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Abstract
In November 2017, Juan edro Hecht and Jorge Alejandro Kamlofsky submitted a quaternions/octo-

nions based Diffie-Hellman key agreement protocol HK17 to NIST post quantum cryptography project.
Daniel J. Bernstein and Tanja Lange showed how to break the scheme in O(p) steps where p is the
modulo used in the scheme. One may wonder whether the scheme could be secure if p is sufficiently
large (e.g., p is 1000 bits long)? In this note, we show that the scheme could be broken by solving a
homogeneous quadratic equation system of eight equations in four unknowns. Thus no matter how big
the p it is, it could be trivailly broken using Kipnis and Shamir’s relinearization techniques.

1 Octonions

The HK17 protocol [3] submitted to NIST is based on quaternions and octonions. To simplify our discussion,
we only discuss the octonions based HK17 in this note. Octonion (see, e.g., Baez [1]) is the largest among
the four normed division algebras: real numbers R, complex numbers C, quaternions H, and octonions O.
The real numbers have a complete order while the complex numbers are not ordered. The quaternions are
not commutative and the octonions are neither commutative nor associative. Quaternions were invented by
Hamilton in 1843. Octonions were invented by Graves (1844) and Cayley (1845) independently.

In mathematics, a vector space commonly refers to a finite-dimensional module over the real number
field R. An algebra A refers to a vector space that is equipped with a multiplication map × : A2 → A and
a nonzero unit 1 ∈ A such that 1 × a = a × 1 = a. The multiplication a × b is usually abbreviated as
a · b or ab. An algebra A is a division algebra if, for any a, b ∈ A, ab = 0 implies either a = 0 or b = 0.
Equivalently, A is a division algebra if and only if the operations of left and right multiplication by any
nonzero element are invertible. A normed division algebra is an algebra that is also a normed vector space
with ‖ab‖= ‖a‖‖b‖.

An algebra is power-associative if the sub-algebra generated by any single element is associative and an
algebra is alternative if the sub-algebra generated by any two elements is associative. It is straightforward
to show that if the sub-algebra generated by any three elements is associative, then the algebra itself is
associative. Artin’s theorem states that an algebra is alternative if and only if for all a, b ∈ A, we have

(aa)b = a(ab), (ab)a = a(ba), (ba)a = b(aa).

*The work reported in this note was done when the first author is visiting Qatar University. The work is supported by Qatar
Foundation Grants NPRP8-2158-1-423 and NPRP X-063-1-014.
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It is well known that R, C, H, O are the only normed division algebras and O is an alternative division
algebra. It is also known that division algebras can only have dimension 1, 2, 4, or 8.

Using the same approach of interpreting a complex number a + bi as a pair [a, b] of real numbers,
quaternions H (respectively, octonions O) can be constructed from C (respectively, from H) using the
Cayley-Dickson construction formula [a, b] where a, b ∈ C (respectively, a, b ∈ H). The addition and
multiplication are defined as follows.

[a, b] + [c, d] = [a+ c, b+ d], [a, b][c, d] = [ac− db∗, a∗d+ cb] (1)

where a, b, c, d ∈ C (respectively, a, b, c, d ∈ H) and a∗ is the conjugate of a. Specifically, the conjugate
of a real number a is defined as a∗ = a and the conjugate of a complex number or a quaternion number
[a, b] is defined by [a, b]∗ = [a∗,−b]. Throughout the paper, we will use the following notations for real and
imaginary part of an octonion a ∈ O,

Re(a) = (a+ a∗)/2 ∈ R, Im(a) = (a− a∗)/2.

It is straightforward to check that for a complex number (or a quaternion or an octonion), we have

[a, b][a, b]∗ = [a, b]∗[a, b] = ‖[a, b]‖2[1, 0].

Thus all of R, C, H, O are division algebras (that is, each non-zero element has a multiplicative inverse).
Though Cayley-Dickson construction provides a nice approach to study normed division algebras system-
atically, it is more intuitive to use vectors in R4 to denote quaternion numbers and vectors in R8 to denote
octonion numbers.

Each octonion number is a vector a = [a0, · · · , a7] ∈ R8. The norm of an octonion a = [a0, · · · , a7]
is defined as ‖a‖=

√
a20 + · · ·+ a27. By the inductive Cayley-Dickson construction, the conjugate of an

octonion a is a∗ = [a0,−a1, · · · ,−a7] and the inverse is a−1 = a∗/‖a‖2.
For each octonion number a = [a0, · · · , a7], let α = [a1, · · · , a7] and

Ba =



a0 a4 a7 −a2 a6 −a5 −a3
−a4 a0 a5 a1 −a3 a7 −a6
−a7 −a5 a0 a6 a2 −a4 a1
a2 −a1 −a6 a0 a7 a3 −a5
−a6 a3 −a2 −a7 a0 a1 a4
a5 −a7 a4 −a3 −a1 a0 a2
a3 a6 −a1 a5 −a4 −a2 a0


Using the matrix Ba, we can define two associated 8× 8 matrices

Al
a =

(
a0 α
−αT Ba

)
and Ar

a =

(
a0 α
−αT BT

a

)
(2)

Then for two octonions a = [a0, · · · , a7] and b = [b0, · · · , b7], we can add them as a+b = [a0+b0, · · · , a7+
b7] and multiply them as ab = bAl

a = aAr
b. We also note that

Al
a−1 =

1

‖a‖2

(
a0 −α
αT BT

a

)
and Ar

a−1 =
1

‖a‖2

(
a0 −α
αT Ba

)
(3)

In the following, we first present some properties of the two associate matrices. For any octonion
a = [a0, · · · , a7], it is straightforward to show that

Baα
T = BT

a α
T = a0α

T (4)
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and
BaBa = αTα− ‖a‖2I7×7 + 2a0Ba

BT
aB

T
a = αTα− ‖a‖2I7×7 + 2a0B

T
a

BaB
T
a = −αTα+ ‖a‖2I7×7

BT
aBa = −αTα+ ‖a‖2I7×7

(5)

Thus we have

Al
aA

r
a =

(
a20 − ααT a0α+ αBT

a

−a0αT −Baα
T −αTα+BaB

T
a

)

=

(
a20 − ααT a0α+ αBT

a

−a0αT −BT
a α

T −αTα+BT
aBa

)
= Ar

aA
l
a

=

(
a20 − ααT 2a0α

−2a0αT −αTα+BaB
T
a

)
(6)

By substituting (5) into (6), we get

Al
aA

r
a = Ar

aA
l
a

=

(
2a20 − ‖a‖2 2a0α

−2a0αT −2αTα+ ‖a‖2I7×7

)
(7)

Similarly, we can get

Al
aA

l
a =

(
a20 − ααT a0α+ αBa

−a0αT −Baα
T −αTα+BaBa

)

=

(
2a20 − ‖a‖2 2a0α

−2a0αT 2a0Ba − ‖a‖2I7×7

)
= 2a0A

l
a − ‖a‖2I8×8

(8)

and

Ar
aA

r
a =

(
a20 − ααT a0α+ αBa

−a0αT −Baα
T −αTα+BT

aB
T
a

)

=

(
2a20 − ‖a‖2 2a0α

−2a0αT 2a0B
T
a − ‖a‖2I7×7

)
= 2a0A

r
a − ‖a‖2I8×8

(9)

Finally, it is easy to check that

Al
aA

l
a−1 = Al

a−1A
l
a = Ar

aA
r
a−1 = Ar

a−1A
r
a = I8×8.

But generally, we have Al
aA

r
a−1 6= I8×8. We conclude this section with the following theorem that will be

used frequently throughout this paper.

Theorem 1.1 For a ∈ O, we have a2 = 2Re(a)a− ‖a‖21 where 1 = [1, 0, 0, 0, 0, 0, 0, 0].

Proof. The identity a∗ = 2Re(a)1− a implies ‖a‖2= aa∗ = 2Re(a)a− a2. 2
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Theorem 1.2 For all a,b ∈ O, we have (ab)∗ = b∗a∗.

Proof. By the fact that the octonion algebra is alternative, we have

(ab)(b∗a∗) = a(bb∗)a∗ = ‖a‖2‖b‖2.

Thus (ab)−1 = (b∗a∗)/(‖a‖2‖b‖2). Since (ab)−1 = (ab)∗/(‖ab‖2), the theorem is proved. 2

Theorem 1.3 (Moufang identities [2]) Let a,b, c ∈ O. Then we have

c(a(cb)) = ((ca)c)b
a(c(bc)) = ((ac)b)c
(ca)(bc) = (c(ab))c
(ca)(bc) = c((ab)c)

2 Octonions O(Zq) over Zq and Octonions O(Fq) over Fq
In the preceding section, we briefly discussed the properties of octonions. Instead of using real numbers,
one may also construct “octonions” over any field Fq with q = pm or over any ring Zq with q = pr11 · · · prmm .
In this section, we discuss octonions O(Zq) over Zq. Generally, all theorems except division-related results
for octonions hold in O(Zq). It is straightforward to show that O(Zq) is a normed algebra. However, it is
not a division algebra.

An octonion z ∈ O(Zq) is isotropic if ‖z‖= 0. By Theorem 6.26 in Lidl and Niederreiter [5, page 282],
there are q7+q4−q3 = (q4−1)(q3+1)+1 isotropic vectors in Fq

8. Let a ∈ O(Zq) be a non-zero isotropic
octonion. Then aa∗ = ‖a‖2= 0. That is, a has no multiplicative inverse. It follows that O(Zq) is not a
division algebra. This also shows that O(Zq) is not nicely normed. Note that an algebra over Zq is nicely
normed if a+ a∗ ∈ Zq and aa∗ = a∗a > 0 for all non zero a ∈ O(Zq).

It is straightforward that Theorem 1.1 holds for O(Zq). We use an alternative proof to show that Theorem
1.2 holds for O(Zq) also. Note that the proof of Theorem 1.2 is not valid for O(Zq) since it uses octonion
inverse properties.

Theorem 2.1 For all a,b ∈ O(Zq), we have (ab)∗ = b∗a∗.

Proof. By the definition in (2), we have Ar
a∗ = (Ar

a)
T . First, the identity 1b∗a∗ = 1(Ar

b)
T (Ar

a)
T =

1(Ar
aA

r
b)

T implies that b∗a∗ is the first column of Ar
aA

r
b. Secondly, the identity 1ab = 1(Ar

aA
r
b) implies

that (ab)∗ is also the first column of Ar
aA

r
b. It follows that (ab)∗ = b∗a∗. 2

Finally, Theorem 1.1 implies the following result.

Theorem 2.2 For an isotropic octonion a ∈ O(Zq), we have a2 = 2Re(a)a.

For more related discussion, the reader is referred to Wang and Malluhi [7].

3 HK17

In this section, we describe the HK17 protocol. In the HK17 proposal [3], the authors used a normaliza-
tion process for octonions, it is not clear from the proposal description whether the computation will work
correctly if the normalization is used. Instead, we believe the protocol is essentially based on O(Fp) for a
prime p. In the following, we first give a slightly different description of the HK17 protocol than the one in
[3]. It is straightforward to show that our description is more general and the HK17 in [3] is a special case.
The HK17 protocol proceeds as follows:
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1. Alice chooses two octonions oA,oB ∈ O(Fp) where p = 13 or 251 or 65521 or 4294967279.

2. Alice sends both oA and oB to Bob (in the public channel).

3. Alice chooses two private polynomials f1(x), f2(x) ∈ Fp[x] as her private key.

4. Bob chooses two private polynomials g1(x), g2(x) ∈ Fp[x] as his private key.

5. Alice sends rA = f1(oA)oBf2(oA) to Bob over the public channel.

6. Bob sends rB = g1(oA)oBg2(oA) to Alice over the public channel.

7. The shared secret is kA = f1(oA)rBf2(oA) and kB = g1(oA)rAg2(oA).

4 Break HK17 in O(1) steps

For any given octonion a ∈ O(Fp), Theorem 1.1 shows that a2 = 2Re(a)a−‖a‖21 where 1 = [1, 0, 0, 0, 0, 0, 0, 0].
It follows that there exist x0, x1, x2, x3, y0, y1, y2, y3 ∈ Zp such that

f1(oA) = x0oA + x11
f2(oA) = x2oA + x31
g1(oA) = y0oA + y11
g2(oA) = y2oA + y31

Since rA = f1(oA)oBf2(oA) and rB = g1(oA)oBg2(oA), we have

rA = (x0oA + x11)oB(x2oA + x31)
rB = (y0oA + y11)oB(y2oA + y31)

(10)

Let the observed (transmitted over public channels) values oA,oB, rA, rB be as follows:

oA = [oA0 , o
A
1 , o

A
2 , o

A
3 , o

A
4 , o

A
5 , o

A
6 , o

A
7 ]

oB = [oB0 , o
B
1 , o

B
2 , o

B
3 , o

B
4 , o

B
5 , o

B
6 , o

B
7 ]

rA = [rA0 , r
A
1 , r

A
2 , r

A
3 , r

A
4 , r

A
5 , r

A
6 , r

A
7 ]

rB = [rB0 , r
B
1 , r

B
2 , r

B
3 , r

B
4 , r

B
5 , r

B
6 , r

B
7 ]
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By the first identity of (10), one can establish a homogeneous quadratic equation system of eight equations
in four unknowns x0, x1, x2, x3 as follows.

[rA0 , r
A
1 , r

A
2 , r

A
3 , r

A
4 , r

A
5 , r

A
6 , r

A
7 ] = (x0oA + x11)oB(x2oA + x31)

= [x0o
A
0 + x1, x0o

A
1 , x0o

A
2 , x0o

A
3 , x0o

A
4 , x0o

A
5 , x0o

A
6 , x0o

A
7 ]oB[x2o

A
0 + x3, x2o

A
1 , x2o

A
2 , x2o

A
3 , x2o

A
4 , x2o

A
5 , x2o

A
6 , x2o

A
7 ]

= [x0o
A
0 + x1, x0o

A
1 , x0o

A
2 , x0o

A
3 , x0o

A
4 , x0o

A
5 , x0o

A
6 , x0o

A
7 ]

×



oB0 oB1 oB2 oB3 oB4 oB5 oB6 oB7
−oB1 oB0 −oB4 −oB7 oB2 −oB6 oB5 oB3
−oB2 oB4 oB0 −oB5 −oB1 oB3 −oB7 oB6
−oB3 oB7 oB5 oB0 −oB6 −oB2 oB4 −oB1
−oB4 −oB2 oB1 oB6 oB0 −oB7 −oB3 oB5
−oB5 oB6 −oB3 oB2 oB7 oB0 −oB1 −oB4
−oB6 −oB5 −oB7 −oB4 oB3 oB1 oB0 −oB2
−oB7 −oB3 −oB6 oB1 −oB5 oB4 oB2 oB0


×[x2oA0 + x3, x2o

A
1 , x2o

A
2 , x2o

A
3 , x2o

A
4 , x2o

A
5 , x2o

A
6 , x2o

A
7 ]

=



x0o
A
0 o

B
0 + x1o

B
0 − x0oA1 oB1 − x0oA2 oB2 − x0oA3 oB3 − x0oA4 oB4 − x0oA5 oB5 − x0oA6 oB6 − x0oA7 oB7

x0o
A
0 o

B
1 + x1o

B
1 + x0o

A
1 o

B
0 + x0o

A
2 o

B
4 + x0o

A
3 o

B
7 − x0oA4 oB2 + x0o

A
5 o

B
6 − x0oA6 oB5 − x0oA7 oB3

x0o
A
0 o

B
2 + x1o

B
2 − x0oA1 oB4 + x0o

A
2 o

B
0 + x0o

A
3 o

B
5 + x0o

A
4 o

B
1 − x0oA5 oB3 − x0oA6 oB7 − x0oA7 oB6

x0o
A
0 o

B
3 + x1o

B
3 − x0oA1 oB7 − x0oA2 oB5 + x0o

A
3 o

B
0 + x0o

A
4 o

B
6 + x0o

A
5 o

B
2 − x0oA6 oB4 + x0o

A
7 o

B
1

x0o
A
0 o

B
4 + x1o

B
4 + x0o

A
1 o

B
2 − x0oA2 oB1 − x0oA3 oB6 + x0o

A
4 o

B
0 + x0o

A
5 o

B
7 + x0o

A
6 o

B
3 − x0oA7 oB5

x0o
A
0 o

B
5 + x1o

B
5 − x0oA1 oB6 + x0o

A
2 o

B
3 − x0oA3 oB2 − x0oA4 oB7 + x0o

A
5 o

B
0 + x0o

A
6 o

B
1 + x0o

A
7 o

B
4

x0o
A
0 o

B
6 + x1o

B
6 + x0o

A
1 o

B
5 − x0oA2 oB7 + x0o

A
3 o

B
4 − x0oA4 oB3 − x0oA5 oB1 + x0o

A
6 o

B
0 + x0o

A
7 o

B
2

x0o
A
0 o

B
7 + x1o

B
7 + x0o

A
1 o

B
3 + x0o

A
2 o

B
6 − x0oA3 oB1 + x0o

A
4 o

B
5 − x0oA5 oB4 − x0oA6 oB2 + x0o

A
7 o

B
0



T

×



x2o
A
0 + x3 x2o

A
1 x2o

A
2 x2o

A
3 x2o

A
4 x2o

A
5 x2o

A
6 x2o

A
7

−x2oA1 x2o
A
0 + x3 −x2oA4 −x2oA7 x2o

A
2 −x2oA6 x2o

A
5 x2o

A
3

−x2oA2 x2o
A
4 x2o

A
0 + x3 −x2oA5 −x2oA1 x2o

A
3 −x2oA7 x2o

A
6

−x2oA3 x2o
A
7 x2o

A
5 x2o

A
0 + x3 −x2oA6 −x2oA2 x2o

A
4 −x2oA1

−x2oA4 −x2oA2 x2o
A
1 x2o

A
6 x2o

A
0 + x3 −x2oA7 −x2oA3 x2o

A
5

−x2oA5 x2o
A
6 −x2oA3 x2o

A
2 x2o

A
7 x2o

A
0 + x3 −x2oA1 −x2oA4

−x2oA6 −x2oA5 −x2oA7 −x2oA4 x2o
A
3 x2o

A
1 x2o

A
0 + x3 −x2oA2

−x2oA7 −x2oA3 −x2oA6 x2o
A
1 −x2oA5 x2o

A
4 x2o

A
2 x2o

A
0 + x3


(11)
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Similarly, by the second identity of (10), one can establish a homogeneous quadratic equation system of
eight equations in four unknowns y0, y1, y2, y3 as follows:

[rB0 , r
B
1 , r

B
2 , r

B
3 , r

B
4 , r

B
5 , r

B
6 , r

B
7 ]

=



y0o
A
0 o

B
0 + y1o

B
0 − y0oA1 oB1 − y0oA2 oB2 − y0oA3 oB3 − y0oA4 oB4 − y0oA5 oB5 − y0oA6 oB6 − y0oA7 oB7

y0o
A
0 o

B
1 + y1o

B
1 + y0o

A
1 o

B
0 + y0o

A
2 o

B
4 + y0o

A
3 o

B
7 − y0oA4 oB2 + y0o

A
5 o

B
6 − y0oA6 oB5 − y0oA7 oB3

y0o
A
0 o

B
2 + y1o

B
2 − y0oA1 oB4 + y0o

A
2 o

B
0 + y0o

A
3 o

B
5 + y0o

A
4 o

B
1 − y0oA5 oB3 − y0oA6 oB7 − y0oA7 oB6

y0o
A
0 o

B
3 + y1o

B
3 − y0oA1 oB7 − y0oA2 oB5 + y0o

A
3 o

B
0 + y0o

A
4 o

B
6 + y0o

A
5 o

B
2 − y0oA6 oB4 + y0o

A
7 o

B
1

y0o
A
0 o

B
4 + y1o

B
4 + y0o

A
1 o

B
2 − y0oA2 oB1 − y0oA3 oB6 + y0o

A
4 o

B
0 + y0o

A
5 o

B
7 + y0o

A
6 o

B
3 − y0oA7 oB5

y0o
A
0 o

B
5 + y1o

B
5 − y0oA1 oB6 + y0o

A
2 o

B
3 − y0oA3 oB2 − y0oA4 oB7 + y0o

A
5 o

B
0 + y0o

A
6 o

B
1 + y0o

A
7 o

B
4

y0o
A
0 o

B
6 + y1o

B
6 + y0o

A
1 o

B
5 − y0oA2 oB7 + y0o

A
3 o

B
4 − y0oA4 oB3 − y0oA5 oB1 + y0o

A
6 o

B
0 + y0o

A
7 o

B
2

y0o
A
0 o

B
7 + y1o

B
7 + y0o

A
1 o

B
3 + y0o

A
2 o

B
6 − y0oA3 oB1 + y0o

A
4 o

B
5 − y0oA5 oB4 − y0oA6 oB2 + y0o

A
7 o

B
0



T

×



y2o
A
0 + y3 y2o

A
1 y2o

A
2 y2o

A
3 y2o

A
4 y2o

A
5 y2o

A
6 y2o

A
7

−y2oA1 y2o
A
0 + y3 −y2oA4 −y2oA7 y2o

A
2 −y2oA6 y2o

A
5 y2o

A
3

−y2oA2 y2o
A
4 y2o

A
0 + y3 −y2oA5 −y2oA1 y2o

A
3 −y2oA7 y2o

A
6

−y2oA3 y2o
A
7 y2o

A
5 y2o

A
0 + y3 −y2oA6 −y2oA2 y2o

A
4 −y2oA1

−y2oA4 −y2oA2 y2o
A
1 y2o

A
6 y2o

A
0 + y3 −y2oA7 −y2oA3 y2o

A
5

−y2oA5 y2o
A
6 −y2oA3 y2o

A
2 y2o

A
7 y2o

A
0 + y3 −y2oA1 −y2oA4

−y2oA6 −y2oA5 −y2oA7 −y2oA4 y2o
A
3 y2o

A
1 y2o

A
0 + y3 −y2oA2

−y2oA7 −y2oA3 −y2oA6 y2o
A
1 −y2oA5 y2o

A
4 y2o

A
2 y2o

A
0 + y3


(12)

For a system of n(n+ 1)/2 homogeneous quadratic equations with n variables x0, · · · , xn−1, the folk-
lore linearization technique replaces each quadratic monomial xixj with a new variable yij and obtains
n(n+ 1)/2 linear equations with n(n+ 1)/2 variables. The resulting equation system could be efficiently
solved using Gauss elimination algorithm. The value of the original variable xi can be recovered as one
of the square roots of yii. Kipnis and Shamir [4] introduced a relinearization algorithm to solve quadratic
equation systems with l ≥ 0.09175n2 linearly independent homogeneous quadratic equations in n variables.
This is achieved by adding additional nonlinear equations. In the simplest form, we have (xi0xi1)(xi2xi3) =
(xi0xi2)(xi1xi3) = (xi0xi3)(xi1xi2). Thus we can add yi0i1yi2i3 = yi0i2yi1i3 = yi0i3yi1i2 . Kipnis and
Shamir [4] showed that 5 homogeneous quadratic equations in 4 variables could be solved using their relin-
earization techniques.

In a summary, the relinearization technique could be used to obtain the values of x0, x1, x2, x3 from
the equation system (11) and obtain the values of y0, y1, y2, y3 from the equation system (12). In other
words, one can obtain the values of f1(oA), f2(oA), g1(oA), g2(oA) from the publicly observed values
oA,oB, rA, rB . Armed with the values of f1(oA), f2(oA), g1(oA), g2(oA), one can obtain kA(= kB) =
f1(oA)rBf2(oA).

In case that the protocol HK17 is based on quaternions, the homogeneous quadratic equation system
(11) (respectively, (12)) contains four equations in four unknowns. Thus relinearization techniques could
not be used to solve the equation system. However, the resulting equation system could be solved using
Buchberger’s Gröbner basis algorithm (see, e.g., [6]) or Faugere’s F4 and F5 algorithms.

5 HK17 over O(Zq)?

In the preceding section, we show that HK17 could not be secure on any O(Fp). We may expect that HK17
is secure(?) over O(Zq) for large enough q = p1p2. But is it not quantum resistant.
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