
Efficient Batch Zero-Knowledge Arguments for
Low Degree Polynomials?

Jonathan Bootle and Jens Groth

University College London, UK

Abstract. Bootle et al. (EUROCRYPT 2016) construct an extremely
efficient zero-knowledge argument for arithmetic circuit satisfiability in
the discrete logarithm setting. However, the argument does not treat
relations involving commitments, and furthermore, for simple polynomial
relations, the complex machinery employed is unnecessary.
In this work, we give a framework for expressing simple relations between
commitments and field elements, and present a zero-knowledge argument
which, by contrast with Bootle et al., is constant-round and uses fewer
group operations, in the case where the polynomials in the relation have
low degree. Our method also directly yields a batch protocol, which al-
lows many copies of the same relation to be proved and verified in a
single argument more efficiently with only a square-root communication
overhead in the number of copies.
We instantiate our protocol with concrete polynomial relations to con-
struct zero-knowledge arguments for membership proofs, polynomial eval-
uation proofs, and range proofs. Our work can be seen as a unified ex-
planation of the underlying ideas of these protocols. In the instantiations
of membership proofs and polynomial evaluation proofs, we also achieve
better efficiency than the state of the art.

Keywords: Sigma-protocol, zero-knowledge argument, batch-verification,
discrete logarithm assumption.

1 Introduction

Zero-knowledge proofs and arguments allow a prover to convince a verifier that a
particular statement is true, without revealing anything beyond that fact. More
formally, the statement is an element u from an NP-language L, and the prover
convinces the verifier that there exists a witness w to the fact that u ∈ L. They
are useful both in theory and in practice, as they can be used to construct
signature schemes, encryption schemes, anonymous credentials, and multi-party
computation schemes with strong security guarantees.

Zero-knowledge arguments are computationally sound, meaning that cheat-
ing the verifier to accept when u /∈ L reduces to breaking a computational

? The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement n. 307937

intractability assumption. In this paper, we focus on the discrete logarithm as-
sumption. There are many examples of zero-knowledge arguments based on the
discrete logarithm assumption, for both general, NP-complete languages such as
arithmetic circuit satisfiability [7], and for simpler languages such as range and
membership arguments, shuffle arguments, and discrete logarithm relations.

While very efficient, arguments for general statements often make use of
generic reductions and complex machinery, and fail to be as efficient as arguments
specialised for a particular language.

1.1 Contributions

In this paper, we aim to bridge the gap between general and simple languages.
We do this in three ways.

Framework for Low Degree Relations. We provide a framework to describe the
types of languages commonly encountered. Protocols such as the 1-out-of-N
membership argument of [28], and the polynomial evaluation argument of [2]
prove membership in languages where the witnesses are zeroes of low-degree
polynomial relations. In other words, the statement is an arithmetic circuit of low
degree, and part of the witness is a satisfying assignment for the circuit. We give
a general relation which allows us to recover specific protocols by instantiating
with concrete polynomial relations. By separating the task of developing more
efficient ways to perform the zero knowledge proof, and the task of designing
better relations to describe a given language, we can explain the logic behind past
optimisations of membership proofs in [28,6], and produce new optimisations for
membership proofs and polynomial evaluation proofs.

Common Construction Techniques. We unify the approaches used in [28,2,6]
to construct zero-knowledge proofs for membership and polynomial evaluation,
which can all be viewed as employing the same construction method. The con-
structions of zero-knowledge arguments for low degree polynomial relations in
these works proceed by masking an input variable u as fu = ux+ub, using a ran-
dom challenge x and a random blinder ub. During the proof, the polynomial or
circuit from the statement is computed with fu in place of u, so that the original
relation appears in the leading x coefficient. The communication and compu-
tational complexity of the resulting arguments is determined by the degree of
the polynomial relation and the number of inputs. By contrast, the complexity
of general arithmetic circuit protocols is determined by the number of gates. In
the case of [7], the authors embed a polynomial evaluation argument for a poly-
nomial of degree N into a low degree polynomial with logN inputs and degree
logN , obtaining a protocol with O(logN) communication using 3 moves, and
requiring O(logN) exponentiations in a suitably chosen cryptographic group.
On the other hand, a polynomial of degree N requires N multiplication gates to
evaluate in general, so the best arithmetic circuit protocol [7] can only achieve
O(logN) communication in O(logN) moves, and uses O(N) group exponentia-
tions. In particular, since the cost of computing group exponentiations is much

2

higher than that of computing finite-field multiplications in the discrete log-
arithm setting, computing O(logN) group exponentiations rather than O(N)
leads to a significant performance advantage when considering implementation
on constrained devices.

Bayer [1] gives two efficient batch proofs for multiplication and polynomial
evaluation, which achieve a square-root communication overhead in the number
of proofs to be batched. The key to achieving square-root overhead in [1] is to
use Lagrange interpolation to embed many instances of the same relation into
a single field element. This technique can be applied more generally to produce
efficient batch proofs for the low-degree relations described above. Furthermore,
by combining this with the polynomial commitment subprotocol in section 3, we
improve the communication cost of the batched proof from

√
tc to

√
tc, where

c is the communication cost of the original non-batched proof, and t is a large
number representing the number of proofs to be batched together.

Efficient Protocols for Applications. We exhibit a general protocol in our frame-
work, and give an efficient batch protocol for proving and verifying t instances of
the same relation simultaneously. We then show how to recover protocols of pre-
vious works with some optimisation. More specifically, we give new 1-out-of-N
membership arguments and polynomial evaluation arguments. Our new instan-
tiations simultaneously decrease communication costs and reduce prover and
verifier computation, while retaining the conceptual clarity and simple 3-move
structure of the originals. As an example, we obtain the most communication
efficient Σ-protocols for membership or non-membership of a committed value in
a public list, in the discrete logarithm setting. We also include an argument for
range proofs, which captures the folklore method for performing range proofs
and demonstrates the expressivity of our general relation. Our arguments all
possess the following desirable properties:

– Perfect completeness and perfect special honest verifier zero-knowledge.
– Computational soundness based on the discrete logarithm assumption.
– Simple 3-move public coin structure.
– Common reference strings are formed from random group elements. They

require no special structure.
– Prover and verifier both have efficient computation.

The discrete logarithm assumption is well-known, well-examined, and widely
used in cryptography. Our protocols rely on the discrete logarithm assumption
in groups with prime order p. The assumption is believed to hold in suitable
subgroups of elliptic-curve groups. The best algorithms for finding discrete loga-
rithms in such elliptic curve groups are still generic algorithms with complexity
Ω(
√
p). For these groups we therefore enjoy lower parameter sizes than protocols

based on RSA groups that are subject to sub-exponential attacks.
The discrete logarithm assumption is also believed to hold in well-chosen

multiplicative sub-groups of finite fields. Finite fields of prime order should have

moduli of λ3

polylogλ bits in order to achieve λ bits of security against the best

3

known attacks. This makes protocols communicating large numbers of group el-
ements highly impractical in this setting. As an improvement on previous works,
in the case where t = 1 and we have a single relation, our protocols can be
tuned so that they only require a constant number of group elements, resulting
in much better efficiency when instantiated in finite fields of prime order, since

the λ3

polylogλ communication cost can then appear as a constant additive factor
rather than a multiplicative one.

As a building block in our arguments, we also present an adaptation of the
polynomial commitment sub-protocol appearing in [7], which allows the prover
to commit to a polynomial so that the verifier can learn an evaluation of the
polynomial in a secure manner.

1.2 Efficiency

Figure 1 compares the efficiency of our protocol with other works. One notable
place where we improve communication efficiency over previous proofs is in our
membership and polynomial evaluation proofs, which use a constant number of
group elements, but have better communication efficiency regardless of whether
the proofs are instantiated in elliptic curve groups or multiplicative subgroups
of finite fields. Another is the polynomial evaluation argument with O(logN

log logN)
communication costs, which is an asymptotic improvement over the previous
state-of-the-art, O(logN). Finally, our batch polynomial evaluation argument
improves on [1] by putting the logN cost inside a square root.

1.3 Related Work

Zero Knowledge and Batching. There has been much work constructing efficient
zero-knowledge arguments. For general statements, Kilian [34] gave the first
zero-knowledge argument for circuit-satisfiability with poly-logarithmic com-
munication complexity, but with high computational complexity. Bootle et al.
[7] construct arguments with logarithmic communication complexity and linear
computation costs based on the discrete logarithm assumption. Recent progress
[8] yields zero-knowledge arguments with constant overhead for the prover, and
square-root communication costs, though the large constants involved in the
construction prevent it from being practical. For more specialised languages,
such as range proofs, membership arguments, and polynomial evaluation argu-
ments, there are numerous constructions [28,2], including some extremely simple
Σ-protocols.

Camenisch and Stadler [15] provide a well-known symbolic notation for de-
scribing statements for zero-knowledge arguments of knowledge, and construct-
ing protocols more easily from simple building blocks. By contrast, our general

1 We compare against the efficiency when [28] is instantiated using Pedersen commit-
ments, and the prover and verifier know the openings of the list of commitments.

2 We compare against the efficiency when [6] is instantiated using Pedersen commit-
ments rather than Elgamal ciphertexts.

4

Protocol Reference Communication Prover Computation Verifier Computation
G Zp (G, exp) (Zp,×) (G, exp) (Zp,×)

Membership Proof [7] 4 logN + 8 2 logN + 7 12N O(N) 4N O(N)

Membership Proof 1 [28] 4 logN 3 logN + 1 O(logN) O(N logN) O(logN) O(N)

Membership Proof 2 [6] logN + 12 3
2

logN + 6 O(logN) O(N logN) O(logN) O(N)

Membership Proof This Work, 5.1 7 4 logN + 4 O(logN
log logN

) O(N logN) O(logN
log logN

) O(N)

Membership Proof This Work, 5.1 2.7
√

logN 1.9 logN+ O(logN
log logN

) O(N logN) O(logN
log logN

) O(N)

+5 2.7
√

logN + 4

Batch Membership Proof This Work, 5.1 4.1
√
t logN 4.1

√
t logN O(t log tN) O(tN log tN) O(

√
t log tN) O(tN)

Polynomial Evaluation [7] 4 logN + 8 2 logN + 7 12N O(N) 4N O(N)

Polynomial Evaluation [2] 4 logN + 2 3 logN + 3 O(logN) O(N logN) O(logN) O(N)

Polynomial Evaluation This Work, 5.2 7 3 logN + 4 O(logN
log logN

) O(N logN) O(logN
log logN

) O(N)

Polynomial Evaluation This Work, 5.2 O(logN
log logN

) O(logN
log logN

) O(logN
log logN

) O(N logN) O(logN
log logN

) O(N)

Batch Polynomial Evaluation [1] O(
√
t logN) O(

√
t logN) O(t logN) O(tN logN) O(

√
t logN) O(tN)

Batch Polynomial Evaluation This Work, 5.2 2.8
√
t logN 2.8

√
t logN O(t log tN) O(tN log tN) O(

√
t log tN) O(tN)

Range Proof This Work, 5.3 7 3 logN + 4 O(logN) O(logN) O(logN) O(logN)

Range Proof This Work, 5.3 O(logN
log logN

) O(logN
log logN

) O(logN) O(logN) O(logN) O(logN)

Batch Range Proof This Work, 5.3 2.8
√
t logN 2.8

√
t logN O(t logN) O(t logN) O(t logN) O(t logN)

Fig. 1. Efficiency Comparisons. N is the instance-size, t is the number of batched
instances, G means the number of group elements transmitted, Zp means the number
of field elements transmitted, (G, exp) means the number of group exponentiations and
(Zp,×) means the number of field multiplications. In the membership proofs, N is the
number of items in the list that we wish to prove membership for. In the polynomial
evaluation proofs, N is the degree of the polynomial. In the range proofs, N is the
width of the range that we consider.

5

relation aims to describe languages defined by low degree polynomials and pro-
duce protocols for this case.

The idea of embedding many statements into a single polynomial using La-
grange interpolation polynomials in a challenge x originates in the quadratic
arithmetic programs of Gennaro et al. [26]. It was used in the context of in-
teractive zero-knowledge arguments by Bayer [1]. The technique was originally
applied to construct a Hadamard product argument and batched polynomial
evaluation argument. We show here that the same technique can be applied to
our general relation. Earlier work by Gennaro et al. [25] batches Schnorr proofs
using simple powers of x.

Other batch arguments in the literature use methods from [3] and multi-
ply different instances of the proof by small exponents before compressing the
proofs together. This approach may be used to trade soundness for efficiency.
Our batching process proves and verifies the logical AND of many statements si-
multaneously. There are also batch proofs for OR statements [44], and k-out-of-N
batch proofs [29]. Finally, Henry and Goldberg [29] define a notion of conciseness
to characterise batch proofs.

Polynomial Commitments. Our polynomial commitment protocol is a key part
of our zero-knowledge argument, and builds on the polynomial commitment
protocol presented in [7]. Polynomial commitments were first introduced by Kate
et al. [33], who give a construction using bilinear maps. The original construction
has also been extended to the multivariate case [41,46]. Libert et al. [37] also
gave a construction relying on much simpler pairing-based assumptions. Our
polynomial commitment protocol gives square-root communication complexity
based on the discrete logarithm assumption.

Applications. In a membership argument [11,10], a prover demonstrates that a
secret committed value λ is an element of a list L = {λ0, . . . , λN−1}, without
revealing any other information about λ.

In a polynomial evaluation argument [23,10], a prover demonstrates that a
secret committed value v is the evaluation of a public polynomial h(U) at another
secret committed value u.

In a range proof [9,38], a prover demonstrates that a secret committed value
a is an element of the interval [A;B].

One approach to constructing protocols for these applications is to design
an arithmetic circuit which captures the desired conditions on the witness, and
then apply existing zero-knowledge protocols for proving satisfiability in general
circuits. There are currently several efficient arguments in the discrete logarithm
setting. The methods of Cramer et al. [18] lead to arguments with communi-
cation complexity linear in the size of the circuit. The best interactive zero-
knowledge protocol based on the discrete logarithm assumption for arithmetic
circuits [7] yields a logarithmic communication complexity, but requires a non-
constant number of rounds.

There are existing protocols for all three applications in the discrete loga-
rithm setting that do not rely on general Circuit Satisfiability protocols. Cramer

6

et al. [19] give techniques for composing sigma-protocols, producing proofs for
AND composition, OR composition, and 1-out-of-many statements using sigma
protocols for the individual statements. These techniques can be applied in a
straightforward manner to produce sigma-protocols with linear communication
complexity for the mentioned applications.

The goals of membership arguments are related to those of zero-knowledge
sets [39]. Membership arguments allow a prover to commit to a secret value and
show that it lies in a public set, without leaking information on the value. On the
other hand, zero-knowledge sets allow the prover to commit to a secret set, and
handle membership and non-membership queries in a verifiable manner, without
leaking information on the set.

Herranz constructs attribute-based signatures [30] using what is essentially a
set membership argument for multiple values. Like this work, the argument relies
only on the discrete logarithm assumption, but the communication complexity
is much higher; linear in the size of the set. Camenisch et al. [12] also provide
set membership proofs with logarithmic communication complexity, and Fauzi
et al. [22] construct constant size arguments for more complex relations between
committed sets. The latter two works both rely on pairing-based assumptions.

Range arguments can be seen as a special case of membership arguments,
where L is simply a list of consecutive integers. Many are based on the strong
RSA assumption, and use Lagrange’s Four-Square Theorem. Couteau et al. show
that this assumption can be replaced by an RSA-variant which is much closer to
the standard RSA assumption [17]. Examples are [27,38]. The work [16] gives an
argument with sub-logarithmic communication complexity in the size of the list,
which is comparable to the efficiency we achieve, and also relies on the hardness
of the discrete logarithm problem, but uses pairings for verification.

Membership arguments also generalise arguments that a committed value lies
in a linear subspace such as [31,32,35], which all make use of pairings. Peng [43]
achieves a square-root complexity. Some existing protocols [2], [28] even achieve
logarithmic communication complexity. Our single-value membership proof is an
extension of the latter works where we reduce the number of commitments from
logarithmic to constant.

Cryptographic accumulators,[4,40,13,14], can also be used to give member-
ship proofs. The members of a set are absorbed into a constant-size accumulated
value. Witnesses for set-membership can then be generated and verified using the
accumulated value. Efficient instantiations of accumulators exist and often rely
on the Strong RSA assumption or pairing-based assumptions. An RSA modulus

has to be λ3

polylogλ bits to provide security against factorisation using the General
Number Field Sieve. Security of pairing-based schemes with constant embedding
degree scale similarly due to sub-exponential algorithms for attacking the dis-
crete logarithm problem in the target group. Furthermore, such schemes require
a trusted setup. By contrast, we only require random group elements of size
O(λ) bits for security against discrete logarithm attacks in elliptic curve groups.

Some of the schemes can be adapted to give zero-knowledge arguments for
non-membership, from a variety of settings. For example, [2,43] also give non-

7

membership arguments in the discrete logarithm setting. Accumulators that sup-
port non-membership arguments have been constructed, based on both pairing
assumptions ([21]) and the strong RSA assumption ([36]).

1.4 Outline

Section 2 contains preliminary definitions needed to understand our protocols.
Section 3 gives an adaptation of the polynomial commitment scheme used in [5].
Section 4 gives a general batched witness relation and efficient batched argument.
Finally, Section 5 gives concrete choices of parameters to obtain zero knowledge
arguments for several useful languages.

2 Preliminaries

Write y = A(x; r) when the algorithm A outputs y on input x with randomness
r. We write y ← A(x) to mean selecting r at random and setting y = A(x; r).
We write y ← S for sampling y uniformly at random from a set S. We define [n]
to be the set of integers 1, . . . , n.

Let λ ∈ N be a security parameter, usually provided to the algorithms in
unary form 1λ. We say that f : N 7→ [0, 1], is negligible if for every positive
polynomial p, we have f(λ) ≤ 1

p(λ) for λ � 0. We write f(λ) ≈ g(λ) if |f(λ) −
g(λ)| is negligible. We say that f is overwhelming if f(λ) ≈ 1.

2.1 Assumptions

The results in this paper rely on the Discrete Logarithm Assumption. Let G
be a probabilistic polynomial time algorithm that takes input 1λ and outputs
gk = (G, p, g). Here, G is a cyclic group of order p, which has efficient polynomial
time algorithms for deciding membership and for computing group operations
and inverses. The prime p has λ bits. The group is generated by the element g.

Definition 1 (Discrete Logarithm Assumption). The discrete logarithm
assumption holds relative to G if for all probabilistic polynomial time algorithms
A

Pr
[
gk = (G, p, g)← G(1λ);x← Zp : x← A(gk, gx)

]
≈ 0

2.2 Homomorphic Commitment Schemes

A commitment scheme allows a sender to commit to a secret value. Later on, the
sender may open the commitment and reveal the value to another party, who
can check that the value matches what was committed to. Commitment schemes
should be hiding so that information about the secret value is not revealed
prematurely, and binding so that the sender cannot reveal a different value to
the one committed.

8

A non-interactive commitment scheme consists of two probabilistic polyno-
mial time algorithms (Gen,Com). The first algorithm creates a commitment key
ck ← Gen(1λ). The key specifies a message space Mck, a commitment space
Cck and a randomiser space Rck. The sender commits to m ∈ Mck by selecting
r ← Rck and computing the commitment c = Comck(m; r) ∈ Cck.

Definition 2 (Hiding). A commitment scheme (Gen,Com) is (computation-
ally) hiding if for all probabilistic polynomial time stateful algorithms A

Pr
[
ck ← Gen(1λ); (m0,m1)← A(ck); b← {0, 1}; c← Comck(mb) : A(c) = b

]
≈ 1

2

If we have equality above then we say that the commitment scheme is perfectly
hiding.

Definition 3 (Binding). A commitment scheme is (computationally) binding
if for all probabilistic polynomial time adversaries A

Pr

 ck ← Gen(1λ); (m0, r1,m1, r1)← A(ck) :

m0 6= m1 ∧ Comck(m0; r0) = Comck(m1; r1)

 ≈ 0

If we have equality above then we say that the commitment scheme is perfectly
binding.

Suppose further that (Mck,+), (Rck,+) and (Cck, ·) are groups.

Definition 4 (Homomorphic Commitment Scheme). We call the com-
mitment scheme homomorphic if for all λ ∈ N and for all ck ← Gen(1λ) the
commitment function Com :Mck ×Rck → Cck is a group-homomorphism, i.e.,
for all m,m′ ∈Mck and all r, r′ ∈ Rck

Comck(m+m′; r + r′) = Comck(m; r) · Comck(m′; r′)

Pedersen commitments. Our zero-knowledge arguments can be instantiated
with any homomorphic, perfectly hiding and computationally binding commit-
ment scheme. For concreteness, we will focus on the Pedersen commitment
scheme [42] to multiple values. The generator outputs a description of a group of
prime order p and a set of random group elements ck = (p,G, g1, . . . , gn, h). The
message space is Znp , the randomness space is Zp and the commitment space is
G. To commit to a vector m = (m1, . . . ,mn) pick r ← Zp and return the com-
mitment c = Comck(m; r) = hr

∏n
i=1 g

mi
i . The Pedersen commitment scheme is

homomorphic, perfectly hiding and computationally binding under the discrete
logarithm assumption.

Throughout the paper, we make use of commitments for vectors of different
sizes. We can use the same commitment key for this and just append the vectors
with enough zeros to get length n.

9

2.3 Σ-Protocols

A Σ-protocol is a 3-move public-coin interactive protocol that enables a prover
to convince a verifier that a particular statement is true. First, the prover sends
an initial message to the verifier. The verifier sends back a randomly selected
challenge. The prover responds to the challenge. Finally, the verifier decides
whether or not to accept the proof based on the conversation.

We assume a probabilistic polynomial time algorithm G that generates a
common reference string crs known to all parties. In this paper crs consists of
the key for a homomorphic commitment scheme. For Pedersen commitments,
this is just a list of random group elements.

Let R be a polynomial-time decidable relation. We call w a witness for state-
ment u if (crs, u, w) ∈ R. A Σ-protocol for R is a collection of stateful probabilis-
tic polynomial time algorithms (G,P,V). The algorithm G provides a common
reference string (which in our paper will be a commitment key as described
above). Algorithms P,V function as shown in Figure 2. The challenge space X
is implicitly given by the common reference string. Intuitively, V outputs 1 if
accepting the proof and 0 if rejecting.

P(crs, u, w) V(crs, u)

a← P(crs, u, w) a
-

x x← X
�

z ← P(crs, u, w, x) z b← V(ck, u, a, x, z)
-

b ∈ {0, 1}

Fig. 2. A General Σ-Protocol

Algorithms (G,P,V) are a Σ-protocol if they satisfy completeness, special
soundness, and special honest verifier zero-knowledge:

Definition 5 (Perfect Completeness). (G,P,V) is perfectly complete if for
all probabilistic polynomial time algorithms A, we have

Pr

[
crs← G(1λ); (u,w)← A(crs); a← P(crs, u, w);x← X ; z ← P(x) :

(crs, u, w) /∈ R or V(crs, u, a, x, z) = 1

]
= 1

Definition 6 (n-Special Soundness). (G,P,V) is n-special sound if there ex-
ists a probabilistic polynomial time algorithm χ that uses n accepting transcripts

10

with the same initial message a and distinct challenges to compute the witness.
For all probabilistic polynomial time algorithms A

Pr

 crs← G(1λ); (u, a, x1, z1, . . . , xn, zn)← A(crs);
w ← χ(u, a, x1, z1, . . . , xn, zn) :

(crs, u, w) ∈ R or ∃i ∈ [n] such that V(crs, u, a, xi, zi) 6= 1

 ≈ 1,

where the adversary outputs distinct x1, . . . , xn.
If the above holds with equality, then we say that (G,P,V) has perfect n-

special soundness.

Definition 7 (Special Honest Verifier Zero Knowledge (SHVZK)). We
say that (G,P,V) has SHVZK if there exists a probabilistic polynomial time
simulator S such that for all interactive probabilistic polynomial time algorithms
A

Pr
[
crs← G(1λ); (u,w, x)← A(crs); a← P(crs, u, w); z ← P(x) : A(crs, a, z) = 1

]
≈Pr

[
crs← G(1λ); (u,w, x)← A(crs); (a, z)← S(crs, u, x) : A(crs, a, z) = 1

]
If the above holds with equality, then we say that (G,P,V) has perfect SHVZK.

Full zero-knowledge. In real life applications special honest verifier zero-
knowledge may not suffice since a malicious verifier may give non-random chal-
lenges. However, it is easy to convert an SHVZK argument into a full zero-
knowledge argument secure against arbitrary verifiers in the common reference
string model using standard techniques. The conversion can be very efficient and
only costs a small additive overhead. Details of conversion methods can be found
in [27,24,20].

2.4 Relations

In this section, we describe the relations for our zero-knowledge proofs. The
prover’s witness is a secret vector a satisfying some conditions, and an opening
to a commitment C which is computed from a.

This type of relation could be modelled using a relation with a polynomial P
to impose conditions on a, and another polynomial Q to compute the opening
to C. The value r is the randomness used to make the commitment.

P(a) = 0, C = Com(Q(a); r)

For example, a = (a0, a1, a2) could be a secret vector of bits, imposed by P (a) =
a ◦ (1 − a), and Q(a) = a0 + 2a1 + 4a2 could compute the integer represented
by the bits.

We also incorporate a public vector b, which can be seen as a ‘tweak’ and
allows modification of the statement. For example, setting Q(a, b) = a · b, we

11

can recover the range proof above by using b = (1, 2, 4). We can also get relations
about other knapsacks by using a different value of b.

More formally, let P(a,b),Q(a,b) be length `P , `Q vectors of polynomials of
degrees dP , dQ respectively. Let C be a commitment. Let b ∈ Z`bp be a public vec-
tor of field elements. The prover gives a zero-knowledge argument of knowledge
of a ∈ Z`ap and r ∈ Zp such that

P(a,b) = 0, C = Com(Q(a,b); r)

We give more general batched proofs which can handle t instances at once.
Let C1, . . . , Cm be commitments. Let t = mn. Let b1,1, . . . ,bm,n ∈ Z`bp be public
vectors of field elements. The bi,j values allow a single instance to capture some
variation in the statement. The batched argument is an argument of knowledge
of values {ai,j}m,ni,j=1 and {ri}mi=1, such that P(ai,j ,bi,j) = 0 for i ∈ [m], j ∈ [n],
and the prover knows commitment openings

C1 = Com(Q(a1,1,b1,1), Q(a1,2,b1,2), . . . ,Q(a1,n,b1,n); r1)
C2 = Com(Q(a2,1,b2,1), Q(a2,2,b2,2), . . . ,Q(a2,n,b2,n); r2)
...
Cm = Com(Q(am,1,bm,1), Q(am,2,bm,2), . . . ,Q(am,n,bm,n); rm)

When m = n = 1, we have t = 1 and recover the relation for a zero-knowledge
argument of knowledge for a single instance.

The idea is that Q allows the prover to prove things about parts of the wit-
ness that were included as commitments in the statement for the zero-knowledge
proof. Then P deals with parts of the witness that were not included as com-
mitments in the statement. Therefore, by choosing P and Q appropriately, we
can easily deal with applications where the evaluation of a polynomial is known,
and applications where it is in committed form.

We can easily generalise to the case where multiple polynomialsQ1(a, b), . . . ,Qk(a, b)
are given in separate commitments.

2.5 Lagrange Polynomials

Let z1, . . . , zm be distinct points in some field. The Lagrange polynomials l1(X), . . . , lm(X)
are the unique polynomials of degree m− 1 such that li(zj) = δi,j , where δi,j is
the Kronecker-delta. In cryptography, Lagrange polynomials have been used for
secret-sharing [45].

For j ∈ [m], lj(X) can be computed as

`j(X) :=
∏

0≤m≤k
m 6=j

X − zm
zj − zm

=
(X − z0)

(zj − z0)
· · · (X − zj−1)

(zj − zj−1)

(X − zj+1)

(zj − zj+1)
· · · (X − zk)

(zj − zk)

12

3 Polynomial commitment schemes

We present a protocol which allows a prover to commit to a polynomial in
the discrete-logarithm setting, using a homomorphic commitment scheme. The
prover may then later reveal to the verifier an evaluation of the polynomial in a
specific point x chosen by the verifier and prove the evaluation is correct. Bootle
et al. [7] dealt with a similar problem for Laurent polynomials with constant term
zero, whose coefficients were single field elements. We use the same techniques
and generalise to the case of vector coefficients. We treat only positive powers
and ignore the condition on the constant term since this suffices for our needs.
However, the case of Laurent polynomials is straightforward and similar to [7].

3.1 Definition

A polynomial commitment scheme (Gen,PolyCommit,PolyEval,PolyVerify) en-
ables a prover to commit to a secret vector of polynomials h(X) ∈ Zlp[X] of some
known degree N . Later on the prover may choose to evaluate the committed
polynomial in a point x ∈ Zp and send an opening to the verifier.

Gen(1λ)→ ck: Gen is a probabilistic polynomial time algorithm that returns a
commitment key ck. The commitment key specifies among other things a
prime p of size |p| = λ.

PolyCommit(ck,h(X))→ (msg1, st): PolyCommit is a probabilistic polynomial
time algorithm that given a commitment key ck and a vector of degree N
polynomials returns a commitment message msg1 and a state st.

PolyEval(st, x)→ msg2: PolyEval is a deterministic polynomial time algorithm
that given a state and a point x ∈ Zp returns an evaluation message msg2.

PolyVerify(ck,msg1,msg2, x)→ h̄: PolyVerify is a deterministic polynomial time
algorithm that given a commitment key, a commitment message, an evalu-
ation message and a point x ∈ Zp returns ⊥ if it rejects the input, or a
purported evaluation of the committed vector of polynomials in x.

A polynomial commitment scheme should be complete, (m + 1)-special sound
and special honest verifier zero-knowledge as defined below.

The definition of completeness simply guarantees that if PolyCommit and
PolyVerify are carried out honestly, then PolyVerify will return the correct poly-
nomial evaluation h(x).

Definition 8 (Perfect Completeness).

(Gen,PolyCommit,PolyEval,PolyVerify) has perfect completeness if for all
λ ∈ N, for all ck ← Gen(1λ), and all h(X) ∈ Zlp[X] of degree N , and all x ∈ Zp

Pr

 (msg1, st)← PolyCommit(ck,h(X))
msg2 ← PolyEval(st, x)
h̄← PolyVerify(ck,msg1,msg2, x)

: h̄ = h(x)

 = 1.

13

The definition of (m + 1)-Special Soundness guarantees that given m + 1
accepting evaluations for different evaluation points, but from the same poly-
nomial commitment message msg1, then it is possible to extract a polynomial
h(X) that is consistent with the evaluations produced. Furthermore, any other
accepting evaluations for the same commitment will also be evaluations of h(X).

Definition 9 (Computational (m+ 1)-Special Soundness).
(Gen,PolyCommit,PolyEval,PolyVerify) is (m+1)-special sound if there ex-

ists a probabilistic polynomial time algorithm χ that uses m+ 1 accepting tran-
scripts with the same commitment message msg1 to compute the committed poly-
nomial h(X). For all probabilistic polynomial time adversaries A and all L ≥ m

Pr


ck ← Gen(1λ)

(msg1, x
(0),msg

(0)
2 , . . . , x(L),msg

(L)
2)← A(ck)

h(X)← χ(ck,msg1, x
(0),msg

(0)
2 , . . . , x(m),msg

(m)
2)

h̄i ← PolyVerify(ck,msg1,msg
(i)
2 , x(i))

:
There is a h̄i = ⊥
or all h̄i = h(x(i))

 ≈ 1,

where the adversary outputs distinct points x(0), . . . , x(L) ∈ Zp and the extractor
returns a degree N vector of polynomials.

Perfect special honest verifier zero-knowledge means that given any evalua-
tion point x and an evaluation h(x), it is possible to simulate msg1,msg2 that
are distributed exactly as in a real execution of the protocol, in a way that is
consistent with the evaluation h(x).

Definition 10 (Perfect Special Honest Verifier Zero Knowledge).
(Gen,PolyCommit,PolyEval,PolyVerify) has perfect special honest verifier

zero knowledge (SHVZK) if there exists a probabilistic polynomial time simulator
S such that for all stateful probabilistic polynomial time adversaries A

Pr

 ck ← Gen(1λ); (h(X), x)← A(ck)
(msg1, st)← PolyCommit(ck,h(X))
msg2 ← PolyEval(st, x)

: A(msg1,msg2) = 1


= Pr

[
ck ← Gen(1λ); (h(X), x)← A(ck)
(msg1,msg2)← S(ck, x,h(x))

: A(msg1,msg2) = 1

]
3.2 Construction

In the following, we will build a polynomial commitment scheme on top of a
perfectly-hiding, homomorphic commitment scheme (Gen,Com) to vectors in
Znlp . Let us first give some intuition about how the construction will work.

Let h(X) =
∑N
i=0 hiX

i be a polynomial of degree N = (n + 1)m − 1 with
coefficients that are row-vectors in Zlp. Define an m× (n+ 1)l matrix

h0,0 h0,1 · · · h0,n

h1,0 h1,1 · · · h1,n

...
...

. . .

hm−1,0 hm−1,1 · · · hm−1,n

 =


h0 hm · · · hnm
h1 hm+1 · · · hnm+1

...
...

. . .

hm−1 h2m−1 · · · hN


14

With this matrix we have h(X) =
∑n
j=0(

∑m−1
i=0 hi,jX

i)Xmj . In the polyno-
mial commitment scheme, the prover commits to each row of the matrix with
commitments {Hi}m−1

i=0 . After receiving a point x from the verifier, the prover
computes for each column h̄j =

∑m
i=0 hi,jx

i and sends them to the verifier as

part of openings of the commitment
∏m−1
i=0 Hxi

i . The verifier can use the homo-
morphic property of the commitments to check that the h̄j values are correctly
formed and compute h(x) =

∑n
j=0 h̄jx

jm.

While the main idea we have sketched above gives the verifier assurance that
the committed polynomial has been correctly evaluated, the prover may not
be happy. The problem is that the solution gives away information about the
coefficients of h(X). We will therefore introduce some random blinding vectors
to ensure no information is leaked about the committed coefficients except the
evaluation of the polynomial. We will also adjust the protocol to handle an
arbitrary polynomial degree N = mn + d for 0 ≤ d < m by shifting the first
column of the matrix.

We pick random blinders b1, . . . ,bn ← Zlp and define an (m+ 1)× (n+ 1)l
matrix {hi,j}m,ni=0,j=0 as follows:



h0 b1 · · · bn−1 bn
h1 hd+1 · · · h(n−2)m+d+1 h(n−1)m+d+1

...

hd − b1

...
. . . hnm

0 hnm+1

...
...

0 hm+d−1 · · · h(n−2)m+d−1 hN−1

0 hm+d − b2 · · · h(n−2)m+d − bn hN


We can therefore rewrite the polynomial as

h(X) =

m∑
i=0

hi,0X
i +

n∑
j=1

(
m∑
i=0

hi,jX
i

)
X(j−1)m+d.

In the polynomial commitment scheme, the prover commits to each row of the
matrix with commitments {Hi}mi=0. After receiving a point x from the verifier,
the prover computes for each column h̄j =

∑m
i=0 hi,jx

i and sends them to the

verifier as part of an opening of the commitment
∏m
i=0H

xi

i . The verifier can
use the opening to check that the h̄j values are correct and compute h(x) =
h̄0 +

∑n
j=1 h̄jx

(j−1)m+d. We describe the full polynomial commitment scheme
below.

Common Input: ck

15

PolyCommit(ck,h(X)) → (msg1, st): The prover randomly selects b1, . . . ,bn ←
Zlp and arranges them into a matrix with entries {hi,j}m,ni=0,j=0 as follows:

h0 b1 · · · bn−1 bn
h1 hd+1 · · · h(n−2)m+d+1 h(n−1)m+d+1

...

hd − b1

...
. . . bn

0 hnm+1

...
...

0 hm+d−1 · · · h(n−2)m+d−1 hN−1

0 hm+d − b2 · · · h(n−2)m+d − bn hN


For 0 ≤ i ≤ m, the prover randomly selects ri ← Zp and computes a
commitment Hi to the ith row of the matrix using randomness ri.

msg1 = ({Hi}mi=0) , st =
(
h(X), {bj}nj=1, {ri}mi=0

)
The prover sends msg1 to the verifier.

PolyEval(st, x): → (msg2): For 0 ≤ j ≤ n, the prover computes

h̄j =

m∑
i=0

hi,jx
i+1.

The prover also computes r̄ =
∑m
i=0 rix

i.
Set msg2 =

(
{h̄j}nj=0, r̄

)
.

The prover sends msg2 to the verifier.

PolyVerify(ck,msg1,msg2, x): → (cmt): The verifier checks whether

com(h̄0, . . . , h̄n; r̄) =

m∏
i=0

Hxi

i .

Return ⊥ if this fails.
After accepting the commitment opening, the verifier returns

h̄ =

m∑
i=0

hi,0x
i +

n∑
j=1

(
m∑
i=0

hi,jx
i

)
x(j−1)m+d.

Lemma 1. The polynomial commitment protocol given above has perfect com-
pleteness, computational (m + 1)-special-soundness, and perfect special honest
verifier zero-knowledge.

Proof. By inspection, it follows that when the prover is honest, the verifier always
recovers h̄ = h(x).

16

Given x and h(x), we describe an efficient simulator to prove special honest
verifier zero knowledge. The simulator first picks random h̄1, . . . , h̄n ← Zlp and

then computes h̄0 = h(x)−
∑n
j=1 h̄jx

(j−1)m+d. In other words, the hj are chosen
uniformly at random, conditional on giving the correct evaluation h(x). The
simulator also picks at random r̄ ∈ Zp and r1, . . . , rm ← Zp and sets Hi =

Comck(0; ri). Finally, it computes H0 = Comck(h̄0, . . . , h̄n; r̄)
∏m
i=1H

−xi

i .
This is a perfect SHVZK simulation. First, because the commitment scheme is

perfectly hiding, the commitments H1, . . . ,Hm are identically distributed in real
proofs and simulated proofs. The values h̄1, . . . , h̄n and r̄ are also independently
and uniformly at random in real proofs due to the choices of b1, . . . ,bn and r0,
just as in the simulated proofs. Finally, given these random values both real and
simulated proofs, the matching H0 and h̄0 are uniquely determined. This means
we have identical distributions of real and simulated proofs which are consistent
with the evaluation h(x).

Finally, we prove (m+ 1)-special soundness. Suppose that we are given msg1

and x(0), . . . , x(m),msg
(0)
2 , . . . ,msg

(m)
2 which are all accepting, and where the x(i)

are distinct. Consider the Vandermonde matrix:
1 1 · · · 1
x(0) x(1) · · · x(m)

...
...

. . .
...(

x(0)
)m (

x(1)
)m · · · (x(m)

)m


This matrix is invertible, meaning that for any 0 ≤ k ≤ m, we can take linear
combinations of the columns to obtain (0, . . . , 0, 1, 0, . . . , 0)T , where the kth entry
is 1. We may take the same linear combinations of the verification equation
com(h̄0, . . . , h̄n; r̄) =

∏m
i=0H

xi

i in order to find openings to each Hk. We now
have that H0, . . . ,Hm are commitments to known row vectors (hi,0, . . . ,hi,n)
with known randomness ri. We define the extracted vector of polynomials to
be h(X) =

∑m
i=0 hi,0X

i +
∑n
j=1

(∑m
i=0 hi,jX

i
)
X(j−1)m+d, which is a vector of

degree N polynomials.
By the binding property of the commitment scheme, for each accepting tran-

script, we have

h̄k =

m∑
i=0

hi,0(x(k))i +

n∑
j=1

(
m∑
i=0

hi,j(x
(k))i

)
(x(k))(j−1)m+d.

Therefore, all openings are consistent with the extracted polynomial h(X). ut

Communication. The prover must send m+1 group elements and l(n+1)+1
field elements to the verifier.

Computation. Prover computation is dominated bym+1 multi-exponentiations
of width l(n+ 1) + 1 costing approximately lmn

log ln + l
log l exponentiations. Verifier

computation is dominated by a multi-exponentiation of width l(n+ 1) +m+ 1
costing approximately ln+m

log(ln+m) exponentiations.

17

4 Batch Protocol for Low Degree Relations

We give an argument of knowledge of values {ai,j}i∈[m],j∈[n] and {ri}i∈[m], such
that P(ai,j ,bi,j) = 0 for i ∈ [m], j ∈ [n], and the prover knows commitment
openings

C1 = com(Q(a1,1,b1,1), Q(a1,2,b1,2), . . . ,Q(a1,n,b1,n); r1)
C2 = com(Q(a2,1,b2,1), Q(a2,2,b2,2), . . . ,Q(a2,n,b2,n); r2)
...
Cm = com(Q(am,1,bm,1), Q(am,2,bm,2), . . . ,Q(am,n,bm,n); rm)

The protocol we design will be more efficient than repeating t = mn instances of
the basic protocol in parallel, as the communication depends on

√
t rather than

t.
In the following we will refer to the parameters `a, `b, `P , dP , `Q, dQ such that

ai,j ∈ Z`ap , bi,j ∈ Z`bp , P is a vector of `P (`a + `b)-variate polynomials of total
degree dP , and Q is a vector of `Q (`a + `b)-variate polynomials of total degree
dQ.

4.1 Intuition behind Protocol

The protocol embeds multiple instances of the same polynomial equality into
a single polynomial by using Lagrange interpolation polynomials, inspired by
[26,1]. To recover a single instance, simply evaluate the polynomial in one of the
interpolation points.

More concretely, let z1, . . . , zm be distinct points in Zp, and let l1(X), . . . , lm(X)
be their associated Lagrange polynomials such that li(zj) = δi,j . Let l0(X) =∏m
i=1(X − zi). The prover produces the following commitments.

A0 = com(a0,1, a0,2, . . . , a0,n ; r0)
A1 = com(a1,1, a1,2, . . . , a1,n ; r1)
A2 = com(a2,1, a2,2, . . . , a2,n ; r2)
...
Am = com(am,1, am,2, . . . , am,n ; rm)

Here, the values a0,1, . . . ,a0,n ∈ Zlap , where the value of the first index is 0, are
blinding values chosen uniformly at random. These are completely unrelated to
the values of the witness, which are a1,1, . . . ,am,n, where the first index has
a value strictly greater than 0. After receiving a random challenge x from the
verifier, the prover sends āj =

∑m
i=0 ai,j li(x) to the verifier for each j ∈ [n].

The verifier now checks the received āj against the commitments Ai. This
proves knowledge of the a values. It remains to demonstrate that ai,j ,bi,j satisfy
the polynomial relations in the statement. Let b̄j =

∑m
i=1 bij li(x). The verifier

evaluates P, Q using āj and b̄j for each j. By definition of āj and b̄j , when
evaluating at an interpolation point zi, we obtain the single evaluation of the

18

original polynomial, P(ai,j ,bi,j). This implies, for example, that P(āj , b̄j) ≡ 0
mod l0(x), or in other words, that P(āj , b̄j) is a multiple of l0(X) for each j.
The prover must commit to the coefficients of P(āj , b̄j)/l0(x) in advance (as a
polynomial in x), and uses the polynomial commitment scheme to achieve this
for every j simultaneously.

Finally, the prover needs to convince the verifier that the commitments Ci
contain commitments to Q(ai,j ,bi,j). This is done in a similar way to the P poly-
nomial, except here we build up polynomial equalities over committed values.
The full protocol can be found below.

Common Reference String: crs = (ck, z1, . . . , zm) where ck ← Gen(1λ) and
z1, . . . , zm are distinct points in Zp defining Lagrange polynomials l1(X), . . . , lm(X)
such that li(zj) = δi,j and defining l0(X) =

∏m
j=1(X − zj).

Statement: {Ci}i∈[m], {bi,j}i∈[m],j∈[n],P,Q polynomials.
Prover’s Witness: {ai,j}i∈[m],j∈[n], {ri}i∈[m] such that

P(ai,j ,bi,j) = 0 for i ∈ [m], j ∈ [n]

Ci = com(Q(ai,1,bi,1),Q(ai,2,bi,2), . . . ,Q(ai,n,bi,n); ri) for i ∈ [m]

P → V: Pick r0, s0, . . . , sm ← Zp and a0,1, . . . ,a0,n ← Z`ap and c1, . . . , cn ←
Z`Qp . Compute

C0 = Comck(c1, . . . , cn; r0) and Ai = Comck (ai,1, . . . ,ai,n; si) for i ∈ {0}∪[m].

Define

āj(X) =
∑m
i=0 ai,j li(X) b̄j(X) =

∑m
i=1 bi,j li(X)

P∗j (X) =
P(āj(X),b̄j(X))

l0(X) Q∗j (X) = cj +
∑m

i=1 Q(ai,j ,bi,j)li(X)−Q(āj(X),b̄j(X))
l0(X)

Run PolyCommit(ck,
{
P∗j (X)

}
j∈[n]

)→ (msgP,1, stP).

Run PolyCommit(ck,
{
Q∗j (X)

}
j∈[n]

)→ (msgQ,1, stQ).

The prover sends {Ai}i∈[m] and msgP,1,msgQ,1 to the verifier.
P ← V: Send the challenge x← Zp \ {z1, . . . , zm} to the prover.
P → V: Run

PolyEval(stP , x)→ msgP,2 PolyEval(stQ, x)→ msgQ,2.

Compute

āj = āj(x) r̄ =

m∑
i=0

rili(x) s̄ =

m∑
i=0

sili(x).

The prover sends {āj}j∈[n], r̄, s̄,msgP,2,msgQ,2 to the verifier.

19

V: Run

PolyVerify(ck,msgP,1,msgP,2, x)→ p̄ = (p̄1, . . . , p̄n)

and

PolyVerify(ck,msgQ,1,msgQ,2, x)→ q̄ = (q̄1, . . . , q̄n).

Return 0 if p̄ = ⊥ or q̄ = ⊥.
Check

Comck(ā1, . . . , ān; s̄) =

m∏
i=0

A
li(x)
i .

Compute b̄j = b̄j(x) and check for all j ∈ [n] that

P(āj , b̄j) = p̄j l0(x).

Check that

Comck(
{
q̄j l0(x) + Q(āj , b̄j)

}
j∈[n]

; r̄) =

m∏
i=0

C
li(x)
i .

If all checks are satisfied, then the verifier outputs 1, and otherwise 0.

Lemma 2. The batch protocol has perfect completeness, ms-special-soundness,
and perfect special honest verifier zero-knowledge, where ms = (mmax(dP , dQ)+
1).

Proof. Perfect completeness of the protocol follows by perfect completeness of
the PolyCommit sub-protocol, and by careful inspection.

For perfect special honest verifier zero knowledge, we provide an efficient
simulator for the protocol. The simulator selects z1, . . . , zm as the prover. She

then selects āj ← Z`ap , r̄, s̄ ← Zp, q̄j ← Z`Qp , and A1, . . . , Am as uniformly
random commitments to 0. All these values are distributed exactly as in a real
protocol, where they are also uniformly random.

She then simulates the polynomial commitment and evaluation messages
msgP,1,msgP,2,msgQ,1,msgQ,2 using the evaluation point x and evaluations p̄
and q̄, which are determined by the values already simulated. By the perfect
SHVZK of the polynomial commitment scheme, the simulated values have iden-
tical distribution to the real proofs. Furthermore, since the polynomial commit-
ment simulator takes the polynomial evaluation as input, the simulated poly-
nomial commitments are consistent with the rest of the simulated values in the
outer protocol.

In both the real and simulated protocols, the verification equations now deter-
mine the values of A0 and C0 uniquely, and the simulator can easily compute the
correct values by rearranging the equations. The entire simulated proof therefore
has the same distribution as a real proof.

Finally, we prove special soundness. Suppose that we havems = (mmax(dP , dQ)+
1) accepting transcripts for the same first message, and distinct challenges x.

20

Pick any m+ 1 of the challenges, and note that the matrix

M =


l0(x(1)) l1(x(1)) · · · lm(x(1))
l0(x(2)) l1(x(2)) · · · lm(x(2))

...
...

. . .
...

l0(x(m+1)) l1(x(m+1)) · · · lm(x(m+1))


is invertible. This follows from linear independence of the polynomials l0(X), . . . , lm(X).
If the determinant was zero, there would be a non-trivial linear dependence
between the columns of the matrix. This would give a non-trival dependence
relation between the polynomials.

Therefore, for each i, it is possible to take a linear combination of the rows to
produce (0, . . . , 0, 1, 0, . . . , 0), where the 1 is at the ith entry. By taking the same
linear combinations of the left and right hand sides of the verification equation

Comck(ā1, . . . , ān; s̄) =
∏m
i=0A

li(x)
i for m + 1 different transcripts, we can for

each i ∈ {0} ∪ [m] extract an opening {ai,j}j∈[n] and si of Ai. By the binding
property of the commitment scheme, we now have in each transcript that āj is
correctly formed as a polynomial determined by the openings of the Ai evaluated
in x.

By the special soundness of the polynomial commitment protocols, we extract
polynomials P∗j (X) of degree (dP − 1)m, and Q∗j (X) of degree (dQ − 1)m such
that in each transcript, p̄j = P∗j (x) and q̄ = Q∗j (x) for the challenge x appearing
in that transcript.

Consider the verification equations P(āj , b̄j) = p̄j l0(x). By the binding prop-
erty of the commitment scheme, we have that P(āj(x), b̄j(x)) = P∗j (x)l0(x)
holds for ms different challenges x. Since ms is larger than the degree of the
polynomial this implies that we have an equality of polynomials. By evaluating
the polynomial expression at a particular interpolation point zi, and parsing the
resulting vector correctly, we see that P(ai,j ,bi,j) = P∗j (zi)l0(zi) = 0 for each
i, j.

We can in a similar manner to the extraction of the Ai extract openings of
all Ci to values ci,1, . . . , ci,n. The last verification equation tells us that for each
j ∈ [n]

q̄j l0(x) + Q(āj , b̄j) =

m∑
i=0

ci,j li(x).

Since ms is larger than the degree of the polynomials this implies that we have
an equality of polynomials. By plugging in the evaluation points zi, we get
Q(ai,j ,bi,j) = ci,j for each i ∈ [m], j ∈ [n]. ut

Communication Let k1, k2 be the dimensions of the matrix used in the Poly-
Commit subprotocol when committing to P∗, and similarly, let t1, t2 be the
dimensions of the matrix in the subprotocol for committing to Q∗. The to-
tal communication cost of the protocol is m + k1 + t1 + 4 group elements and
`an+ `Pn(k2 + 1) + `Qn(t2 + 1) + 4 field elements.

21

Single Proof Case When t = mn = 1 and the prover is proving a single relation,
we may choose parameters so that the protocol only uses a constant number of
group elements. Set k1 = t1 = 1, k2 = dP −1, t2 = dQ−1. Then the protocol has
communication costs of 7 group elements plus `a+`P dP+`QdQ+4 field elements.
This minimises communication in the case where the protocol is instantiated over
a multiplicative subgroup of a finite field, where group elements are much bigger
than field elements.

In the case where the protocol is instantiated using an elliptic curve group,
group elements and field elements have roughly the same size. Then, we can

minimise the total communication costs by choosing k2 =
⌈√

dP
`P

⌉
, k1 ≈ dP

k2
.

Set t2 =
⌈√

dQ
`Q

⌉
, t1 ≈ dQ

t2
. Then the protocol has costs

√
`P dP +

√
`QdQ + 5

group elements and `a +
√
`P dP +

√
`QdQ + 4 field elements.

Batch Proof Case When t is large, we choose parameters so that the communi-

cation costs are proportional to
√
t rather than t. Set k2 =

⌈√
dPm
`Pn

⌉
, k1 ≈ dPm

k2
.

Set t2 =
⌈√

dQm
`Qn

⌉
, t1 ≈ dQm

t2
. Finally, set m ≈

√
`at, n ≈ t

m . Then the protocol

has communication costs of roughly
√
`at+

√
dP `P t+

√
dQ`Qt group elements

and
√
`at+

√
dP `P t+

√
dQ`Qt field elements.

Computation The prover’s computational costs are dominated by

O

(
`at

log `an
+

`Qn

log `Qn
+

`P dP t

log `Pnk2
+

`P dP t

log `Pnt2

)
exponentiations. Over Zp, the prover must perform

O((`a+ `b+ `P)tdP logmdP + (`a+ `b+ `Q)tdQ logmdQ) + tdPEvalP + tdQEvalQ

multiplications. Here, EvalP is the cost of evaluating P once, and similarly for Q.
The vectors of polynomials P∗(X),Q∗(X) are computed using FFT techniques.

The verifier’s computational costs are dominated by

O

(
m+ `an

log(m+ `an)
+

m+ `Qn

log(m+ `Qn)
+

k1 + `Pnk2

log(k1 + `Pnk2)
+

t1 + `Qnt2
log(t1 + `Qnt2)

)
exponentiations. Over Zp, the verifier must perform

O((`P + `Q)n) + nEvalP + nEvalQ

multiplications.

5 Applications

In this section, we specify concrete choices of relations for P,Q, which give rise
to zero-knowledge arguments for several useful applications.

22

5.1 Membership Argument with Public List

In membership arguments [11,10], the prover wishes to convince the verifier that
a commitment contains one of the values in a given list L = (λ0, . . . , λN−1).
Groth and Kohlweiss [28] give an efficient membership argument, which with
minor tweaks fits into our framework. For simplicity, we will in the following
assume N is a power of 2.

Statement: (c, λ0, . . . , λN−1)
Witness: `, r such that c = Comck(λ`; r)
Polynomial Encoding: Let m = log2N and let (l0, . . . , lm−1) be the binary

expansion of l, satisfying lj(1 − lj) = 0 for 0 ≤ j ≤ m − 1. Define lj,1 := lj
and lj,0 = 1− lj . We have that

N−1∑
i=0

λi

m−1∏
j=0

lj,ij = λl

where we write the binary expansion of i as (i0, . . . , im−1).
Parameter Choice: Writing ◦ for the entry-wise product of two vectors

– `a = log2N, `b = N, `P = log2N, dP = 2, `Q = 1, dQ = log2N
– a = (l0, . . . , lm−1)
– b = (λ0, . . . , λN−1)
– P(a,b) = a ◦ (1− a)

– Q(a,b) =
∑N−1
i=0 λi

∏m−1
j=0 lj,ij

An alternative construction was given in [6] that optimises the membership
argument by using an n-ary representation of l. This alternative construction is
captured by our framework as follows, this time assuming for simplicity that N
is a power of n, using different polynomials P and Q.

Polynomial Encoding: Let m = lognN and let (l0, . . . , lm−1) be the n-ary
expansion of l. Let δrs be the Kronecker delta symbol, which is equal to 1
if r = s and 0 otherwise. Consider the bit-string (δl0,0, δl0,1, . . . , δlm−1,n−1),

each element satisfying δi,j(1 − δi,j) = 0, and with
∑n−1
i=0 δlj ,i = 1 for each

j. As described in [6], we have that

N−1∑
i=0

λi

m−1∏
j=0

δj,ij = λl

where ij the jth n-ary digit of i.
Parameter Choice:

– `a = n lognN , `b = N , `P = n lognN , dP = 2, `Q = 1, dQ = lognN
– a = (δl0,1, . . . , δlm−1,n−1), not including δj,0 for any j.
– b = (λ0, . . . , λN−1).

– δlj ,0 = 1−
∑n−1
i=1 δlj ,i for each j.

– v =
(
δl0,0, . . . , δlm−1,n−1

)
, with the δj,0 included.

23

– P (a,b) = v ◦ (1− v)

– Q(a,b) =
∑N−1
i=0 λi

∏m−1
j=0 δj,ij = λl

When t = 1 and we are aiming for a constant number of group elements,
the simple binary version of the argument gives the lowest communication costs.
Otherwise, in the cases where t is large, or where t = 1 and we aim to minimise
the total number of elements communicated, setting n = 3 gives the lowest
communication costs. The protocol efficiency is reported in Table 1.

5.2 Polynomial Evaluation Argument

In a polynomial evaluation argument [23,10], we have a polynomial of degree
N and commitments to a point and its purported evaluation in that point.
The prover wants to convince the verifier that the committed evaluation of the
polynomial is correct.

The most efficient discrete logarithm based polynomial evaluation argument
was given by Bayer and Groth [2]. We will now use our framework of polynomial
relations to capture their protocol.

Statement: (cu, cv, h(X)), where h(X) is a polynomial of degree N .
Witness: u, η, v, ν such that cu = Comck(u; η), cv = Comck(v, ν), and h(u) =

v.
Polynomial Encoding: Set ui = u2i

for 0 ≤ i ≤ log2N−1, so that ui = u2
i−1

for each i. If h(X) =
∑N−1
i=0 hiX

i, then we can write h(u) =
∑N−1
i=0 hi

∏log2N−1
j=0 u

ij
j .

Parameter Choice:
– `a = log2N , `b = N , `P = log2N − 1, dP = 2, `Q = 1, dQ = log2N
– a = (u0, . . . , ulogN−1)
– b = (h0, . . . , hN−1)
– P(a,b) = (u1 − u2

0, . . . , ulogN−1 − u2
logN−2)

– Q(a,b) =
∑N−1
i=0 hi

∏logN−1
j=0 u

ij
j

With alternative choices of the matrices P,Q, we can improve the communi-
cation costs of their argument by switching to an n-ary encoding of the powers
in the polynomial.

Polynomial Encoding: Set ui = un
i

for 0 ≤ i ≤ lognN − 1, so that

ui = uni−1 for each i. If h(X) =
∑N−1
i=0 hiX

i, then we can write h(u) =∑N−1
i=0 hi

∏lognN−1
j=0 u

ij
j , where this time, ij is the jth digit of the nary rep-

resentation of i. This gives rise to the efficiencies listed in Table 1.
Parameter Choice:

– `a = lognN , `b = N , `P = lognN , dP = n, `Q = 1, dQ = lognN
– a = (u0, . . . , ulognN−1)
– b = (h0, . . . , hN−1)
– P(a,b) = (u1 − un0 , . . . , ulognN−1 − unlognN−2)

– Q(a,b) =
∑N−1
i=0 hi

∏lognN−1
j=0 u

ij
j

24

When t = 1 and we are aiming for a constant number of group elements,
setting n = 4 gives the lowest communication costs. When t = 1 and we aim
to minimise the total number of elements communicated, we set n = log2N

log2 log2N
.

Otherwise, in the cases where t is large, setting n = 6 gives the lowest commu-
nication costs. The protocol efficiency is reported in Table 1.

We note that [1] gives a batch argument for polynomial evaluation based on
similar ideas. However, ours is more communication efficient.

Remark. The relations above arise from choices of a small set of powers of u
which generate all powers from u to uN−1. This is the same as choosing an
additive basis for [N − 1]. For certain parameter choices, we have found modest
benefits to using more complex bases, such as generalised Zeckendorf bases, but
these give only slight improvements, so are omitted for simplicity.

5.3 Range Proof

In range proofs [9,38], we have a commitment and a range [A;B]. The prover
wants to convince the verifier that the committed value inside the commitment
falls in the given range. A common strategy for constructing a range proof is to
write the committed value in binary, prove all the bits are indeed 0 or 1, and that
their weighted sum yields a number within the range. We now describe this type
of range proof in our framework of polynomial relations, where we for simplicity
focus on intervals [0, N] with N = 2m − 1.

Statement: (N, c)
Witness: a, r such that c = Comck(a; r), a ∈ [0, N].
Polynomial Encoding: Let a0, . . . , am−1 be the binary representation of a,

so that ai(1− ai) = 0 for 0 ≤ i ≤ m− 1. Then a =
∑m−1
i=0 ai2

i.
Parameter Choice:

– `a = m, `b = m, `P = m, dP = 2, `Q = 1, dQ = m+ 1
– a = (a0, . . . , am−1)
– b = (20, 21, . . . , 2m−1)
– P(a,b) = a ◦ (1− a)

– Q(a,b) =
∑m−1
i=0 ai2

i

With an alternative choice of P,Q, following [16], it is possible to improve
the communication costs of the argument by using an n-ary base. This gives rise
to the efficiencies listed in Table 1.

Polynomial Encoding: Let N = nm − 1. Let a0, . . . , am−1 be the n-ary
representation of a, so that

∏n−1
k=0(ai − k) = 0 for 0 ≤ i ≤ m − 1. Then

a =
∑m−1
i=0 ain

i.
Parameter Choice:

– `a = m, `b = m, `P = m, dP = n, `Q = 1, dQ = 1
– a = (a0, . . . , am−1)
– b = (1, n, . . . , nm−1)

25

– P (a,b) = a ◦ (a− 1) ◦ . . . (a− n+ 1)

– Q(a,b) =
∑m−1
i=0 ain

i

When t = 1 and we are aiming for a constant number of group elements,
setting n = 4 gives the lowest communication costs. When t = 1 and we aim
to minimise the total number of elements communicated, we set n = log2N

log2 log2N
.

Otherwise, in the cases where t is large, setting n = 6 gives the lowest commu-
nication costs. The protocol efficiency is reported in Table 1.

6 Conclusion

We have provided zero-knowledge arguments for simple polynomial relations,
relying solely on the discrete logarithm assumption. When we only have one
instance of the argument, t = 1, the single value membership arguments and
polynomial evaluation arguments compiled within our framework improve on the
state of the art both asymptotically and for practical parameters. When there
are many instances, t > 1, we have a batch argument for polynomial relations,
which is significantly more efficient than the näıve solution of repeating single
instance arguments many times.

References

1. Stephanie Bayer. Practical zero-knowledge Protocols based on the discrete logarithm
Assumption. PhD thesis, University College London, 2014.

2. Stephanie Bayer and Jens Groth. Zero-Knowledge Argument for Polynomial Eval-
uation with Application to Blacklists. In EUROCRYPT, pages 646–663, 2013.

3. Mihir Bellare, Juan A. Garay, and Tal Rabin. Batch Verification with Applications
to Cryptography and Checking. In EUROCRYPT, pages 236–250, 1998.

4. Josh Benaloh and Michael de Mare. One-way accumulators: A decentralized alter-
native to digital signatures. Advances in CryptologyEUROCRYPT’93, 1994.

5. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens Groth.
Foundations of Fully Dynamic Group Signatures. In ACNS, pages 117–136, 2016.

6. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth,
and Christophe Petit. Short Accountable Ring Signatures Based on DDH. In
ESORICS, pages 243–265, 2013.

7. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete
log setting. In EUROCRYPT, pages 327–357, 2016.

8. Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Ha-
jiabadi, and Sune K. Jakobsen. Linear-time zero-knowledge proofs for arith-
metic circuit satisfiability. Cryptology ePrint Archive, Report 2017/872, 2017.
http://eprint.iacr.org/2017/872.

9. Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In
EUROCRYPT, pages 431–444, 2002.

10. Stefan Brands, Lisa Demuynck, and Bart De Decker. A practical system for globally
revoking the unlinkable pseudonyms of unknown users. In ACISP, pages 400–415,
2007.

26

http://eprint.iacr.org/2017/872

11. Emmanuel Bresson and Jacques Stern. Efficient revocation in group signatures. In
PKC, pages 190–206, 2001.

12. Jan Camenisch and Rafik Chaabouni. Efficient protocols for set membership and
range proofs. Advances in Cryptology-ASIACRYPT . . . , 2008.

13. Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based
on bilinear maps and efficient revocation for anonymous credentials. Public Key
CryptographyPKC . . . , 2009.

14. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In CRYPTO, pages 61–76, 2002.

15. Jan Camenisch and Markus Stadler. Proof systems for general statements about
discrete logarithms. Technical Report 260, ETH Zurich, 1997.

16. Rafik Chaabouni, Helger Lipmaa, and Abhi Shelat. Additive combinatorics and
discrete logarithm based range protocols. In ACISP, volume LNCS 6168, pages
336–351, 2010.

17. Geoffroy Couteau, Thomas Peters, and David Pointcheval. Removing the strong
RSA assumption from arguments over the integers. In Advances in Cryptology -
EUROCRYPT 2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part II, pages 321–350, 2017.

18. Ronald Cramer and Ivan Damg̊ard. Zero-knowledge proofs for finite field arith-
metic, or: Can zero-knowledge be for free? In CRYPTO, pages 424–441, 1998.

19. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. Advances in Cryptology . . . ,
839:174–187, 1994.

20. Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model.
In EUROCRYPT, pages 418–430, 2000.

21. Ivan Damg̊ard and Nikos Triandopoulos. Supporting Non-membership Proofs with
Bilinear-map Accumulators. IACR ePrint archive report 538, 2008.

22. Prastudy Fauzi, Helger Lipmaa, and Bingsheng Zhang. Efficient Non-Interactive
Zero Knowledge Arguments for Set Operations. In Financial Cryptography and
Data Security, pages 216–233, 2014.

23. Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to
prove modular polynomial relations. In CRYPTO, pages 16–30, 1997.

24. Juan A. Garay, Philip MacKenzie, and Ke Yang. Strengthening zero-knowledge
protocols using signatures. Journal of Cryptology, 2006.

25. Roario Gennaro, Darren Leigh, Ravi Sundaram, and William Yerazunis. Batching
Schnorr identification scheme with applications to privacy-preserving authorization
and low-bandwidth communication devices. In ASIACRYPT, volume LNCS 3329,
pages 276–292, 2004.

26. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
Span Programs and Succinct NIZKs without PCPs. In EUROCRYPT, pages 626–
645, 2013.

27. Jens Groth. Honest verifier zero-knowledge arguments applied. PhD thesis, Aarhus
University, 2004.

28. Jens Groth and Markulf Kohlweiss. One-out-of-Many Proofs: Or How to Leak a
Secret and Spend a Coin. In EUROCRYPT, pages 253–280, 2015.

29. Ryan Henry and Ian Goldberg. Batch proofs of partial knowledge. In ACNS, pages
502–517, 2013.

30. Javier Herranz. Attribute-based versions of schnorr and elgamal. Appl. Algebra
Eng. Commun. Comput., 27(1):17–57, 2016.

27

31. Charanjit Jutla and Arnab Roy. Shorter {Q}uasi-{A}daptive {NIZK} {P}roofs
for {L}inear {S}ubspaces. In ASIACRYPT, volume LNCS 8269, pages 1–20, 2013.

32. Charanjit S. Jutla and Arnab Roy. Switching lemma for bilinear tests and constant-
size NIZK proofs for linear subspaces. Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 8617 LNCS(PART 2):295–312, 2014.

33. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commit-
ments to polynomials and their applications. In Advances in Cryptology - ASI-
ACRYPT 2010 - 16th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings,
pages 177–194, 2010.

34. Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In STOC,
pages 723–732, 1992.

35. Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear subspaces revisited.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 9057(339563):101–128, 2015.

36. Jiangtao Li, Ninghui Li, and Rui Xue. Universal Accumulators with Efficient
Nonmembership Proofs. Proceedings of the 5th international conference on Applied
Cryptography and Network Security (ACNS), pages 253–269, 2007.

37. Benôıt Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment
schemes: From polynomial commitments to pairing-based accumulators from sim-
ple assumptions. In 43rd International Colloquium on Automata, Languages, and
Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 30:1–30:14, 2016.

38. Helger Lipmaa. On diophantine complexity and statistical zero-knowledge argu-
ments. In ASIACRYPT, pages 398–415, 2003.

39. Silvio Micali, Michael O. Rabin, and Joe Kilian. Zero-knowledge sets. In FOCS,
pages 80–91, 2003.

40. Lan Nguyen. Accumulators from bilinear pairings and applications to ID-based
ring signatures and group membership revocation. In CT-RSA, pages 275–292,
2005.

41. Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of
correct computation. In Theory of Cryptography - 10th Theory of Cryptography
Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, pages 222–
242, 2013.

42. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In CRYPTO, pages 129–140, 1991.

43. Kun Peng. A general, flexible and efficient proof of inclusion and exclusion. Trusted
Systems, pages 33–48, 2012.

44. Kun Peng and Feng Bao. Batch ZK Proof and Verification of OR Logic. In Inscrypt,
volume LNCS 5487, pages 141–156, 2008.

45. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
46. Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Char-

alampos Papamanthou. vsql: Verifying arbitrary SQL queries over dynamic out-
sourced databases. In 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017, pages 863–880, 2017.

28

	Efficient Batch Zero-Knowledge Arguments for Low Degree Polynomials
	Introduction
	Contributions
	Efficiency
	Related Work
	Outline

	Preliminaries
	Assumptions
	Homomorphic Commitment Schemes
	-Protocols
	Relations
	Lagrange Polynomials

	Polynomial commitment schemes
	Definition
	Construction

	Batch Protocol for Low Degree Relations
	Intuition behind Protocol

	Applications
	Membership Argument with Public List
	Polynomial Evaluation Argument
	Range Proof

	Conclusion

