
MRHS SOLVER BASED ON LINEAR ALGEBRA AND

EXHAUSTIVE SEARCH

HÅVARD RADDUM

Simula@UiB, Thormøhlensgate 55, N-5006 Bergen
Norway

PAVOL ZAJAC

Slovak University of Technology in Bratislava, Ilkovicova 3, 812 19 Bratislava
Slovakia

Abstract. We show how to build a binary matrix from the MRHS represen-

tation of a symmetric-key cipher. The matrix contains the cipher represented
as an equation system and can be used to assess a cipher’s resistance against

algebraic attacks. We give an algorithm for solving the system and compute

its complexity. The complexity is normally close to exhaustive search on the
variables representing the user-selected key. Finally, we show that for some

variants of LowMC, the joined MRHS matrix representation can be used to

speed up regular encryption in addition to exhaustive key search.

1. Introduction

Encryption technology is being used in a large number of applications today, and
many different encryption algorithms have been proposed for use in various envi-
ronments. Security is always the most important consideration for a cryptographic
primitive. This is achieved through cryptanalysis, where we try to find ways to
break the security guarantees given by the designers. For symmetric ciphers this
is usually equivalent to finding a secret key faster than doing exhaustive search on
the secret key.

Several cryptanalytic techniques can be tried when assessing the strength of a
cipher. In this paper we will focus on algebraic cryptanalysis, characterised by
formulating the attacker’s problem as solving a system of equations. Representing
a cipher as an equation system can be done in several ways, and over different fields.
In this paper we will only be concerned with the binary field GF (2), and we will
use the Multiple Right Hand Side (MRHS) [5] representation for constructing the
equation systems.

Our contribution: It is easy to join all the individual MRHS equations into
one matrix/vector multiplication with a (large) right-hand side set of potential
solutions. We call this the joined system matrix. We show which linear operations
we can do on the joined system matrix without changing its solution space, and
without increasing the space complexity of the right-hand side set. This allows to

E-mail addresses: haavardr@simula.no, pavol.zajac@stuba.sk.
Key words and phrases. Algebraic cryptanalysis, MRHS, LowMC.
This research was supported by project Cryptography brings security and freedom SK06-IV-

01-001 funded by EEA Scholarship Programme Slovakia.

1

2 MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH

bring the joined system matrix into a special form, allowing for fast execution of
a simple brute-force solving algorithm. We describe a recursive algorithm using a
guess/verify approach for solving a joined MRHS system and explain its complexity.

In the last part of the paper we test the algorithm on some well-known block
ciphers and show that the analytic complexity estimates match the observed com-
plexities very closely. One interesting observation we make is that for some of the
proposed variants of LowMC [1] using very few S-boxes, we can actually do encryp-
tion via the MRHS solver faster than in the standard reference implementation.
This can be explained with the fact that there is a very high number of linear op-
erations compared to the number of non-linear operations in these versions. The
joined MRHS representation merges all the dense linear layers in LowMC into one
big matrix, and in total there are less xors to be done working on this matrix than
executing the round-by-round linear layers in the standard specification.

2. Preliminaries

We denote the finite field with two elements as F. All vectors over F are row
vectors and are denoted by lower case letters. Sets of vectors are denoted by capital
letters, and all matrices are denoted by boldface capital letters. The p× p identity
matrix is denoted as Ip, but if p is clear from the context we may just write I.

Definition 2.1. [5] A Multiple-Right-Hand-Sides (MRHS) equation over F is an
expression of the form

(1) xM ∈ S,

where M is an (n × l) matrix, and S ⊂ Fl is a set of l-bit vectors. We say that
x ∈ Fn is a solution of the MRHS equation (1), if and only if xM ∈ S.

A system of MRHS equations M is a set of m MRHS equations with the same
dimension n, i.e.

(2) M =
{
xMi ∈ Si|1 ≤ i ≤ m

}
,

where each Mi is an (n× li)-matrix and Si ⊂ Fli . The vector x ∈ Fn is a solution of
the MRHS systemM, if it is a solution to all MRHS equations inM, i.e. xMi ∈ Si

for each i = 1, 2, . . . ,m. We denote the set of all solutions of a MRHS system M
by Sol(M).

Throughout the paper, n will always denote the number of variables in a MRHS
equation system, and m will always be the number of equations in the system. The
length of the vectors in Si are li, but if all li in the system are the same we may
just write l. By writing SM we mean the set {vM|v ∈ S} and with w+S we mean
the set {w + v|v ∈ S}.
Joined system matrix: Given a MRHS equation system M = {xMi ∈ Si} we may
concatenate all the Mi’s columnwise since they all have the same number of rows.
We denote the joined matrix by M, and call it the joined system matrix:

M = [M1|M2| . . . |Mm]

Similarly, we denote S1 × S2 × . . .× Sm by S. The problem of solving a MRHS
equation system can now be stated as finding some x ∈ Fn such that xM ∈ S. A
similar representation that was introduced in [8], but we use a different approach
to solve the system.

Finally, the columns of M corresponding to Mi is called a block, and we some-
times speak of block i in M.

MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH 3

3. Solving Algorithm

In this section we describe an algorithm for solving a MRHS system, and deter-
mine its complexity. We start with bringing the system into a special form.

3.1. Transforming MRHS System to Full Echelon Form. We may perform
linear transformations on the rows of M without changing the set S. Doing linear
operations on the rows of M is essentially changing the variable basis, and can be
captured in the following lemma.

Lemma 3.1. Let x0 be a solution to xM ∈ S, let U be an invertible n× n matrix
and let A = UM. Then y0 = x0U

−1 is a solution to yA ∈ S.

Proof: If x0M = s ∈ S, then (x0U
−1)(UM) = y0A = s ∈ S. �

We may also perform column operations on M, but then we need to transform
the set S in order to preserve the solution space.

Lemma 3.2. Let x0 be a solution to xM ∈ S, let r =
∑m

i=1 li and let U be a r× r
invertible matrix. Then x0 is a solution to xMU ∈ SU.

Proof: If x0M = s ∈ S, then x0MU = sU ∈ SU. �
The problem with applying Lemma 3.2 in practice is that S can be very big.

Each individual Si are normally of small size but as |S| =
∏m

i=1 |Si|, explicitly
computing the set SU often has too high complexity to be done in practice.

However, by restricting U to a block diagonal matrix we can compute the set
SU while keeping both time and memory complexity low.

Let U be a block diagonal matrix

(3) U =

U1 0 . . . 0
0 U2 . . . 0
...

...
. . .

...
0 0 . . . Um

where each Ui is a (li × li) invertible matrix. Then SU = S1U1 × S2U2 ×

. . . × SmUm. The memory requirement of storing SU is storing each individual
SiUi, which is the same as storing the original sets Si. The time complexity for
computing SU is doing

∑m
i=1 |Si| vector/matrix multiplications.

In the following we assume this restriction on U when doing column operations
on M. That is, we can do column operations within block i of M and transform
the corresponding set Si without altering the solution space.

Definition 3.1. Given a MRHS system M, we say that its joined system matrix
M is in full echelon form, if each block in M has the following form

M =

 · · · 0 Ti · · ·
· · · Ipi

0 · · ·
· · · 0 0 · · ·

 ,

with 0 ≤ pi ≤ li.

We can change any joined MRHS system xM ∈ S1×S2×· · ·Sm to a full echelon
form as follows:

(1) Compute the matrix E that brings M into standard reduced row echelon
form, where we also create 0’s above every leading 1: M′ = EM.

(2) Let the number of leading 1’s in block i be pi and let U initially be an r×r
identity matrix. Permute the columns in block i such that all leading 1’s
are moved to the left, and make the same permutation on the same columns
of U. This creates an upper triangular sub-matrix at the place where Ipi

is
in Definition 3.1. Next, add columns of the triangular sub-matrix, starting

4 MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH

from the left-most one, to create zeroes to the right of the leading 1’s on
each row of block i. Make the same additions on the columns of U. Then
block i gets the form given in Definition 3.1, and we can define U as in (3)
where each Ui corresponds to block i. Finally, M′′ = M′U will then be in
full echelon form.

(3) Compute new sets S′i = SiUi.

The system xM′′ ∈ S′1 × S′2 × · · ·S′m = S′ is now in full echelon form. For every
solution of this system we can compute the solution of the original system using
Lemma 3.1. The transformation of the system to full echelon form is accomplished
in polynomial time (in n) by doing linear algebra operations. This is done once
for the whole system as a pre-processing step, so in the following we will always
assume that the system in question is in full echelon form.

3.2. Algorithm Searching for Solution to MRHS System. Here we present
an algorithm for searching exhaustively for possible solutions to a MRHS system.
Since x ∈ Fn we could expect that an exhaustive search algorithm would have
complexity 2n, but as we will see, the actual complexity for systems representing
ciphers is a lot lower. This is because in these systems, once a (small) part of x
has been guessed, the rest of x becomes uniquely determined and can be verified
as correct or not. Hence the algorithm guesses on small parts of x, and keeps track
of possible ways to extend a current guess.

Informal description of algorithm: The algorithm is accurately described in
Alg. 1. The process can be briefly explained as follows.

We separate x into parts x = (x1, x2, . . . , xm), where each xi has length pi (from
Def. 3.1). We first fix x1 to some value and compute w1 = (x1, 0, . . . , 0) ·M.
We choose x1 such that block 1 of w1 is in S1. Next, we choose x2 and compute
w2 = (x1, x2, 0, . . . , 0)·M such that block 2 of w2 is in S2. Note that x2 will not affect
block 1 of w2, due to M being in echelon form. So block 1 of w2 is only determined
by x1 and will be unchanged. We continue this way: Assuming x1, . . . , xi−1 has
been fixed, we guess a value for xi such that block i of wi = (x1, . . . , xi, 0, . . . , 0) ·M
is in Si (block j of wi remains in Sj for j < i).

At some point we run into cases where no possible choice of xi is possible. If pi
is too small, it may be that no choice of xi will produce a wi whose block i is in Si.
Then the algorithm backtracks to the first point where we have an untried guess
for xj , and continues from there. Note also that pi may even be 0, in which case
xi is empty and block i of wi−1 must already be in Si in order for the algorithm
to proceed. When the algorithm is able to complete x by selecting xm such that
block m of xM is in Sm we have found a solution to the system.

The reason for having M in full echelon form is for easy identification of possible
values for xi. The last li − pi bits of block i of wi are independent of xi, so these
bits will be equal in wi−1 and wi, regardless of choice of xi. If we sort the vectors in
Si on the value of the last li− pi bits we can do a fast look-up to see which vectors
in Si that will be equal to wi in the last li − pi bits. The first pi bits of any such
vector immediately gives the possible value for xi, since xi is multiplied with Ipi

in
block i.

When pi is small we can precompute the vectors (0, . . . , 0, xi, 0, . . . , 0) ·M = zi
for all choices of xi and store them in a table Ti. When the algorithm fixes a value
for xi we just look up the corresponding zi from Ti and add it to wi−1 to produce
wi.

Parallelism: We can precompute a list L of partial solutions (xd|0) along with
corresponding wd’s up to some depth d. Then we can distribute the search to |L|
parallel instances of the algorithm. This requires a separate memory for wi’s in each
of the parallel tasks, but the parallel tasks can use the same set of precomputed

MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH 5

Algorithm 1 Solve MRHS system in full echelon form

Input: MRHS system xM ∈ S = S1 × S2 × · · · × Sm in full echelon form.
Output: Reduced set V ⊂ Fn, such that xM ∈ S for each x ∈ V .
{PREPARATION PHASE}
for all i = 1, 2, . . . ,m do

Initialize empty lookup table Ti.
for all vi,j ∈ Si do
xi,j := proj1..pi

(vi,j), ti,j := projpi+1..li(vi,j).
zi,j := (0|xi,j |0) ·M.
Add (xi,j , zi,j) to the list in table entry Ti[ti,j]

end for
end for
i = 1, x0 = 0, w0 = 0, V = ∅

{RECURSION PHASE }
Input: i, partial solution (x1, . . . , xi−1|0), vector wi−1, V
ti := proji,pi+1..li(wi−1).
for all (xi,j , zi,j) ∈ Ti[ti] do

if i = m then
V := V ∪ {(x1, . . . , xm−1|xm,j)}

else
wi = wi−1 + zi,j
V := V ∪Recursion(i + 1, (x1, . . . , xi−1|xi,j |0), wi, V)

end if
end for
return V

Ti’s (the tables are read-only). Furthermore, we can use internal parallelism to
efficiently compute vector sums wi = wi−1 + zi,j .

In our implementation we store precomputed zi,j ’s and words wi as sequences of
64-bit words. Thus, a single 64-bit XOR operation computes 64/l block sums. Even
better speedup can be obtained on specialized hardware or with vector instructions
(e.g., SSE).

3.3. Algorithm complexity. In each level of the recursion we compute one pro-
jection and do a table lookup. On each lookup we obtain a list Ti[ti] of vectors.
The expected size of Ti[ti] is |Si| ·2pi−li . If the expected size is below 1, the Ti table
must be empty for some values of ti, and we can expect the algorithm to backtrack

at block i with probability at least 1 − |Si|
2li−pi

. Thus, if we start the recursion N

times on level i, we expect to continue N · |Si| · 2pi−li times to level i+ 1. Further-
more, before the recursion we need to add wi−1 with zi,j , which requires m− i + 1
block-XORs (we know that the first part of zi,j is always 0 due to full echelon form
of M). These additions will typically dominate the running time of the algorithm.

If the vectors in the Si’s are chosen uniformly at random, the expected total
number of recursion calls can be estimated as

(4) Ntotal =

m∑
i=2

i−1∏
j=1

|Sj | · 2pj−lj .

The total number of recursion calls corresponds to the number of accesses to the
lookup tables.

6 MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH

The expected number of solutions can be estimated as

E(|Sol(M)|) =

m∏
j=1

|Sj | · 2pj−lj .

The total number of block XORs can be computed as

NXOR =

m∑
i=2

(m− i + 1)

i−1∏
j=1

|Sj | · 2pj−lj .

We can slightly reduce the number of XORs by storing vectors zi,j which are
equal to zero in a special format. This is especially useful in blocks where pi = 0,
when the algorithm degenerates to just a look-up whether Ti[ti,j] is or is not an
empty set.

We can estimate the chance of zero zi,j as 2−pi (one out of 2pi possible choices).
Thus, the reduced number of XORs can be computed as

NXORed =

m∑
i=2

(1− 2−pi−1)(m− i + 1)

i−1∏
j=1

|Sj | · 2pj−lj .

On the bit level or the instruction level, the number of XORs must take into
account the number of bits in each block, and the internal parallelism of XOR
instructions. The number of single bit XORs (without taking into account zero
zi,j) can be estimated as

NXOR1 =

m∑
i=2

m∑
b=i+1

lb

i−1∏
j=1

|Sj | · 2pj−lj .

When using w-bit internal parallelism, we cannot directly divide NXOR1 by w,
because on some levels we cannot use the whole w birs in the word. Instead, the
number of expected w-bit XOR instructions can be expressed as

(5) NXORw =

m∑
i=2

⌈∑m
b=i+1 lb

w

⌉ i−1∏
j=1

|Sj | · 2pj−lj

 .

Similar estimates can be done for NXORed1 and NXORedw by multiplying the
internal products by coefficient (1 − 2−pi−1) that corresponds to a probability of
non-zero zi,j :

(6) NXORedw =

m∑
i=2

⌈∑m
b=i+1 lb

w

⌉ (
1− 2−pi−1

) i−1∏
j=1

|Sj | · 2pj−lj

 .

Example: Suppose that li = 3, and |Si| = 4 for each i (we can model AND-
gates with random linear combinations of variables as inputs in this setting). Let
us suppose that we have m variables and m MRHS equations (blocks). Now assume
a simple case where m = 3k, and we can get a simple echelon form with pi = 3 for
i = 1, . . . , k and pi = 0 for k + 1 ≤ i ≤ 3k.

The expected number of solutions is

E(|Sol(M)|) =

 k∏
j=1

22 · 1

 ·
 3k∏

j=k+1

22 · 2−3
 = 22k · 2−2k = 1.

The number of recursion calls is

Ntotal =

k+1∑
i=2

22(i−1) +

3k∑
i=k+2

22k−(i−k−1),

MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH 7

so 22k+1 < Ntotal < 22k+2. The total number of XORs will be between k · 22k and
2k ·22k. This is a factor 2k/k lower than multiplication of all possible 23k x-vectors
by matrix M.

Another example: Suppose that li = 3, and |Si| = 4 for each i again, m
variables and m MRHS equations (blocks). Now assume a case, where a single
leading 1 in each block, i.e. pi = 1 for each i.

The expected number of solutions is as before

E(|Sol(M)|) =

 m∏
j=1

22 · 2−2
 = 1.

The number of recursion calls is

Ntotal =

m∑
i=2

1 = m− 1,

and the number of XORs is (m2 +m)/2. This means that we can solve the system
in quadratic time (the problem complexity is no longer exponential in system size).

Randomly generated systems will typically have almost all blocks without inter-
nal linear dependencies. Thus, they are most likely of type 1 (hard to solve), and
systems of type 2 must be constructed artificially. On the other hand, systems pro-
duced from cryptanalytic problems have a lot of internal structure that comes from
the algorithm implementation. We observe the effect of this structure for selected
ciphers in Section 4.

4. Representing SL Ciphers as MRHS Systems

In the following we study several ciphers. We adopt the term SL cipher to a
cipher that can be represented as a sequence of linear (or more precisely, affine)
transformations and substitution layers realised by S-boxes.

4.1. Modelling an SL Cipher as a MRHS System. Let s, la, lo,nR, nB , nK

denote the number of: S-boxes per round, input and output bits of S-boxes, rounds,
input/output block size, and key size, respectively. We can construct an initial
MRHS system representing an SL cipher with parameters li = la + lo, |Si| = 2la ,
m = s · nR, and n = 2nB + nK + mlo. The unknown x ∈ GF (2)n in the system
consists of the nB plaintext bits, nK key bits, all S-box outputs and nB ciphertext
bits. For concreteness, let x1, . . . , xnB

be the plaintext bits, xnB+1, . . . , xnB+nK

be the bits of the user-selected key, xnB+nK+1, . . . , xn−nB
be the output bits of all

S-boxes used in one encryption, and xn−nB+1, . . . , xn be the ciphertext bits. If S-
boxes are used in the key schedule they are considered to be used in the encryption.

As SL ciphers only have linear (affine if additions of constants occur) operations
apart from S-boxes, all input bits to all S-boxes can be described as linear (affine)
combinations of the variables we have defined. We create one MRHS equation for
each S-box i as follows:

(7)
x ·Mi ∈ {(0⊕c||S(0⊕c)), (1⊕c||S(1⊕c)), . . . , ((2la−1)⊕c||S((2la−1)⊕c))} = Si,

where c is the constant part of the input affine combinations and we use the natural
mapping between integers and vectors over GF (2).

The first la columns of Mi contain the coefficients of the linear combinations
of the inputs to the S-box. The last lo columns of Mi contain a single 1-bit each;
mj,t = 1 if xj is the variable for output bit t, and mj,t = 0 otherwise. In the end,
the ciphertext bits can be described as linear combinations of the variables we have
defined.

8 MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH

Constructing the joined system matrix of the MRHS system models the complete
cipher. The model is flexible enough to cover all of the currently used ciphers that
use S-boxes1, and a linear or affine layer in-between layers of S-boxes.

The model is based on a single plaintext/ciphertext (P/C) pair. To model mul-
tiple encryption instances, new variables must be defined for plaintext, ciphertext
and S-box output bits, except for S-boxes used in the key schedule. Variables for
the user-selected key and key schedule S-boxes are re-used across different P/C
pairs. If multiple P/C pairs are used, all MRHS equations may still be merged into
one joined system matrix.

4.2. Fixing Known Bits. If the purpose of constructing the joined system matrix
is to do algebraic cryptanalysis we assume we have a known plaintext/ciphertext
pair. By fixing the first and last nB variables in x to their correct values we get a
reduced system. If the original joined system is xM ∈ S, we can write it as

(8) (p, x′, c) ·

 Mp

M′

Mc

 ∈ S1 × S2 × . . .× Sm

where p and c are the known values of the P/C pair and x′ are the remaining
variables. Setting pMp + cMc = w = (w1, w2, . . . , wm) we get a reduced MRHS
system

x′M′ ∈ (w1 + S1)× (w2 + S2)× . . .× (wm + Sm).

4.3. Encryption as MRHS Solving. In an algebraic attack, we fix the variables
for the plaintext and ciphertext bits. The task for the cryptanalyst is then to solve
the remaining system, using Alg. 1 or by other means, to find the values of the
variables for the key bits.

However, it is also possible to do regular encryptions using the MRHS represen-
tation. In this case we fix the plaintext and the key variables. The task is then to
”solve” the reduced system to find the values of the ciphertext variables. In a joined
MRHS system where the initial equations were joined in the natural order (round
by round) and both plaintext and key variables are fixed, Alg. 1 will not do any
guessing but rather just do look-up’s for the values of the intermediate variables
before finding the ciphertext bits in the end.

For many ciphers there is nothing to gain from doing encryptions this way, but
if the cipher contains a lot of linear operations, encryption can go faster using the
MRHS representation. LowMC is a cipher that has a dense affine transformation in
each round, and the MRHS representations packs all of this linearity more efficiently
together such that less xors need to be done when encrypting via Alg. 1.

We show this for the LowMC version with one S-box per round, la = lo = 3,
64-bit block and 164 rounds. We count the number of single-bit xors needed to
be done in a straight-forward reference implementation and in solving one MRHS
instance. The number of look-ups needed to be done is the same in both cases since
each S-box in the cipher specification gives rise to one block in the joined system
matrix of the MRHS representation. Since we are in encryption mode, we assume
that all key material is fixed and precomputed in both cases.

The number of xors done in one encryption according to the LowMC specification
can be computed as follows: The linear layer in each round needs approximately
nB/2 xors of nB-bit words. The addition of round constant and round key accounts
for 2 more nB-bit xors. Over nR rounds the number of single-bit xors is

1An S-box can be any Boolean function S : GF (2)la → GF (2)lo , as long as la is not too large.

MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH 9

nR(n2
B/2 + 2nB).

Setting nB = 64 and nR = 164 gives 356 864 xors.
The number of columns in the joined MRHS matrix is lnR, so each xor of one row

in this matrix will count for lnR single-bit xors. When the plaintext bits get fixed,
we need to add approximately nB/2 rows together to produce the initial vector w0.
Then Alg. 1 does nR look-ups, each one adding exactly one vector of length lnR to
the current wi. In total we get

lnR(nB/2 + nR)

single-bit xors before the ciphertext can be found. With nR = 164, nB = 64 and
l = 6 this number comes to 192 864. We see that the number of xors needed when
encrypting via the MRHS representation is approximately 1.85 times lower than in
the reference specification.

5. Experiments with Concrete Ciphers

In this section we report on experiments done with Alg. 1 on some ciphers. In
the experiments we reduce the key space by always setting a certain amount of key
bits to zero and get a reduced system. This is done to get practial running times
so we can measure the observed time complexity of Alg. 1.

We have focused on 4 (families of) ciphers: DES [6], AES [3], Present [2], and
version 2 of LowMC [1]. We have tried various experiments with key sizes between
18-24 bits. The results are very similar between the choice of key size, thus we
only present results for 22-bit unknown key bits. This choice makes individual
experiments reasonably fast, but not so fast that time measurement errors become
significant.

These families all fit into our SL cipher framework, while providing enough va-
riety in design choices (Feistel/SPN), S-box sizes, linear layer type (permutation,
MDS, random), different key schedules. We only provide short notes on SL models
of each family, as we suppose the reader is familiar with the design of these ciphers.

5.1. Ciphers tested. In our model we use standard DES parameters nB = 64
and nK = 56. The first part of the key is fixed to zero. We use the full set of 8
DES S-boxes in each round, with la = 6 and lo = 4. There are 32 new variables
introduced in each round, and the nK user-selected key bits are used directly in
the encryption. The total number of variables in the MRHS representation of DES
before fixing any known data will then be n = 2× 64 + 56 + 32nR.

Our model of AES has parameters nB = nK = 128, again with fixing part
of the key bits to zero. The AES specification includes four S-boxes in the key
schedule, thus we use 20 S-boxes in each round with la = lo = 8. There are 160
new variables introduced in each round, 32 in the key schedule and 128 in the
cipher block. The total number of variables in the system before fixing known data
is n = 2× 128 + 128 + 160× nR.

We have selected a version of Present with nB = 64 and nK = 80 (again zero-
reduced). The key schedule uses one S-box so the total number of S-boxes per
round is 17, with la = lo = 4. There are then 68 new variables introduced in
each round, so the total number of variables before inserting known data will be
n = 2× 64 + 80 + 68nR.

Finally, we focus on the LowMC cipher which allows a variable number of S-
boxes, block and key size. Only 3s bits of the cipher block passes through S-boxes
in each round, so we get 3s new variables in each round. All other parts of the

10 MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH

cipher are linear, both in encryption and key schedule, and the total number of
variables in the MRHS representation is n = 2nB + nK + 3snR.

We use a custom software implemented in SAGE [4] to generate instances of
MRHS systems based on the SL model described above. The generator software
produces an instance with nk unknown key bits (nk ≤ nK), with expected com-
plexity of the (whole) exhaustive search 2nk .

The generated instance is given to a fast solver2, which is a C implementation
of Algorithm 1 from Section 3.2. The algorithm searches the full space (it does
not stop after producing a solution). It reports the total number of recursive calls
(same as table lookups) c, the number of XORs x, and the running time t of the
search.

The solver can also generate random instances of MRHS systems with specified
parameters, and estimate the complexity Ntotal using equation (4), without actually
solving the system. This is useful for larger instances. Similarly, we use equations
(5) and (6) to estimate the number of w = 64-bit XOR instructions NXORw, and
NXORedw (without, and with taking zero blocks into account, respectively).

5.2. Brute force attacks with MRHS solver. We started the experiments with
estimating a CPUyear cost for exhaustive key search on DES with the MRHS
solver, depending on the number of rounds. The results are summarized in Table
1. We compare the estimated exhaustive search time of our solver with the results
obtained from OpenSSL speed command on the same PC. The results indicate
that the running time of the MRHS solver are comparable to standard exhaustive
search, with slight advantage for the four and five round versions.

Table 1. Running times for DES, plus estimate for exhaustive search

Rounds 22-bit key [s] Full [CPUyear] Ratio
4 0.06 31.73 0.12
5 0.32 176.10 0.68
6 0.82 447.08 1.73
7 1.41 770.16 2.98
8 2.32 1262.89 4.88
9 3.37 1834.37 7.09

10 4.58 2494.90 9.64
11 5.94 3235.56 12.50
12 7.38 4018.46 15.53
13 8.95 4870.76 18.82
14 10.60 5772.60 22.31
15 12.06 6563.20 25.36
16 13.68 7448.42 28.78

OpenSSL 0.48 258.76 1.0

In Table 2, we compare the results of 22-bit exhaustive key search for different
cipher instances. We include the size of the system, the total running time of
the solver, and the time of exhaustive search using a software implementation of
the cipher. We have used DES and AES implemented in OpenSSL (1.0.2g) using
the speed command. Present implementation was taken from [9], and LowMC
implementation from [7].

We see that the MRHS solver is typically slower than the optimised cipher im-
plementations. On the other hand, the complexity does not grow exponentially

2Please contact pavol.zajac@stuba.sk if you want to obtain the source codes of the current
version of the solver.

MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH 11

Figure 1. Comparison of the number of lookups in experiments
with LowMC cipher to the estimated number of lookups Ntotal.

with the size of the system (as is expected for a random non-linear equation sys-
tem). Depending on optimisations and implementation platform, we can expect
that brute-force attack with MRHS solver is competitive with some implementa-
tions of ciphers. This is confirmed when comparing our implementation with the
reference implementation of LowMC with a low number of S-boxes per round.

Table 2. Running times of the solver (MRHS) and reference im-
plementations (ref. SW) for different ciphers

Cipher s n m l |Si| MRHS [s] ref. SW[s]
DES 8 470 128 10 64 13.6 0.48
Present80 17 2066 527 8 16 114.4 0.12
AES128 20 1494 200 16 256 57.9 0.58
LowMC64-1 1 450 164 6 8 12.9 45.82
LowMC64-2 2 450 164 6 8 12.4 23.71
LowMC128 31 1010 372 6 8 55.5 9.24
LowMC256 49 1530 588 6 8 108.8 25.71

5.3. Expanded results for various versions of LowMC cipher. In Fig. 1 and
Fig. 2 we show results from exhaustive key search experiments with the LowMC
cipher with a single S-box and variable number of rounds, from 22 to the recom-
mended 164. The key size was set to 22 bits, so the running time of experiments is
in the order of seconds.

We have measured the number of lookups and XORs in the implementation of
Algorithm 1. The measured results are compared with the estimates obtained by
equations (4), (5), and (6), respectively. The Ntotal estimate is very accurate for
the real number of lookups. On the other hand, the number of XORs is typically
between the estimates NXORedw, and NXORw. The staircase character corresponds
to an internal parallelism in the algorithm implementation: each step corresponds
to approximately 21 rounds, which adds 63 bits to the width of the system that fit
into the 64-bit architecture used.

12 MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH

Figure 2. Comparison of the number of XORs in experiments
with LowMC cipher to the estimated number of XORs by formulas
(5) (upper bound) and (6) (lower bound).

In Fig. 3, we compare the running time of the same experiment with the running
time of the brute-force attack that uses the LowMC implementation from [7]. The
brute force attack only uses the functions cipher.setkey and cipher.encrypt in
a loop over all 22-bit keys. Both programs were compiled with the same compiler
and level of optimisation and run on the same computer. Note that both solvers
go through the whole range of keys/potential solutions, and do not stop if the key
is found sooner. For low number of rounds, algebraic representation gives a huge
speedup in checking the key. This converges to about 3.5-times faster encryption
via the MRHS solver for the full version of the cipher.

This speed-up can be explained by the different numbers of xors needed to be
done in the reference implementation and in Alg. 1. In an exhaustive key search the
plaintext and ciphertext are fixed, and only the key is changed for every encryption.
The number of xors needed for checking one key in the reference implementation can
be estimated as follows. To make one round key we must perform approximately
nBnK/2 single-bit xors. Repeated over nR rounds the complete key schedule costs
nRnBnK/2 xors. As we saw in Sec. 4.3 one encryption needs nR(n2

B/2+2nB) xors.
In total it takes

nRnBnK/2 + nR(n2
B/2 + 2nB)

single-bit xors to check one key using the standard implementation. With nR =
164, nB = 64 and nK = 80 this comes to 776 704 single-bit xors.

Fixing the key in the MRHS representation takes approximately nK/2 xors of
rows from the joined system matrix. Performing the encryption is the same as in
Sec. 4.3, nR xors of vectors of length lnR. The total number of single-bit xors for
checking one key in the MRHS model is then

lnR(nK/2 + nR).

MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH 13

Figure 3. Comparison of the real time required to brute-force a
22-bit key with the MRHS solver and with the SW implementation
of LowMC running in loop.

Setting l = 6, nR = 164 and nK = 80 gives a total of 200 736 single-bit xors. This
is a factor 3.87 lower than in the reference specification, and explains the observed
speed-up in exhaustive search using Alg. 1.

5.3.1. Increasing the number of S-boxes. In figures 4–6 we compare exhaustive
search run-times across different versions of LowMC: with 8, 4, 2, and 1 S-boxes
per round (denoted by s). In each version we set the maximum number of rounds
as 164/s, and plot the results for cipher versions with smaller number of Sboxes
only in the range of rounds above the previously attained number of rounds. The
behaviour of the solver is consistent across different versions of the cipher.

Note that the largest size of the MRHS system for each case is the same, as it is
derived from the total number of S-boxes used in the encryption. This behaviour
is most pronounced when comparing the running times with the reference software
implementation of LowMC (Fig. 6): while the running time of the software im-
plementation grows linearly in nR, the running time of the solver depends both on
the number of rounds and the number of S-boxes used in each round, and grows
linearly in snR. Hence the MRHS solver’s speed advantage quickly disappears when
s increases.

6. Conclusions and Discussion

All symmetric ciphers can be modelled as a system of Boolean equations, repre-
sented as a fully joined MRHS matrix. We have devised an algorithm that solves
the system in the MRHS matrix model, and estimated its complexity. Actual im-
plementations show the estimates are very accurate. With other solvers, like F4,
ordinary glueing/agreeing with MRHS systems, or SAT-solvers, it is difficult to pre-
dict actual running time from the initial system. The fully joined MRHS system
helps on this situation, as solving time can be determined by only examining the
structure of the matrix.

14 MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH

Figure 4. Comparison of the number of lookups in experiments
with LowMC cipher to the estimated number of lookups Ntotal.
Number of S-boxes from left to right: 8, 4, 2, 1.

Figure 5. Comparison of the number of XORs in experiments
with LowMC cipher to the estimated number of XORs by formulas
(5) (upper bound) and (6) (lower bound). Number of S-boxes from
left to right: 8, 4, 2, 1.

We also observe that for full-scale ciphers the complexity is only exponential
in the number of variables representing the user-selected key, and not in the total
number of variables. For ciphers with reduced rounds the joined MRHS matrix
can reveal at which point we get lower than brute force solving complexity. For
instance, 8 rounds of Simon32 has complexity 262 while the key has 64 bits.

It is possible to guess the values of t linear combinations of variables such that the
number of leading 1’s in some blocks decreases by t. This will decrease some pi’s in

MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH 15

Figure 6. Comparison of the real time required to brute-force a
22-bit key with the MRHS solver and with the SW implementation
of LowMC running in loop. Number of S-boxes from left to right:
8, 4, 2, 1.

(4) by a total of t, and hence we decrease running time with a factor 2−t. An open
problem is to study if it is possible to gain more than a factor 2−t when guessing
some particular linear combinations. With the accurate complexity estimate given
by the joined MRHS matrix it is possible to determine this beforehand, without
running any experiments of actual solving.

The final interesting finding in this work is that versions of LowMC with very few
S-boxes can be more efficiently implemented in the MRHS model. This comes from
the fact that with few S-boxes the steps of the cipher are close to being successive
linear operations. The MRHS implementation merges a lot of the linear-upon-linear
parts of the operations, resulting in less xors needing to be done using the MRHS
representation. It is then possible to implement encryption more efficiently, with a
speed-up factor of 1.85 when doing the linear operations of the cipher.

In the exhaustive key search scenario the gain from using the MRHS solver is
even bigger since the LowMC key schedule must be executed for every key tested.
With one S-box per round the MRHS representation for exhaustive search is close
to 4 times faster to use than the standard reference implementation. This may be
interpreted as a valid attack since we can do a full search of the 80-bit key space
in approximately the same time it takes to do 278 standard LowMC encryptions.
On the other hand, assuming that LowMC encryptions are also done in the MRHS
model, this speed advantage disappears.

We hope that the community on analysing symmetric encryption algorithms
finds the work in this paper useful, and that modelling a cipher using its joined
MRHS matrix may serve as a tool in assessing ciphers’ strength against algebraic
cryptanalysis.

References

[1] Martin Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner.
Ciphers for mpc and fhe. Cryptology ePrint Archive, Report 2016/687, 2016. http://eprint.

iacr.org/2016/687.

16 MRHS SOLVER BASED ON LINEAR ALGEBRA AND EXHAUSTIVE SEARCH

[2] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,

Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe. PRESENT: An ultra-

lightweight block cipher. Springer, 2007.
[3] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced encryption

standard. Springer Science & Business Media, 2013.
[4] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.2), 2016.

http://www.sagemath.org.

[5] H. Raddum and I. Semaev. Solving multiple right hand sides linear equations. Design, Codes
and Cryptography, 49(1):147–160, 2008.

[6] Data Encryption Standard. Federal information processing standards publication (fips pub)

46-3, national bureau of standards. pages 46–3, 1999.
[7] Tyge Tiessen. An implementation of the lowmc block cipher family. https://github.com/

tyti/lowmc, 2016.

[8] Pavol Zajac. A new method to solve MRHS equation systems and its connection to group
factorization. Journal of Mathematical Cryptology, 7(4):367–381, 2013.

[9] Bo Zhu. An efficient software implementation of the block cipher present for 8-bit platforms.

https://github.com/bozhu/PRESENT-C/, 2013.

