistinguishable in the condition that V ∗ produces ({Aj}j , t) dishonestly.
This completes the proof. �

References

1. M. Abe, S. Fehr. Perfect NIZK with adaptive soundness. In TCC, pages 118-136, 2007.
2. W. Aiello, J. Hstad. Statistical zero-knowledge languages can be recognized in two rounds.

Journal of Computer and System Science, 42(3):327-345, 1991.
3. B. Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106-115,

2001.
4. G. Brassard, D. Chaum, and C. Crépeau. Minimum Disclosure Proofs of Knowledge. J.

Comput. Syst. Sci., 37(2):156C189, 1988.

22

5. G. Brassard, C. Crépeau and M. Yung. Constant round perfect zero knowledge computation-
ally convincing protocols. Theoretical Computer Science, Vol. 84, No. 1, 1991.

6. B. Barak, Y. Lindell. Strict polynomial-time in simulation and extractor. In 34th ACM Sym-
posium on the Theory of Computing, 2002:484-493.

7. M. Bellare, A. Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In CRYPTO, pages 273-289, 2004.

8. N. Bitansky, O. Paneth. Point obfuscation and 3-round zero knowledge. TCC 2012. LNCS,
Volume 7194, pages 189-207, 2012.

9. N. Bitansky, O. Paneth. On the impossibility of approximate obfuscation and application to
resettable cryptography. In STOC 2013, pages 241-250.

10. N. Bitansky, O. Paneth. On Non-Black-Box Simulation and the Impossibility of Approxi-
mate Obfuscation. SIAM J. Comput. 44(5), 1325-1383(2015).

11. Kai-Min Chung, Huijia Lin, R. Pass. On constant round concurrent zero knowledge from
falsifiable. http://eprint.iacr.org/2012/563.pdf

12. Kai-Min Chung, R. Pass, K. Seth. Non-black-box simulation from one-way functions and
applications to resettable security. STOC, 2013, pp. 231-240.

13. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography (extended abstract). In
STOC, pages 542-552, 1991.

14. C. Dwork, M. Naor, O. Reingold, and L. Stockmeyer. Magic functions. In Memoriam:
Bernard M. Dwork 1923-1998. Journal of the ACM, 50(6):852-921, 2003.

15. C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. In STOC, pages 409-418,
1998.

16. L. Fortnow. The complexity of perfect zero-knowledge. In Advance in Computing Research,
Volume 5, pages 327-343,1989.

17. S. Garg, C. Gentry, A. Sahai. Witness encryption and its applications. In STOC 2013.
18. S. Garg, A. Jain, A. Sahai. Leakage-resilient zero knowledge. In CRYPTO, pages 297-315,

2011.
19. V. Goyal, R. Moriarty, R. Ostrovsky, A. Sahaiy. Concurrent statistical zero-knowledge argu-

ments for NP from one way functions. http://eprint.iacr.org/2006/400.
20. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof

Systems. SIAM J. Comput., 18(1):186-208, 1989.
21. O. Goldreich, Y. Oren. Definition And Properties of Zero-Knowledge Proof Systems. J.

Cryptology, 7(1): 1-32, 1994.
22. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI- ACRYPT,

pages 321-340, 2010.
23. S. Hada, T. Tanaka. On the existence of 3-round zero-knowledge protocols. In CRYPTO,

pages 408-423, 1998.
24. S. Kiyoshima. Statistical concurrent non-malleable zero-knowledge from one-way functions.

In CRYPTO, LNCS 9216, pages 85-106, 2015.
25. S. Kiyoshima. Constant-round leakage-resilient zero-knowledge from collision resistance.

In: Fischlin, M., Coron, J.-S. (eds.): EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 93-
123(2016).

26. Hongda Li, Dengguo Feng. Constant-Round Zero-Knowledge Proofs of Knowledge
with Strict Polynomial-time Extractors for NP. Science China Information Sciences,
57(1):012111:1-012111:13

27. Daniele Micciancio, Shien Jin Ong, Amit Sahai, Salil P. Vadhan. Concurrent zero knowledge
without complexity assumptions. In TCC, pages 1-20, 2006.

28. Minh-Huyen Nguyen, Shien Jin Ong, and Salil P. Vadhan. Statistical zero- knowledge ar-
guments for np from any one-way function. In FOCS, pages 3-14. IEEE Computer Society,
2006.

23

29. M. Naor, R. Ostrovsky, R. Venkatasan, M. Yung. Perfect zero knowledge arguments for
NP can be based on general complexity assumptions. Advances in cryptology - Crypto 92
Proceedings, Lecture Notes in Computer Science Vol. 740, E. Brickell ed., Springer-Verlag,
1992.

30. C. Orlandi, R. Ostrovsky, V. Rao, I. Visconti. Statistical Concurrent Non-Malleable Zero
Knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 167-191. Springer, Hei-
delberg (2014).

31. R. Ostrovsky, G. Persiano, I. Visconti. Constant-round concurrent NMWI and its relation to
NMZK. ECCC Report No. 95, 2006. 5 Theory of Cryptography, Fifth Theory of Cryptogra-
phy Conference, TCC 2008, New York, USA, March 19-21, 2008.

32. O. Pandey. Achieving constant round leakage-resilient zero knowledge. In: Lindell, Y. (ed.)
TCC 2014. LNCS, vol. 8349, pp. 146-166. Springer, Heidelberg (2014).

33. R. Pass, A. Rosen. New and improved constructions of non-malleable cryptographic proto-
cols. In Proc. 37th STOC, ACM, 2005, pages 533-542.

34. D. Gupta, A. Sahai. On Constant-Round Concurrent Zero-Knowledge from a Knowledge
Assumption. http://eprint.iacr.org/2012/572

