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Abstract: We proposed a zero-contention in cache lines a cache policy between REE and TEE to prevent from TruSpy 

attacks in a kernel memory of an embedded system. We suggested that delay time of data path of REE is equal or 

similar to that of data path of TEE to prevent timing side-channel attacks. 

 

1. Introduction 

TrustZone is hardware-based security built into system-on-chips (SoCs) by semiconductor chip 

designers. Main theme of TrustZone is the concept of secure and non-secure worlds that are hardware 

separated, with non-secure software blocked from accessing secure resources directly [1], [2]. Within the 

processor, software either resides in the secure world (or trusted execution environment TEE) or the non-

secure world (rich execution environment REE); a switch between these two worlds is accomplished via 

software referred to as the secure monitor or by the core logic. This concept of TEE and REE extends 

beyond the processor to encompass memory, software, bus transactions, interrupts and peripherals within 

SoC [3]. Generally, TrustZone’s software architecture in a mobile device. REE’s mobile OS accesses 

TEE via a TrustZone library and a hardware driver. In the TEE, trusted applications execute on top of a 

minimal runtime environment, called the trusted OS, which provides a TEE internal application program 

interface (API) that trusted applications can use for communication with REE applications to access 

cryptographic operations and secure storage functionality. The trusted OS can enforce access control on 

trusted applications that attempt to access the secure memory [4], [5], [6]. TrustZone architecture does not 

define how REE applications access TEE [4].  

2. Side-channel Attack in Kernel Memory 

Typically, TEE includes three types of hardware models: 1) separated hardware REE and TEE 2) 

integrated REE and TEE 3) REE and TEE having shared hardware [7]. TrustZone is configured to include 

the shared hardware. Access of the shared hardware is determined according to the encrypted bit NS-bit. 

Particularly, REE and TEE share a main memory, for example, Dynamic Random Access Memory 

(DRAM). That is, DRAM is the memory shared by REE and TEE. NS-bit indicates whether to access one 

of the nonsecure area of DRAM and the secure area of DRAM [8]. The secure area is a space to store data 

encrypted by crypto algorithms. 

Recently, Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y. Thomas Hou addressed the 

side-channel attack against the kernel memory of TrustZone [9]. This side-channel attack is referred as 
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TruSpy, which is the first study of timing based cache side-channel information leakage of TrustZone. 

TruSpy attack exploits the cache contention between REE and TEE as a cache timing side channel to 

extract sensitive information from the secure world, referring to figure 1.  

 

Figure 1 TruSpy Thread Model 

 

There are two attack requirements for the TruSpy attack.  Firstly, the attacking process can fill in 

cache lines at individual cache sets that will cause cache contention between REE and TEE. Secondly, the 

attacker can detect the state change in the cache lines [9].  

The TruSpy attack scenario consists of five steps below [9], [10], referring to Figure 2:  

The first step is to identify the cache memory to use for cache priming. The key is to find the cache 

memory that will be filled in cache line that is also used by the victim process in TEE. This step is often 

accomplished by working out the mapping from virtual address to cache lines [9].  

The second step is to fill all cache lines. The spy process fills the cache with its own memory so that 

each cache line that can be used by the victim is filled with memory contents from the address space of 

the attacker [9].  

The third step is to trigger the execution of the victim process in TEE. When the victim process is 

running, cache lines that were previously occupied by the attackers are evicted to the cache memory, such 

as DRAM. As a result, the cache configuration from the attacker’s perspective has changed because of the 

execution of the victim process. Since this step is non-interruptible due to the protection of TrustZone, it 

is more challenging for this attack to succeed without fine grained information on the victim process 

cache access [9]. 
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Figure 2. TruSpy Attack Scenario 

The fourth step is to measure the state change in cache configuration after the victim finishes its 

execution in TEE. For each cache line that was previously primed in the second step, the time to execute 

memory load instruction is measured. If the time it takes to load the cache memory into register is short, 

then cache lines of which the cache memory is mapped to was not evicted by the victim process. Once the 

results are recorded for all the cache memory locations that were primed, the attack goes back to the 

second step and continues to collect more side-channel information [10]. 

The fifth step is to analyse the collected channel information to recover secret information such as 

cryptographic keys within the secure domain. 

 

3. Proposed Countermeasures against TruSpy  

In this paper, the proposed countermeasure against the TruSpy side-channel attack addresses largely 

two points. One point is to remove or mitigate cache contention about the kernel memory. Another point 

is to adjust timing of data paths for non-detecting cache transition. 

 

Zero Contention in Cache Lines 

In the above TruSpy modelling, this attack begins due to contention regarding shared cache lines 

between REE and TEE. Accordingly, if we remove the contention between REE and TEE, TruSpy side-

channel attack can be blocked. 



4 

 

1) Hardware Zero Contention Scheme 

 

Figure 3. Hardware Separation of Caches 

To achieve zero contention between REE and TEE, we suggest a separate cache memory 

hardwaredly. In an embodiment, the cache memory is divided from fixed REE-only cache lines and fixed 

TEE-only cache lines to remove or reduce the contention between REE and TEE with respect to the 

shared cache lines. For example, the fixed REE-only cache lines and the fixed TEE-only cache lines are 

hardware-implemented in the cache memory to achieve the zero contention, referring to figure 3. 

2) Software Zero Contention Scheme 

In another embodiment, an allocation of REE addresses and TEE addresses is fixed according to the 

cache policy. REE addresses and TEE address are separated from each other, referring to figure 4. REE 

addresses correspond first cache lines in the cache memory, and TEE addresses correspond second 

physical cache lines. The first cache lines and the second cache lines are not shared, but separated. In this 

case, the attacker cannot access and fill cache lines corresponding to the TEE logical addresses. But not to 

limited, various schemes can be introduced about configuration of the cache memory or assignment the 

logical address for zero contention. 

 

Figure 4. Cache Allocation Policy 
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Timing Attack Countermeasure 

In TruSpy Attack, this timing attack can be performed by sensing state change of a target cache line. 

Especially, the attacker tries to detect the cache line change by measuring the transition time to load cache 

data from the cache memory to the register. Then, we must have no difference between TEE load time 

and REE load time for prevent this timing side-channel attack. 

3) REE Data Path Delay Scheme 

Generally, TrustZone technology determines REE resource access or TEE resource access 

according to NS-bit. REE has longer data path latency than that of TEE because TEE performs at least 

one operation in a cryptography function. Then the attacker performs a timing side-channel attack by 

using this delay time between REE and TEE. Therefore we suggest that data path latencies of REE and 

TEE should be set to equal or similar to each other.  

 

Figure 5. Read Path with CTA 

In figure 5, data path of REE is configured to include a countermeasure circuit for timing attack 

CTA. For example, CTA may be a delay circuit (eg. flip-flop configuration) to have almost no difference 

in data path latency between TEE and REE.  

We supposed that the kernel memory of TrustZone is DRAM. Firstly, in a read operation, read data 

from DRAM may be one of secure data and non-secure data. The secure data is transferred to TEE via 

TEE data path and non-secure data is transferred to REE via REE data path. The read data from DRAM 

includes NS-bit, which indicates TEE data path or REE data path. MUS selects whether one of REE data 

path and TEE data path is connected to CPU according to the NS-bit. Referring to Figure 5, the shown 

REE data path includes CTA. Accordingly data latency of REE data path is equal or similar to that of 

TEE data path until the read data arrive at CPU. For example, decryption time by AES decrypt is equal or 

similar to delay time by CTA. 

Secondly, in a write operation, NS-bit indicates REE data path or TEE data path. Similarly, data 

latency of REE data path is equal or similar to that of TEE data path until the write data arrive at DRAM, 

referring to figure 6. For example, encryption time by AES encrypt is equal or similar to delay time by 

CTA. 
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Figure 6. Write Path with CTA 

 

4) TEE Parallel Data Path Scheme 

Also, the intended data path delay in REE may have a bad effect. To solve this problem, we suggest 

parallel data paths in TEE. For example, due to implemented parallel crypto circuits, we can screen time 

difference between REE data path and TEE data path. In read operation, non-secure data from DRAM is 

transferred to CPU of REE via REE data path, referring to figure 7. Also, secure data from DRAM is 

transferred to CPU of TEE via TEE data path having parallel AES Decryptors. AES Decryptors perform 

parallel decryption operation on the read data from DRAM. MUX selects one of non-secure data of REE 

data path and secure data of TEE data path according to NS-bit. Data of TEE data path are output from 

AES Decryptors. Accordingly data latency of REE data path can be same or similar to that of TEE data 

path until the read data arrives at CPU. 

 

Figure 7. Parallel Decryption in Memory Read 

In write operation, non-secure data from CPU is transferred to DRAM of REE via REE data path, 

referring to figure 8. Also secure data from CPU is transferred to TEE via TEE data path h having parallel 

AES Encrypts. AES Encryptors perform parallel encryption operation on the write data from CPU. MUX 
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selects one of non-secure data of REE data path and secure data of TEE data path according to NS-bit. 

Write data of TEE data path are outputted from AES encrypts. Accordingly data latency of REE data path 

can be equal or similar to that of TEE data path until the write data arrive at CPU. 

 

Figure 8. Parallel Decryption in Memory Write 

 

TEE Integrity Enhancement using Clark-Wilson Model 

Recently, Kaiqiang Li, Hao Feng, Yahui Li, and Zhiwei Zhang established the model of 

information flow control, and designed information flow control policies of MMR and Guard, which 

make all the communication data pass security audit and retransmission controlled by information flow 

control mechanism and credible components to meet the multilevel security requirements. The model and 

method effectively guarantee the confidentiality of the information flow in MILS using Bell-LaPadula 

(BLP) model [11]. 

The Clark-Wilson model was described by David D. Clark and David R. Wilson [12]. This Clark-

Wilson model introduces a way to formalize the notion of information integrity, especially as compared 

to the requirements for multi-level security (MLS) systems. The Clark-Wilson security model is based on 

reserving information integrity against the malicious attempt of tampering data. The security model 

maintains that only authorized users should make and be allowed to change the data, unauthorized users 

should not be able to make any changes, and the system should maintain internal and external data 

consistency [13]. We assumed that the mobile device having TrustZone is a kind of a multi-level security 

(MLS) system. 

We proposed security information flow control model to enhance the integrity of the information 

content between REE and TEE based on the Clark-Wilson model, and built the information flow control 

mechanism using TrustZone driver and Authentication Tokenization Program (ATP). Generally an 
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integrity level of a component (ex. APP) in REE is lower than that of a component (ex. TA) in TEE. 

Naive APP on REE cannot access a secure memory.  

The proposed ATP may generate a token by communication with the TA in TEE, and transfer the 

token to APP. Then APP can access the secure memory using the token. For example, if APP wants to 

write secure data in the secure memory based on a request, APP transforms data to be written using the 

token in the secure memory. For example, the transformed data may be obtained by performing a first 

XOR operation on data and the token. Then APP transfers the transformed data and the token to ATP.  

The transformed data correspond to UDI (unconstrained data item) of Clark-Wilson Model. ATP 

verifies the transformed data using the token. If the verification is passed, ATP performs a second XOR 

operation on the transformed data and the token to obtain the data to be written in the secure memory. 

The data correspond to CDI (constrained data item) of Clark-Wilson Model. Then the data from ATP is 

transferred to the secure memory via TZ driver of Mobile OS and Trusted OS. 

Also, the token is generated by TA of TEE and is stored in the secure memory via TA. ATP 

compares the token transferred from APP with the token stored in secure memory in the above 

verification operation. Also, the token may include time expiration information. ATP may perform the 

verification operation as to whether there is the token or whether the token is valid based on the time 

expiration information. 

Also, ATP verifies whether the token received from APP on REE is available by comparing the 

token from REE with the stored token in TEE. Also, ATP can manage the token via the trusted 

application (TA) on TEE. 

 

4. Conclusion 

In this paper we introduced countermeasures against side-channel attacks in the kernel memory of 

TrustZone.  We proposed a zero-contention cache memory or a cache policy between REE and TEE to 

prevent TruSpy attacks in TrustZone. And we suggested that delay time of data path of REE is equal or 

similar to that of data path of TEE to prevent timing side-channel attacks.  
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