
Efficient Adaptively Secure Zero-knowledge from
Garbled Circuits

Chaya Ganesh1, Yashvanth Kondi2, Arpita Patra3, and Pratik Sarkar4

1 Department of Computer Science, Aarhus University. ganesh@cs.nyu.edu
2 Northeastern University. ykondi@ccs.neu.edu

3 Indian Institute of Science, India. arpita@iisc.ac.in
4 Indian Institute of Science, India. pratiks@iisc.ac.in

Abstract. Zero-knowledge (ZK) protocols are undoubtedly among the
central primitives in cryptography, lending their power to numerous ap-
plications such as secure computation, voting, auctions, and anonymous
credentials to name a few. The study of efficient ZK protocols for non-
algebraic statements has seen rapid progress in recent times, relying on
the techniques from secure computation. The primary contribution of
this work lies in constructing efficient UC-secure constant round ZK
protocols from garbled circuits that are secure against adaptive corrup-
tions, with communication linear in the size of the statement. We begin
by showing that the practically efficient ZK protocol of Jawurek et al.
(CCS 2013) is adaptively secure when the underlying oblivious trans-
fer (OT) satisfies a mild adaptive security guarantee. We gain adaptive
security with little to no overhead over the static case. A conditional
verification technique is then used to obtain a three-round adaptively se-
cure zero-knowledge argument in the non-programmable random oracle
model (NPROM).
We draw motivation from state-of-the-art non-interactive secure com-
putation protocols and leveraging specifics of ZK functionality show a
two-round protocol that achieves static security. It is a proof, while most
known efficient ZK protocols and our three round protocol are only ar-
guments.

1 Introduction

Zero-knowledge (ZK) proofs introduced in [GMR85] provide a powerful tool in
designing a variety of cryptographic protocols. Since then, they have been an
important building block in various applications. Zero-knowledge proofs allow
a prover to convince a verifier about the validity of a statement, while giving
no information beyond the truth of the statement. Informally, an honest prover
should always convince a verifier about a true statement (completeness). More-
over, a malicious verifier learns nothing beyond the validity of the statement
(zero-knowledge) and a malicious prover cannot convince a verifier of a false
statement (soundness). In addition to soundness, a ZK protocol in which the
prover’s witness can be extracted by a simulator offers proof of knowledge.

It is known that every language in NP has a zero-knowledge proof sys-
tem [GMW86]. Despite this, proving generic statements is inefficient in prac-

tice, and there are few techniques that allow efficient proofs. These tech-
niques almost always apply to a restricted set of languages, with a series of
works [Sch90,GQ88,CM99,GS08] on proving algebraic relationships like knowl-
edge of roots, discrete logarithms etc.

Kilian’s zero-knowledge argument [Kil92] achieves sub-linear communica-
tion, but relies on PCP and is of theoretical interest. Groth [Gro10] gave
the first constant-size non-interactive ZK proofs. Since then, many construc-
tions of SNARKs (Succinct non-interactive arguments of knowledge) have been
presented [GGPR13,Lip13,DFGK14,Gro16], and have been implemented as
well [PHGR13,CFH+15]. Though SNARKs have short proofs and allow efficient
verification, they have shortcomings in prover efficiency. The prover performs
public-key operations proportional to the size of the circuit representing the
statement. In addition, they rely on a large trusted parameter; for example, a
long common reference string (CRS).

Around the same time that ZK was introduced, Yao introduced secure two-
party computation (2PC) and garbled circuits (GC) [Yao82]. The problem of
general multi-party computation (MPC) [Yao86,GMW87,BGW88] considers a
set of parties holding private inputs with the task of computing a joint function
while preserving certain desired security properties. An interesting line of re-
cent works [IKOS07,BP12,JKO13,HMR15,CGM16,GMO16,HV16,AHIV17] es-
tablishes connections between MPC and ZK, and use the techniques of 2PC
and MPC for truly efficient ZK protocols. The two main streams of works
connecting MPC with efficient ZK protocols rely on “MPC-in-the-head” ap-
proach [IKOS07,IKOS09] and garbled circuit based approach [JKO13], as elab-
orated below.

1.1 Efficient ZK Protocols

Ishai et al. [IKOS07,IKOS09] show how to use an MPC protocol to obtain a
ZK proof for an NP relation in the commitment-hybrid model. This approach,
called “MPC-in-the-head”, provides a powerful tool to obtain black-box con-
structions for generic statements without relying on expensive Karp reductions.
Recently, this technique spurred progress in constructing practical ZK proto-
cols [GMO16,CDG+17] resulting in efficient ZK arguments tailored for Boolean
circuits, known as ‘ZKBoo’ and ‘ZKBoo++’ respectively. They study variants
of the “MPC-in-the-head” framework, plug in different MPC protocols, and pro-
vide concrete estimates of soundness. In yet another recent attempt, [AHIV17]
proposes ‘Ligero’, a 4 round interactive ZK argument with sub-linear (in the
circuit size) proof-size relying on interactive PCPs and plugging in a refined
MPC of [DI06] in the “MPC-in-the-head” approach. Specifically, they achieve
a proof size of O(λ

√
|C| log |C|). The construction uses Reed Solomon Codes

from coding theory techniques. The marked improvement in the proof size is
obtained by careful tweaking of the protocol parameters. The prover and veri-
fier time is O(|C| log |C|) symmetric key operations, and without any public key
operations. The protocol does not require any setup and the security is proven
in the stand-alone setting. The constructions of [GMO16,CDG+17,AHIV17] can

2

be made non-interactive using the Fiat-Shamir heuristic in the programmable
RO model.

Jawurek et al. [JKO13] construct a UC-secure ZK protocol (referred to as
ZKGC henceforth) using garbled circuits as the primary building block. The
communication required for their protocol is linear in the size of the circuit
implementing the NP relation, and is also concretely efficient as it achieves ma-
licious security with only one garbled circuit. However, the protocol is inherently
interactive. ZKGC is essentially a version of Yao’s original constant-round 2PC
protocol where the GC constructor has no input; this yields full malicious secu-
rity at little overhead over the semi-honest case as Yao’s protocol in this case is
already secure against a malicious evaluator. The protocol uses oblivious transfer
(OT). The use of OT in ZK protocols dates back to [KMO89]. Notably, Zero-
knowledge, when viewed as a special case of 2PC, allows for a relaxation in the
properties required of the underlying GCs, as noted in [JKO13]. This led to the
introduction of the notion of privacy-free garbling schemes [FNO15], which are
optimized for the ZK setting of [JKO13]. A privacy-free garbling scheme only
achieves authenticity, and leverages privacy-freeness in order to save on commu-
nication and computation costs of garbling. Privacy-free GCs are further studied
by Zahur et al. [ZRE15], who construct a privacy-free scheme using the HalfGates
approach. Their privacy-free scheme makes use of FreeXOR [KS08] to garble and
evaluate XOR gates at no cost, and produces only one ciphertext when garbling
an AND gate (along with two calls to a hash function H). Their construction
comprises the current state-of-the-art in privacy-free garbling for circuits. When
formulaic circuits are of concern, [KP17] shows how to do privacy-free garbling
with zero ciphertext and with information-theoretic security.

The interactive schemes based on garbled circuits allow for the flexibility
of how the keys for the underlying GCs are constructed and how the garbled
input (ie. witness) is encoded. This leads to interesting applications making
non-blackbox use of ZKGC [CGM16,KKL+16]. For instance, Kolesnikov et al.
[KKL+16] introduce a new primitive called “attribute selective encryption” as a
method of input encoding in ZKGC in order to construct attribute-based key-
exchange. This allows a client to prove to a server that it holds a certificate
corresponding to its attributes issued by a trusted authority, and that these at-
tributes satisfy a policy constructed by the server. Note that only proving knowl-
edge of attributes satisfying a given policy is insufficient in this setting. Another
point of comparison is that the PROM assumption required by non-interactive
‘MPC-in-the-head’ based ZK protocols can be used to construct highly efficient
adaptively secure garbled circuits [BHR12a] allowing ZKGC and our protocol to
be cast in the online-offline paradigm, with all circuit-dependent communication
moved to a preprocessing stage.

Lastly, we note that all of the above protocols deal with static adversaries,
where the adversary is allowed to choose the party it wishes to corrupt only at
the outset of the protocol. In this work, we are interested in building efficient
concurrently composable ZK protocols that can tolerate adaptive adversaries
[Bea96a,CFGN96]. In the following section, we summarize the literature on prac-

3

tical ZK protocols for non-algebraic statements, and zero-knowledge protocols
secure against adaptive adversaries.

1.2 Adaptively Secure Zero-knowledge

An adaptive adversary may dynamically decide which party to corrupt as the
protocol progresses. Its choice of corruptions may be adapted according to the
specific information it sees, possibly even corrupting both the parties. Tolerating
an adaptive adversary in a ZK protocol in the UC setting requires a straight-line
simulator that can generate a transcript on behalf of the prover without knowl-
edge of the witness, and later be able to “explain” the transcript for any given
witness (ie. concoct valid-looking corresponding local randomness). In [Bea96a],
the authors show that the zero-knowledge proof system of GMW [GMW91] is not
secure against adaptive adversaries or else the polynomial hierarchy collapses,
and proceed to build ZK arguments. This work is further advanced in [CLOS02]
where UC-secure ZK arguments are presented relying on adaptive commitments
schemes. In [LZ11], it is shown that adaptive ZK proofs exist for all of NP as-
suming only one-way functions. They present constructions of adaptively secure
ZK proofs from adaptive instance dependent commitment schemes.

Adaptive ZK via Adaptive MPC. The recent work of Cannetti et al.
[CPV17] shows how to construct constant-round two party computation using
garbled circuits in the standard model. They solve the problem of equivocating a
garbled circuit in order to explain the view of a constructor who has already sent
a GC in Yao’s protocol by means of a functionally equivocal encryption scheme.
However this comes at the cost of a GC whose size is quadratic in the size of
the circuit that is garbled. Previous adaptively secure constant round secure
computation protocols have relied on obfuscation [DSKR15,CGP15,CP16].

Adaptive ZK from MPC-in-the-head Approach. We note that the “MPC-
in-the-head” approach is likely to generate adaptively secure ZK protocols by
relying on adaptive commitments and possibly adaptively secure MPC. An adap-
tive commitment scheme is used to commit to the views of the virtual parties.
The adaptive commitment schemes from standard assumptions [HV16,HPV17]
may be taxing in terms of both communication and round efficiency. Alterna-
tively, the commitments used in IKOS-style protocols can be implemented in
the programmable random oracle model, allowing the simulator to equivocate
committed views, which yields adaptive security in a straightforward manner.
Another related method is via non-committing encryption (NCE), an approach
that has in other circumstances allowed circumvention of known lower bounds in
the plain model. For instance, the adaptively secure garbling scheme of [BHR12a]
uses a programmable RO to achieve NCE, which results in the circumvention
of a lower bound in the online communication complexity of adaptively secure
garbling schemes shown by Applebaum et al. [AIKW15].

4

Adaptive ZK via 2PC-in-the-Head [HV16]. The work of [HV16] uses the
“MPC-in-the-head” technique [IKOS09] to construct adaptive ZK proofs. Their
use of interactive hashing [NOVY98] to construct instance dependent commit-
ments to equivocate committed views requires a non-constant number of rounds.
The overall round complexity of their adaptive ZK protocol is O(µ logµ), where
µ is the soundness parameter. The proof size is O(µ|C|poly(λ)) and the poly(λ)
factor is Ω(λ). While their scheme can be made constant round by plugging in
the appropriate instance-dependent commitment scheme, it comes at the cost of
proofs that are quadratic in the size of the circuit implementing the NP relation.

In this work, we explore the possibility of building protocols that lie at the
intersection of all of these desirable qualities. Specifically we address the following
question:

Can we construct constant-round UC-secure ZK protocols that are secure
against adaptive corruptions, with proof size linear in the size of the
circuit that implements the NP relation?

1.3 Our Contributions

Inspired by the recent progress in the domain of garbling schemes as primitives
and interesting applications of garbled circuit (GC) based ZK protocols, we re-
visit ZK protocols from GCs. Recent works including [CGM16,KKL+16] make
non-blackbox use of the GC-based ZK protocols of [JKO13], exploiting particu-
larly the way the keys for the underlying GCs are constructed and the method
by which the garbled input (i.e. witness) is encoded. Such applications will di-
rectly benefit from any improvement in the domain of garbled circuit based ZK
protocols. Our contributions are listed below.

Efficient Constant-round Adaptively Secure ZK Protocols. While secu-
rity against static adversaries provides a convenient stepping-stone for designing
protocols against strong malicious attacks, a general real-life scenario certainly
calls for adaptive security where the adversary can use its resources in a gradual
fashion, making dynamic corruption decisions as the protocol progresses. Our
first contribution is to show that the ZK protocol of [JKO13] can be proven to
be adaptively secure in the UC setting if the underlying oblivious transfer (OT)
primitive satisfies a mild adaptive security guarantee. Namely, we require that
the receiver’s communication can be equivocated to any input of the receiver.
Such an OT is referred to as receiver equivocal OT (RE-OT). We show that the
framework of [PVW08] itself, in one of its incarnation, provides RE-OT. Specif-
ically, the mode of [PVW08] that offers statistical security for the receiver also
offers the flavor of adaptive security that we demand from RE-OT. The main
observation instrumental in crafting the adaptive proof of security for ZKGC is
that the constructor of GC has no input. Therefore, the primary challenge of
explaining the randomness of the GC construction in post-execution corruption
case is bypassed.

5

Next, we focus on reducing the exact round complexity of ZKGC style pro-
tocols. We propose a three-round protocol. Since neither zero-knowledge proofs
nor arguments can be achieved in less than four rounds without additional as-
sumptions [GK96], we devise our protocols in the CRS model where the CRS
is short unlike those used in SNARKs. Starting with ZKGC, our three-round
protocol cuts down two rounds in [JKO13] using the idea of conditional opening
[BP12] of a secret information that enables garbled circuit verification. That is,
the key to GC verification can be unlocked only when the prover possesses a
valid witness. Though fairly simple, implementing this idea makes the security
proof of the resulting protocol challenging and subtle due to a circularity issue.
Loosely speaking, when the prover does not hold a valid witness, the authen-
ticity of GC should translate to the security of the key and at the same time,
the security of the key should translate to the authenticity of the GC. We han-
dle this issue by implementing the conditional disclosure via encryption in the
Random Oracle Model (ROM). While the ZKGC protocol requires at least 5
rounds in its most round-efficient instantiation, we improve the complexity to
three at no additional cost of communication (in fact with slight improvement),
and little change in computation (one hash invocation versus a commitment in
[JKO13]). We show this protocol to be adaptively secure too, when plugged in
with RE-OTs.

In terms of concrete proof size (communication), our three-round protocol
yields a better result than ZKBoo [GMO16] (and even it’s more efficient successor
ZKB++ [CDG+17]) both in its interactive and non-interactive form with the
right choice of the security parameters. We assume that circuit C computes
the statement to be proven. While our three-round ZK needs a communication
of λ|C| bits (ignoring the circuit-independent parts), [GMO16] needs at least
3.41λ|C| to achieve the same (1

2λ
) soundness. In the table below, we compare our

protocol asymptotically with the existing efficient constructions. Let ‘PKE’ and
‘SKE’ denote the number of public key and respectively secret key operations.
We note that RE-OT can be efficiently constructed assuming DDH assumption,
with no overhead over the regular OT in the framework of [PVW08].

Protocols Proof Size Prover Runtime Verifier Runtime Rounds Assumptions Security

ZKGC [JKO13] O(λ · |C|) O(|C|) SKE + O(n) PKE O(|C|) SKE + O(n) PKE 5 Standard (OWF) +OT Static (UC)

ZKBoo [GMO16] O(λ · |C|) O(λ|C|) SKE O(λ|C|) SKE 1 PROM Adaptive

ZKB++ [CDG+17] O(λ · |C|) O(λ|C|) SKE O(λ|C|) SKE 1 PROM Adaptive

Ligero (Arithmetic) O(λ1.5
√
|C|) O(|C| log |C|) SKE O(|C| log |C|) SKE 1 PROM Adaptive

Ligero (Boolean) O(λ
√
|C| log |C|) O(|C| log |C|) SKE O(|C| log |C|) SKE 1 PROM Adaptive

[HV16] O(µ|C|poly(λ)) O(µ|C|poly(λ)) SKE O(µ|C|poly(λ)) SKE O(µ logµ) Standard (OWP) Adaptive

ZKGC (This paper) O(λ · |C|) O(|C|) SKE + O(n) PKE O(|C|) SKE + O(n) PKE 5 Standard (OWF) + RE-OT (DDH) Adaptive (UC)

This paper O(λ · |C|) O(|C|) SKE + O(n) PKE O(|C|) SKE + O(n) PKE 3 ROM + RE-OT (DDH) Adaptive (UC)

Table 1: Comparison among Zero Knowledge Protocols

2-Round Zero-knowledge Proofs. We next investigate the possibility of
building efficient GC based ZK protocols with fewer than three rounds of in-
teraction. In the spirit similar to that of [HV16], our two round protocol bor-
rows techniques from non-interactive two-party computation (2PC) literature

6

[IKO+11,AMPR14,MR17] except for the following: We do not need the gadgets
for input consistency checks of the prover, and input recovery mechanisms in
case of inconsistent outputs [Lin13,LR14,RR16,MR17]. Our protocol is a proof,
while most known efficient ZK protocols and our three round protocol are only
arguments. The two round ZK may be cast as a sigma protocol and by apply-
ing the Fiat-Shamir transform, one may obtain NIZK arguments in the random
oracle model. Finally, we observe that for the 2-round and NIZK argument we
do not rely on the authenticity property of the garbling scheme. However, more
efficient garbled circuit constructions by giving up on authenticity is precluded
by the result of [AIK10]. While the result of [AIK10] needs to encode a different
circuit (the underlying circuit augmented with a MAC computation) to achieve
authenticity using a private scheme, we show a similar result while encoding the
same underlying circuit. Both results essentially show that any garbling scheme
that satisfies privacy also has authenticity.

1.4 Organization

We begin by briefly discussing definitions and constructions required for this
work in Section 2. In Section 3 we show that the ZK protocol of [JKO13] is
adaptively secure. Section 4 presents our three-round ZK protocol from condi-
tional disclosure. Section 5 discusses our 2-round ZK. We include our result on
authenticity-free garbling in Section 6.

2 Preliminaries

Notation. We denote probabilistic polynomial time by ppt. Let λ be the
security parameter. [n] and [m,n] for n > m denote the sets {1, ..., n} and
{m,m + 1, . . . , n} respectively. |t| denote the number of bits in a string t.

We use || to denote concatenation of bit strings, and write x
R← X to mean

sampling a value x uniformly from the set X . A function f(·) is said to be
negligible if ∀c ∈ N, there exists n0 ∈ N such that ∀n ≥ n0, f(n) < n−c.
Let S be an infinite set and X = {Xs}s∈S , Y = {Ys}s∈S be distribution en-
sembles. We say X and Y are computationally indistinguishable, denoted by

X
c≡ Y , if for any ppt distinguisher D and all sufficiently large s ∈ S, we have

|Pr[D(Xs) = 1] − Pr[D(Ys) = 1]| < 1/p(|s|) for every polynomial p(·). In the
following, we review few building blocks. The ZK and Oblivious Transfer (OT)
functionality are recalled in Appendix B.1.

2.1 Garbled Circuits

The work of Bellare et al. [BHR12b] formalizes Garbling Schemes as a primitive
for modular use in cryptographic protocols, by defining several notions of secu-
rity, including obliviousness, privacy and authenticity, of which we are interested
in the latter two. Informally, privacy aims to protect the privacy of encoded in-
puts, while authenticity captures the unforgeability of the output of a garbled

7

circuit evaluation. Majority of the schemes in the literature, including the classi-
cal scheme of Yao [Yao86], satisfy the two aforementioned properties. Using the
language of [BHR12b] for circuits; the circuit itself is a directed acyclic graph,
where each gate g is indexed by its outgoing wire, and its left and right incoming
wires A(g) and B(g) are numbered such that g > B(g) > A(g). Also, a circuit
output wire can not be an input wire to any gate. We denote the number of
input wires, gates and output wires using n, q and m respectively in a circuit C.

At a high-level, a garbling scheme consists of the following algorithms: Gb
takes a circuit as input and outputs a garbled circuit, encoding information, and
decoding information. En takes an input x and encoding information and outputs
a garbled input X. Ev takes a garbled circuit and garbled input X and outputs
a garbled output Y. De takes a garbled output Y and decoding information and
outputs a plain circuit-output (or an error, ⊥). Finally, we use an additional
verification algorithm in the garbling scheme that output 1 or 0 based certain
validity checks performed on a triple (C,C, e). Formally, a garbling scheme is
defined by a tuple of functions Garble = (Gb,En,Ev,De,Ve), described as follows:

– Garble algorithm Gb
(
1λ, C

)
: A randomized algorithm which takes as input

the security parameter and a circuit C : {0, 1}n → {0, 1}m and outputs
a tuple of strings (C, e, d), where C is the garbled circuit, e denotes the
input-wire labels, and d denotes the decoding information.

– Encode algorithm En (x, e): a deterministic algorithm that outputs the gar-
bled input X corresponding to input x.

– Evaluation algorithm Ev (C,X): A deterministic algorithm which evaluates
garbled circuit C on garbled input X, and outputs a garbled output Y.

– Decode algorithm De (Y, d): A deterministic algorithm that outputs the
plaintext output corresponding to Y or ⊥ signifying an error if the garbled
output Y is invalid.

– Verify algorithm Ve (C,C, e): A deterministic algorithm which takes as input
a circuit C : {0, 1}n 7→ {0, 1}m, a garbled circuit (possibly malicious) C,
encoding information e, and outputs 1 when C is a valid garbling of C, and
0 otherwise.

A garbling scheme may satisfy several properties such as correctness, pri-
vacy, authenticity and notions of verifiability. The definitions for correctness,
privacy and authenticity are standard: correctness enforces that a correctly gar-
bled circuit, when evaluated, outputs the correct output of the underlying circuit;
privacy aims to protect the privacy of encoded inputs; authenticity enforces that
the evaluator can only learn the output label that corresponds to the value of the
function. We use two notions of verifiability. One of the notions enforces that
the garbling of a circuit indeed implements the specified plaintext circuit C.
This notion of verification is used in our two-round protocol, NIZK and also in
the Yao-based 2PC protocols using cut-and-choose (where the check circuits are
verified according to this notion) [Lin13,LR14,RR16,MR17]. The other notion of
verifiability introduced in [JKO13] enforces that the garbled output correspond-
ing to a given clear output can be extracted for a verified tuple (C,C, e). This

8

is used in our three round protocol. For the sake of completeness, we give the
definitions of these properties in Appendix A.

We are interested in a class of garbling schemes referred to as projective in
[BHR12b]. When garbling a circuit C : {0, 1}n 7→ {0, 1}m, a projective garbling
scheme produces encoding information of the form e =

(
k0i , k

1
i

)
i∈[n], and the

encoded input X corresponding to x = (xi)i∈[n] can be interpreted as X =

En(x, e) = (kxii)i∈[n].

2.2 Hash Function and Random Oracle Model

We use a hash function H : {0, 1}∗ → {0, 1}poly(λ) which we model as a ran-
dom oracle. Namely, we prove the security of our protocol assuming that H
implements a functionality FRAND which for different inputs x, returns uniform
random output values from the range of H(x). In the proof, we rely on observ-
ability of H i.e. the reduction can observe the queries made to the H by the
distinguisher of certain two views. Note that the simulator does not observe
queries to the random oracle.

3 Adaptive Security of [JKO13]

In this section, we show that the garbled circuit based ZKGC protocol is adap-
tively secure when instantiated with an OT that satisfies a special property of
Receiver Equivocality. We formalize the notion of Receiver Equivocal Oblivious
Transfer which is an OT primitive with mild adaptive security guarantees. Es-
sentially, we require that the view of a receiver be reconstructable in the case of
a post-execution corruption. A similar notion was introduced in [Bea96b]. We
show that the OT framework of [PVW08] is already receiver equivocal when
it is instantiated with statistical security against a corrupt sender (“decryp-
tion mode”). We then show that when the zero-knowledge protocol of [JKO13]
is instantiated with RE-OT, it achieves adaptive security without any addi-
tional effort. Below, we formulate RE-OT, recall the construction of [JKO13]
(the schematic diagram is given in Appendix C), describe the adaptive proof of
security of [JKO13] and conclude with an instantiation of RE-OT.

Definition of RE-OT. An oblivious transfer protocol is said to be receiver
equivocal if it is possible to produce the receiver’s message in the protocol without
committing to a choice bit. For this to be meaningful, we also require that it be
possible to efficiently generate the local randomness which when combined with
either choice bit would make an honest receiver output the same message. This
is formalized by requiring the existence of a simulator SRE which can perform
this task, in Definition 3.1.

Definition 3.1 (RE-OT) Let ΠOT = (ΠS
OT, Π

R
OT) be a 2-round OT protocol

securely implementing the FOT functionality in the CRS model where S and
R run their respective algorithms as specified by ΠS

OT(crs, a0, a1,m
R; rS) and

9

ΠR
OT(crs, σ; rR) respectively. Here, a0, a1 are the sender’s inputs, σ is the re-

ceiver’s choice bit, rS, rR are the sender’s and receiver’s respective local ran-
domness, and mR is the receiver’s message. Let (crs, t) ← Setup(1n, µ) be the
output of the setup functionality which takes the security parameter and a mode
µ ∈ {0, 1}, and t is the corresponding trapdoor which is accessible only to the
simulator S. Then ΠOT is an RE-OT if the following conditions hold:

– Indistinguishability of modes: The CRSs of the two modes are computation-
ally indistinguishable,

crs0
c≡ crs1 ∀ (crs0, t0)← Setup(1n, 0), (crs1, t1)← Setup(1n, 1)

– FOT in mode 0: ∀ crs ← Setup(1n, 0), ΠOT =(
ΠS

OT(crs, a0, a1,m
R; rS), ΠR

OT(crs, σ; rR)
)

securely implements the FOT

functionality.
– Equivocation in mode 1: There exists an algorithm SRE (crs, t) which outputs(

mR, rR0 , r
R
1

)
such that mR = ΠR

OT(crs, 0; rR0) = ΠR
OT(crs, 1; rR1), and rR0 , r

R
1

s
≈

rR, ∀ crs← Setup(1n, 1).

On the use of a CRS. We note here that there is nothing inherent in receiver
equivocation that demands a CRS to implement RE-OT. We are interested
in achieving UC-security, and so as to allow the protocol of [PVW08] as an
instantiation of our definition, we assume that the protocol realizing RE-OT
will make use of a CRS. However, this does not preclude the existence of RE-
OT in the standalone model without a CRS, or even a UC-secure RE-OT in
the Global Random Oracle hybrid model [CJS14] alone.

3.1 Recap of [JKO13]

We recall the ZKGC protocol below in the (FCOT,FCOM) hybrid model (a
schematic diagram is given in Appendix C). The functionalities are presented in
Appendix B.1.

3.2 Proof of Adaptive Security for [JKO13] from RE-OT

In this section we show that instantiating the ZKGC protocol with RE-OT
satisfying Definition 3.1 yields a UC-secure protocol realizing FRZK (see Figure 12)
tolerating adaptive adversaries.

Recalling Static Proof of Security. The simulator for a corrupt P plays the
role of an honest verifier V. It constructs and communicates a correct garbled
circuit, extracts the witness acting on behalf of FCOT functionality, and accepts
the proof only if the extracted witness is a valid one. On the other hand the real
verifier accepts when the opening of the commitment is the correct output wire
key Z. In FCOM-hybrid model, we can show that a malicious prover who is able
make a real verifier output ‘accept’ (but not the simulator) can be used to break

10

ΠZKGC

– Oracles and Cryptographic Primitives: A correct, authentic, verifiable gar-
bling scheme Garble = (Gb,En,De,Ev, (Ve1,Ve2)) (according to Definition A.5).
A committing OT oracle FCOT.

– Common Inputs of P and V: A security parameter λ, relation R realized by
circuit C, statement z.

– Input of P: A witness x of size n = poly(λ) such that R(z, x) = 1.
– Input of V: Nothing.

Witness input phase: For all i ∈ [n], P sends (choose, id, xi) to FCOT.
GC Construction and wire label transfer phase: V garbles the circuit,(

C,
(
K0
i ,K

1
i

)
i∈[n] , Z

)
← Gb (1κ, C)a. On receiving messages (chosen, id) for

i ∈ [n] from FCOT, V sends
(
transfer, id,K0

i ,K
1
i

)
as input to FCOT for all

i ∈ [n].
GC Evaluation and output commitment phase: P receives

(transferred, id,Kxi
i) for i ∈ [n] from FCOT, and parses X =

Kx1
1 · · ·K

xi
i · · ·K

xn
n . P obtains Z′ = Ev(C,X) and sends (commit, id, Z′)

to FCOM.
GC verification and conditional output disclosure phase: On receiving

(committed, id, |Z′|) from FCOM, V sends the message (open-all, id) to FCOT.
On receiving

(
transfer, id,K0

i ,K
1
i

)
for all i ∈ [n] from FCOT, P verifies if the

garbled circuit C which sent by the verifier earlier was correctly constructed.

i if Ve
(
C, f,

{
K0
i ,K

1
i

}
i∈[n′]

)
6= 1, P aborts.

ii else P sends (reveal, id) to FCOM.
Final verification phase: On receiving the message (reveal, id, Z′) from FCOM,

V outputs accept if Z = Z′.

a Instead of returning d, Gb is tweaked to return the 1-key on the output wire.

Fig. 1: Zero-knowledge from Garbled Circuits [JKO13]

authenticity of the underlying garbling scheme. We can use such a malicious
prover P∗ to construct an adversary A for the authenticity game of [BHR12b]
as follows:

1. A receives the invalid witness x∗ from P∗ on behalf of FCOT and forwards it
to the authenticity challenger.

2. A receives C, X from the authenticity challenger and forwards it to P∗

3. A receives forged key Z ′ from P∗ on behalf of FCOM and submits it to the
authenticity challenger.

Clearly, the event that A successfully forges an output for the given C, X is
equivalent to the event that P∗ convinces a verifier to output ‘accept’ without
a valid witness. By authenticity of the garbling scheme, this event occurs with
negligible probability.

The simulator for a corrupt V receives the encoding information from V on
behalf of the FCOT functionality and extracts the the output 1-key Z using re-
ceived garbled circuit and encoding information. It then sends Z to the verifier

11

only after receiving the correct encoding information from V in the open-all
phase. Otherwise, it sends ⊥ to V. Security in this case follows from the verifi-
ability (that allows extraction of the output key from encoding information) of
the underlying garbling scheme.

Adaptive Proof of Security. The bottleneck faced in simulating garbled cir-
cuit based protocols for post-execution corruptions usually lies in “explaining”
the randomness of the GC constructor once her input is known. In the case of
two-party computation, equivocating the view of the garbled circuit constructor
requires heavy machinery such as in Canetti et al. [CPV17]. However in the
ZKGC protocol verifier V is the GC constructor and has no input. The simu-
lator can therefore run the code of honest V, which includes being an honest
sender in the OT protocol (this is also why our OT need not achieve full-fledged
adaptive security). On the prover’s side, receiver equivocality of the OT allows a
simulator to equivocate an adaptively corrupted prover’s view of the OT proto-
col, as per the witness once known. We make the observation that every step of
P following the OT is independent of the witness. Specifically, once the output
key Z has been obtained by evaluating the GC sent by V, P does not use the
witness again. Note that the simulator does not need the witness to obtain Z;
the ZKGC simulator invokes the ΠOT simulator in order to extract all inputs
of V and obtain all keys of the GC. Once the simulator obtains Z, the code
of honest P can be run to complete the simulation. The implication of this for
simulation of a post-execution corruption of P is that no additional work needs
to be done besides equivocating the view of P in the OT. We now give a formal
proof for all the cases:

– Simulation for V. The verifier, until it is corrupted, can be simulated follow-
ing the static simulator for the corrupt P, irrespective of when P is corrupted.
As recalled above, the simulation can be carried out by running the code of
honest verifier (constructing a correct garbled circuit, participating in the
RE-OTs with the correct encoding information and sending the correctly
constructed garbled circuit). Upon corruption, the simulator can explain to
the corrupt V the communication by means of the randomness used in its
honest execution of V’s code. The indistinguishability follows from the proof
in the static corrupt prover case.

– Simulation for P. If the prover is corrupted at the outset, then the crs is
set in mode 0. Otherwise, we consider the worst scenario of post-execution
corruption, and set the crs in mode 1. If the verifier is also not corrupt
during the construction of the garbled circuit, then simulator acts on behalf
of both the honest parties and runs the code of honest verifier. In the FCOM-
hybrid model, the simulator, without having access to the actual witness,
runs

(
mR, rR0 , r

R
1

)
← SRE (crs, t) to generate the transcript that needs to be

communicated on behalf of P in RE-OT instances. The rest of the simulation
is straight-forward irrespective of whether the verifier is corrupt or not. In
the final step, the simulator may have to communicate Z which it picked
itself while simulating V in this case. When P is corrupt in the end, its input

12

xi to the ith RE-OT instance can be explained as per any input using the
randomness rRxi returned by SRE of the RE-OTs. On the other hand, if V
was corrupt before the garbled circuit construction phase, then the simulator
gets Z via unlocking the GC using encoding information extracted from the
corrupt V’s communication. The rest remains the same as the previous case.
Security in the former case follows via receiver equivocality of RE-OT. In
the latter, it follows additionally from verifiability that ensures the encoding
information leads to the correct Z with high probability.

3.3 Instantiation of RE-OT

The OT framework of [PVW08] is already receiver equivocal as per Defini-
tion 3.1. The protocol can be constructed efficiently under the Decisional Diffie
Hellman, Quadratic Residuosity, or Learning With Errors hardness assumptions.
Recall that the constructions of [PVW08] operate in two modes: messy and de-
cryption, that corresponds to mode 0 and 1 respectively of our definition. The
construction satisfies Definition 3.1 when instantiated in “decryption mode”. In
the simulation, when the receiver is corrupted before the first message is sent,
the simulator sets the CRS in the messy mode, and no equivocation is necessary.
Otherwise, the simulator sets the CRS in the decryption mode. Here we recall
the instantiation of ΠPVW under the DDH hardness assumption and describe
SREPVW in the decryption mode. (Fig. 2).

Theorem 3.2 The protocol ΠPVW in Fig. 2 is a RE-OT, assuming that DDH
is hard for G.

Proof. The protocol ΠPVW in Fig. 2 is proven to realize the FOT functionality
in the UC model by Peikert et al. [PVW08]. It is easy to see how SREPVW allows
for receiver equivocation as per Def. 3.1 when the crs is generated in mode 1:

– The randomness rRσ provided is interpreted as R’s secret exponent α.
– Recall that the message mR is (gr0, h

r
0), and candidate randomness output by

SREPVW is rR0 = r, and rR1 = rR0 · t−1 = r · t−1
– Correctness of message mR can be seen as follows:

1. ΠPVW

(
crs, 0; rR0

)
will output

(
g
rR0
0 , h

rR0
0

)
= (gr0, h

r
0) = mR

2. ΠPVW

(
crs, 1; rR1

)
will output

(
g
rR1
1 , h

rR1
1

)
=

(
g
(r·t−1)
1 , h

(r·t−1)
1

)
Recall that the trapdoor t relates g0 to g1 as gt0 = g1 and similarly

ht0 = h1. Therefore we have that

(
g
(r·t−1)
1 , h

(r·t−1)
1

)
= (gr0, h

r
0) = mR

– Finally, rR0 , r
R
1 = r, r · (t−1) are clearly uniformly random, as r is sampled

uniformly at random.
ut

Also note that RE-OT is strictly weaker than OT with security against
adaptive corruptions; any protocol satisfying the latter notion will necessarily
be receiver-equivocal in order for the receiver’s view to be fully simulatable in
the event of a post-execution corruption.

13

ΠPVW

The parties have access to a common reference string crs ∈ G4. Operations are
over group G of prime order q, generated by g.

Setup(1n, 0):
crs = (g0, h0, g1, h1) ∈ G4. The trapdoor available to the simulator is t = (t0, t1)
such that gt00 = h0 and gt11 = h1.

Setup(1n, 1):
crs = (g0, h0, g1, h1) ∈ G4. The trapdoor available to the simulator is t such that
gt0 = g1 and ht0 = h1.

ΠR
PVW (crs, σ):

– Sample α ∈ Zq uniformly at random.
– Compute g = (gσ)α, h = (hσ)α

– Send (g, h)

ΠS
PVW

(
crs, a0, a1,m

R
)
:

– Sample random elements r0, s0, r1, s1 from Zq.
– Compute u0 = gr00 h

s0
0 , v0 = gr0hs0 , u1 = gr11 h

s1
1 , v1 = gr1hs1 .

– Send (u0, w0 = v0a0), (u1, w1 = v1a1)

R can retrieve the chosen message as aσ = wσ · (uσ)−α

SRE(crs, t):

– Sample r ∈ Zq and compute mR = (gr0 , h
r
0).

– Compute local randomness for both possible receiver inputs as rR0 = r and
rR1 = r · t−1.

– Output (mR, rR0 , r
R
1)

Fig. 2: RE-OT assuming DDH: as per [PVW08]

4 Zero Knowledge in Three Rounds

In this section, we present a 3-round ZK protocol against a malicious verifier
requiring just one GC in the non-programmable random oracle model, with no
increase in communication complexity. Our protocol achieves this by a tech-
nique for non-interactive GC verification which allows us to remove the commit-
ment and OT-open-all phases from ZKGC. Our approach is reminiscent of the
technique of conditional disclosure of secrets (CDS)[GIKM98]. CDS has since
been generalized [IW14], and used in several works, including in applications
to improve round complexity of protocols [AIR01,BCPW15]. We show that the
protocol is adaptively secure when the underlying OTs are receiver equivocal.

14

4.1 High-Level Idea

The high round cost of ZKGC makes it undesirable for many applications. How-
ever its usage of only one GC for an actively secure protocol is an attractive
feature, prompting us to examine whether we can improve on the number of
rounds required to realize ZK with only one GC. We now describe our intuition
behind the protocol, beginning with informal observations about the number of
rounds in ZKGC. Assuming the ZKGC paradigm to be broadly characterized
by a protocol where the verifier V constructs a GC which is then evaluated by
prover P, we make the following (informal) observations:

– As V constructs the GC, P’s witness bits must be encoded as garbled input
and delivered by means of an OT. The most efficient UC-secure OT in the
literature [PVW08] requires 2 rounds to instantiate.

– Assuming the underlying GC to be statically secure in the terminology of
Bellare et al. [BHR12a], the GC can at best be sent to P along with the
final message of the OT (if not after the OT).

– P must communicate some information as a ‘response’ to V’s GC ‘challenge’;
for instance the garbled output obtained as a result of evaluating the GC
with her witness. This must necessarily be after she receives the GC, adding
at least one more round after the OT.

In summary, it appears that the ZKGC paradigm requires at least 2 rounds
for the OT, plus the GC transmission, and one round following that. Therefore, a
3-round ZK protocol appears to be optimal in the ZKGC paradigm, informally
suggesting the optimality of our protocol. In the following, we make several
observations that are instrumental to our protocol.

Conditional Verification of Garbled Circuits. We begin by making the
following observation about the original ZKGC protocol: even a prover who does
not have a witness is given the chance to first commit to her garbled output and
verify that the GC she received was correctly generated. Verification of the GC
is a process that takes two additional rounds of interaction in their protocol.
We ask, can we use conditional disclosure of secrets to reduce the number of
rounds: “can we provide some additional information with a GC that will allow
an evaluator to non-interactively verify that the GC was correctly constructed
only when it possess a valid witness?” We answer this question in the affirmative,
at least for the ZKGC setting. An idea somewhat similar in spirit was proposed
in [BP12] to construct a three-round ‘weak’ ZK protocol from a garbling scheme
and point-obfuscation. That is, knowing the witness gives the prover access to
a secret via a garbled circuit handed over by the verifier. The secret, then, can
be used to unlock the seed that opens the garbled circuit and enables verifying
the correct construction of the GC. Technique-wise, we depart from the work
of [BP12] as follows. The secret is encoded in the circuit output in [BP12]
and hence, privacy of the garbling circuit is one of the properties they rely on
to achieve soundness. On the contrary, the secret, in our case is the output
key corresponding to bit 1 and hence, soundness is achieved via authenticity.

15

Qualitatively, their protocol is not a full-fledged ZK, is in the plain model, has a
non-black-box simulator and relies on strong assumptions such as obfuscation.
Our ZK protocol is proven UC-secure with a black-box simulator and relies on
standard assumptions, albeit assuming a CRS setup.

Interestingly, the intuition behind the ability of [JKO13] to achieve full black-
box simulation was that the relaxation in round complexity rendered the four-
round barrier in the plain model [GK96] inapplicable. However, our result demon-
strates that the trusted setup required to implement a full black-box simulatable
two-round OT is sufficient to construct a three round zero-knowledge argument
using the concretely efficient [JKO13] technique and a non-programmable ran-
dom oracle.

Our intuition is implemented as follows: Given that(
C,
{

(k0j , k
1
j)
}
j∈[n] , (k

0, k1)
)
← Gb

(
1λ, C

)
and an honest P has obtained

encoded input X =
(
k
xj
j

)
j∈[n] for a witness x = (x1 . . . , xn), she can compute

k1 = Ev (C,X). Now that P has evaluated the GC, we wish to enable her to
‘open’ the GC and verify that it was constructed correctly. To do this, we
provide her with a ciphertext encrypting some useful information. Concretely,
the ciphertext T = H(k1) ⊕ rS, where H is a random oracle and rS contains
the randomness used by the sender in the OT instances. Once P gets this
randomness, she can unlock

{
k0j , k

1
j

}
j∈[n] and can verify if the circuit has been

constructed correctly. In the following, we formalize the property needed from
the OT protocol, namely that the randomness of the sender reveals the inputs
of the sender.

Sender-Extractability of OT. Let ΠOT = (ΠS
OT, Π

R
OT) be a 2-round OT pro-

tocol securely implementing the FOT functionality in the CRS model where S and
R run their respective algorithm as specified by ΠS

OT and ΠR
OT respectively. Let

crs be the string that both parties have access to. We denote the first message of
the protocol sent by the receiver R by mR = ΠR

OT(crs, σ; rR) where σ is R’s choice
bit and rR his randomness. Let the input of the sender S be a0, a1; we denote the
second message of the OT protocol, sent by S, by mS = ΠS

OT(crs, a0, a1,m
R; rS).

The receiver can now compute the chosen message, xσ = ΠR
OT(crs, σ,mS; rR).

We assume that ΠOT has the following sender-extractable property: revealing
the randomness of the sender, allows the receiver to reconstruct the sender’s
messages correctly with high probability. That is, there exists a public efficiently
computable function, Ext such that Ext(crs, TOT(a0, a1, σ), rS) outputs (a0, a1)
where TOT(a0, a1, σ) refers to the transcript of ΠOT with sender’s input as a0, a1
and receiver’s input as σ. Namely, TOT(a0, a1, σ) = (mR,mS) where mR and mS

are as defined above.

Definition 4.1 A protocol ΠOT is a secure sender-extractable OT protocol if

– it securely implements FOT in the presence of malicious adversaries, and
– ∀ a0, a1, σ, such that |a0|, |a1| ≤ poly (λ), σ ∈ {0, 1}, ∃ a PPT algorithm Ext

such that the following probability is negligible in λ.

Pr
(
(a′0, a

′
1) 6= (a0, a1) : Ext(crs, TOT(a0, a1, σ), rS) = (a′0, a

′
1)
)
.

16

We note that the protocol of [PVW08] is UC-secure in the CRS model, is 2-
rounds, and satisfies the sender-extractability property of Definition 4.1. We use
such a protocol in our construction.

4.2 Our Construction

At a high-level, our construction proceeds as follows. The verifier constructs a
garbled circuit of the circuit C implementing the relation. The prover obtains the
wire keys corresponding to his witness via an OT protocol. Now, the verifier sends
the garbled circuit to the prover, and, in addition, a ciphertext. This ciphertext
allows the prover to open and verify the garbled circuit, but only if he possesses
a valid witness. The complete description of our protocol ΠZK3 is presented in
Figure 3. A schematic diagram of the protocol idea is given in Appendix C
(Figure 16). We now prove security of ΠZK3 in Universal Composability (UC)
framework recalled briefly in Appendix B. As we do not rely on programming
the Random Oracle, we can also adapt our proof in the UC setting to use a
Global Random Oracle [CJS14].

Theorem 4.2 Let Garble be a correct, authentic, verifiable (according to Defini-
tion A.5) garbling scheme, ΠOT be an sender-extractable OT protocol, and H be
an extractable random oracle. The protocol ΠZK3 in Figure 3 securely implements
FRZK in the presence of malicious adversaries.

Proof. To prove the security of our protocol, we describe two simulators. The
simulator SP simulates the view of a corrupt prover and appears in Fig. 4. The
simulator SV simulates the view of a corrupt verifier and is presented in Fig. 5.

Security against a Corrupt Prover P?. We now prove that idealFRZK,SP,Z
c
≈

realΠZK3,A,Z when A corrupts P. We begin by noting that the simulated and the
real worlds are identical when P uses a valid witness x. The view of a malicious
P? who does not possess a valid witness x is proven to be computationally close
to the simulation through an intermediate hybrid hyb1. The hybrid hyb1 is
constructed identically to idealFRZK,SP,Z with the exception of the criterion to

output accept. In hyb1, the verifier accepts if P? outputs the correct k1 (as in
the real view) regardless of the witness used. We begin our analysis by noting
that unless a P? queries the correct k1 to the random oracle H, the string T
appears completely random. Therefore, given that a P? attempting to distinguish
between the real view and the view generated by hyb1, we branch our analysis
into the following cases:

– P? does not output the correct k1 in either world. Here we assume that
a P? also does not query the correct k1 to the random oracle H to be able
to unlock ciphertext T . If the prover does indeed query the correct k1 to H
with non-negligible probability, we move on to the next case. A P? who is
successful in distinguishing realΠZK3,A,Z from hyb1 in this case can be used
to break OT sender security. The reduction computes a garbled circuit C
and sends the input keys to the OT challenger (by means of the environment

17

ΠZK3

– Oracles and Cryptographic Primitives: A correct, authentic, verifiable gar-
bling scheme Garble = (Gb,En,De,Ev, (Ve1,Ve2)) (according to Definition A.5).
A sender-extractable 2-round OT ΠOT with the common reference string crs. A
hash function H : {0, 1}∗ → {0, 1}poly(λ) which we model as a random oracle.

– Common Inputs of P and V: A security parameter λ, relation R realized by
circuit C, statement z, common reference string crs for ΠOT.

– Input of P: A witness x of size n = poly(λ) such that R(z, x) = 1.
– Input of V: Nothing.

OT First Message Phase: P plays the role of the receiver R in n instances of ΠOT

and provides his witness bit xj as input to the jth instance of ΠOT. Specifically,
it:
◦ chooses rRj

R← {0, 1}λ, and computes mR
j = ΠR

OT(crs, xj ; r
R
j), ∀j ∈ [n] as the

first message in the jth instance of ΠOT

◦ sends {mR
j }j∈[n] to V.

GC Construction and OT Second Message Phase: V constructs a garbled
circuit C for C as (C, {k0j , k1j}j∈[n], (k0, k1)) ← Gb(1λ, C). V now provides the
wire labels for the input wires of C by playing the role of the sender S in n
instances of ΠOT. Specifically, it

◦ samples randomness rSj
R← {0, 1}λ, ∀j ∈ [n] and parses rS = rS1|| · · · ||rSn

◦ computes mS
j = ΠS

OT(crs, k0j , k
1
j ,m

R
j ; rSj), ∀j ∈ [n] and T = H

(
k1
)
⊕ rS and

◦ sends (C, {mS
j}j∈[n], T) to P.

P computes the wire-keys corresponding to his input: k
xj
j =

ΠR
OT(crs,mR

j ,m
S
j , r

R
j), ∀j ∈ [n].

GC Evaluation, Verification and Output Disclosure Phase: P evaluates C
and obtains the garbled output. He then recovers the randomness used by
the sender (namely, V) using the output-wire key he obtained. By the sender-
extractability of ΠOT, P recovers the input-wire labels which are the OT inputs
of V. P can now verify that the garbled circuit was correctly constructed using
the recovered wire keys. Specifically, it:
◦ executes Y = Ev(C, {kxjj }j∈[n])
◦ recovers rS = H (Y)⊕ T , and parses rS = rS1|| · · · ||rSn
◦ aborts if ∃j such that Ext(crs,mR

j ,m
S
j , r

S
j) = ⊥ and extracts (k0j , k

1
j) =

Ext(crs,mR
j ,m

S
j , r

S
j),∀j ∈ [n] otherwise

◦ aborts if Ve2(C,C, {k0j , k1j}j∈[n]) = 0 and sends Y to V otherwise.
Output Phase: If Y = k1, then V outputs accept, else he outputs reject.

Fig. 3: 3-round GC based Zero Knowledge protocol

for the OTs) as the sender’s input. The reduction then extracts the input x
of P? and forwards to the OT challenger as the choice bits of the receiver.
The response of OT challenger who computes the sender’s message either
by invoking a real sender i.e. as mS

j = ΠS
OT(crs, k0j , k

1
j ,m

R
j ; rSj),∀j ∈ [n] or by

invoking a simulator i.e. as mS
j = ΠS

OT(crs, k
xj
j , 0

λ,mR
j ; rSj),∀j ∈ [n] is sent

to the reduction who further forwards the message to P? along with C and
a random T . In case the OT challenger invokes a simulator the view of P? is

18

Simulator SP

The simulator plays the role of the honest V and simulates each step of the protocol
ΠZK3 as follows. The communication of the Z with the adversary A who corrupts P
is handled as follows: Every input value received by the simulator from Z is written
on A’s input tape. Likewise, every output value written by A on its output tape is
copied to the simulator’s output tape (to be read by the environment Z).

OT First Message Phase: SP invokes the simulator of ΠOT for corrupt receiver
and extracts P’s input bit to the jth instance of ΠOT, namely the jth witness
bit xj .

GC Construction and OT Second Message Phase: SP emulates an honest
V if the extracted witness x is valid i.e. R(z, x) = 1. Otherwise, SP does the
following:
◦ It constructs a garbled circuit C for C as (C, {(k0j , k1j)}j∈[n], (k0, k1)) ←

Gb(1λ, C).
◦ It samples rS uniformly at random and parses it as rS = rS1|| · · · ||rSn,
◦ It computes mS

j = ΠS
OT(crs, k

xj
j , 0

λ,mR
j ; rSj),∀j ∈ [n] and samples T uni-

formly at random and
◦ It sends (C, {mS

j}j∈[n], T) to P?.
GC Evaluation, Verification and Output Disclosure Phase: SP does noth-

ing in this step.
Output Phase: SP sends x to FRZK on behalf of P? if R(z, x) = 1. Otherwise, it

sends ⊥.

Fig. 4: Simulator SP

identical to hyb1, whereas when the OT challenger uses a real execution of
ΠOT the view of P? is identical to real (T is random given that the correct k1

is never queried to H). Therefore, the probability of distinguishing between
the REAL and hyb1 view translates to the probability of distinguishing
between the real and the simulated view of the OT protocols for the case
when the receiver is corrupt.

– P? outputs the correct k1 in realΠZK3,A,Z with significantly higher
probability than in hyb1. This case is similar to the previous case in that
P? can be used to break sender security of the OT by computing C locally
in the reduction. If P? outputs a correct k1, the reduction is interacting with
ΠOT whereas if not, the challenger must have invoked the simulator for ΠOT.
The advantage of this reduction is the difference in probabilities with which
P? forges k1 successfully in the real and hyb1 worlds.

– P? outputs the correct k1 in both worlds with almost the same prob-
ability. The corrupt P? can be used directly to break authenticity of the
garbling scheme. Clearly the OT message corresponding to inactive input
keys are not used by the corrupt P; the ability to output the correct k1 must
be derivative of the ability to forge a key for the garbled circuit alone. It is
therefore straightforward to use P? to forge k1 for a given garbled circuit C,
as its view can be generated as per hyb1, which does not require the inactive
garbled circuit keys to compute the OT messages.

19

Note that in Cases 2 and 3, we consider a P? who outputs k1 to be equivalent
to a P? who queries the random oracle on k1 to unlock T in its effort to distin-
guish real from hyb1. Instead of receiving k1 directly from P?, our reductions
will observe its query to the random oracle.

Finally idealFRZK,SP,Z deviates from hyb1 only in its criteria to output accept.

Only a corrupt P who is able to output k1 will be able to distinguish hyb1 from
idealFRZK,SP,Z . Such a P can be used directly to forge an output key for a given C

with the same probability (which by authenticity of the garbling scheme, must
be negligible).

Simulator SV

The simulator plays the role of the honest P and simulates each step of the protocol
ΠZK3 as follows. The communication of the Z with the adversary A who corrupts V
is handled as follows: Every input value received by the simulator from Z is written
on A’s input tape. Likewise, every output value written by A on its output tape is
copied to the simulator’s output tape (to be read by the environment Z).

OT First Message Phase: SV invokes the simulator of ΠOT for corrupt receiver
to simulate the first OT message.

GC Construction and OT Second Message Phase: SV uses the OT simula-
tor to extract V’s inputs to the jth instance of ΠOT, namely (k0j , k

1
j).

GC Evaluation, Verification and Output Disclosure Phase: On receiving
the garbled circuit C and T from V, SV runs Ve2(C,C, {k0j , k1j}j∈[n]). It aborts
if the output of Ve2 is 0. Else, it sends k1 to V where k1 ← Ve1 (C, e, 1).

Output Phase: It does nothing in this step.

Fig. 5: Simulator SV

Security against a Corrupt Verifier V?. We now argue that idealFRZK,SV,Z
c
≈

realΠZK3,A,Z when A corrupts V. The above two views of V∗ are shown to be
indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realΠZK3,A,Z .

– hyb1: Same as hyb0, except that OT First Message phase is emulated
by invoking the simulator of ΠOT for corrupt receiver.

– hyb2: Same as hyb1, except that k1 is computed in the following way instead
of running Ev(C,X). The simulator of ΠOT for corrupt receiver is used to
extract (k0j , k

1
j) for j ∈ [n]. Then Ve2(C,C, {k0j , k1j}j∈[n]) is run. If the output

is 0, the prover aborts. Otherwise Ve1 (C, e, 1) is run to extract k1 and the
prover runs the rest of the protocol using k1.

– hyb3: Same as hyb2, except that the following check for abort in GC Eval-
uation, Verification and Output Disclosure Phase is removed: On
computing rS1 || · · · ||rSn = rS = T ⊕ H

(
k1
)
, the prover aborts if any call to

the extractor Ext of the sender’s input to OT returns ⊥.

20

Clearly, hyb3 = idealFRZK,SV,Z . Our proof will conclude, as we show that
every two consecutive hybrids are computationally indistinguishable.

hyb0
c
≈ hyb1: The difference between these hybrids lies in the way OT

first message is generated. In hyb0, the message is generated by a real receiver
that possesses the choice bits x, whereas in hyb1, the simulator for ΠOT for
the corrupt receiver generates the message. The indistinguishability follows via
reduction to the sender security of n instances of OT.

hyb1
c
≈ hyb2: The difference between these hybrids lies in the way k1 is com-

puted. In hyb1, k1 is computed as a real prover does. On the other hand, k1

is extracted using Ve1 and the encoding information extracted from the OTs in
hyb2. By the verifiability property (Definition A.5) of the garbling scheme, the
view of V? in hyb2 and hyb1 are indistinguishable.

hyb2
c
≈ hyb3: The difference between these hybrids lies in the conditions checked

by P for abort in GC Evaluation, Verification and Output Disclosure
Phase. In the former, the protocol is aborted when one of the invocations to
Ext returns messages different from corresponding input labels which does not
happen in the latter as the check is removed. By the sender extractability of
the OT protocol (Definition 4.1), the hybrids are indistinguishable except with
negligible probability.

ut

4.3 Making ΠZK3 Adaptively Secure

The challenge in achieving adaptive security for ΠZK3 is essentially the same
as ZKGC; once the GC output key Z has been retreived, all of P’s steps are
independent of the witness.

Simulation for P. Consider the worst case scenario of post-execution corrup-
tion. The simulator runs

(
mR, rR0 , r

R
1

)
← SRE (crs, t) to generate the first message

of P, and obtains the GC output key Z either by extracting the encoding infor-
mation from V’s response (if V is corrupt) or using the key it picked itself when
simulating V. The rest of the simulation is straightforward, as the code of honest
P can be run from this point. In case the adversary chooses to corrupt P, the
simulator hands over the randomness rRxi for each OT instance encoding witness
bit xi.

Simulation for V. As V has no input, the simulator proceeds by running the
code of the honest verifier, with the only difference being that it accepts a proof
by checking whether P has input a valid witness in the OT. A malicious P can
distinguish between the real protocol and the simulation only by forging Z,
for which there is no advantage afforded by adaptive corruptions; a dishonest P
who is successful in this setting can be used to break authenticity of the garbling
scheme just as in the static case.

21

5 Zero Knowledge in Two Rounds

As discussed in Section 4, it seems unlikely that we can do better than three
rounds to obtain a zero-knowledge from only one garbled circuit. Therefore,
we explore whether we can save on the number of rounds when constructing
ZK protocols by allowing multiple garbled circuits. In this section, we adopt a
‘cut-and-choose’ approach in order to construct a GC-based ZK protocol that
requires only two rounds.

Our protocol is similar in spirit to the protocol of [HV16], who extend the
technique of “MPC-in-the-head” [IKOS07]. The “MPC-in-the-head” is a tech-
nique introduced by Ishai et al. that allows a generic transformation of an MPC
protocol into a zero-knowledge proof. In [HV16], the authors extend this idea,
and give a generic transformation from a secure two-party computation protocol
to a ZK proof.

The protocol is essentially a special case of general cut-and-choose. Since
the verifier has no input, we do not have to handle selective failure where the
evaluator’s abort could leak a bit of his input, or ensure input consistency of
the garbler, again, since the circuit is evaluated on an input entirely known
to the garbler. While in [HV16], the protocol is seen as “2PC-in-the-head”, we
cast our protocol as cut-and-choose, and apply a standard transformation based
on OT. Loosely speaking, choosing to reveal P1’s view in “2PC-in-the-head”
in [HV16] is equivalent to choosing a circuit to be a check circuit in our proto-
col; and choosing to reveal P2’s view corresponds to a circuit being an evaluation
circuit. Taking this view, we get a zero-knowledge argument whereas the “2PC-
in-the-head” of [HV16] gives a zero-knowledge proof. We note that we do not
need to enforce output recovery when two evaluated circuits result in different
outputs. The output recovery mechanism that is used in general 2PC protocols
[Lin13,LR14,LR15,AMPR14,MR17] relies on authenticity property of the under-
lying garbling scheme. Our protocol can be compiled into a NIZK using standard
techniques and transformations.

Next, we note that we can upgrade our argument to a proof following the
idea of [HV16]; we augment our two-round argument with statistically binding
commitments to the input GC keys from P. The inputs of P to the OT consist of
the openings of all commitments (for a check circuit) as one message, and only the
committed keys required to evaluate the GC on the garbled witness as the other
message. Notably, the efficient ZK protocols such as those from garbled circuits
[JKO13] (including our 3 round construction presented in the previous section),
ZKBoo [GMO16], SNARKs and SNARGs are arguments. Our transformation
requires public key operations proportional to the witness size alone whereas
the best way we can think of for transforming ZKBoo to a proof involves public
key operations proportional to the circuit size. For instance, running a 3-out-
of-2 OT where the prover feeds three views that it creates ‘in the head’ as the
input of the OT sender and the verifier chooses two indices picked uniformly at
random indicating the two views to be opened for verification.

22

Once more, we consider the scenario where a prover P would like to prove to
a verifier V that she knows a witness x for instance z such that C(x) = 1, where
C is the circuit implementing the relation R(z, x).

5.1 Our Construction

Informally, P garbles C to produce µ independent garbled circuits, and sends
them to V, where µ is a statistical security parameter. Meanwhile, V samples a

challenge string c
R← {0, 1}µ. The positions at which bit string c is 0 will indicate

which circuits V would like to verify (check circuits), whereas the positions at
which c is 1 indicate which circuits V would like to evaluate (evaluation circuits).
If all the check circuits are valid, and all the evaluation circuits decode to the
correct output, V believes that P indeed has a witness x for the instance z. P
would have to correctly guess V’s entire challenge string in order to cheat and
avoid detection.

Intuitively, P constructs µ independent garbled circuits of C, and for each
instance acts as a sender in the OT protocol with messages corresponding to
verification and evaluation information, respectively of the garbled circuit C,
while sending the garbled circuit and decoding information directly to V (with
the final message of the OT). V acts as the receiver in the OT protocol with
choice bit ci in the ith OT instance. She receives the first message to check
or the second message to evaluate a given circuit, as per her challenge. When
instantiated with the UC-secure OT in the framework of [PVW08], our protocol
requires only 2 rounds. Our 2-round ZK protocol ΠZK2 is described in Fig. 6,
and proven UC-secure in the FOT-hybrid model in Appendix D.

The zero knowledge protocol ΠZK2 is not a zero knowledge proof. It is only
an argument. We may obtain a proof using the idea of [HV16], resulting in a
2-round zero-knowledge proof. We outline the approach below for completeness.

5.2 Our construction for ZK proof

The zero knowledge protocol ΠZK2 is not a zero knowledge proof. It is only an ar-
gument. We may obtain a proof using the idea of [HV16], resulting in a 2-round
zero-knowledge proof. For a legitimately constructed garbled circuit C imple-
menting an unsatisfiable circuit (implying there is no witness for the statement),
an unbounded P? can find a set of keys, completely unrelated to the legitimate
encoding information e, (say, by breaking the security of the underlying crypto-
graphic primitive used in the garbled circuit) which evaluates C to the legitimate
key corresponding to one. For instance, by breaking the collision-resistance of
the hash function used to garble the gates. With such a circuit, the verification
will always pass when legitimate encoding information is passed on. On the other
hand, the other set of keys will allow to evaluate to 1 despite the fact that C
is unsatisfiable. P? can thus convince V of a false statement. To prevent P from
cheating we ensure that the wire labels that it provides for evaluation corre-
spond to the valid encoding information e. This is done by asking P to commit

23

ΠZK2

– Oracles and Cryptographic Primitives: A correct, private, verifiable (ac-
cording to Definition A.4) garbling scheme Garble = (Gb,En,De,Ev,Ve). The
ideal OT functionality FOT.

– Common Inputs of P and V: A security parameter λ, soundness parameter µ,
relation R realized by circuit C, statement z.

– Input of P: A witness x of size n = poly(λ) such that R(z, x) = 1.
– Input of V: Nothing.

OT First Message Phase: For all i ∈ [µ], V samples challenge bit ci
R← {0, 1}

and sends (rec, sid, ci) to FOT.
OT Second Message and Circuit Communication Phase: For all i ∈ [µ], P

◦ constructs an independent garbling of C; (Ci, ei, di)← Gb(1λ, C)
◦ encodes the witness as Xi = En(x, ei)
◦ sends (sen, sid, ei,Xi) to FOT and (Ci, di) to V.

Circuit Checking, Evaluation and Output Phase: This is a local computa-
tion phase run by V. For all i ∈ [µ], V does the following:

◦ If ci = 0, then it receives (sent, sid, ei) from FOT. If Ve(C,Ci, ei) = 0, then
it outputs reject and halt.

◦ Else if ci = 1, then it receives (sent, sid,Xi) from FOT. If
De(Ev(Ci,Xi), di) 6= 1 then it outputs reject and halt.

◦ If it has not halted, it outputs accept.

Fig. 6: 2-round Zero-Knowledge protocol.

to the encoding information in a randomly permuted order. Formally, for circuit
i and input wire j, P must prepare and send the following commitments where
eij denotes the encoding information corresponding to jth input wire of the ith
circuit:

(B0ij ,B1ij) = (Com(En(bij , eij)),Com(En(1− bij , eij))), for bij
R← {0, 1}

The commitment Com is statistically binding and computationally hiding com-
mitment scheme ensuring the binding property against an unbounded powerful
P?. An ElGamal based commitment scheme suffices for our requirement. V checks
if the commitments (B0ij ,B1ij) opens to legitimate encoding information if the ith
circuit is a check circuit. On the other hand, if the ith circuit is an evaluation
circuit, then it verifies that every received input wire label is consistent with one
of the given commitments. The commitments used as above makes sure that V
evaluates the evaluation circuits on the legitimate wire labels consistent with e.
The cut-and-choose guarantees that correct circuits are used for evaluation. Our
protocol is presented in Figure 7 and a schematic diagram is given in Figure 17.
The security proof for the scheme is an easy extension of the proof given in the
previous section for the ZK argument.

24

ΠZKP2

– Oracles and Cryptographic Primitives: A correct, private, verifiable (ac-
cording to Definition A.4) garbling scheme Garble = (Gb,En,De,Ev,Ve). The
ideal OT functionality FOT. Statistically binding and computationally hiding
commitment scheme Com.

– Common Inputs of P and V: A security parameter λ, soundness parameter µ,
relation R realized by circuit C, statement z.

– Input of P: A witness x of size n = poly(λ) such that R(z, x) = 1.
– Input of V: Nothing.

OT First Message Phase: For all i ∈ [µ], V samples challenge bit ci
R← {0, 1}

and sends (rec, sid, ci) to FOT.
OT Second Message and Circuit Communication Phase: For all i ∈ [µ], P

◦ constructs an independent garbling of C; (Ci, ei, di)← Gb(1λ, C)
◦ encodes the witness as Xi = En(x, ei)

◦ for j ∈ [n], samples bij
R← {0, 1}, generates commitments as (B0

ij ,B1
ij) =

(Com(En(bij , eij)),Com(En(1 − bij , eij))) on the encoded inputs for input
wire j (eij denotes the encoding information corresponding jth input wire
of the ith circuit)

◦ sends (sen, sid, (ei, ri), (Xi, si)) to FOT and (Ci, di) and (B0
ij ,B1

ij) for j ∈ [n]
to V (where ri is the opening information for all the commitments used for
ith circuit and si is the opening information for only the commitment used
for the keys encoding x).

Circuit Checking, Evaluation and Output Phase: This is a local computa-
tion phase run by V. For all i ∈ [µ], V does the following:

◦ If ci = 0, then it receives (sent, sid, (ei, ri)) from FOT. If ∀j ∈ [n], (ei, ri)
is not consistent with (B0

ij ,B1
ij) or Ve(C,Ci, ei) = 0 then V outputs reject

and halt.
◦ Else if ci = 1, then it receives (sent, sid, (Xi, si)) from FOT. If ∀j ∈

[n], (Xi, si) is not consistent with Bbijij for some bij ∈ {0, 1} or
De(Ev(Ci,Xi), di) 6= 1 then V outputs reject and halt.

◦ If it has not halted, it outputs accept.

Fig. 7: 2-round protocol for obtaining Zero-Knowledge Proof.

6 On Authenticity-Free Garbling

As we have seen earlier, garbling schemes that achieve privacy alone are well-
motivated. Along the lines of [FNO15] one might ask the question, “can we
leverage the lack of an authenticity requirement in order to construct more effi-
cient garbling schemes?”

Unfortunately, in this section, we answer the above question in the negative,
for most ‘standard’ garbling schemes. Note that more efficient garbled circuit
constructions by giving up on authenticity is precluded by the result of [AIK10].
The result of [AIK10] shows how to achieve authenticity from a garbling scheme
that satisfies only privacy. While this involves encoding an augmented circuit,
we show a similar result while encoding the same underlying circuit. Specifically,
we show that if a garbling scheme achieving privacy satisfies a notion of compos-

25

ability, then the scheme is necessarily authentic. Intuitively, any garbling scheme
that does not treat output gates differently from intermediate/input gates will
be composable. This definition covers state-of-the-art constructions such as those
of [ZRE15,GLNP15], and the basic Yao garbling scheme itself [LP09]. We show
that an adversary who is able to forge a garbled output for a GC produced by
a composable garbling scheme, can be used to break privacy of a slightly larger
circuit garbled by the same scheme. Intuitively, forging the output key of the sub-
circuit enables multiple evaluations on the larger circuit. As a simulated garbled
circuit is constructed to simulate only one ‘path’ of garbled evaluation, it will
most likely not permit multiple correct evaluations. We begin with the formal
definition of composable garbling in the section below. In Section 6.3, we present
how an AND gate can be garbled with just one ciphertext non-composably.

6.1 Composable Garbling

We restrict our model to projective garbling schemes which work by associat-
ing keys k0i , k

1
i corresponding to semantic values 0 and 1 respectively for each

input/output wire i in the circuit being garbled. Note that referring to the key
corresponding to semantic 0 as k0i is done for notational convenience; our proof
is unaffected by point-and-permute style optimizations. We further focus on the
garbling schemes where the decoding algorithm De satisfies the following prop-
erty: if De does not output ⊥ for a given garbled output Y, then the garbled
output keys that comprise Y are necessarily drawn from the pre-defined output
wire keys. Namely, for Y = (Yi)i∈[n+q+1,n+q+m]:

De (Y, d) 6= ⊥ =⇒ ∀i ∈ [n+ q + 1, n+ q +m], Yi ∈ {k0i , k1i }

where n, q,m denote the number of input wires, gates and output wires respec-
tively in circuit C. Placing the above requirement allows us to ignore garbling
schemes that do not achieve authenticity only because the De routine never
outputs ⊥ 5.

Informally, a composable garbling scheme allows the output keys of a pre-
viously garbled gate to be the input keys to an instance of garbling another
gate in the circuit. A Gb routine that directly uses the output keys of a gate
as the input keys to a child gate, and does not distinguish between output and
non-output gates, will make the garbling scheme composable. A bit formally, a
scheme Garble is said to be composable if it can be used to define a new garbling
scheme Garble? that can compose garbling of a circuit C and a gate C ′ accord-
ing to Gb of Garble to produce a GC for a larger composed circuit C? defined as
follows. Circuit C? : {0, 1}n 7→ {0, 1}m is interpreted as the composition of the

sub-circuit C : {0, 1}n−1 7→ {0, 1}m and C ′. One of the output wires of C acts
as the left input wire of gate C ′. The last input wire of C? serves as the right
input wire of C ′. C ′ provides an output wire in circuit C?.

5 Such a pathological scheme is used to show separation between authenticity and the
other security notions in [BHR12b]

26

Our way of defining composability is sufficient for the purpose of our proof,
while capturing most practical garbling schemes [ZRE15,GLNP15]. We note that
the template of Gb of the scheme Garble? can be extended to more accurately
reflect garbling for general composed circuits by removing the constraints on the
input wires of C ′. Namely, that the right wire of C ′ is an input wire, whereas
the left wire is an intermediate wire. While not required for our proof, we pro-
vide such a template capturing gate-by-gate garbling schemes in Section 6.4 for
completeness. The tradeoff for a more precise template is a loss of generality in
the garbling techniques captured; as an example, the work of [MPs16] abandons
the gate-by-gate approach to garbling. The composability requirement as stated
formally in Fig. 8 for our proof is meaningful for any projective garbling scheme,
which we believe will be relevant beyond current garbling techniques. We now
formalize the notion of composable garbling scheme.

Definition 6.1 A garbling scheme Garble = (Gb,En,Ev,De) is composable if
there exists a garbling routine Gb? as per Fig. 8 such that the composed garbling
scheme Garble? = (Gb?,En,Ev,De) is correct and private.

Given a garbling scheme Garble = (Gb,En,Ev,De) of a garbling scheme Garble, we
construct a garbling algorithm Gb? for a given circuit C? : {0, 1}n 7→ {0, 1}m,
which is subject to certain restrictions as given below. Circuit C? is interpreted as
the composition of a sub-circuit C : {0, 1}n−1 7→ {0, 1}m and a single 2 fan-in gate
C′. The gate C′ provides an output wire in circuit C?. The left and right incoming
wires to C′ are indexed L and R respectively. Clearly L is an output wire of C, and
R is an input wire of C?.

Gb?
(
1λ, C?

)
1. Parse C and C′ from C?, where C′ is the last gate in C?.
2. Use Gb to garble C, i.e. (C, e, d)← Gb

(
1λ, C

)
3. Extract keys k0L, k1L using (C,C, e)a.
4. Choose fresh keys k0R, k1R. For garbling schemes such as FreeXOR which require

a certain key structure, choose fresh input keys appropriately. Otherwise, two
independent random λ-bit strings will suffice.

5. Compute (C′, e′, d′) = Gb
(
1λ, C′

)
such that e′ =

((
k0L, k

1
L

)
,
(
k0R, k

1
R

))
6. Set C? = C||C′, e? = e||e′[2] and d? = d[1]||d[2]|| · · · ||d[m− 1]||d′ where e and

e′ are perceived as arrays with ith entry containing the encoding information
for the ith input wire. Similar notation is used for d and d′.

7. return C?, e?, d?

a This can be done by saving the required keys from Step 2

Fig. 8: Specification of a composing Gb routine

27

6.2 Relating Composability and Privacy to Authenticity

We now show that a garbling scheme Garble whose composed garbling scheme
Garble? is private and correct as per Def. 6.1 must necessarily be authentic.

Theorem 6.2 If a private and correct garbling scheme Garble =
(Gb,En,Ev,De) is composable as per Definition 6.1, then it is also authentic.

Proof. Given black-box access to an adversary Aaut who is able to forge a garbled
output for some (C, x) garbled using Garble, we construct an adversary Aprv who
can distinguish between a legitimate and simulated garbling of some larger circuit
(C?, x||x′) as per composed garbling scheme Garble? (as per Def. 6.1). The idea
is to create C? from C so that the output wire of C is an intermediate wire of
a circuit C?. Aprv then uses Aaut to forge the missing output key of the output
of C. Now, possession of both the keys of the output wire of C allows Aprv to
perform multiple evaluations of output gate C ′ in a garbling of C?. This in turn
allows to verify if the gate has been garbled legitimately or via a simulator.

Assuming black box access to an adversary Aaut who can forge a garbled output for
some circuit C : {0, 1}n−1 7→ {0, 1} and input x ∈ {0, 1}n−1 as per Garble, we con-
struct adversary Aprv who can distinguish whether a given (C,X, d) corresponding
to a larger circuit C? : {0, 1}n 7→ {0, 1} as per Garble? is produced legitimately, or
simulated.

Aprv

(
1λ
)

1. receive C, x from Aaut. Let y be the output wire label of C.
2. Construct C? as follows:

– if C(x) = 0 then C? = C||(y ∧ x′)
– else C? = C||(¬y ∧ x′)

3. Sample bit x′
R← {0, 1}

4. send C?, x||x′ as the function and input to the challenger of the privacy ex-
periment, and receive C?,X?, d? as a response.

5. From the above response, parse C||C′ = C?, where C ∈ Gb(1λ, C) and C′ ∈
Gb(1λ,∧), as well as X||X′ = X? where X ∈ En(x, ·) and X′ ∈ En(x′, ·)

6. Compute Y = Ev (C,X)
7. send (C,X) to Aaut and receive Y′ as a candidate forged output.
8. Compute Z = Ev (C′,Y||X′) and Z′ = Ev (C′,Y′||X′)
9. Check the consistency of the final garbled gate to determine whether it was

garbled legitimately, as follows:

– if De (Z′, d) = ⊥ then output guess
R← {Real, Ideal}

– else if (Z′ = Z and x′ = 0) or (Z′ 6= Z and x′ = 1) then output guess =
Real

– else output guess = Ideal

Fig. 9: Reduction of authenticity of Garble to privacy of Garble′

Concretely, (C?, x||x′) is constructed from (C, x) as follows. If C(x) = 0, then
C? is constructed as C appended with an AND gate that takes the output of C

28

as the left input and x′ as the right input. Otherwise, negation of the output of
C is given as the left input to the AND gate. x′ is chosen uniformly at random.
The above construction of C? ensures that the output of C? is always 0. This
completely hides from the garbling simulator S the value that x′ takes, thereby
providing no clues for S to use the keys of the wire in the right way. As we
analyse below, the best way for the simulator to escape being told apart from a
legitimate garbling is to guess x′. x′ being randomly picked ensures a probability
of 1

2 for the simulated garbled circuit being concluded as a legitimate garbled
circuit.

This reduction of the authenticity of garbling scheme Garble to the privacy of
composed garbling scheme Garble? is formally described in Fig. 9, with a formal
analysis below. For simplicity, we assume that C outputs only 1 bit; we will
address the general case later.

Let the advantage of Aaut in correctly forging a valid missing garbled output
for a GC and input produced by Garble be h (λ) (see Def. A.3). Index the Real
world b = 0, and Ideal world b = 1. We analyze the following cases in order to
determine how much of this advantage is translated in distinguishing a simulated
(C,X, d) from one legitimately produced by Garble?:

Real world: (C?,X?, d?) ∈ {RealGarble? (C?, x||x′)}.

a. Aaut is successful in forging an output. This case occurs with probability
h (λ). Then, Aprv guesses Real and is correct with probability 1.

b. Aaut is unsuccessful in forging an output. This case occurs with probability
1− h (λ). Then, either decoding or evaluation of the final gate will fail; Aprv

submits a random guess and is correct with probability 1
2 .

In this case, the adversary Aprv correctly guesses that she is in the Real world
with the following probability:

Pr
[
Aprv

(
1λ
)

= 0 | b = 0
]

= h (λ) · 1 + (1− h (λ)) · 1

2
=

1

2
· (h (λ) + 1) (1)

Ideal world: (C?,X?, d?) ∈ {IdealS (C?, 0)}.

a. Aaut is successful in forging an output. This case occurs with some probability
h′ (λ). We will give the benefit of the doubt to S and assume that all keys
and ciphertexts in C? are consistent, and that the decoding information
is constructed correctly (if not, Aprv will terminate with a random guess,
winning with probability 1

2). Now if S can guess x′ and correctly pass the
corresponding key, the garbled gate for the final gate will pass the consistency
check and Aprv will output Real. Otherwise, Aprv will output Ideal. The
probability of guessing x′ is at most 1

2 since S has no information about x′

whatsoever (as the function output is always 0) and hence can at best guess
x′ at random. Therefore, Aprv outputs Ideal with probability 1

2 .
b. Aaut is unsuccessful in forging an output. This case occurs with probability

1−h′ (λ). Then, either decoding or evaluation of the final gate will fail; Aprv

submits a random guess and is correct with probability 1
2 .

29

The adversary Aprv therefore has the following probability in guessing correctly
that she is in the ideal world:

Pr
[
Aprv

(
1λ
)

= 1 | b = 1
]

= h′ (λ) · 1

2
+ (1− h′ (λ)) · 1

2
=

1

2
(2)

We can compute the advantage of Aprv in distinguishing the output distribu-
tions {RealGarble? (C, x||x′)} and {IdealS (C, 0)}, plugging in the probabilities
from (1) and (2) as follows:

Pr
[
Aprv

(
1λ
)

= 0 | b = 0
]
−Pr

[
Aprv

(
1λ
)

= 0 | b = 1
]

=
1

2
· (h (λ) + 1)− 1

2

=
1

2
· h (λ)

(3)

Given that Garble is composable, Garble? is private by definition. As per Def.
A.2, the advantage of Aprv computed in (3) must be negligible, implying that
h (λ) must be negligible for all Aaut

(
1λ
)
. There can not exist a PPT adversary

Aaut who can succesfully forge a garbled output for any C,X produced by a
composable garbling scheme Garble with non-negligible advantage as per Defi-
nition A.3. Therefore, given that a garbling scheme Garble is composable, it is
necessarily authentic, and this proves Theorem 6.2. ut

What if C has multiple wires? To handle the case where C of the tuple (C, x)
has m output wires denoted as y1, . . . , ym, we define C? : {0, 1}n+m 7→ {0, 1}m
as C appended with m AND gates where ith AND gate takes either yi or ¬yi
(adjusting as per Step 2 of Fig. 9) as the left input and x′i as the right input
wire. The strategy of Aprv hence follows with at least the same advantage, as if
Aaut forges output keys on m′ wires, S is successful only when it guesses every
x′i input to the corresponding wires, which it can do with probability no greater

than 2−m
′
.

6.3 Feasibility of Authenticity-Free Garbling

Garbling gate by gate in topological order where the output keys of one gar-
bled gate are used as the input keys to its children, coupled with circuit output
key distributions being (nearly) identical to the input key distribution of in-
termediate gates, is the dominant paradigm underlying most state-of-the-art
garbling schemes for Boolean circuits [ZRE15,GLNP15,KMR14,KS08,PSSW09].
This means that the current methods of garbling Boolean circuits privately is
inherently composable, therefore making authenticity impossible to avoid.

However, we note that it is possible to have efficient authenticity-free garbling
that is non-composable, assuming access to a PRF F . Consider any projective
topological gate-by-gate garbling scheme Garble with the following modifications
to construct Garble?:

30

– Gb : Garble all gates until the output layer topologically as per Garble; the
keys on wire i are k0i , k

1
i corresponding to semantic values 0 and 1, and the

ciphertext for wire i is stored in T [i]. Let i ∈ [m] index the output gates,
while Li and Ri index the left and right incoming wires of i respectively. For
all i ∈ [m] such that i is an AND gate, set ciphertext T [i] := Fk1Li

(i)⊕Fk1Ri (i),
zero-key k0i := 0λ and one-key k1i := 1λ.

– Ev : Evaluate all gates until the output layer topologically as per Garble;
the key obtained on wire w is kw. Let i ∈ [m], Li, Ri be defined as earlier.
Evaluating output AND gate i ∈ [m] proceeds as follows: compute C :=
FkLi (i)⊕ FkRi (i). If C = T [i] then set ki = 1λ, otherwise set ki = 0λ.

Security. The output keys for any output-layer AND gate are predictably al-
ways 0λ and 1λ, making Garble? clearly non-authentic. These output keys can
not be reused as input keys to another gate for the same reason, making Garble?

non-composable. However if Garble is private and correct, then so is Garble?;
leaking the semantic values of the output keys to the evaluator does not com-
promise privacy. The privacy property of a garbling scheme requires that a PPT
A can not (with non-negligible advantage) distinguish between an honestly con-
structed (C,X, d) and such values constructed by a simulator that has access to
only the clear output C(x) (and not x). A is allowed to see the decoded output
anyway, therefore the distribution of the routines of Garble? can be simulated
for privacy if those of Garble can be. The Garble1 scheme of [BHR12b] achieves
privacy despite leaking the semantic values of the output wires.

Performance. Most practical garbling schemes are shown to satisfy a definition
of ‘linearity’ by Zahur et al. [ZRE15]. They go on to show that a linear garbling
scheme achieving privacy requires at least two ciphertexts to garble an AND
gate. However, Garble? garbles every output AND gate with just one ciphertext,
implying that for any linear Garble, a corresponding Garble? as defined above
will necessarily produce one less ciphertext per output AND gate. Our result
indicates that any approach to authenticity-free garbling must be inherently
non-composable as per our definition. However, the result of [AIK10] suggests
that even non-composable garbling schemes might not gain much by giving up
on authenticity.

Lower bound of [ZRE15]. The garbling scheme Garble? when used to garble
a single AND gate in isolation produces only one ciphertext, which may seem to
contradict the 2-ciphertext lower bound for private garbling proven in [ZRE15].
However the Ev routine of of Garble? makes use of a comparison operation,
which disqualifies it from being a linear garbling scheme. Therefore, instead of
a counterexample, we have a circumvention of the 2-ciphertext lower bound.

6.4 Composable Gate-by-gate Garbling

Our template for gate-by-gate composable garbling is detailed in Fig. 10.

31

For garbling scheme Garble, we provide a template for a garbling routine Gb? which
uses the garbling routine Gb ∈ Garble to garble a given circuit C?. A circuit C? is
interpreted as the composition of a sub-circuit C and a single 2 fan-in gate C′. The
gate C′ provides an output wire in circuit C. The left and right incoming wires to
C′ are indexed L and R respectively. Note that L and R could each be any of the
following: an input wire to C, an internal wire in C, or an input wire of C? that
does not touch C at all.

Gb?
(
1λ, C?

)
1. Parse C and C′ from C?, where C′ was indexed as the last gate in C
2. Use Garble to garble C. C, e, d← Gb

(
1λ, C

)
3. For w ∈ {L,R} such that w is a wire touching C, extract keys k0w, k1w using

(C,C, e)a.
4. For w ∈ {L,R} such that w is a wire not touching C, choose fresh keys k0w, k1w.

For garbling schemes such as FreeXOR which require a certain key structure,
choose fresh input keys appropriately. Otherwise, two independent random λ-
bit strings will suffice.

5. Compute C′, e′, d′ = Gb
(
1λ, C′

)
such that e′ =

((
k0L, k

1
L

)
,
(
k0R, k

1
R

))
6. Set C? = C||C′, and initialize e? = e and d? = d||d′.
7. The encoding and decoding information for C? are made consistent:

– if L does not touch C then Update e? = e?||e′[0].
– if R does not touch C then Update e? = e?||e′[1].
– For w ∈ {L,R} such that w is the ith output wire of C, update d? = d?\d[i]

8. return C?, e?, d?

a This can be done by saving the required keys from Step 2

Fig. 10: Complete Specification of a Gate-by-gate Composing Gb Routine

Given garbling scheme Garble = (Gb,En,Ev,De), we construct composed gar-
bling scheme Garble? = (Gb?,En,Ev,De) as per Fig. 10. Garble is composable if
there exists a Garble? as per Fig. 10 which achieves privacy. Note that when the
output distribution of Gb? is identical to that of Gb, Garble? is equivalent to
Garble, and hence Gb can be composed recursively to garble any poly-size circuit
gate by gate. Most practical garbling schemes [ZRE15,GLNP15] already follow
this template.

Acknowledgements. Part of this work was done while the second author was
at IIIT-Bangalore, where he was supported by the Infosys foundation. The au-
thors would like to thank the anonymous reviewers for their feedback.

References

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 2087–2104, 2017.

32

AIK10. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to
soundness: Efficient verification via secure computation. In Samson Abram-
sky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and
Paul G. Spirakis, editors, ICALP 2010, Part I, volume 6198 of LNCS, pages
152–163. Springer, Heidelberg, July 2010.

AIKW15. Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. En-
coding functions with constant online rate, or how to compress garbled
circuit keys. SIAM J. Comput., 44(2):433–466, 2015.

AIR01. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer:
How to sell digital goods. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 119–135. Springer, Heidelberg, May 2001.

AMPR14. Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-
interactive secure computation based on cut-and-choose. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 387–404. Springer, Heidelberg, May 2014.

BCPW15. Fabrice Benhamouda, Geoffroy Couteau, David Pointcheval, and Hoeteck
Wee. Implicit zero-knowledge arguments and applications to the malicious
setting. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part II, pages 107–129, 2015.

Bea96a. Donald Beaver. Adaptive zero knowledge and computational equivocation
(extended abstract). In Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA,
May 22-24, 1996, pages 629–638, 1996.

Bea96b. Donald Beaver. Equivocable oblivious transfer. In Advances in Cryptology
- EUROCRYPT ’96, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996,
Proceeding, pages 119–130, 1996.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation. In Pro-
ceedings of the twentieth annual ACM symposium on Theory of computing,
pages 1–10. ACM, 1988.

BHR12a. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure
garbling with applications to one-time programs and secure outsourcing. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 134–153. Springer, Heidelberg, December 2012.

BHR12b. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 784–796. ACM, 2012.

BP12. Nir Bitansky and Omer Paneth. Point obfuscation and 3-round zero-
knowledge. In Theory of Cryptography - 9th Theory of Cryptography Confer-
ence, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings,
pages 190–208, 2012.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key primi-
tives. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

33

and Communications Security, CCS 2017, Dallas, TX, USA, October 30 -
November 03, 2017, pages 1825–1842, 2017.

CFGN96. Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively se-
cure multi-party computation. In Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania,
USA, May 22-24, 1996, pages 639–648, 1996.

CFH+15. Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin
Kreuter, Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Ver-
satile verifiable computation. In 2015 IEEE Symposium on Security and
Privacy, pages 253–270. IEEE Computer Society Press, May 2015.

CGM16. Melissa Chase, Chaya Ganesh, and Payman Mohassel. Efficient zero-
knowledge proof of algebraic and non-algebraic statements with applica-
tions to privacy preserving credentials. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 499–
530. Springer, Heidelberg, August 2016.

CGP15. Ran Canetti, Shafi Goldwasser, and Oxana Poburinnaya. Adaptively Secure
Two-Party Computation from Indistinguishability Obfuscation, pages 557–
585. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

CJS14. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security
with a global random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui
Li, editors, ACM CCS 14, pages 597–608. ACM Press, November 2014.

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In Proceedings
on 34th Annual ACM Symposium on Theory of Computing, May 19-21,
2002, Montréal, Québec, Canada, pages 494–503, 2002.

CM99. Jan Camenisch and Markus Michels. Proving in zero-knowledge that a
number is the product of two safe primes. In Jacques Stern, editor, EU-
ROCRYPT’99, volume 1592 of LNCS, pages 107–122. Springer, Heidelberg,
May 1999.

CP16. Ran Cohen and Chris Peikert. On adaptively secure multiparty computa-
tion with a short crs. In Proceedings of the 10th International Conference
on Security and Cryptography for Networks - Volume 9841, pages 129–146,
2016.

CPV17. Ran Canetti, Oxana Poburinnaya, and Muthuramakrishnan Venkitasubra-
maniam. Equivocating yao: constant-round adaptively secure multiparty
computation in the plain model. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 497–509, 2017.

DFGK14. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss.
Square span programs with applications to succinct NIZK arguments. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume
8873 of LNCS, pages 532–550. Springer, Heidelberg, December 2014.

DI06. Ivan Damgrard and Yuval Ishai. Scalable secure multiparty computation. In
Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 20-24, 2006,
Proceedings, pages 501–520, 2006.

DSKR15. Dana Dachman-Soled, Jonathan Katz, and Vanishree Rao. Adaptively
Secure, Universally Composable, Multiparty Computation in Constant
Rounds, pages 586–613. Springer Berlin Heidelberg, Berlin, Heidelberg,
2015.

34

FNO15. Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi.
Privacy-free garbled circuits with applications to efficient zero-knowledge.
In Advances in Cryptology-EUROCRYPT 2015, pages 191–219. Springer,
2015.

GG14. Juan A. Garay and Rosario Gennaro, editors. CRYPTO 2014, Part II,
volume 8617 of LNCS. Springer, Heidelberg, August 2014.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps. In Advances
in Cryptology - EUROCRYPT 2013, 32nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, pages 626–645, 2013.

GIKM98. Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting
data privacy in private information retrieval schemes. In 30th ACM STOC,
pages 151–160. ACM Press, May 1998.

GK96. Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge
proof systems. SIAM Journal on Computing, 25(1):169–192, 1996.

GLNP15. Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling
of circuits under standard assumptions. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-6, 2015, pages 567–578, 2015.

GMO16. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-
knowledge for boolean circuits. In 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages 1069–
1083, 2016.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In Proceedings of
the 17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985,
Providence, Rhode Island, USA, pages 291–304, 1985.

GMW86. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all np-
statements in zero-knowledge, and a methodology of cryptographic protocol
design. In Advances in Cryptology - CRYPTO ’86, Santa Barbara, Califor-
nia, USA, 1986, Proceedings, pages 171–185, 1986.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

GMW91. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield noth-
ing but their validity or all languages in NP have zero-knowledge proof
systems. Journal of the ACM, 38(3):691–729, 1991.

GQ88. Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge
protocol fitted to security microprocessor minimizing both trasmission and
memory. In C. G. Günther, editor, EUROCRYPT’88, volume 330 of LNCS,
pages 123–128. Springer, Heidelberg, May 1988.

Gro10. Jens Groth. Short non-interactive zero-knowledge proofs. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 341–358. Springer,
Heidelberg, December 2010.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

35

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Advances in Cryptology - EUROCRYPT 2008, 27th An-
nual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, pages
415–432, 2008.

HMR15. Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. Efficient zero-
knowledge proofs of non-algebraic statements with sublinear amortized cost.
In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part
II, pages 150–169, 2015.

HPV17. Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkita-
subramaniam. Constant round adaptively secure protocols in the tamper-
proof hardware model. In Proceedings, Part II, of the 20th IACR Inter-
national Conference on Public-Key Cryptography — PKC 2017 - Volume
10175, pages 428–460, 2017.

HV16. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On the
power of secure two-party computation. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 397–
429. Springer, Heidelberg, August 2016.

IEE13. 2013 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, May 2013.

IKO+11. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and
Amit Sahai. Efficient non-interactive secure computation. In Advances in
Cryptology - EUROCRYPT 2011 - 30th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tallinn, Es-
tonia, May 15-19, 2011. Proceedings, pages 406–425, 2011.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In David S. Johnson and
Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press, June 2007.

IKOS09. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge proofs from secure multiparty computation. SIAM J. Comput.,
39(3):1121–1152, 2009.

IW14. Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their appli-
cations. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias
Koutsoupias, editors, ICALP 2014, Part I, volume 8572 of LNCS, pages
650–662. Springer, Heidelberg, July 2014.

JKO13. Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge
using garbled circuits: how to prove non-algebraic statements efficiently. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & commu-
nications security, pages 955–966. ACM, 2013.

Kil88. Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages
20–31. ACM, 1988.

Kil92. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In 24th ACM STOC, pages 723–732. ACM Press, May
1992.

KKL+16. Vladimir Kolesnikov, Hugo Krawczyk, Yehuda Lindell, Alex J. Malozemoff,
and Tal Rabin. Attribute-based key exchange with general policies. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, Vienna, Austria, October 24-28, 2016, pages 1451–1463,
2016.

36

KMO89. Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-
knowledge proofs (extended abstract). In 30th Annual Symposium on
Foundations of Computer Science, Research Triangle Park, North Carolina,
USA, 30 October - 1 November 1989, pages 474–479, 1989.

KMR14. Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. Flexor: Flexible
garbling for XOR gates that beats free-xor. In Advances in Cryptology -
CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part II, pages 440–457, 2014.

KP17. Yashvanth Kondi and Arpita Patra. Privacy-free garbled circuits for for-
mulas: Size zero and information-theoretic. In Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I, pages 188–222,
2017.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit:
Free XOR gates and applications. In Luca Aceto, Ivan Damgrard,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages
486–498. Springer, Heidelberg, July 2008.

Lin11. Yehuda Lindell. Highly-efficient universally-composable commitments
based on the DDH assumption. In Advances in Cryptology - EUROCRYPT
2011 - 30th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011.
Proceedings, pages 446–466, 2011.

Lin13. Yehuda Lindell. Fast cut-and-choose based protocols for malicious
and covert adversaries. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 1–17. Springer, Hei-
delberg, August 2013.

Lip13. Helger Lipmaa. Succinct non-interactive zero knowledge arguments from
span programs and linear error-correcting codes. In Kazue Sako and Palash
Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages
41–60. Springer, Heidelberg, December 2013.

LP09. Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for
two-party computation. Journal of Cryptology, 22(2):161–188, April 2009.

LR14. Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computa-
tion in the online/offline and batch settings. In Garay and Gennaro [GG14],
pages 476–494.

LR15. Yehuda Lindell and Ben Riva. Blazing fast 2pc in the offline/online setting
with security for malicious adversaries. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver,
CO, USA, October 12-6, 2015, pages 579–590, 2015.

LZ11. Yehuda Lindell and Hila Zarosim. Adaptive zero-knowledge proofs and
adaptively secure oblivious transfer. J. Cryptology, 24(4):761–799, 2011.

MPs16. Tal Malkin, Valerio Pastro, and abhi shelat. An algebraic approach to
garbling, 2016. Unpublished manuscript, see https://simons.berkeley.

edu/talks/tal-malkin-2015-06-10.
MR17. Payman Mohassel and Mike Rosulek. Non-interactive secure 2pc in the of-

fline/online and batch settings. In Advances in Cryptology - EUROCRYPT
2017 - 36th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part III, pages 425–455, 2017.

37

https://simons.berkeley.edu/talks/tal-malkin-2015-06-10
https://simons.berkeley.edu/talks/tal-malkin-2015-06-10

NOVY98. Moni Naor, Rafail Ostrovsky, Ramarathnam Venkatesan, and Moti Yung.
Perfect zero-knowledge arguments for NP using any one-way permutation.
Journal of Cryptology, 11(2):87–108, 1998.

NP05. Moni Naor and Benny Pinkas. Computationally secure oblivious transfer.
Journal of Cryptology, 18(1):1–35, January 2005.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In IEEE S&P 2013 [IEE13], pages
238–252.

PSSW09. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams.
Secure two-party computation is practical. In Mitsuru Matsui, editor, ASI-
ACRYPT 2009, volume 5912 of LNCS, pages 250–267. Springer, Heidelberg,
December 2009.

PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 554–571. Springer, Heidelberg,
August 2008.

Rab05. Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryp-
tology ePrint Archive, Report 2005/187, 2005. http://eprint.iacr.org/

2005/187.
RR16. Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computa-

tion with online/offline dual execution. In 25th USENIX Security Sympo-
sium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages
297–314, 2016.

Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–
252. Springer, Heidelberg, August 1990.

Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd FOCS, pages 160–164. IEEE Computer Society Press,
November 1982.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

ZRE15. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole.
In Advances in Cryptology-EUROCRYPT 2015, pages 220–250. Springer,
2015.

38

http://eprint.iacr.org/2005/187
http://eprint.iacr.org/2005/187

A Properties of Garbling Schemes

Definition A.1 (Correctness) A garbling scheme Garble is correct if for all in-
put lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n,
the following probability is negligible in λ:

Pr
(
De(Ev(C,En(e, x)), d) 6= C(x) : (C, e, d)← Gb(1λ, C)

)
.

Definition A.2 (Privacy) A garbling scheme Garble is private if for all input
lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m, there exists a ppt simulator
S such that for all inputs x ∈ {0, 1}n, for all probabilistic polynomial-time adver-
saries A, the following two distributions are computationally indistinguishable:

– Real(C, x) : run (C, e, d)← Gb(1λ, C), and output (C,En(x, e), d).
– IdealS(C,C(x)): output (C′,X, d′)← S(1λ, C, C(x))

Definition A.3 (Authenticity) A garbling scheme Garble is authentic if for all
input lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n,
and all probabilistic polynomial-time adversaries A, the following probability is
negligible in λ:

Pr

(
Ŷ 6= Ev(C,X)

∧De(Ŷ, d) 6= ⊥
:

X = En(x, e), (C, e, d)← Gb(1λ, C)

Ŷ ← A(C, x,C,X)

)
.

Definition A.4 (Verifiability I) A garbling scheme Garble is verifiable if for all
input lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n,
and PPT adversaries A, the following probability is negligible in λ:

Pr

(
De (Ev(C,En(x, e)), d) 6= C(x) :

(C, e, d)← A(1λ, C)
Ve (C,C, e, d) = 1

)
For completeness, we also require the following property of a verifiable garbling
scheme:

∀ (C, e, d)← Gb
(
1λ, C

)
, Ve (C,C, e, d) = 1

Definition A.5 (Verifiability II) A garbling scheme Garble is verifiable if there
exist a pair of poly-time algorithm (Ve1,Ve2) such that for all input lengths n ≤
poly(λ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, and PPT adversaries
A, the following probability is 1:

Pr

(
Ve1 (C, e, C(x)) = Ev (C,En(x, e)) :

(C, e, d)← A(1λ, C)
Ve2 (C,C, e) = 1

)
For completeness, we also require the following property of a verifiable garbling
scheme:

∀ (C, e, d)← Gb
(
1λ, C

)
, Ve2 (C,C, e) = 1

39

The notions of verifiability in Definitions A.4 and A.5 can be shown to be
separate. Observe that the Ve2 routine does not even take d as an input, therefore
a given (C, e, d) which does not evaluate and decode to the correct output can
still be verified positively as per the Verifiability II definition; the task of Ve2 is
only to verify that the garbled output does not reveal any information about the
clear input. This definition is insufficient for protocols that rely on the correctness
of the GC for correctness of a computation.

On the other hand, consider a trivial garbling scheme in which an evaluator
outputs the XOR of her input keys. For instance, garbling an AND gate would
produce keys L0, L1 on the left incoming wire and R0, R1 on the right incoming
wire, with the published decoding information being d = L1 ⊕ R1. Decoding a
garbled output Y = L ⊕ R is just comparing Y to d. This scheme is private
and verifiable as per Def. A.4, however it does not achieve Verifiability II; A
GC constructor will know exactly which clear input would yield a given garbled
output.

We observe that Verifiability II is implicit in the argument of [ZRE15] when
proving that a linear garbling scheme produces at least two ciphertexts when gar-
bling an AND gate; that the garbled output depends only on the corresponding
clear output is a central assumption.

B The Universal Composability (UC) Security Model

We prove security of our protocol in the standard Universal Composability (UC)
framework of Canetti [Can01], with both static and adaptive corruption. The
UC framework introduces a PPT environment Z that is invoked on the security
parameter λ and an auxiliary input z and oversees the execution of a protocol in
one of the two worlds. The “ideal” world execution involves dummy parties P0

and P1, an ideal adversary S, and a functionality F . The “real” world execution
involves the PPT parties P0 and P1 and a real world adversary A. In the static
setting, the ideal adversary S and the real adversary A may corrupt one of the
parties statically (at the outset). In the adaptive setting, they corrupt the parties
adaptively and both parties can be corrupted. The environment Z chooses the
input of the parties and may interact with the ideal/real adversary during the
execution. At the end of the execution, it has to decide upon and output whether
a real or an ideal world execution has taken place.

We let idealF,S,Z(1λ, z) denote the random variable describing the output
of the environment Z after interacting with the ideal execution with adversary S,
the functionality F , on the security parameter 1λ and z. Let idealF,S,Z denote
the ensemble {idealF,S,Z(1λ, z)}λ∈N,z∈{0,1}∗ . Similarly let realΠ,A,Z(1λ, z) de-
note the random variable describing the output of the environment Z after
interacting in a real execution of a protocol Π with adversary A, the par-
ties, on the security parameter 1λ and z. Let realΠ,A,Z denote the ensemble
{realΠ,A,Z(1λ, z)}λ∈N,z∈{0,1}∗ .

Definition B.1 For n ∈ N, let F be a functionality and let Π be an 2-party
protocol. We say that Π securely realizes F if for every PPT real world adversary

40

A, there exists a PPT ideal world adversary S, corrupting the same parties, such
that the following two distributions are computationally indistinguishable:

idealF,S,Z
c
≈ realΠ,A,Z .

The F-hybrid model. In order to construct some of our protocols, we will use
secure two-party protocols as subprotocols. The standard way of doing this is
to work in a “hybrid model” where both the parties interact with each other (as
in the real model) in the outer protocol and use ideal functionality calls (as in
the ideal model) for the subprotocols. Specifically, when constructing a protocol
Π that uses a subprotocol for securely computing some functionality F , the
parties run Π and use “ideal calls” to F (instead of running the subprotocols
implementing F). The execution of Π that invokes F every time it requires to
execute the subprotocol implementing F is called the F-hybrid execution of Π
and is denoted as ΠF . The hybrid ensemble hybΠF ,A,Z(1λ, z) describes Z’s
output after interacting with A and the parties P0, P1 running protocol ΠF .
By UC definition, the hybrid ensemble should be indistinguishable from the real
ensemble with respect to protocol Π where the calls to F are instantiated with
a realization of F .

B.1 Functionalities

Oblivious Transfer Oblivious transfer (OT) [NP05,Kil88,Rab05] is a protocol
between a sender (S) and a receiver (R). In a 1-out-of-2 OT, the sender holds
two inputs a0, a1 ∈ {0, 1}k and the receiver holds a choice bit σ. At the end of
the protocol, the receiver obtains aσ. The sender learns nothing about the choice
bit, and the receiver learns nothing about the sender’s other input. The ideal
OT functionality is recalled below in Figure 11.

FOT

Choose: On input (rec, sid, b) from the R, with σ ∈ {0, 1}, if no messages of the
form (rec, sid, σ) is present in memory, store (rec, sid, σ) and send (rec, sid) to
S.

Transfer: On input (sen, sid, a0, a1) from S, with a0, a1 ∈ {0, 1}k, if no messages
of the form (sen, sid, a0, a1) is present in memory and a message of the form
(rec, sid, σ) is stored, send (sent, sid, aσ) to R.

Fig. 11: The ideal functionality FOT for oblivious transfer

Zero Knowledge A Zero-knowledge (ZK) proof allows a prover to convince a
verifier of the validity of a statement, without revealing any other information
beyond that. Let R be an NP relation, and L be the associated language. L =
{z | ∃x : R(z, x) = 1}. A zero-knowledge proof for L lets the prover convince a
verifier that z ∈ L for a common input z. A proof of knowledge captures not only

41

the truth of a statement z ∈ L, but also that the prover “possesses” a witness x
to this fact. A proof of knowledge for a relation R(·, ·) is an interactive protocol
where a prover P convinces a verifier V that P knows a x such that R(z, x) = 1,
where z is a common input to P and V . The prover can always successfully
convince the verifier if indeed P knows such a x. Conversely, if P can convince
the verifier with high probability, then he “knows” such a x, that is, such a x can
be efficiently computed given z and the code of P. When the soundness holds
only for a ppt prover, it is called an argument. As in [JKO13], we define the
ideal functionality for zero-knowledge FRZK in the framework of [Can01] in order
to capture all the properties that we require, in Figure 12.

FRZK

1. Receive (prove, sid, z, x) from P and (verify, sid, z′) from V
2. if z = z′ and R(z, x) = 1 then output (verified, sid, z) to V

Fig. 12: The Zero-knowledge functionality

Committed OT and Commitment Functionalities The FCOT and FCOM

functionalities are provided in Fig. 13 and Fig. 14 respectively. The FCOT func-
tionality can be securely realised in the framework of [PVW08] with an augmen-
tation for the Open-all property, as discussed in [JKO13]. The FCOM function-
ality can be securely and efficiently realised as well [Lin11].

This is the ideal functionality for Committing Oblivious Transfer, borrowed from
[JKO13]. A Sender S provides two messages, of which a Receiver R chooses to receive
one. S doesn’t know which message R chose, and R has no information about the
message it didn’t choose. Upon receiving a signal from S, the functionality reveals
both messages to R.

FCOT

1. Choose: Receive (choose, id, b) from R, where b ∈ {0, 1}. If no message of the
form (choose, id, ·) exists in memory, store (choose, id, b) and send (chosen, id)
to S.

2. Transfer: Receive (transfer, id, tid,m0,m1) from S, where m0,m1 ∈
{0, 1}κ. If no message of the form (transfer, id, tid, ·, ·) exists in mem-
ory, and a message of the form (choose, id, b) exists in memory, then send
(transferred, id, tid,mb) to R.

3. Open-all: Receive (open-all) from the S. Send all messages of the form
(transfer, id, tid,m0,m1) to R.

Fig. 13: The Ideal Committing OT functionality

42

The ideal commitment functionality, borrowed from [JKO13]. A Sender S commits
to a message m, which she later reveals to the receiver R. S is ‘bound’ to only the
message that she committed, while the message is hidden from R until S opens her
commitment.

FCOM

1. Commit: Receive (commit, id,m) from the sender, where m ∈ {0, 1}∗. If no
such message already exists in memory, then store (commit, id,m) and send
(committed, id, |m|) to R.

2. Reveal: Receive (reveal, id) from S, send (reveal, id,m) to R if corresponding
(commit, id,m) exists in memory.

Fig. 14: The Ideal Commitment Functionality

C Schematic Diagrams

D Proof of Security for 2-Round ZK

Theorem D.1 Let Garble = (Gb,En,De,Ev,Ve) be a correct, private, verifiable
(according to Definition A.4) garbling scheme. Then protocol ΠZK2 securely re-
alizes ideal functionality FRZK in the presence of malicious adversaries in the
FOT-hybrid model.

Proof. Our proof is presented in Universal Composability (UC) framework re-
called briefly in Appendix B. To prove the security of our protocol, we describe
two simulators. The simulator SP simulates the view of a corrupt prover and
appears in Fig. 18. On the other hand, the simulator SV simulates the view of a
corrupt verifier and is presented in Fig. 19.

Security against a Corrupt Prover P?. We now prove that idealFRZK,SP,Z
c
≈

realΠZK2,A,Z when A corrupts P. The simulation deviates from the real world if
and only if every C evaluated by V is ‘bad’, and every C checked by V is valid.
In this case P? succeeds in cheating, i.e. V outputs accept in the real world,
whereas the simulator outputs reject. Since we are in the FOT-hybrid model, the
association of a circuit being bad or valid is fixed before the challenge is revealed,
and a P? attempting to cheat in this way would have to correctly guess the entire
µ-bit challenge string of V. This occurs with probability 2−µ.

Security against a Corrupt Verifier V?. We now argue that idealFRZK,SV,Z
c
≈

realΠZK2,A,Z when A corrupts V. The above two views of V∗ are shown to be
indistinguishable via a series of intermediate hybrids. The difference between
the two world lies in the way the evaluation garbled circuits are constructed. In
the real world, they are constructed using Gb, whereas in the simulated world,
they are created using the privacy simulator of the garbling scheme. Assuming
that there are β ci bits are 1, the indistinguishability between the simulated and
the real view can be shown through β (≤ µ) hybrids where hyb0 is same as

43

ZKGCProver

input: z, x

{xj}j∈[n] := x

Verifier

input: z

(C, e, d)← Gb(C, 1λ)

e = {k0j , k1j}j∈[n]
d = {k0, k1}

OTj

xj

k
xj
j

k1j

k0j

X := {kxjj }j∈[n]
C

Y := Ev (C,X)

B ← Com(Y)
B

OT-OpenAll()

{k0i , k1i }i∈[n]
e := {k0i , k1i }i∈[n]

v := Ve(C,C, e)

if v = 1 Open B
else ⊥

if Y = k1 :

output accept
else:

output reject

Fig. 15: ZKGC: Zero-knowledge from one GC [JKO13]

realΠZK2,A,Z and hybj is same as hybj−1 except that jth evaluation circuit is
constructed using the privacy simulator of the garbling scheme. Clearly, hybβ is
same as the simulated view and indistinguishability of two consecutive follows
from the privacy of the underlying garbling scheme. Namely, privacy by Defini-
tion A.2 implies there exists a PPT simulator SGarble such that for all (C, x), the
distribution of (C,X, d) = SGarble(1λ, C, C(x)) is computationally indistinguish-
able from (C′,X′, d′) where (C′, e′, d′)← Gb(1λ, C), X′ = En(x, e′).

ut

44

3-round Zero-Knowledge protocol ΠZK3

Prover P

input: z, x

{rRj }nj=1←{0, 1}λ

rR = rR1 || . . . ||rRn
{mR

j }j∈[n] = ΠR
OT(crs, xj ; r

R
j)

{mR
j }j∈[n]

Verifier V

input: z

(C, e, d)← Gb
(
C, 1λ

)
e = {k0j , k1j}j∈[n], d = {k0, k1}

{rSj}j∈[n]←{0, 1}λ

rS = rS1|| . . . ||rSn
{mS

j}j∈[n] = ΠS
OT(crs, k0j , k

1
j ,m

R
j ; rSj)

C, T = H(k1)⊕ rS, {mS
j}j∈[n]

k
xj
j = ΠR

OT(crs, xj ,m
S
j ; r

R
j)j∈[n]

Y = Ev(C, {kxjj }j∈[n])
rS = H(Y)⊕ T
rS = rS1|| . . . ||rSn
if ∃j,Ext(crs,mR

j ,m
S
j , r

S
j) = ⊥, then abort

else (k0j , k
1
j) = Ext(crs,mR

j ,m
S
j , r

S
j),∀j ∈ [n]

if Ve2(C,C, {k0j , k1j}j∈[n]) = 0, then abort

Y

if (Y = k1):

output accept

else output reject

Fig. 16: Schematic diagram of our 3 round Zero-Knowledge protocol ΠZK3

45

2-round protocol for Zero-Knowledge Proof ΠZKP

Prover P

input: z, x

i = 1 to µ :

(Ci, ei, di)← Gb(1λ, C)

Xi = En(x, ei)

for j ∈ [n] :

bij ← {0, 1}
(B0
ij ,B1

ij) = (Com(X
bij
ij),Com(X

1−bij
ij))

Verifier V

input: z

c← {0, 1}µ

i = 1 to µ :

OTi

(ei, ri)

(Xi, si)

ci
(ei, ri), if ci = 0

(Xi, si), otherwise

Ci, di, (B0
ij ,B1

ij)j∈[n]

if ci = 0 :

if Ve(C,Ci, ei) = 0 or

∃j ∈ [n], (ei, ri) is inconsistent

with (B0
ij ,B1

ij)

outputs reject and halt

if ci = 1 :

if ∃j ∈ [n], (Xi, si) inconsistent

with Bbijij for some bij

or De(Ev(Ci,Xi), di) 6= 1

outputs reject and halt

outputs accept

Fig. 17: Schematic diagram of our 2 round protocol for Zero-Knowledge Proof
ΠZKP

46

Simulator SP

The simulator plays the role of the honest V and simulates each step of the protocol
ΠZK3 as follows. The communication of the Z with the adversary A who corrupts P
is handled as follows: Every input value received by the simulator from Z is written
on A’s input tape. Likewise, every output value written by A on its output tape is
copied to the simulator’s output tape (to be read by the environment Z).

OT First Message Phase: On behalf on FOT, SP sends (rec, sid) to P.
OT Second Message and Circuit Communication Phase: For all i ∈ [µ],

the simulator SP receives (Ci, di) from P?, and (sen, sid, ei,Xi) on behalf of
FOT. Given ei as well as Xi, SP extracts xi such that En(xi, ei) = Xi for every
i ∈ [µ]. For instance in the case of projective garbling schemes, this can be done
by comparing the jth encoded input token Xij with eij = (k0ij , k

1
ij) to extract

the bit xij , ∀j ∈ [n].
Circuit Checking, Evaluation and Output Phase: If ∃x ∈ {xi}i∈[µ] that is

valid, i.e. C(z, x) = 1, then SP behaves exactly like an honest verifier, and
outputs accept or reject based on the same criteria that a real world V would
follow. However, if ∀x ∈ (xi)i∈[µ] such that C(z, x) 6= 1 then it outputs reject.

Fig. 18: Simulator SP

Simulator SV

The simulator plays the role of the honest P and simulates each step of the protocol
ΠZK3 as follows. The communication of the Z with the adversary A who corrupts V
is handled as follows: Every input value received by the simulator from Z is written
on A’s input tape. Likewise, every output value written by A on its output tape is
copied to the simulator’s output tape (to be read by the environment Z).

OT First Message Phase: On behalf on FOT, SV receives (rec, sid, ci).
OT Second Message and Circuit Communication Phase: For all i ∈ [µ],
SV proceeds as follows:

– If ci = 0 then S constructs (Ci, ei, di)← Gb(1λ, C) and sends (sent, sid, ei)
to V? on behalf of FOT. SV also sends (Ci, di) to V?.

– Else SV constructs (Ci,Xi, di)← SGarble(1λ, C, 1) and sends (sent, sid,Xi)
to V? on behalf of FOT where SGarble is the privacy simulator of the garbling
scheme. SV also sends (Ci, di) to V?.

Circuit Checking, Evaluation and Output Phase: SV does nothing.

Fig. 19: Simulator SV

47

	Efficient Adaptively Secure Zero-knowledge from Garbled Circuits

