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Abstract

In November 2017, Juan edro Hecht and Jorge Alejandro Kamlofsky submitted a quaternions/octo-
nions based Diffie-Hellman key agreement protocol HK17 to NIST post quantum cryptography project.
Daniel J. Bernstein and Tanja Lange showed how to break the scheme in O(p) steps where p is the
modulo used in the scheme. One may wonder whether the scheme could be secure if p is sufficiently
large (e.g., p is 1000 bits long)? In this note, we show that the scheme could be broken by solving a
homogeneous quadratic equation system of eight equations in four unknowns. Thus no matter how big
the p it is, it could be trivailly broken using Kipnis and Shamir’s relinearization techniques.

1 Octonions

The HK17 protocol [3]] submitted to NIST is based on quaternions and octonions. To simplify our discussion,
we only discuss the octonions based HK17 in this note. Octonion (see, e.g., Baez [1]]) is the largest among
the four normed division algebras: real numbers R, complex numbers C, quaternions H, and octonions Q.
The real numbers have a complete order while the complex numbers are not ordered. The quaternions are
not commutative and the octonions are neither commutative nor associative. Quaternions were invented by
Hamilton in 1843. Octonions were invented by Graves (1844) and Cayley (1845) independently.

In mathematics, a vector space commonly refers to a finite-dimensional module over the real number
field R. An algebra A refers to a vector space that is equipped with a multiplication map x : A2 — A and
anonzero unit 1 € A such that 1 x a = @ x 1 = a. The multiplication @ x b is usually abbreviated as
a - bor ab. An algebra A is a division algebra if, for any a,b € A, ab = 0 implies either a = 0 or b = 0.
Equivalently, A is a division algebra if and only if the operations of left and right multiplication by any
nonzero element are invertible. A normed division algebra is an algebra that is also a normed vector space
with |[abl|= [|al[[}8].

An algebra is power-associative if the sub-algebra generated by any single element is associative and an
algebra is alternative if the sub-algebra generated by any two elements is associative. It is straightforward
to show that if the sub-algebra generated by any three elements is associative, then the algebra itself is
associative. Artin’s theorem states that an algebra is alternative if and only if for all a,b € A, we have

(aa)b = a(ab), (ab)a = a(ba), (ba)a = b(aa).

“The work reported in this note was done when the first author is visiting Qatar University. The work is supported by Qatar
Foundation Grants NPRP8-2158-1-423 and NPRP X-063-1-014.
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It is well known that R, C, H, O are the only normed division algebras and O is an alternative division
algebra. It is also known that division algebras can only have dimension 1, 2, 4, or 8.

Using the same approach of interpreting a complex number a + bi as a pair [a,b] of real numbers,
quaternions H (respectively, octonions Q) can be constructed from C (respectively, from H) using the
Cayley-Dickson construction formula [a,b] where a,b € C (respectively, a,b € H). The addition and
multiplication are defined as follows.

[a,b] + [c,d] = [a+c,b+d], [a,b][c,d] = [ac— db*,a"d + cb] (1)

where a, b, c,d € C (respectively, a, b, c,d € H) and a* is the conjugate of a. Specifically, the conjugate
of a real number « is defined as a* = a and the conjugate of a complex number or a quaternion number
[a, b] is defined by [a, b]* = [a*, —b]. Throughout the paper, we will use the following notations for real and
imaginary part of an octonion a € O,

Re(a) = (a+a%)/2 € R, Im(a) = (a—a")/2.
It is straightforward to check that for a complex number (or a quaternion or an octonion), we have
[a, b][a, 0] = [a,b]"[a, b] = ||[a,b]]|*[1,0].

Thus all of R, C, H, O are division algebras (that is, each non-zero element has a multiplicative inverse).
Though Cayley-Dickson construction provides a nice approach to study normed division algebras system-
atically, it is more intuitive to use vectors in R* to denote quaternion numbers and vectors in R?® to denote
octonion numbers.

Each octonion number is a vector a = [ag, - - -, a7] € RS, The norm of an octonion a = [ag, - - -, a7]
is defined as ||a||= / a% +- 4+ a%. By the inductive Cayley-Dickson construction, the conjugate of an
octonion a is a* = [ag, —ay, - - -, —az] and the inverse is a~ ! = a*/||al|?.

For each octonion number a = [ag, - - -, a7], let & = [aq, - - -, ay] and

ao a4 a7 —az ag —as —ag
—Qy ag as a]; —as a7 —ae
—ar —as ao ag az —aq a
Ba = a2 —a1 —ag aq ay a3 —as
—ag az —az —ar ao ay a4
as —arg ay —az —aip a a9
as as —ai as —a4 —a2 ap

Using the matrix By, we can define two associated 8 x 8 matrices

l_ ao « ro_ ag «
Ay = < “oT B, > and A = ( —oT BT ) 2)
Then for two octonions a = [ag, - - -, ay] and b = [by, - - -, b7|, we can add them as a+b = [ag+bg, - - -, a7+
b7] and multiply them as ab = bAL = aAl. We also note that
1 ay —« 1 ay —«
Al = d A", =—_ 3
e (o af ) e e (o 5 @

In the following, we first present some properties of the two associate matrices. For any octonion
a = [ag, -, a7, it is straightforward to show that
BaaT = BgaT = aoaT 4)
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and

Thus we have

BaBa = a’a—|a]*Irx7 + 2a0Ba
BIBT = oTa—|al||*T7x7 + 2a9BT
BaBI = —ala+|al*Irxr
BI'B, = —ala+ ||a|?Ix7
_ a3 — aal apa + BT
N —apal — Baa? —aTa+ BaB;F )
_ a3 — aal apa + BT
B —agal — BgaT —aTa+ B;‘LFBa )
= A4,

- az — aa® 2apa
—2apa’  —aTa + B,BY

By substituting () into (6), we get

ALAT = AnAL
B 2a3 — ||al|? 2ap
B ( —2apa”  —2aTa 4+ ||al|?Trxr )
Similarly, we can get
e B s )
—agavt — Baa'!  —a' o+ BaBa
B 2a3 — ||a||? 2ap
- —2a00T  2a9Ba — ||a]|2I7x7 )
— 200 — [aLsxs
and
gay = (e crtodh )
—apa’ — Baa® —a'a+ B, By
B 2a% — ||al|? 2ap
B —2ap0”  2a9BTL — ||a?T7y7 )

Finally, it is easy to check that

AL A

= QCLoA; — HaHQIng

b= AL AL = ATAT = AL AL = Tiys.

a1 — a‘ia—l

&)

(6)

(N

(®)

©)

But generally, we have AéA;_l # Igxg. We conclude this section with the following theorem that will be
used frequently throughout this paper.

Theorem 1.1 Fora € O, we have a®> = 2Re(a)a — ||a||?1 where 1 = [1,0,0,0,0,0,0,0].

Proof. The identity a* = 2Re(a)1 — a implies ||a]|?= aa* = 2Re(a)a — a’.
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Theorem 1.2 Forall a,b € O, we have (ab)* = b*a*.
Proof. By the fact that the octonion algebra is alternative, we have
(ab)(b*a*) = a(bb*)a" = [la|/*|[b||*.
Thus (ab)~! = (b*a*)/(||a/|?||b||?). Since (ab)~! = (ab)*/(||ab||?), the theorem is proved. O
Theorem 1.3 (Moufang identities [2l]) Let a,b, c € Q. Then we have

c(a(cb)) = ((ca)c)b
a(c(be)) = ((ac)b)e
(ca)(be) = (c(ab))c
(ca)(bc) = c((ab)c)

2 Octonions O(Z,) over Z, and Octonions O(FF,) over F,

In the preceding section, we briefly discussed the properties of octonions. Instead of using real numbers,
one may also construct “octonions” over any field F;, with ¢ = p™ or over any ring Z, with ¢ = p}* - - - pj.
In this section, we discuss octonions Q(Z,) over Z,. Generally, all theorems except division-related results
for octonions hold in O(Z,). It is straightforward to show that Q(Z,) is a normed algebra. However, it is
not a division algebra.

An octonion z € O(Z,) is isotropic if ||z||= 0. By Theorem 6.26 in Lidl and Niederreiter [3, page 282],
there are g7 +¢* — ¢3 = (¢* —1)(¢® + 1) + 1 isotropic vectors in F5. Let a € O(Z,) be a non-zero isotropic
octonion. Then aa* = ||al|?= 0. That is, a has no multiplicative inverse. It follows that O(Z,) is not a
division algebra. This also shows that O(Z,) is not nicely normed. Note that an algebra over Z, is nicely
normed if a + a* € Z; and aa* = a*a > 0 for all non zero a € O(Z,).

It is straightforward that Theoremholds for O(Z,). We use an alternative proof to show that Theorem
holds for O(Z,) also. Note that the proof of Theorem 1.2]is not valid for O(Z,) since it uses octonion
inverse properties.

Theorem 2.1 Forall a,b € O(Z,), we have (ab)* = b*a*.

Proof. By the definition in (2), we have A = (Aj)7. First, the identity 1b*a* = 1(A})7(A})7 =

1(A7A7)T implies that b*a* is the first column of A7 A7 . Secondly, the identity 1ab = 1( A% A7) implies

that (ab)* is also the first column of A} A{. It follows that (ab)* = b*a*. O
Finally, Theorem [I.1]implies the following result.

Theorem 2.2 For an isotropic octonion a € O(Z,), we have a*> = 2Re(a)a.

For more related discussion, the reader is referred to Wang and Malluhi [[7]).

3 HK17

In this section, we describe the HK17 protocol. In the HK17 proposal [3]], the authors used a normaliza-
tion process for octonions, it is not clear from the proposal description whether the computation will work
correctly if the normalization is used. Instead, we believe the protocol is essentially based on O(F),) for a
prime p. In the following, we first give a slightly different description of the HK17 protocol than the one in
[3]. It is straightforward to show that our description is more general and the HK17 in [3]] is a special case.
The HK17 protocol proceeds as follows:
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1. Alice chooses two octonions 04, 0p € O(F,) where p = 13 or 251 or 65521 or 4294967279.
2. Alice sends both o4 and op to Bob (in the public channel).

3. Alice chooses two private polynomials fi(x), f2(x) € [F,[x] as her private key.

4. Bob chooses two private polynomials g (z), g2(z) € Fp[x] as his private key.

5. Alice sends r4 = f1(04)opf2(04) to Bob over the public channel.

6. Bobsends rp = g1(04)opg2(04) to Alice over the public channel.

7. The shared secretis k4 = fi(oa)rpfa(04) andkp = g1(04)rag2(04).

4 Break HK17 in O(1) steps

For any given octonion a € O(F,), Theorem shows that a? = 2Re(a)a—||al|?1 where 1 = [1,0,0,0, 0,0, 0,0].
It follows that there exist xg, x1, T2, 3, Y0, Y1, Y2, Y3 € Z, such that

fi(oa) = xzp0oa + x11
fa(04) = 2204 + 231
g1(04) = yooa +y11
92(04) = Y204 + y31

Sincer4 = fi1(0o4)opf2(04) andrp = g1(04)0pg2(04), we have

I‘A:($00A+$11)OB(ZL‘20A+$31) (10)
rp = (Y00 +y11)op(y204 + y31)

Let the observed (transmitted over public channels) values 0 4,0p,r 4, rp be as follows:

7011470%034?02147015470754’0174]
,o7,07,05,0f, 08, of , of
rf,r?,r?,rf,r?,r?,r?]
rf e oo ol o P

of
of
A
0
B
0

[r,
[r

.1
t03>bua>
Il
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By the first identity of (I0), one can establish a homogeneous quadratic equation system of eight equations
in four unknowns xq, x1, T2, x3 as follows.

[ré“,r{‘, TZA,rf, rf,r?, ré‘l,r?] = (zgo4 + x11)op(x204 + 31)

_ A A A A A A A A A A A A A A A A

= [200) + 1, 2007, 2005 , 003 , 0Oy , L0y , TOG , T0OF |OB[T20) + T3, L2071, T204, T2035 , T204, T20§ , X20§ , X207 |
A A A A A A A A

= [zgofy + x1, 2007, X005, X005 , X0y, L0OF , L0OG , L0O% ]

of of o0y o of o o of
—of oy —of —of o —of of of
—oy of of —of —of of —of of
| o8 o of of —of —of  of —of
—of —oy of o of —of —oF oF
—of of —of oy o of —of —of
—of —of —of —of of of of —0y
—of —of —of of —of of of of
A A A A A A A A
X [a:goo + X3, x207, X205, X205, X204 , T205 , T20g ,azgoﬂ
T
$00640§ + mlog - xoo‘f‘o’lB — x00‘24023 — xoog“of - :zoofof - xoogxoéB - xooéog - 33001740’7B
33006401B + 3:10{3 + xoo‘f‘OOB + ;Ugog‘of + :L‘oo‘3407B - 33004‘4023 + 1:00’5405 - :Eooé405B - $00’7403B
xgo():oi + xlog — xooﬁog + xgogog + xooé’:oi + m00£0£ — xooiog — wooéoi — xooﬁog
_ moo%o% + 1‘1033 — ZEOOhOE — xooio% + moongoB + 1‘00?40% + 3300?4023 — x00,640% + moozo}g
xoo(}‘o% + xlo% + xoohozB - xooao}g — xgoio% + xooio% + xooi)‘o% + 3300?40:]33 — x0017405B
T00( 05 + X105 — X071 0g + X0y 03 — X053 05 — X0y 07 + X050y + XTgOg 07 + XLp07 Oy
xOOOAOGB + xlog + xoo‘fog)B - a:oo‘2407B + x003A04B - xoofog - :Uoo?o{3 + :(;oog?oég + mOO?OQB
$00§0§3 + xlo%? +2600’14033 + x?40§406B — 1:00:320}13 + xoofig — azoofofA— azooéog 41;5600’7400B B
Z20( + I3 207 205 X203 20y X205 X20g X207
—xgof x20‘04 + x3 —xgof —x20§‘ :1:20124 —xgoﬁA :1:2054 xgof
—l‘20’24 $20214 .7}2064 + T3 —$205A —I‘QO‘lA $20§4 —$207A $20‘64
A A A A A A A A
% —IL’QO?;1 a:207A .’1:'20?4 $200 —;wg —2206 —IL’202A a:204A _m2?41
—1‘20?4 —1‘2?42 1'201A 1'20164 20 —;:E;g —ﬁ207 _$20§4 1'205A
—LL’205A x206A —LL’20134 xQOQA $on74 Z20q —;Jjg _ﬁQOl _x20j14
—I204 — 205 —I207 —X20y X203 207 20 + T3 —X20%
—.%'20‘74 —.%'20%4 —.%'20%4 1'20‘14 —.%'20‘54 1'20214 1'205‘ QZQOOA + I3
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Similarly, by the second identity of (I0), one can establish a homogeneous quadratic equation system of
eight equations in four unknowns yg, y1, ¥2, y3 as follows:

B .,.B.,B ,B . .B .,B , B .B
(16 s T T3 s T8 s T s T s T 5 77 |

A B B A B A B A B A B A B A B A BN\ T
yoo?éxo% + ylo}B + yOOhOOB + y003404B + yooiofg — yOOjOQB + yooao% — ygogo% — 1/()01740?])B
Y00y 09 + Y103 — YoO1 04 + Y003 0y + Y003 05 + Y004 07 — Y005 03 — YoOg 07 — Y007 Op

A B B A, B A B A, B A B A B A B A B
Y00) 03 + Y103 — Yp01 07 — Yo05 05 + Y0309 + Y045 05 + Y005 05 — Yo0g 04 + Y07 07

= A B B A B A B A B A B A B A B A B
Y00p 05 + Y104 + Y001 03 — Y003 07 — Y003 0 + Y003 0 + Y005 07 + Y006 03 — Y007 05

A B B A_B A_B A B A B A B A B A B

Yo0p 05 + Y105 — Y001 05 + Y003 03 — Y003 03 — Y00y 07 + Y005 0g' + Y00 01 + Y007 04

A B B A B A B A B A B A B A B A B
Y00y 0 + Y105 + Y001 05 — Y003 07 + Y003 04 — Y001 03 — YoO5 01 + YO 0y + Y007 Oy

A B B A B A B A B A B A B A B A B
Yooy 07 + Y107 + Y001°03" + Y003 05" — Y003 01 + Y003 05" — Y005 05 — Y00 03" + Y007 0p

y20y +ys  yaof Y204 Y204 Y204 Y08 Y204 Y204
—y20y 0 +ys  —ypof  —yg0f Y205 ~ Y204 Y205 Y204
— Y204 Y204 92064 + Y3 —2/2054 —yg07! 2/205),4 —Z~/20‘74 y20é4
% —y20§ y20’74A yin Y20{) i—‘ Y3 —gzoé‘ —y20§ yQOfA —y2(3414
—Y20y —Y205 Y207 Y204 Y20y + Y3 —Y207 —Y203 Y205
—y204 Y205 —Y204 Y204 y2of  yof tys  —poil  —yoof
—y204  —yp08  —yp08  —ya0f Y204 Y201 204 +ys  —y208
_920? —?J20:§4 —Z/20é Z/2Ofl —y2054 y20214 ygoé4 ygog‘ + y3
(12)
For a system of n(n + 1)/2 homogeneous quadratic equations with n variables zg, - - -, z,—1, the folk-

lore linearization technique replaces each quadratic monomial x;x; with a new variable y;; and obtains
n(n + 1)/2 linear equations with n(n + 1)/2 variables. The resulting equation system could be efficiently
solved using Gauss elimination algorithm. The value of the original variable z; can be recovered as one
of the square roots of y;;. Kipnis and Shamir [4] introduced a relinearization algorithm to solve quadratic
equation systems with [ > 0.09175n? linearly independent homogeneous quadratic equations in n variables.
This is achieved by adding additional nonlinear equations. In the simplest form, we have (x;,z, ) (zi, ;) =
(Tig®iy ) (Tiy Tig) = (@igTiy)(Tiy Tiy). Thus we can add Yigiy Yigis = YigizViris = YioisVirio- Kipnis and
Shamir [4] showed that 5 homogeneous quadratic equations in 4 variables could be solved using their relin-
earization techniques.

In a summary, the relinearization technique could be used to obtain the values of xg, x1, x2, x3 from
the equation system (II]) and obtain the values of yo,y1,y2, y3 from the equation system (12). In other
words, one can obtain the values of fi(04), f2(04),91(04),g2(04) from the publicly observed values
04,0p5,r4,rp. Armed with the values of f1(04), f2(04),91(04),92(04), one can obtain ka(= kp) =
fi(oa)rpfa(0a).

In case that the protocol HK17 is based on quaternions, the homogeneous quadratic equation system
(TI) (respectively, (I2))) contains four equations in four unknowns. Thus relinearization techniques could
not be used to solve the equation system. However, the resulting equation system could be solved using
Buchberger’s Grobner basis algorithm (see, e.g., [6]) or Faugere’s F4 and F5 algorithms.

5 HK17 over O(Z,)?

In the preceding section, we show that HK17 could not be secure on any O(IF,,). We may expect that HK17
is secure(?) over O(Z,) for large enough ¢ = p1p2. But is it not quantum resistant.
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