
Accountability in the Decentralised-Adversary
Setting (preprint)

Robert Künnemann
CISPA Helmholtz Center for Information Security

Deepak Garg
MPI-SWS

Michael Backes
CISPA Helmholtz Center for Information Security

Abstract—A promising paradigm in protocol design is to
hold parties accountable for misbehavior, instead of postulating
that they are trustworthy. Recent approaches in defining this
property, called accountability, characterized malicious behavior
as a deviation from the protocol that causes a violation of the
desired security property, but did so under the assumption that all
deviating parties are controlled by a single, centralized adversary.
In this work, we investigate the setting where multiple parties can
deviate with or without coordination in a variant of the applied-π
calculus.

We first demonstrate that, under realistic assumptions, it
is impossible to determine all misbehaving parties; however,
we show that accountability can be relaxed to exclude causal
dependencies that arise from the behavior of deviating parties,
and not from the protocol as specified. We map out the design
space for the relaxation, point out protocol classes separating
these notions and define conditions under which we can guarantee
fairness and completeness. Most importantly, we discover under
which circumstances it is correct to consider accountability in
the single-adversary setting, where this property can be verified
with off-the-shelf protocol verification tools.

I. INTRODUCTION

Trust in other parties is the foundation of all security
protocols. In scenarios like electronic voting, certified e-mail,
online transactions, or processing of personal data, however,
the agents involved cannot be trusted to behave according to
the protocol. Nevertheless, if the protocol can detect agents
causing security violations, it creates an incentive to avoid
malicious deviation from the protocol. The ability of a protocol
to provide the necessary information for detection is what we
call accountability.

In this context, accountability is thus the protocol’s ability
to point out which parties have been misbehaving. This is
different from juridical notions of blame, which also require
intent and foreseeability. In Figure 1, we outline how we un-
derstand accountability in security protocols and define some
terminology. A protocol defines the normative behavior of a set
of agents A, i.e., how they should behave. They may, however,
decide to deviate from that behavior and thus break some
security property ϕ that we assume to hold otherwise. Should
there be a violation of ϕ, there is a mechanism that defines
who (e.g., the public or a trusted party) can identify which
parties misbehaved, and how they signal that information. The
protocol implements this mechanism. It specifies the normative
behavior such that, in effect, the agents are holding each
other accountable. The output of this mechanism informs some
sort of punishment, which may consist in simply identifying

accountability mechanism

protocol Π = (A,n)

punishment

agents A
may break ϕ

im
pl

em
en

ts

informs

identify, exclude,
sue or slash rep-
utation

defines normal behaviour n
hold
accountable
(for ϕ)

identifies misbehaving

Fig. 1. Approach. The dotted line separates concepts within our model from
their use outside of it.

misbehaving parties, excluding them from future protocol
runs, in slashing their reputation or in bringing them to
court. We concentrate on the correctness of the accountability
mechanism implemented by the protocol, not the effectiveness
of the punishment, which is outside the protocol verification
domain.

Küsters, Truderung and Vogt [1] pointed out that a major
challenge in defining accountability (in the protocol setting)
is to distinguish dishonest behavior from misbehavior. Either
a party is honest, if it follows the protocol, or dishonest, if
it is controlled by some global adversary and therefore can
(but does not have to) deviate from the protocol. A dishonest
party is not necessarily misbehaving — it may deviate in a
completely harmless way. It may even behave like an honest
party.

Künnemann, Esiyok and Backes formalize the distinction
between actual misbehavior and the mere ability to misbehave,
reaching a definition of accountability in the centralized-
adversary setting [2]. In this setting, a single adversary is
controlling all dishonest parties. In this work, we consider the
decentralized setting, in which individual protocol parties can
choose to deviate from the protocol. Like Künnemann et al.,
we say that a party misbehaves if the fact that it deviates causes
a violation of some given security property.

To summarize: a priori, parties are assumed either honest or
dishonest. At runtime, dishonest parties can deviate, i.e., not
follow the protocol. If, doing that, they cause a violation, they
misbehave.

To allow individual parties to deviate, we modify the
applied-π calculus [3]: subprocesses are annotated with the

effectuating parties and, before the protocol starts, any sub-
process that belongs to a deviating party can be replaced
by another process. We also examine weaker versions of
accountability that consider only deviations that implicate
minimal subsets of parties, or where deviating parties share
as little information as they can. We relate these notions to
each other with separating examples and equivalence proofs.
Exploring these notions, we discover:

1) Accountability, in general, is impossible to achieve due
to the ability of parties to make themselves dependent on
each other.

2) There is, however, a class of optimality notions that leads
to applicable definitions and guarantees soundness, i.e.,
any party in the verdict did deviate. Some of these notions
even guarantee a weak form of completeness, i.e., certain
deviating parties are guaranteed to appear in the verdict.

3) Optimality w.r.t. simple deviations, where deviating par-
ties cannot have conditionals and are not communicating
with each other is equivalent to accountability in the
centralized-adversary setting.

The third result establishes the correctness of Künnemann et
al.’s verification methodology [2] in the centralized-adversary
setting. Their method allows the automated verification of
practical protocols like OCSP stapling and Certificate Trans-
parency. Most protocol verification tools model the adversary
as a non-deterministic reduction step for message input, with
the side condition that the message has to be ‘deducible,’
i.e., can be derived from previous protocol output with a
set of rules. To model party deviation, they transform the
process so parties can expose their secrets on the public
channel, but are registered as ‘corrupted.’ By showing that
this transformation, in the centralized-adversary setting, is
equivalent to accountability in the decentralized setting, we
show that accountability w.r.t. simple deviations applies to real
protocols.

Moreover, we give an interpretation to these existing results:
the centralized setting, in fact, ignores important character-
istics of the real world, where colluding parties have to
communicate to share secrets and can make their behavior
dependent on the behavior of others. The equivalent notion
in the decentralized setting — accountability w.r.t. simple,
knowledge-optimal deviations — precisely defines what is lost
in the centralized-adversary setting.

Taking the existing verification results into account, the first
result — impossibility of accountability in the decentralized-
adversary setting (without optimality assumptions) — shows
that the widely held belief that a single, corrupting adversary is
an adequate model for dishonest participants may not always
be correct. There is a trade-off between efficient verification
and a faithful modeling of misbehavior. In the following, we
precisely define what we give up for automated verification.

II. RELATED WORK

Accountability describes related but slightly different con-
cepts, depending on the context. Papanikolaou and Pearson [4]
investigate the use of the term in numerous scientific fields

(e.g., social science, political science and computer science)
and applications(e.g., governance standards and risk assess-
ment procedures) . Depending on the context, they conclude,
accountability is defined using the elements of disclosure,
liability and non-repudiation, although, in some contexts, these
are only seen as measures to implement accountability. There
is an agreement on the overarching goal, however: entities
such as organizations or individuals need to make their actions
transparent and thus be rewardable or punishable for them.
In this work, we concentrate on the mechanism informing
this punishment and its correctness (see Figure 1 for an
illustration). This is in contrast to, e.g., Feigenbaum et al. [5],
who characterize accountability in terms of the effect of some
punishment. They point out that a punishment can preserve
the anonymity of parties, while a mechanism that identifies
parties cannot. We agree with this point, but add to it that
the punishment mechanism needs to be informed whom to
punish. We thus focus on the correctness of this information.
The punishment can consist of the identification of offenders,
but also their exclusion from future protocol runs or the
slashing of reputation within the protocol. Other forms of
punishment can manifest themselves outside of the protocol,
e.g., legal procedures. Our model is neither suitable for the
modeling of such punishments, nor a quantitative analysis of
the punishment’s effect.

This is in line with much of the work on accountability in
the protocol context, most of which provides or uses a notion
of accountability in either an informal way, or tailored to
the protocol and its security [6]–[9]. Capturing completeness,
i.e., the property that all misbehaving parties are blamed, is
particularly challenging.

Defining completeness. Some prior work treats all devia-
tions as misbehavior. This is unproblematic when considering
soundness [1]: whenever the judge gives some verdict, every
party mentioned has deviated from the protocol. The approach
fails, however, when expressing completeness: every party that
deviated ought to be in the verdict. Parties can deviate in
some way that the judge cannot recognize, especially in the
protocol security setting. Küsters et al. identify and tackle this
problem (see below), while other approaches still follow this
idea, considering any trace that the honest behavior cannot
produce to be malicious behavior [10], [11].

Treating all (visible) deviations as misbehavior works fine
for distributed systems, where the goal is masking faults.
Systems like PeerReview [10] can guarantee completeness
in the Byzantine setting, by monitoring all participating sys-
tems. Security protocols are also analyzed in the Byzantine
setting; it is, however, hopelessly unrealistic to assume all
communication can be monitored. There is simply no way
that a web server can be sure that two clients are not
communicating with each other outside the protocol. Even
if all communication was public — which is unrealistic —
any accountable protocol would need to verify the behavior
of every party in full detail, even if this party is not involved
in later phases or cannot meaningfully disrupt communication.
A voter in an e-voting protocol would have to refrain from any

communication between casting their votes and the final tally.
Systems like PeerReview can therefore only apply to faults
in distributed systems [10], where the component’s adherence
to specification is a design goal. Jagadeesan et al. admit that
in their model ‘the only auditor capable of providing [com-
pleteness] is one which blames all principals who are capable
of dishonesty, regardless of whether they acted dishonestly or
not’ [11]. Küsters et al. [1], by contrast, stress the difference
between dishonest agents and misbehaving agents and propose
a completeness definition that, like ours, is centered around
the security property. They propose a middle ground between
a protocol-specific definition and a fully protocol-agnostic
definition. Their definition is parametric in a use-case-specific
policy that indicates who ought to be blamed in which case.
These policies, however, cannot reliably express completeness
in a protocol-agnostic way. In case of joint misbehavior,
the policy is either incomplete, unfair, or it encodes the
accountability mechanism itself (see Appendix B).

Accountability from causation between protocol events In-
stead of equating misbehavior and corruption, we consider
misbehaving parties to be those whose deviation (as a whole)
causes a violation. By contrast, other causality-based ap-
proaches consider individual protocol actions as causes for
security violations [5], [12], [13]. With this method, unrelated
events can be removed prior to forensic analysis. It was
considered [13] to be a promising first step for defining ac-
countability: once the cause trace, i.e., the sequence of protocol
events that are sufficient to cause a violation, is computed,
we hold all involved parties accountable. But not all protocol
actions that are causally related to an attack are malicious.
A key server distributing public keys can be necessary in
the attack because the attack relies on public keys, without
even deviating from the protocol. While cause traces may help
in filtering out parties that were altogether uninvolved in the
attack, they nonetheless refer us to the original question: What
constitutes malicious misbehavior? Datta et al. [13] sketch
a procedure for blame assignment where the key server is
blamed unless he followed the protocol to the letter. This is
overly strict (a deviation from the protocol might be unrelated
to the attack) and again requires complete monitoring. Feigen-
baum et al. [5] consider causation on protocol events a black
box and focus on punishment (possibly protecting the parties’
identities). Gössler et al. [12] focus on traces and assume an
explicit dependency relation to recognize faulty components
in a system, therefore excluding the case of parties colluding
privately. Their approach hence applies to distributed systems,
but not the security setting.

Accountability in the centralized setting Künnemann et
al. [2] provide a verification methodology for accountability
in the centralized-adversary setting, which is what all widely
used protocol verification tools are based on. They used this
methodology to verify practical protocols (OCSP stapling and
Certificate Transparency) and academic proposals. The present
work provides a foundation and justification for their method-
ology, as the centralized-adversary setting can neither reflect
individual deviations, nor communication between deviating

parties. We formally relate their ad hoc modeling of protocol
deviations via party corruption to the much richer setting
where parties are processes that communicate with each other.
More precisely, we show equivalence to a weakened version
of accountability. Hence their verification results transfer to
accountability in the decentralized setting, the definition we
present here. We will also show that (strong) accountability
in the decentralized setting is impossible to achieve without
restrictions, further emphasizing the loss of generality in the
centralized-adversary setting.

Summarizing, existing approaches are either protocol spe-
cific, or require the slightest deviation to be punished, even if
the normative behavior had had the same causal dependencies.
In scenarios where parties can communicate privately, how-
ever, the latter approach reaches its limits. Analysis methods
exist in the centralized-adversary setting [2], but as this setting
is not accurately reflecting the actual threat — multiple,
coordinating protocol participants — it is unclear what they
compute.

III. PROCESS CALCULUS

To reason about accountability formally, we must reason
about deviating parties. In the following, we introduce a
process calculus that allows individual parties to deviate from
the protocol. The calculus draws heavily from the applied-
π calculus [14], but it annotates processes with the party
executing them. We describe a protocol in terms of the
structure of the process, which determines which parties run
in parallel and which parties share secrets, and the normative
behavior, which determines which process each party runs.
Any party may choose to run a different process, which we
call a deviation. We will first introduce the term algebra and
the process calculus (closely following the applied-π calculus)
before we specify how parties deviate.

a) Notational conventions: For two functions f and g,
f [g] denotes the function mapping any x ∈ dom(g) to g(x),
and any x ∈ dom(f) \ dom(g) to f(x). For l = (e1, . . . , en)
and 1 ≤ i ≤ n, we write l|i to refer to ei and l′ ≤ l if l′ is
a prefix of l. We denote domain restriction of a function f to
a subset S ⊆ dom(f) as f |S . We filter a sequence l by a set
S, denoted l|S , by removing each element that is not in S.

b) Terms and equational theories: We model messages
by abstract terms. Assume a countably infinite set of names X
used to model cryptographic keys and nonces, and a countably
infinite set of variables V . Given a signature Σ, i.e., a set of
function symbols with an arity each, we write f/n for function
symbol f of arity n. Let TermsΣ be the set of terms built over
Σ, X , and V , and names(t), respectively vars(t), denote the
set of names, respectively variables, appearing in a term t. We
denote the set of ground terms, i.e., terms without variables,
by MΣ. When Σ is fixed or clear from the context, we omit
it and simply write Terms for TermsΣ and M for MΣ.

We equip the term algebra with an equational theory E,
i.e., a finite set of equations of the form m = m′ where
m,m′ ∈ Terms. The equational theory defines the binary

relation =E on terms, which is the smallest equivalence
relation containing the equations in E that is closed under
application of function symbols, bijective renaming of names
and substitution of variables by terms.

Example 1. The signature Σsig ··= {true/0, pk/1, sig/2,
versig/3, extract/1} and the following equational theory
model digital signatures: versig(pk(x), sig(x, y), y) = true
and extract(sig(x, y)) = y. As usual, extract/1 over-
approximates the capacity of parties to learn the value of the
signed message, however, realistic protocols should not rely
on this function symbol, given that many implementations of
digital signatures do not provide this feature.

Let E and Σ be fixed such that they include function
symbols for construction and deconstruction of pairs, i.e., Σ ⊇
Σpairs ··= {〈., .〉, π1, π2} ⊆ Σ and equations π1(〈x, y〉) = x
and π2(〈x, y〉) = y are in E. We use 〈x1, x2, . . . , xn〉 as a
shorthand for 〈x1, 〈x2, 〈. . . , 〈xn−1, xn〉 . . .〉. Set membership
modulo E is denoted by ∈E and defined as e ∈E S iff
∃e′ ∈ S. e′ =E e. A substitution σ is a partial function from
variables xi to terms ti written σ = {t1/x1

, . . . ,tn /xn}. We
homomorphically extend σ to apply to terms and use postfix
notation to denote its application, e.g., tσ applies σ to t.

c) Grammar and operational semantics: In contrast to
the applied-π calculus [14], our calculus incorporates the
effectuating party of a process. Since processes running in
parallel can represent threads or programs running in parallel
as well as computers in an asynchronous network, this annota-
tion is necessary. Assume a set of parties A, a subset of which,
T ⊂ A, is trusted never to deviate from normative behavior.

〈P ,Q〉 ::= (plain processes)
| 0
| νn;P
| in(x); P
| out(m); P
| if m = m′ then P else Q
| event t; P

〈A,B〉 ::= (ext. process)
| A | B
| νn;A
| νx;A
| {m/x}
| ·p for p ∈ A
| P

Fig. 2. Syntax, where n ∈ X , x ∈ V and m,m′ ∈ Terms

Plain processes (defined by the grammar in Figure 2) usually
define the behavior of a single party as a combination of
message input and output (on a single, global, public channel),
conditionals w.r.t. =E and scope restriction νn;P (which
creates a fresh name n and then behaves like P). Furthermore,
plain processes can emit events, which can be used to model
signaling behavior (see Example 2 below) or append-only logs.
We will omit else branches with zero processes for brevity. For
simplicity, we exclude parallel composition and replication in
plain processes, as otherwise we would need to track several
processes per party1. Extended processes combine extended
or plain processes via parallel composition (A | B). We
use scope restrictions on names to distribute shared secrets.

1This could be achieved, e.g., by drawing fresh names as session identi-
fiers [15].

An active substitution {m/x} acts as a ‘floating’ substitution
operation. Together with scope restriction on variables, they
allow processes to transmit terms between each other (see
below). As usual, names and variables have scopes delimited
by restrictions and inputs. We write fv(A), fn(A) for the set of
free variables and names of A, respectively. Finally, the ‘hole’
·p serves as a placeholder for a subprocess. Later, we define
how the normative behavior of a party p ∈ A or a deviation
may substitute this hole by a process. We thus require the
following condition.

Definition 1 (skeleton process). A skeleton process is defined
by the grammar for extended processes without the last
production rule (which includes plain processes) and exactly
one hole ·p per party p ∈ A.

A protocol is now defined in terms of a skeleton process
determining how information, i.e., names and terms, are ini-
tially shared between parties, and a function that maps every
party to a plain process.

Definition 2 (protocol). A protocol Π = (A,n) consists of a
skeleton process A and a function n from A to plain processes
such that for all p ∈ A, all fn(n(p)) and fv(n(p)) are bound
in the scope of ·p in A. We call n(p) the normative behavior
of p.

A straightforward approach to achieve accountability is to
have a trusted monitor, which executes requests but expects
them to be signed. The next example follows this paradigm.

Example 2 (delegation example). Assume the signature Σ
consisting of Σpairs, Σsig, Σlog = {Log/2,Exec/1} and
Σact = {NAct/0,SAct/0,UnAct/0, isAct/1}. Consider the
equations in Example 1 and the following: isAct(a) = true
if a is either a normal action (NAct), special action (SAct)
or an unusual action (UnAct). Assume four parties, A, B, I
and T . Among those only T = {T} is trusted. The following
skeleton process defines the generation of A and B’s signing
keys and the distribution of their public parts:

νskA; νskB ; {pk(skA)/pkA ,
pk(skB) /pkB} | ·A | ·B | ·I | ·T

The party A processes two kinds of actions, normal actions
and special actions. Normal action are signed and sent to
T for execution. Special actions are forwarded to B for
authorization, which signs the request identifier na. Finally,
A sends both signatures to T for processing.

n(A):= in(a); if a = NAct then out(〈a, sig(skA, a)〉)
else if a = SAct then
ν na; out(〈na, sig(skA, 〈a, na〉)〉);
in(r); if versig(pkB , r, na) = true then

out(〈a, na, sig(skA, 〈a, na〉), r〉)
n(B):= in(m); if versig(pkA, π2(m), 〈SAct , π1(m)〉) = true

then out(sig(skB , π1(m)))

The trusted monitor T verifies the signature of incoming
requests, but not which action they contain. But it takes note
of who issued the request. This strategy is typical in scenarios
where security violations may only be determined after the

THEN (if t1 = t2 then P else Q)pA
pA−−→ PpA if t1 =E t2

ELSE (if t1 = t2 then P else Q)pA
pA−−→ QpA if t1 6=E t2

COMM (out(x);P)pA | (in(x);Q)pB
(pA,pB ,x)−−−−−−→ PpA | QpB

EVENT (event x;P)pA
(pA,x)−−−−→ PpA

Fig. 3. Reduction rules

fact, e.g., if T cannot tell usual from unusual actions. For
example, in a hospital, it may be unusual for a doctor (A) to
retrieve data belonging to another doctor’s (B’s) patient. Still,
in case of an emergency, A should be able to request this spe-
cial action without further ado, but has to justify it later. The
responsibility of T is to enforce that the necessary information
is present. Let xa, xn, s1, s2 in the second branch abbreviate
xa = π1(m), xn = π1(π2(m)), s1 = π1(π2(π2(m))) etc.
such that m = 〈xa, xn, s1, s2〉. Then,
n(T):=in(m);

if versig(pkA, π2(m), π1(m)) = true then
event Log(A, π1(m)); event Exec(π1(m))

else if versig(pkA, s1, 〈xa, xn〉) = true then
if versig(pkB , s2, xn) = true then
event Log(〈A,B〉, xa); event Exec(xa)

The party I with n(I) := out (SAct); out (〈pkA, pkB〉) models
an intruder who knows A’s and B’s public key and triggers
communication between A and B leading to a normal run. �

The operational semantics is same as for the applied-π
calculus, except that a) the topmost process inserted at a hole
·p is annotated with the party p (skipping scope restrictions,
i.e., νn.P becomes νn.(P)p), and reduction preserves these
annotations. b) Reductions are additionally labeled with the
effectuating party for internal reductions, and with the sending
party and the recipient in case of communication (see Fig-
ure 3). Appendix A recalls the applied-pi calculus, including
our modifications, in detail. Let traces(A) = {(l1, . . . , ln) ∈
((A×A× Terms)] (A× Terms)]A)∗ | A l1−→ · · · ln−→}. We
define

ctl(e) =

(pA, pB) if e = (pA, pB ,m)

(pA) if e = (pA,m)

(pA) if e = pA

and lift it to traces to define the control flow ctl(t) ∈ ((A ×
A)]A)∗ of a trace. Unless stated otherwise, we will assume
the set of visible event (visible to some judge) to be V =
A×Terms. We will impose that verdicts are derived from the
visible part of a trace t|V . The control flow, ctl(t), will be
used to define ‘what-if’ scenarios that are related to the actual
trace.

d) Deviations: A deviation is a function that overwrites
the normative behavior of untrusted parties and may only refer
to names and variables the normative behavior has access to.
For instance, a deviation for A in Example 2 may refer to
pkB ∈ fv(n(A)), which is bound to pk(skB), but not to skB 6∈
fn(n(A)).

Definition 3 (protocol deviation / instance). For a protocol
Π = (A,n), a partial function δ from A\T to plain processes
such that fv(δ(p)) ⊆ fv(n(p)) and fn(δ(p)) ⊆ fn(n(p)) for
every p ∈ dom(d) is called a deviation and induces an instance
of Π, which we denote Πδ. In Πδ, each occurrence of ·p is
substituted by δ(p), if defined, and n(p) otherwise. In both
cases, the first subprocess that is not of the form νm;P is
annotated with p.

For the empty deviation ∅, the instance Π∅ is an extended
process that contains only the normative behavior of all parties.
By Def. 2, the free names and variables of all plain processes
in the domain of n are bound in the scope of ·p in A, hence
any instance of the protocol is closed.

Given a protocol Π and deviation δ, we consider security
properties as predicates over traces t ∈ traces(Pδ). For all
security properties ϕ, we require that ϕ is congruent w.r.t. E
and only regards the visible part of the trace, i.e. for all t, t′,
t|V =E t′|V =⇒ ϕ(t) = ϕ(t′).

Example 3. The delegation protocol (Ex. 2) shall hold parties
accountable for effectuating actions that are neither normal nor
special. The security property is thus:

ϕ(t) ··= ∀e. (T, e) ∈ t|V ∧ e =E Exec(a) =⇒
a ∈E {NAct ,SAct}.

IV. ACCOUNTABILITY

With this calculus in place, we can now argue about
accountability in traces where one or more parties decide
not to follow the protocol. By restricting the domain of a
deviation δ, we can even examine counterfactual scenarios
where only some of the deviating parties are exhibiting the
same behavior, while the other parties are reset to their
normative behavior. We will use this feature to define the
a posteriori verdict (short: apv). The apv specifies which
parties should be held accountable, but can only be computed
if the behavior of each party is known. It forms the basis
for our later treatment of unknown deviations: Ideally, an
accountability mechanism should always give a verdict that
coincides with this a posteriori judgment. An accountability
protocol is thus a protocol that computes the apv.

A. A posteriori verdict

We define accountability as the ability of a protocol to com-
pute which parties caused a security violation. Accountability
is hence a meta property; we speak of accountability for some
security property ϕ.

To decide which parties caused the violation, we follow the
structured-model approach to causation [16]. The idea is to
determine causal relations by intervening on potential causal
factors. In our case, the only causal factor we intervene on is
whether a party deviates at all.

Most definitions of actual causation follow the counter-
factual approach [16], [17] going back to Lewis [18] and
possibly Hume [19, Section VII]. These definitions all follow
the idea that ‘event A causes event B‘ means that B would not

have happened had it not been for A. In the structured-model
approach, the factual scenario is modified (intervened on) to
remove A. If B never occurs after this so-called intervention,
A was necessary to cause B.

We build our definition on the dual notion of sufficient
causation [13], [20]. It captures all parties for which the fact
that they are deviating at all is causing the violation, i.e.,
events of the form ‘a party or a set of parties S ⊆ A are
deviating‘ are sufficient to cause ¬ϕ. Intuitively, such an event
is a cause for a violation iff:
SC1. A violation indeed occurred and S indeed deviated.
SC2. If all deviating parties, except the parties in S, behaved

honestly, the same violation would still occur.
SC3. S is minimal, i.e., SC1 and SC2 hold for no strict subset

of S.
SC1 is a prerequisite for any form of causation. SC2 for-

malizes that the deviation of the parties in S alone is sufficient
to disrupt the protocol. SC3 removes parties who deviated,
but whose deviations are not needed to produce a violation.
Consider, e.g., two parties, A and B, colluding against a secret
sharing scheme with a threshold of two. Removing either
A or B from S = {A,B} would eliminate the violation.
Hence A and B jointly caused the violation. Now consider
two parties, C and D, running two attacks on a different
system, at different points in time, without coordination. Due
to SC3, {C,D} would not be considered a cause, but both {C}
and {D}. Hence C and D independently caused the violation.
Distinguishing between joint and independent causation is a
strength of sufficient causation. We define the a posteriori
verdict (apv) as the set of all sets of parties that caused a
violation.

Definition 4 (a posteriori verdict). Given a protocol Π =
(A,n), a property ϕ, and a deviation δ, the a posteriori verdict
for t ∈ traces(Πδ) is defined apvΠ,ϕ(t, δ) ··=

{S |¬ϕ(t) and S ⊆ dom(δ) (SC1)
and S is minimal s.t. (SC3)
∃t′ ∈ traces(Πδ|S).t =S t

′ ∧ ¬ϕ(t′)}. (SC2)

Here, t =S t′ is short for ctl(t)|
S = ctl(t′)|
S, where

 S ··= (S × A) ∪ (A × S) ∪ (S) denotes the part of the
control flow of t that involves any party in S.

The intervention on the trace in SC2 is characterized by
restricting the domain of δ to S. We hence consider a run of
the protocol where some parties — those outside of S — are
reverted to their normative behavior. If the way S deviated is
sufficient to cause a violation, such a run must exist. But note
that this run is not arbitrary; the parties in S are bound to their
previous control flow. By contrast, parties that are reverted to
their normative behavior can have any control flow, as the
process defining their deviating behavior may have an entirely
different structure from their normative behavior.

Example 4. Consider a deviation δ for Example 2 with
δ(B) ··= out(skB) and δ(A) defined as follows:

in(xsk); νna;
out(〈UnAct , na, sig(skA, 〈UnAct , na〉), sig(xsk , na)〉)

Let trace t be such that B sends her signing key to A, who
fakes B’s authorization and then instructs T to execute an
unusual action. W.r.t. the property that no unusual action
was executed, i.e., ϕ(t) ··= (T,Exec(UnAct)) 6∈E t, the
a posteriori verdict apv(t, δ) is {{A,B}}, as reverting either
A or B to their normative behavior avoids ϕ. By contrast,
if δ′(A) ··= out(sig(skA,UnAct)) and B shares its signing
key with I , i.e., δ′(B) ··= out(skB) and δ′(I) ··= in(m), then
apv(t′, δ′) = {{A}}, for the obvious trace t, as B’s behavior,
even if it was reckless, had no bearing on the coming about
of ¬ϕ.

B. Discussion

Causation versus (observable) deviation. Some causation-
based definitions in distributed systems consider any deviation
from specification a fault [10]. This concept does not translate
to misbehavior in the security setting, where the behavior
of protocol participants is not fully observable. A server,
e.g., only observes the messages that clients send to her,
but not messages between clients. Causation weakens this
requirement: hidden messages are irrelevant unless they are
causally relevant to the attack.
Notion of causation. While no universally accepted notion of
causation exists, Lewis’s counterfactual approach [18] is the
inspiration for most definitions, e.g. [16], [17], [21]. All of
these can be abstracted to a form of ‘necessary causation’
that is dual to sufficient causation [13], [20] as presented
here: sets of necessary causes can be mapped to sets of
sufficient causes and vice versa. In particular Halpern and
Pearl’s definition [16], [17], the most popular to date, can be
interpreted in terms of sufficient causation where interventions
in SC2 may not stray from the original control flow [22].
Valid counterfactuals. The result of the intervention in SC2,
also called counterfactual, has to exhibit the same control
flow as the actual trace. In the context of programs and
distributed systems, this is fairly common [13], [22], [23], but
other methods exist, e.g., based on their output according to
specification [24], [25]. This approach has little use in the
wider context of philosophy and law studies (what would
be the ‘control flow’ of a car accident?) Various notions of
causality exist whose main difference is in which counterfac-
tuals are permitted. They can be based on the structure of the
causal graph [16], [17], or on a fine-grained classification of
events [26], [27].
Hyperproperties. Many important security properties, e.g., in-
formation flow, can only be expressed as hyperproperties [28].
The apv builds on sufficient causation. Like its dual [16], it
deals with causation between events defined on single traces.
Investigations in the cryptographic settings [29] show that a
transfer of the apv is not straightforward, as it is unclear how
to define the counterfactual w.r.t. a set of traces that violate
the hyperproperty. Indeed, the definition of causality in the
probabilistic setting is the subject of ongoing research [30].

First results for causal analysis of hyperproperties have only
just been made [31].

C. Verdict function
We expect security protocols Π to be equipped with a

function verdict : traces(Π) → 22A that assigns each trace
a verdict. Like security properties, we define verdicts to be
congruent modulo E and to consider only events. In practice,
the use case can impose additional requirements: e.g., for a
verdict to be computable from a public log, or from events
output by a trusted party, etc. The verdict function abstracts
whatever entity is giving the verdict, be it a real judge or
jury, or a designated party which is part of the protocol. To
clarify its semantics, we sometimes write a verdict v as a
propositional formula with parties as atoms:

∨
C∈v

(∧
p∈C p

)
.

The verdict provides the set of independently accountable
groups of agents such that all agents within such a group are
jointly accountable. For example, a verdict (A ∧ B) ∨ (B ∧
C)∨ (A∧C) (equivalently, {{A,B}, {B,C}, {A,C}}) states
that the way any two of the three parties A, B, C actually
deviated was sufficient to provoke the violation. This occurs,
e.g., when a simple majority was enough to accept a faulty
input, and all three did in fact misbehave.

Example 5 (verdict). In Example 2, the task of the monitor
is to supply sufficient evidence of the parties deviating from
protocol by issuing an unusual action. We thus assume only
the events of the trusted party to be visible, V = {T}×Terms
and, using the shorthand e ∈T t ⇐⇒ (T, e) ∈ t|V , we
consider the verdict function verdict(t) ··=

{{A,B}} if Exec(a),Log(〈A,B〉, a) ∈T t
∧ a 6∈ {SAct ,NAct},

{{A}} Exec(a),Log(A, a) ∈T t ∧ a 6= NAct ,

∅ otherwise.

This example shows how events can provide for an append-
only log, which in Example 2 is written by a trusted party.
Here, a judge inspects the visible part of the trace, i.e., T ’s
log, after the protocol run. A slightly different protocol could
use the same conditions to derive a verdict while the protocol
is executing, in which case the verdict function would only
interpret the corresponding events emitted, e.g., by T . The
use of events carries the explicit assumption that only T can
write to this specific log that it is append-only and that it is
never disputed. Even in the case where untrusted parties emit
events, the semantics ensure at least the append-only property.

D. Definition of accountability
A protocol provides accountability for a property if there is

a verdict function for this property, and this verdict function
is sound and complete.

Definition 5 (accountability). We say that a function verdict :
traces(Π)|V → 22A provides a protocol Π = (A,n) with
accountability for a property ϕ if for any deviation δ and t ∈
traces(Πδ),

verdict(t) = apv(Π, d).

The verdict function should be correct for any visible trace
produced by the protocol, but many deviations produce the
same trace. Nevertheless, a truly accountable protocol ought
to provide a verdict with certainty. These are conflicting goals,
as we will find in the next section, and later resolve by
considering only optimal deviations. The present definition
reflects the certainty requirement because verdict is a function
on traces. Hence all deviations reproducing the trace need to
have the same a posteriori verdict.

Example 6 (Whodunit). S and A coordinate on some fixed
name a ∈ X as follows. n(S) sends a to A; n(A) receives this
value. Both report it to a trusted party T ; only messages sent
to T are visible. In the actual trace, δ(A) sends an a∗ different
from S’s reported choice to T . In this case, a correct verdict
is impossible without additional information on S’s and A’s
deviation, as two minimal scenarios are plausible: S deviated
and sent a∗ to A, but reported a, or A deviated and received a,
but reported a∗ to blame S. Both deviations entail a different
apv, but produce the same trace. Thus, no verdict function can
provide accountability.

We stress the difference between uncertainty and disjunc-
tions in the verdict. If the verdict is {{S}, {A}}, i.e., S ∨ A,
it means that both a deviation of S or a deviation of A on
their own are sufficient to cause ¬ϕ, but the trace indicates
that both S and A deviated.

E. Discussion

Relation to verifiability. Küsters et al. pointed out the re-
lationship between verifiability and accountability by relating
the verdict to whether a violation occurred [1].

Corollary 1 (accountability implies verifiability). Def. 5 and 4
imply: If verdict provides Π with accountability for some ϕ,
then it also provides verifiability, i.e., for any deviation δ and
t ∈ traces(Πδ), ϕ(t) ⇐⇒ verdict(t) = ∅.

Trust assumptions. Trust in other parties or secure computing
environments (e.g., SGX enclaves) is reflected in the set of
trusted parties T ⊆ A. Two protocols may be compared in
terms of the parties they trust if they both define the same
skeleton process.2

Probabilistic accountability. While the apv cannot cap-
ture causes for (violations of) hyperproperties, accountability
could, in principle, be limited to defined subsets of traces(Π).
That way, we could capture probabilistic accountability if the
underlying calculus were probabilistic.
Network attackers. The absence of private channels in our
calculus restricts our definition to situations where all parties
have equal access to the network. Communication is non-
deterministic, so any party can receive any message and
therefore all dishonest parties can act as network attackers. To
consider a ‘pure’ network attacker, we may define a dishonest
party N with n(N) ··= 0. As fv(n(N)) = fn(n(N)) = ∅,
any attack mounted by N can be mounted by any other

2Protocols (Def. 2) need to include T , which was omitted for simplicity.

dishonest party. A protocol that permits attacks by N therefore
cannot provide accountability (or any relaxation we discuss in
the follow-up) unless N is the only untrusted party. In that
case, accountability becomes equivalent to verifiability (see
Corollary 1), which is easier to verify directly.
Intrinsic limitations. Besides the aforementioned remark
about communication and obvious constraints due to the
choice of the symbolic setting, the use of the apv imposes a
restriction on trace properties (see Discussion in Section IV-B).
A computational variant of this definition is conceivable, but
technically challenging.3 Furthermore, one of the relaxations
in Section IX imposes conditional-free processes. They are
delicate to define when Turing machines constitute the under-
lying model of computation.

F. The trouble with provocation

Unfortunately, accountability is impossible to achieve if
deviating parties can communicate privately. In the following
example, B sends a message to A to provoke it to mount an
attack.

Example 7. Consider a deviation δ with dom(δ) = {A,B}
and a function symbol go/0:

δ(A) =in(m); if m =go then event Boom() else behave honestly
δ(B) =out(go)

and some security property that A can break on its own, e.g.,
ϕ(t) ⇐⇒ (A,Boom()) 6∈ t. For a trace t where a violation
occurs, we have apv(δ, t) = {{A,B}}. If verdict cannot take
the communication between A and B into account — e.g.,
if it is defined on events V = A × Terms — then it cannot
distinguish δ and a δ′ with dom(δ′) = {A} and

δ′(A) ··= event Boom()

Informally speaking, A can plausibly discredit B, saying that
it was ‘provoked’ to attack.

This problem arises whenever private communication (w.r.t.
V) with any dishonest party is possible. Hence, unless one
were willing to assume all messages were public, no nontrivial
protocol can provide accountability. Note that this example is
not an artifact of our definition. In δ, it is intuitive that A and
B are causing the violation in δ, both w.r.t. the actions they
perform and their decision to deviate at all. If A could prove
that it ran the process δ(A), it would be plausible to hold B
accountable, too.

In the centralized-adversary setting, it is possible to achieve
accountability [2]. The provocation example is simply not
expressible in this setting, because the network adversary is
modeled in terms of a deduction relation. Loosely speaking,
the adversary is merely a sequence of messages deducible from
the protocol’s output up to that point. This adversary cannot
make its actions causally depend on each other. The possibility

3Morio and Riahi managed to transform Künnemann et al.’s definition
against centralized attackers into a cryptographic game [29], [32] but em-
ployed Künnemann et al.’s verification conditions as a trace-based character-
ization of accountability. Whether such a characterization of Def. 5 exists is
an open question.

of accountability is therefore an artifact of how the adversary
is represented. In Section IX, we will see that the centralized
setting is equivalent to one of the optimality notions we will
discuss in the next section.

V. ACCOUNTABILITY UNDER OPTIMALITY ASSUMPTIONS

In this section, we investigate how to avoid the provocation
example by assuming the deviating parties behave optimally.
We will discuss three notions of optimality: verdict opti-
mality, which considers only deviations with minimal apvs,
knowledge optimality, which considers only deviations with
minimal communication between deviating parties, and simple
deviations, where processes cannot branch.

The idea is that an imaginary ‘judge’, who cannot know the
processes that A and B ran in Example 7, has no evidence
that points to B. This judge would thus look for the simplest
explanation to the observations she made.

What we deem simple should be convincing to the public;
it becomes part of the accountability definition. All three
approaches address Example 7: δ is neither optimal w.r.t. to the
apv ({{A}} is smaller than {{A,B}}, see below), nor w.r.t.
communication (sending go is not optimal), nor is it simple
(δ(A) has a conditional).

Note that in Example 7, without any doubt, A participated
in the violation of the property. Thus, in principle, it is sound
to blame A — no matter which deviation the parties actually
ran, A was either the sole cause, or part of the cause for the
violation. A suitable optimality notion can guarantee fairness,
and, as we will see, even a form of completeness.

Optimality ought to be weak enough to recognize un-
certainty, e.g., both plausible deviations in Example 6, but
strong enough to eliminate deviations that introduce causal
relations in addition to those inherent to the protocol, as in
the provocation example.

A. Sane optimality notions and accountability

We say a deviation δ explains a trace t if it produces a
t′ ∈ traces(Pδ) s.t. t =V t′ ··= t|V = t′|V . We can now
formalize the intuition above as follows: no matter which trace
t we observe, even if resulting from a non-optimal deviation,
the verdict (which is computed on t|V) equals the apv for all
optimal deviations that can explain t. Hence correctness holds
for arbitrary traces, but the imaginary ‘judge’ considers only
simple explanations for them. This definition can be simplified
if the optimality notion is sane.

Definition 6 (sane optimality). An optimality notion is sane if,
for all protocols Π, (a) for all deviations δ there is an optimal
deviation δo with dom(δo) ⊆ dom(δ) and δ(p) 6= n(p) for all
p ∈ dom(δo), s.t. for each t ∈ traces(Πδ), an optimal trace
to ∈ traces(Πδo) of δo explains t, and (b) In addition, any
optimal deviation explains some t produced by some (non-
optimal) deviation.

Lemma 1. For any sane optimality notion, the following
statements coincide.

1) For all δ, t ∈ traces(Pδ) and optimal δo, to ∈
traces(Pδo), t =V to =⇒ verdict(t) = apv(to, δo).

2) For all optimal δo, to ∈ traces(Pδo), verdict(to) =
apv(to, δo).

Note the difference between both formulations: the second
considers only optimal deviations. The first, by contrast, pro-
vides a guarantee for all deviations; this guarantee, however, is
that the judgment will be correct w.r.t. any optimal deviation
that matches. If the optimality notion is sane, we can safely
use the second, simpler formulation.

Proof. (⇐) We add the quantification over δ and t to bring (2)
in the form of (1). We then weaken the statement by adding the
antecedent of the implication. If t =V to, then verdict(to) =
verdict(t) by congruence.
(⇒) If t =V to, then verdict(to) = verdict(t) by congruence.
Hence, δo is quantified over the set of optimal deviations that
explain some trace produced by some deviation. By sanity,
this is the set of all optimal deviations.

Hence, we can use the simpler variant to capture this intuition.

Definition 7 (accountability). We define accountability w.r.t.
a sane optimality definition as in Def. 5, but quantify δ and t
over the set of optimal deviations and traces.

Sanity also guarantees a form of fairness: any party blamed
deviated indeed (but was not necessarily part of a cause).

Lemma 2 (weak fairness). If verdict provides Π with ac-
countability for a sane notion of optimality, then for all
deviations δ and t ∈ traces(Pδ),

S ∈ verdict(t) ∧ p ∈ S =⇒ p ∈ dom(δ) ∧ δ(p) 6= n(p).

Proof. For any optimal δo, let p st.t. δo(p) = n(p) or
p 6∈ dom(δo). For any S′ ⊇ S, if t′ ∈ traces(Πδo|S′)
then t′ ∈ traces(Πδo|S′\{p}). Hence, for any trace to, any
S ∈ apv(to, δo) that contains such a p contradicts the min-
imality requirement in Def. 4. By sanity and Lemma 1, for
any deviation δ and trace t, there is a deviation δo and trace
to with t =V to for which the above holds true. Hence
S ∈ verdict(t) and p ∈ S implies p ∈ dom and δo(p) 6= n(p).
From dom(δo) ⊆ dom(δ) follows p ∈ dom(δ) and thus
δ(p) 6= n(p).

VI. VERDICT-OPTIMALITY

The first option is to minimize the apv of each candidate
deviation and resulting trace. Verdict order is reverse logical
entailment between verdicts interpreted as propositional for-
mulas.

Definition 8 (verdict order). S1 ≤ S2 if
∨

S∈S2
∧
p∈S p implies∨

S∈S1
∧
p∈S p.

If no violation occurs in the trace, the apv outputs the
empty verdict ∅. As a propositional formula, this translates
to
∨

S∈∅
∧
p∈S p = ⊥. As there are no negative atoms in these

formulas, ∅ ≤ S2 only if S2 = ∅. Hence ∅ is the bottom
element of this order, while {∅} is the top element; however,

this a posteriori verdict only arises if the normative behavior
of the protocol may produce a violation by itself.

Verdict optimality solves the provocation problem, as A is
implied by A∧B. Besides weak fairness (Lemma 2), it guaran-
tees that no one is blamed who would not be blamed otherwise,
because all deviations and contexts that are disregarded imply
the verdict.

Furthermore, it provides a weak form of completeness.
Recall that full completeness would again raise the provocation
problem. Every disjunct of the weaker verdict can be under-
stood as a group of agents ‘working together’ to produce the
violation. For each disjunct, at least one representative appears
in a disjunct of the actual verdict. This representative has an
incentive to point out more subtle degrees of responsibility
lest she takes the blame by herself.

Theorem 1 (weak completeness). If S2 6= ∅ then

S1 ≤ S2 ⇐⇒ ∀S′ ∈ S2∃S ∈ S1.S ⊆ S′.

(Proof in Appendix D.)

VII. KNOWLEDGE OPTIMALITY

The key to addressing the provocation problem is to dis-
regard deviations that introduce causal relations which are
not part of the protocol. In contrast to verdict optimality,
which solves the problem indirectly, the second notion we
propose flat out forbids communication between deviating
parties during the protocol run. It allows them, however, to
distribute information before the protocol run, so that we can
define an order on the knowledge parties share. We first relax
Def. 3 so deviating parties may use names or variables that
do not occur in the normative process, but in other deviating
parties.

Definition 9 (relaxed deviation). A relaxed deviation δ for
a protocol Π = (A,n), is a partial function from A \ T
to plain processes, s.t. fv(δ(p)) ⊆

⋃
p′∈dom(δ) fv(n(p′)) and

fn(δ(p)) ⊆
⋃
p′∈dom(δ) fn(n(p′)) for every p ∈ dom(δ). It

induces an instance of Π, which is defined as in Def. 3.

This gives us a measure of the information shared. (Al-
though not a very precise one: a deviation of party A that
obtains a single signature from B requires as much informa-
tion sharing as a deviation that obtains hundreds of signa-
tures: B’s signing key.) We can now compare two deviations
by comparing the information available to deviating parties,
excluding the information they already possess by definition
of the normative behavior, i.e., fv(n(p)) and fn(n(p)).

Definition 10 (knowledge order). δ1 ≤ δ2 if dom(δ1) ⊆
dom(δ2), and for all p ∈ dom(δ1),

fv(δ1(p)) \ fv(n(p)) ⊆ fv(δ2(p)) \ fv(n(p)) and
fn(δ1(p)) \ fn(n(p)) ⊆ fn(δ2(p)) \ fn(n(p)).

To preserve the requirement of Def. 9 that only deviating
parties share information, we modify the restriction operator:
d|δ(p) is undefined if p 6∈ S, and defined ν~n′.δ(p)σ where

σ and the sequence of names ~n′ are chosen such that names
or variables that become unavailable due to the restriction are
assigned fresh names, or structurally similar terms with fresh
names.4 We substitute, e.g., skA and pkA by skdummy and
pk(skdummy) if the active substitution in the protocol mapped
pkA to pk(skA). This preserves the requirements of Def. 9
and captures the intuition that removing any party from the
deviation also removes information that only this party could
have shared.

Definition 11 (knowledge-optimal). A relaxed deviation δ
and t ∈ traces(Πδ) are knowledge-optimal if p1, p2 ∈
dom(δ) =⇒ (p1, p2) 6∈ ctl(t), and δ is knowledge-order
minimal.

Relaxed deviations are complete in the sense that any trace
can be reproduced, except for the communication between
deviating parties, as it is forbidden.

Lemma 3 (relaxed deviations completeness). For any protocol
Π, deviation δ and t ∈ traces(Π, δ), there is a relaxed
deviation δr with tr ∈ traces(Πδr) s.t.

1) both traces are equal, except for communication between
deviating parties, i.e., tr =E t| 6�dom(δr), for 6� S ··=
A]A× Terms] {(pA, pB ,m) | pA, pB 6∈ S},

2) deviating parties do not communicate in the relaxed trace,
i.e., p1, p2 ∈ dom(δr) =⇒ (p1, p2) 6∈ ctl(tr),

3) dom(δr) ⊆ dom(δ) and
4) δ(p) 6= n(p) for all p ∈ dom(δr).

(Proof in Appendix E.)

This lemma holds because communication is not authen-
ticated. Relaxed deviations can share necessary secrets be-
forehand. In the extreme case, one deviating party can act
on behalf of all others.

VIII. SEPARATING VERDICT-OPTIMALITY,
KNOWLEDGE-OPTIMALITY AND SIMPLE DEVIATIONS

In the following example, knowledge-optimal accountability
can be achieved, while verdict-optimal accountability cannot.
The class of these examples is characterized by one or more
parties that appear in different subsets of the apv of some
trace. In this case, deviating parties can introduce new causal
dependencies even in verdict-optimal deviations.

Example 8 (2-out-of-3 vote, [13, Section IV]). For a success-
ful attack, two out of three servers A, B, C need to validate
a compromised certificate for a trusted party T . All of them
deviate by accepting it, which is publicly visible.

In this case, the correct verdict is (A∧B)∨(B∧C)∨(A∧C).
Assume, however, that any of the three servers, e.g., C,

4Formally, we assume a bijection ρ between the set of names occur-
ring in fn(δ(p)) ∪ fn(fv(t)σA) \

⋃
p′∈dom(δ)∩S fn(n(p′)) (for σA the

active substitutions in scope of ·p in Π = (A,n)) and a sufficiently
large set of fresh names. Then σ substitutes every name n ∈ fn(δ(p)) \⋃
p′∈dom(δ)∩S fn(n(p′)), not available due to the restriction anymore by

a (unique) fresh name according to ρ, and every variable v ∈ fv(δ(p)) \⋃
p′∈dom(δ)∩S fv(n(p′)), by ρ applied to σA(v).

communicates with the two others, A and B, and decides
to deviate only if they deviate, using some arbitrary com-
munication protocol. For such a deviation δ and trace t, the
apv would yield apv(t, δ) = {{A,B}}, as there is a trace t′

with t′ ∈ traces(Πδ|{A,B}) and ¬ϕ(t′), but no such trace for
S = {A,C} or S = {B,C}. As long as the communication
between A, B and C is hidden, we could make the same
argument for B or A in place of C. Hence, the protocol de-
scribed in Example 8 is not accountable w.r.t. verdict-optimal
deviations. By contrast, deviating parties cannot communicate
in any knowledge-optimal deviation that explains the observed
trace. Moreover, we know that all three parties are deviating,
since they observably validated the compromised certificate.
In the following example, however, A, B and C convey their
intentions via a side channel that T provides.

Example 9 (2-out-of-3 vote with tally). We modify Example 8
so that T transmits the current tally to all servers. A and B
validate the certificate blindly, but C waits and only validates
it if it receives a tally of two.

In this case, again, the apv is {{A,B}}, but we cannot
distinguish this from the scenario where all three parties
validate the certificate no matter the current tally. Thus no
verdict function can achieve knowledge-optimal accountability
(in this example).

IX. SIMPLE DEVIATIONS AND THE SOUNDNESS OF THE
CENTRALIZED-ADVERSARY SETTING

The previous example showed that causal links between
deviating parties can be introduced via indirect communica-
tion. In this section, we further restrict deviations to simple
deviations, i.e., relaxed deviations mapping to processes with-
out conditionals. We will see that accountability w.r.t. simple
deviations equals accountability in the centralized-adversary
setting, which gives us an interpretation of the latter.

In the centralized-adversary setting, deviating parties are
not explicitly modeled. Instead, a single network adversary is
modeled, in the form of a labeled reduction transition system
that non-deterministically chooses the message a listening
party receives. To represent the deviation of a party, we thus
substitute deviating parties by a process that outputs all their
secrets to the public and, therefore, to this network adversary.

Analogous to the set of traces traces(A), we define the set
of traces tracescent(A) for a closed extended process A. It
comprises all sequences of labels in some reduction sequence
according to the additional rules in Figure 4. Observe that
these match the rules for labeled semantics of the applied-pi
calculus [3, Sec. 4.3]. The only difference is that processes and
labels are additionally tagged with party identities (or context
for the centralized adversary).5

5In the proofs that follow, we will refer to the 2016 version of this paper
with the full version of the proofs [3]. Specifically, we will assume the
correctness of the lemmas in [3, Appendix A-B]. They establish the soundness
of a semantics on partial normal forms (see Appendix F). Our proofs follow
Abadi, Fournet and Blanchet’s proof that observational equivalence is labeled
bi-similarity.

IN (in(x).P)pB
(context,pB ,m)−−−−−−−−−−→ P{m/x}pB

OUT (out(m).P)pA
(pA,context,x)−−−−−−−−−→ PpA |{m/x} if x 6∈ fv(out(m).P)

CONTEXT-EVENT 0pA
(context,m)−−−−−−−→ 0pA

SCOPE νu.A
α−→ νu.A′ if A α−→ A′ and u does not occur in α

PAR A | B α−→ A′ | B if A α−→ A′ and bv(α) ∩ fv(B) = ∅
STRUCT A

α−→ A′ if B α−→ B′ and A ≡ B and A′ ≡ B′

Fig. 4. Reduction rules for labeled semantics, in addition to Figure 3. We define bv((p, context, x) = x and otherwise empty.

The centralized-adversary setting does not provide indi-
vidual parties with the ability to change their behavior. We
therefore transform the protocol into a closed extended process
that gives the network adversary control over deviating parties.
If the network adversary chooses to obtain these secrets, we
consider this party corrupted, which is visible in the trace as
an event.

Definition 12 (protocol transformation). Let JΠK ··= Πδcor
where the deviation δcor has domain A \ T and outputs each
agent’s secrets {x1, . . . , vn} = fv(n(p)) and {n1, . . . , nm} =
fn(n(p)) as follows:

δcor (p) ··= (event corrupt();out(x1); . . . ; out(xn);

out(n1); . . . ; out(nm)) | n(p)

The deviating parties are now those that the centralized
adversary corrupted. Hence, we define

corrupted(t) = {p ∈ A \ T | (p, corrupt()) ∈ t},

and adapt Definitions 5 and 4.

Definition 13 (accountability in the centralized-adversary set-
ting). In the centralized setting, we say verdict provides Π
with accountability for ϕ, written Π, verdict `cent ϕ, if

∀t ∈ tracescent(JΠK). verdict(t) = apvΠ,ϕ(t).

We define apvΠ,ϕ(t) analogous to Def. 4:

{S |¬ϕ(t) and S ⊆ corrupted(t) and S is minimal s.t.
∃t′ ∈ tracescent(JΠK).corrupted(t′) = S ∧ t =S t

′

∧ ¬ϕ(t′)}.

For accountability w.r.t. simple deviations, or shorter, simple
accountability, we use the following notation:

Π, verdict `simp ϕ ⇐⇒ for all simple δr and
tr ∈ traces(Πδr).verdict(tr) = apv(tr, δr).

In the first step, we show the completeness of the cen-
tralized adversary w.r.t. simple deviations. We apply a trans-
formation to the labels because, in the centralized-adversary
setting, the identities of deviating parties disappear from the
trace. Let t{S/context} denote t but with each element of
form ti = (pA, pB ,m) substituted by (context, pB ,m) or

(pA, context,m) if pA ∈ S or pB ∈ S. Each element of form
ti = (pA,m) with pA ∈ S is substituted by (context,m). All
ti = pA ∈ S are removed.

Lemma 4 (completeness centralized-adversary setting). For
all tr ∈ traces(Π, δr) and δr relaxed, there is tc ∈
tracescent(JΠK) such that tc = tr{dom(δr)/context} and
dom(δr) = corrupted(tc). (Proof in Appendix G.)

Even if we only wanted to show the soundness of the
centralized-adversary setting, we would need the soundness of
traces in this setting to guarantee the minimality of verdicts.

Lemma 5 (soundness centralized-adversary setting). For all
tc ∈ tracescent(JΠK) there is tr ∈ traces(Π, δr) with δr
simple such that tc = tr{dom(δr)/context} and dom(δr) =
corrupted(tc). (Proof in Appendix H.)

The following lemma is necessary to relate the apvs in both
settings. If two traces are related in the decentralized setting,
the traces we get from Lemma 4 are related, too.

Lemma 6. Let tc, t′c ∈ tracescent(A), tr ∈ tracessimp(Π, δ)
and t′r ∈ tracessimp(Π, δ′). Assume that that S = dom(δ) =
corrupted(tc) and S′ = dom(δ′) = corrupted(t′c). If tr =S′

t′r, tc = tr{S/context} and t′c = t′r{S
′
/context} then tc =S t

′
c.

Proof. We show that any two elements of tr and t′r that are
matched by =S′ are either removed by the transformation
or they are still corresponding after this substitution. Hence
rc(tc, t

′
c). Case 1: Element in S or S × Terms. The transfor-

mation tc = tr{S/context} removes all these elements from
tr and likewise for S′, t′c and t′r. As S′ ⊆ S, those in S′ or
S′×Terms occur in neither tc, nor in tr. Case 2: Elements in
S′×A×Terms or A×S′×Terms are modified to have context
in the first or second position, depending on the case.

The following lemma shows that matching traces from
either setting — excluding communication between deviating
parties — have the same apv. This is the key lemma to proving
the equivalence of both settings.

Lemma 7 (similiar traces have same apvs). If, for a simple
relaxed δr, tr ∈ tracessimp(Πδr) and tc ∈ tracescent(JΠK)
such that tc = 6�δr tr,

6 then dom(δr) = corrupted(tc) and

6The relation 6� S was defined in Def. 3.

apvΠ,ϕ,r(tr, δr) = apvΠ,ϕ,r(tc).

Proof sketch. For each S in the apv of one setting, we employ
Lemmas 4 or 5 to produce a trace in the other setting. With
Lemma 6, we relate this counterfactual trace to the actual
trace. Now, using Lemma 4 or 5, whichever brings us back
to the original setting, we show minimality. (Full proof in
Appendix I.)

Finally, we can show that both properties are equivalent.

Theorem 2. Π, verdict `cent ϕ iff Π, verdict `simp ϕ.

Proof. Fix arbitrary Π, ϕ and verdict . Soundness (⇒): First,
assume Π, verdict `cent ϕ, but Π, verdict 6`simp ϕ. Then,
there are δr and tr = traces(Πδr) such that verdict(tr) 6=
apvΠ,ϕ,r(tr, δr). By Lemma 4, there is tc ∈ tracescent(JΠK)
such that tc = 6�δr tr. and dom(δr) = corrupted(tc). From
tc = 6�δr tr. we conclude that verdict(tc) = verdict(tr). and
hence from Π, verdict `cent ϕ that apv(tc) = verdict(tr).
But from Lemma 7, we obtain apvΠ,ϕ,r(tr, δr) = verdict(tr)
— contradicting the assumption.

Completeness (⇐) Second, assume Π, verdict 6`cent ϕ, but
Π, verdict `simp ϕ. Then, there is tc ∈ tracescent(JΠK)
such that verdict(tc) 6= apv(tc). By Lemma 5, there is
tr ∈ traces(Π, δr) with δr knowledge-optimal, such that
tc = 6�δr tr and dom(δr) = corrupted(tc). The rest of the
proof proceeds like in the first paragraph, but with the roles
of tr and tc in reverse.

X. CONCLUSION

We provided the first definition for accountability in the
security setting that is not bound to a single corrupting
adversary. Although the corrupting adversary is the default in
protocol verification and cryptography, we found that it is not
a sound approximation when considering accountability. This
comes as a surprise, as this approximation is usually given
little thought.

The provocation problem witnesses that, for realistic proto-
cols, no distinct verdict can capture all possible explanations
for a violation. The conclusion is that either unambiguity
of the verdict needs to be dropped, the corruption model
changed (e.g., to a single adversary controlling all deviating
parties), or completeness weakened to some extent. In our
opinion, unambiguity should not be given up. As Künnemann
et al. [2] investigated the simplified corruption model already,
the present work was dedicated to analyzing how to weaken
completeness, and to understand which guarantees account-
ability in the centralized-adversary model effectively gives us,
compared to the richer model we introduced here.

The most important result is a characterization of the
centralized-adversary setting. Accountability in this setting is
equivalent to the idea of a judge (Lemma 1) who assumes
that deviating parties run programs without conditionals (The-
orem 2). Prior work [2] gives us a verification method for

accountability in the centralized-adversary setting. Now we
understand what these results mean.7

Other optimality notions do not assume deviations to be
simple programs. All of them ensure that no party is ever
blamed without actually deviating (Lemma 2); and that when-
ever something goes wrong, at least one party is blamed
(Lemma 1). Verdict optimality even provides a weak form
of completeness (Lemma 1) that guarantees that each verdict
implicates at least one member of each collaborating group,
hence incentivizing this ‘representative’ to supply additional
information. An Example in Appendix C confirms that knowl-
edge optimality does not afford this guarantee. However, it
only expects deviating parties to share the minimum amount
of knowledge before the protocol run, which seems a much
more natural assumption than simple deviations.

Both these notions are therefore interesting in cases where
our separation results do not apply. This includes protocols
where apvs are always non-intersecting (e.g., access con-
trol [8], randomness generation [9]), in particular the case
where a third party is to be held accountable [1], [6]. Even
if verdicts may intersect, knowledge optimality applies when
deviating parties cannot communicate indirectly, via trusted or
non-deviating parties.

It is worth noting that all separating examples rely on causal
dependencies introduced by deviating parties who exchange
signals. These signals are never necessary for the attack itself.
For many protocol tasks like the exclusion of parties in multi-
round multiparty computation protocols or the detection of
misbehaving trusted parties, such behavior is irrelevant. Until
automated verification procedures for the decentralized setting
become available, we thus advocate for the use of simple
accountability when the accountability mechanism merely acts
as a deterrent for misuse. First, it can be automatically veri-
fied in the centralized-adversary setting, providing trustworthy
results. Second, we can guarantee weak fairness, hence, at a
minimum, parties in the verdict failed to follow the protocol.
Third, while completeness is limited, we know that at least one
party is blamed. Nevertheless, as soon as the verdict has to be
held to a higher standard — e.g., in court, where damages
in civil cases can depend on the number of tortfeasors —
then, at the very least, the underlying assumptions need to be
understood.

7On a technical level, at least. What would motivate a judge to ig-
nore branching deviations? A possible interpretation is based on ‘defaults,”
i.e., ‘assumptions about what happens when no additional information is
given’ [33]. They are defeasible, i.e., can be overwritten when new information
arrives. Halpern and Hitchcock propose defaults to deal with difficult cases
in causality; prior to that, default logics were introduced to formalize such
inferences [34]. One could take the 0-Process as the default, and add inputs
and outputs to account for messages that were observed. (This is, in fact, what
happens in Lemma 5.) The default process for a given observation would
not have conditionals, as there is no information about branches that were
not taken. Indeed, judges frequently resolve cases that pose counterfactual
questions by defaults, e.g., proof of habit or class-based presumptions about
consumer behavior [35]. But note that critics of the approach rightfully point
out ‘under-constrained unclarities’ [21] — the judge might have a different
idea of what constitutes the default.

TABLE I
OVERVIEW OF NOTIONS MAPPED OUT IN THIS PAPER.

accountability =⇒ verdict-opt. acc.
6⇐=

?
=⇒

(
accountability

⇓

)
knowledge-opt. acc.

6⇐=

6=⇒

simple accountability (⇐= acc.)
m

acc. in the centralized-adversary setting

prerequisites VC NOINT NOINT or NOIND automated verification,
widely applicable

weak fairness X X X X
weak completeness X X × (see App. C) × (see App. C)

VC. . . all communication visible NOINT. . . no intersections between subsets of verdict NOIND. . . no indirect communication between deviating parties

REFERENCES

[1] R. Küsters, T. Truderung, and A. Vogt, “Accountability:
Definition and relationship to verifiability,” in Proceed-
ings of the 17th ACM Conference on Computer and
Communications Security, ACM, 2010, pp. 526–535.

[2] R. Künnemann, I. Esiyok, and M. Backes, “Automated
verification of accountability in security protocols,” in
Computer Security Foundations Symposium, 2019.

[3] M. Abadi, B. Blanchet, and C. Fournet, “The applied
pi calculus: Mobile values, new names, and secure
communication,” CoRR, vol. abs/1609.03003, 2016.

[4] N. Papanikolaou and S. Pearson, “A cross-disciplinary
review of the concept of accountability,” in Proceedings
of the DIMACS/BIC/A4Cloud/CSA International Work-
shop on Trustworthiness, Accountability and Forensics
in the Cloud (TAFC), 2011.

[5] J. Feigenbaum, A. D. Jaggard, and R. N. Wright,
“Towards a formal model of accountability,” in Proceed-
ings of the 2011 New Security Paradigms Workshop,
ser. NSPW ’11, ACM, 2011, pp. 45–56.

[6] N. Asokan, V. Shoup, and M. Waidner, “Asynchronous
protocols for optimistic fair exchange,” in IEEE Sympo-
sium on Security and Privacy (S&P’98), IEEE Comp.
Soc., 1998, pp. 86–99.

[7] J. A. Kroll, “Accountable algorithms,” PhD thesis,
Princeton University, 2015.

[8] M. Backes, J. Camenisch, and D. Sommer, “Anonymous
yet accountable access control,” in Proceedings of the
2005 ACM Workshop on Privacy in the Electronic
Society, WPES 2005, ACM, 2005, pp. 40–46.

[9] M. Backes, D. Fiore, and E. Mohammadi, “Privacy-
preserving accountable computation,” in 18th Euro-
pean Symposium on Research in Computer Security,
Springer, 2013, pp. 38–56.

[10] A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerre-
view: Practical accountability for distributed systems,”
in Proceedings of Twenty-first ACM SIGOPS Sympo-
sium on Operating Systems Principles, ser. SOSP ’07,
ACM, 2007, pp. 175–188.

[11] R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely,
“Towards a theory of accountability and audit,” in
Computer Security–ESORICS 2009, Springer, 2009,
pp. 152–167.

[12] G. Gößler and D. L. Métayer, “A general framework
for blaming in component-based systems,” Sci. Comput.
Program., vol. 113, pp. 223–235, 2015.

[13] A. Datta, D. Garg, D. Kaynar, D. Sharma, and A. Sinha,
“Program actions as actual causes: A building block for
accountability,” in 2015 IEEE 28th Computer Security
Foundations Symposium, IEEE, 2015, pp. 261–275.

[14] M. Abadi and C. Fournet, “Mobile values, new names,
and secure communication,” in 28th ACM Symp. on
Principles of Programming Languages (POPL’01),
ACM, 2001, pp. 104–115.

[15] B. Blanchet, “From Secrecy to Authenticity in Security
Protocols,” in 9th International Static Analysis Sympo-
sium (SAS’02), Springer, 2002, pp. 342–359.

[16] J. Y. Halpern and J. Pearl, “Causes and explanations:
A structural-model approach — part 1: Causes,” CoRR,
vol. abs/1301.2275, 2013.

[17] J. Y. Halpern, “A modification of the halpern-pearl defi-
nition of causality,” in Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
AAAI Press, 2015, pp. 3022–3033.

[18] D. Lewis, “Causation,” Journal of Philosophy, vol. 70,
no. 17, pp. 556–567, 1973.

[19] D. Hume, An Enquiry concerning Human Understand-
ing, P. Millican, Ed., ser. Oxford World’s Classics.
Oxford University Press, 2007.

[20] R. Künnemann, “Sufficient and necessary causation are
dual,” CoRR, vol. abs/1710.09102, 2017.

[21] T. Blanchard and J. Schaffer, “Cause without default,”
in Making a Difference, Oxford University Press, 2014,
pp. 175–214.

[22] R. Künnemann, D. Garg, and M. Backes, “Causality &
control flow,” in 4th Workshop on Formal Reasoning
about Causation, Responsibility, & Explanations in
Science & Technology, 2019.

[23] M. Kuntz, F. Leitner-Fischer, and S. Leue, “From prob-
abilistic counterexamples via causality to fault trees,”
in Computer Safety, Reliability, and Security, Springer
Berlin Heidelberg, 2011, pp. 71–84.

[24] G. Gössler and D. Le Métayer, “A General Trace-
Based Framework of Logical Causality,” in FACS -
10th International Symposium on Formal Aspects of
Component Software - 2013, 2013.

[25] R. Dimitrova, R. Majumdar, and V. S. Prabhu, “Causal-
ity analysis for concurrent reactive systems,” Tech.
Rep., unpublished.

[26] J. Dressler, Understanding criminal law. Matthew Ben-
der, 1995.

[27] J. L. Mackie, The Cement of the Universe: A Study of
Causation. Clarendon Press, 1980.

[28] M. R. Clarkson and F. B. Schneider, “Hyperproperties,”
Journal of Computer Security, vol. 18, no. 6, pp. 1157–
1210, 1, 2010. (visited on 05/07/2020).

[29] S. Riahi, “Protocol accountability in the cryptographic
setting,” Master’s thesis, Saarland University, 2018.

[30] L. Fenton-Glynn, “A Proposed Probabilistic Extension
of the Halpern and Pearl Definition of ‘Actual Cause’,”
The British Journal for the Philosophy of Science,
vol. 68, no. 4, pp. 1061–1124, 1, 2017. (visited on
05/07/2020).

[31] G. Gössler and J.-B. Stefani, “Causality Analysis and
Fault Ascription in Component-Based Systems,” Theo-
retical Computer Science, vol. 837, pp. 158–180, 2020.

[32] K. Morio, “A general definition of accountability in
the cryptographic setting,” Bachelor’s Thesis, Saarland
University, 2018.

[33] J. Y. Halpern and C. Hitchcock, “Graded Causation and
Defaults,” p. 41,

[34] V. W. Marek and M. Truszczynski, Nonmonotonic
Logic: Context-Dependent Reasoning, ser. Artificial
Intelligence. Springer-Verlag, 1993, ISBN: 978-3-540-
56448-5. [Online]. Available: https : / / www. springer .
com/gp/book/9783540564485 (visited on 05/08/2020).

[35] R. N. Strassfeld, “If . . .: Counterfactuals in the Law,”
p. 79,

APPENDIX

A. Operational semantics

In this section we define the operational semantics of our
calculus for extended processes that do not contain holes, but
in which the topmost process of any plain process is annotated
with an effectuating party. Initially (cf. Def. 3), the topmost
subprocess of every plain process inserted at a hole operator
·p is annotated with the party p, but scope restrictions are
skipped. As we will see, only plain processes are annotated,
but never scope restriction.

Structural equivalence is the smallest relation closed under
α-conversion of names and variables, as well as application

of evaluation contexts8, such that:

PAR-0 ApA | 0pB ≡ ApA
PAR-C ApA | BpB ≡ BpB | ApA
PAR-A ApA | (BpB |CpC) ≡ (ApA |BpB) | CPC
NEW-0 νu; 0pA ≡ 0pA
NEW-C νuνv; 0pA ≡ νvνu; 0pA
NEW-P ApA | νu;BpB ≡ νu; (ApA | BpB)

(if u 6∈ fv(A) ∪ fn(A))

ALIAS 0pA ≡ νx; {M/x}
SUBST {M/x} | ApA ≡ {M/x} | A′pA

(where A′ = A{M/x})
REWR {M/x} ≡ {N/x} if M =E N

(For brevity, Ap or Bp can stand for an unannotated process,
in which case p = ⊥.) Like in the applied pi calculus, we
always assume that active substitutions are cycle-free, and
that there is at most one active substitution for each variable
in an extended process. Furthermore, there is exactly one
active substitution when the variable is restricted. Later on,
we will use variables to identify transmitted messages, hence
we assume all variables to be unique from the start and define
P{m/x} as usual, but leave it undefined whenever P contains
a subprocess of form in(x);P ′ to avoid dynamic renaming of
variables. Using these rules, every closed extended process A
can be brought into form [14]: A ≡ νn1; . . . νnm; ({m1/x1

} |
. . . | {ml/xl} | P1| · · · |Pk), where P1,. . . ,Pk are closed plain
processes, i.e., all variables are bound or defined by an active
substitution.

Internal reduction is the smallest relation on extended
processes closed by structural equivalence and application of
evaluation contexts such that:

THEN (if t1 = t2 then P else Q)pA
pA−−→ PpA if t1 =E t2

ELSE (if t1 = t2 then P else Q)pA
pA−−→ QpA if t1 6=E t2

COMM (out(x);P)pA | (in(x);Q)pB
(pA,pB ,x)−−−−−−→ PpA | QpB

EVENT (event m;P)pA
(pA,m)−−−−−→ PpA

W.l.o.g., pA, pB 6= ⊥, as structural equivalence preserves
that the topmost non-ν position of any plain process remains
annotated with an effectuating party. Along with ALIAS and
SUBST, COMM permits the transmission of terms: Assume
x 6∈ fv(M) ∪ fv(P), then

(out(t);P)|(in(x);Q) ≡ νx; ({t/x}|(out(x);P)|(in(x);Q))

→ νx; ({t/x}|P | Q) ≡ P | Q{t/x}.

Hence, we write A
(pA,pB ,m)−−−−−−−→ B or A

(pA,m)−−−−→ B if
A

(PA,PB ,x)−−−−−−−→ B or A
(PA,x)−−−−→ B and x is in scope of an

active substitution {m/x} in A.

8Evaluation contexts are defined by the grammar

〈C〉 ::= · | νn; 〈C〉 | νx; 〈C〉 | (A | 〈C〉) | (〈C〉 | A).

https://www.springer.com/gp/book/9783540564485
https://www.springer.com/gp/book/9783540564485

B. Policies for accountability

In the following, we show that such policies sometimes have
to depend on the specific protocol to be useful; hence they are
not truly protocol agnostic. Küsters et al. propose policies of
the form α =⇒ p1 | · · · | pn and define completeness as
follows: if a trace matches α, the verdict should imply some
pi. Consider the scenario where each of the two parties A
and B might violate a security property by deviating on its
own, and assume the log always provides indication that this
is the case. We would like to express that A and B shall be
held accountable in case both deviate, as each deviation on
their own would entail a violation. Let α match traces with
said security violation. How could such a simple policy be
expressed?
• α =⇒ A is too weak, as B’s participation is disregarded

in case only B deviates (and unfair towards A). Same for
α =⇒ B.

• α =⇒ A ∧ B is unfair to A or B in cases only one of
them deviates.

• α =⇒ A ∨ B permits uncertainty in the verdict as it
would suffice to blame A ∨ B in case either deviates,
but as A and B’s behavior is visible, this policy is
unnecessarily weak.

• α =⇒ A | B: In this case, the verdict needs to imply
either A or B, hence a verdict A would suffice even if
both deviate. The same holds for the policy α =⇒ A |
B | A ∧B.

Hence the only choice is to split α into two formulas,
αA and αB , which capture traces where A, respectively B,
misbehaves. Then αA and αB may intersect in case both
deviate and {αA =⇒ A,αB =⇒ B} constitutes a policy
that enforces actual completeness.

But at this point, the policy does not serve as a specification
anymore — αA and αB describe the accountability mechanism
itself, not the security property. For one, this means that
the policy is protocol specific, i.e., not applicable to a class
of protocols, e.g., all voting protocols, anymore. But most
importantly, the policy validates the accountability mechanism
with itself; hence the approach begs the problem.

C. Relaxed deviations are not weakly complete

The following example shows that, knowledge-optimal and
simple accountability does not provide weak completeness like
verdict-optimal accountability (Theorem 1).

Example 10. Consider a variant of the Whodunit-protocol
(Ex. 6) where variables u, u′ and v are available to A and B.
The normative behavior of A is to send u to both B and T ,
and for B to forward whatever message it receives. Again, T
checks for equality.

n(A) =out(u); out(u)
n(B) =in(x); out(x)
n(T) =in(x); in(y); if x=y then 0 else event Unequal()

In the following deviation, A sends two different messages
to T and B, but B runs a deviation that forwards only the

message u′, precisely the message that A is not supposed to
send.

δ(A) =out(u); out(u’)
δ(B) =in(x); if x = u’ then x else v

We consider the trace t where u arrives T , but u′ at B
and thus the event Unequal() appears. The apv is apv(t) =
{{A}, {B}}, because with δ|{A}, n(B) would forward u′ to
T , which is also unequal to u. Likewise with δ|{B}; B would
not forward the message it receives from A, but forward v
instead.

The following simple and knowledge-optimal deviation ex-
plains the same trace. (We can make the same argument for
δo only defined on B).

δo(A) =out(u)
δo(B) =out(v)

In this case, apv(to) = {{B}}. But B does not imply A ∨
B. Or, in practical terms, the verdict for this deviation is not
pointing to A at all, event though A’s deviation by itself was
sufficient to cause a violation.

D. Proof for Theorem 1

Proof.

∀S′ ∈ S2∃S ∈ S1.S ⊆ S′

=⇒ ∀S′ ∈ S2∃S ∈ S1.
∧
p∈S′

p =⇒
∧
p∈S

p

=⇒ ∀S′ ∈ S2.
∧
p∈S′

p =⇒
∨

S∈S1

∧
p∈S

p

=⇒
∨

S′∈S2

∧
p∈S′

p =⇒
∨

S∈S1

∧
p∈S

p if S2 6= ∅.

⇐⇒ S1 ≤ S2.

For the other direction, we show that ∃S′ ∈ S2∀S ∈ S1.S 6⊆
S′ implies S1 6≤ S2 by contradiction. Hence we assume that
S1 ≤ S2 and fix S1, S2 and S′ such that

S1 ≤ S2 ⇐⇒
∨

S′∈S2

∧
p∈S′

p =⇒
∨

S∈S1

∧
p∈S

p (1)

As S′ ∈ S2, ∧
p∈S′

p =⇒
∨

S∈S2

∧
p∈S

p.

Hence by (1), ∧
p∈S′

p =⇒
∨

S∈S1

∧
p∈S

p.

And thus there must be S ∈ S1 such that∧
p∈S′

p =⇒
∧
p∈S

p.

Hence S ⊆ S′, contradicting the assumption.

E. Proof for Lemma 3

Proof. Let Π, δ and t be fixed but arbitrary. We can remove
any p with δ(p) = n(p) from the domain of δ. W.l.o.g., we
assume this is already the case. Let m = |t|. Then there is a
chain of reductions A0

t1−→ A1
t2−→ · · · tm−−→ Am with A0 = Πδ.

Any extended process Ai can be brought into form Ai ≡
ν~n.({~m/~x} | . . . | P1| · · · |Pk) [14]. Here ~n is a sequence
of names n1, . . . nm and ν~n is shorthand for νn1; . . . , νnm.
Moreover, observing that in the initial extended process Πδ,
P1 to Pk each correspond to exactly one party, we can require
the form

Ai ≡ ν~n.({~m/~x} | Pp1 | · · · |Ppk)

for some ordering of {p1, . . . , pk} = A w.l.o.g. (i.e., keeping
0 processes even if parties have finished execution).

Contrary to the applied π-calculus, plain processes lack
replication and thus w.l.o.g. we can assume all fresh values
are contained in ~n and Pp1 to Ppk contain only conditionals,
events and message input and message output. Furthermore,
w.l.o.g., any name transmitted is unique and every variable
bound by in is unique. Thus we can assume

A0 ≡ ν~n0.({~m0/~x0
} | Pp1 | · · · |Ppk)

and every subsequent Ai, i > 0:

Ai ≡ ν~n0.({~m0/~x0
} |ν~xp1{~mp1 /~xp1 } | Pp1
| · · · |ν~xpk{~mpk /~xpk }Ppk)

where ~xp are the variables transmitted to p so far. For each
p ∈ A and m ∈ ~mp, any variable in m is bound either in
σp′ ··= {~mp′/~xp′} where p′ was the sending party or in σ0 ··=
{~m0/~x0

}. As there is a total order on the message transmission,
this implies that the process is closed.

We now apply the following transformation to the reduction
sequence: each transition Ai−1

ti−→ Ai with ti = (pA, pB , x)
for pA and pB both in dom(δ) is removed by equating both
Ai−1 and Ai to the following process A′i−1. As this transition
is an instance of COMM,

Ai−1 ≡ ν~n0.(σ0 |σpA | (out(x).P)pA | σpB | (in(x).Q)pB
| σp3 | Pp3 | σpk | · · ·Ppk)

and

Ai ≡ ν~n0.(σ0 |σpA | PpA | σpA | QpB
| σp3 | Pp3 | σpk | · · ·Ppk)

for some P and Q, we chose A′i−1 = Ai, i.e., instead of
transmitting a message, we make sure they are contained
a priori in ~x. Then A′i−1

ti+1−−→ Ai+1. We can apply this process

backwards and obtain A′0
t1|δ−−→ A′1

t2|δ−−→ · · · tm′ |δ−−−→ Am′ for
m′ = |t|δ|. Syntactically, all corresponding input and output
constructs (according to ~t) in each Pp for p ∈ dom(δ) in A0

are removed to produce A′0. Hence we can formulate A′0 as
follows:

A′0 ≡ ν~n0.({~m0/~x0
} | σp1 | P ′p1 | σpk | · · ·P

′
pk

)

where the corresponding process P ′p in A0 contains free
variables for each ~xp, i.e., fv(P ′p) = fv(n(p)) ∪ {x ∈
~xp | (p′, p, x) ∈ ~t, p′ ∈ dom(δ)} and fn(P ′p) = fn(n(p)),
as opposed to Pp in A0, where fv(Pp) = fv(n(p)) and
fn(Pp) = fn(n(p)).

We can show by induction on the variables in

{x ∈ ~xp | p′, p ∈ dom(δ), (p′, p, x) ∈ ~t}

in order of transmission in ~t, that for each p ∈ dom(δ),
x ∈ ~xp, fv(x) ⊆

⋃
p′∈dom(δ) fv(n(p′)) and fn(x) ⊆⋃

p′∈dom(δ) fn(n(p′)), since for each m ∈ ~mp, each variable
is bound either by σp′ where p′ was the sending party, or by
σ0. Hence we can conclude that by applying SUBST for each
x ∈ ~xp for each p ∈ dom(δ), A0 is equivalent to an instance
Πδ′ for a relaxed deviation δ′.

F. Partial normal form

The partial normal form of an extended process A is an
extended process of the form ν~n.({~m/~x} | P) such that
(fv(P)∪ fv(~m))∩ ~x = ∅. [3, Appendix B.2] defines relations
for structural equivalence, unlabeled and labeled reduction on
partial normal forms,

�≡, −→◦ and α−→◦. As our calculus is only
a subset of the applied calculus with additional annotations,
these relations and lemmas can be trivially transferred. We
will assume them to hold in the proofs below.

G. Proof for Lemma 4

Proof. Fix any reduction sequence A0
α1−→· · · αn−−→An. such

that tr = (α1, . . . , αn). Due to [3, Lemma B.9], w.l.o.g.,
A0 −→◦ α1 · · · −→◦ αnAn. and all Ai in partial normal form.
We will iteratively construct a reduction sequence for the
centralized semantics such that, for any pair of positions i
and f(i) in these two sequences,

1) for tc the trace in the centralized setting up to f(i), tc =
(α1, . . . , αn){dom(δr)/context},

2) Ai has the form

Ai
�≡ ν~n. ‖

p∈dom(δr)

Dp | ‖
p∈A\T \dom(δr)

Hp | {~m/~x}

and
3) Bf(i), for the same plain process Hp, names ~x, ~n and

messages ~m

Bf(i)
�≡ ν~n. ‖

p∈A\T \dom(δr)

Hp | Br{~m/~x}] σH

where Br is an extended process which will be ignored.
(The composition of two substitutions] is defined in [3,
Appendix B.1].)

4) Both processes are closed, i.e., all free variables are
defined by active substitutions.

5) The frame σ = {~m/~x} comprises of dom(σinit) =⋃
p∈A fn(n(p)) ∪ fv(n(p)).

6) The frame σH contains all messages send by honest
parties to the context, i.e., for all {m/x} ∈ σH , x 6∈ ~n,
all m do not contain any name in ~n, and for all Dp, any
term m that occurs in Dp is equal to some tσ] σH .

Base case:

A0 = P [δr] ≡ν~n. ‖
p∈A\T \dom(δr)

Hp |

‖
p∈dom(δr)

Dp | {~m/~x},

where Dp = δr(p) and Hp = n(p). We start from

B0 = JP K ≡ ν~n. ‖
p∈A\T

Hp |

‖
p∈A\T

(event corrupt(); . . .) | {~m/~x}

and reduce the corruption subprocesses for all p1, . . . , pm ∈
dom(δr) using EVENT’, OUT’, SCOPE’, PAR’ and STRUCT’9

until we reach a process Bf(i): B0
p1,corrupt()−−−−−−−−→◦

p1,context,x
1
1−−−−−−−−→◦

· · ·
p1,context,x

m1
1−−−−−−−−−−→◦ · · ·

p1,context,n
1
1−−−−−−−−→◦ · · ·

p1,context,n
ln
1−−−−−−−−−→◦

· · · pk,corrupt()−−−−−−−−→◦
pk,context,x

1
k−−−−−−−−−→◦ · · ·

pk,context,x
mk
k−−−−−−−−−−→◦

· · · pk,context,n
1
k−−−−−−−−−→◦ · · ·

pk,context,n
ln
k−−−−−−−−−→◦ ν~n. ‖p∈A\T Hp |

‖p∈A\T \dom(δr)(event corrupt(); . . .) | {~m·~s/~x·~xs}.
Inductive case: Let Ai

α−→◦ Ai+1. We instantiate Bf(i) from
the IH. As both are closed, from [3, Lemma B.23 und B.24],
we can distinguish the following cases for

Ai+1 ≡ν~n.H ′pA |H
′
pB |D

′
pC

‖
p∈A\T \dom(δr)\{pA,pB}

Hp | ‖
p∈dom(δr)\{pC}

Dp

| {~m/~x}

1) HpA
α−→◦ H ′pA (and H ′pB = HpB , D′pC = DpC) In this

case, Bf(i+1)=i+1 can perform the same transition.
2) HpA | HpB

α−→◦ H ′pA |H
′
pB via COM’ (and D′pC = DpC).

In this case, Bf(i+1)=i+1 can perform the same transition.
3) DpC

α−→◦ D′pC via THEN’ or ELSE’ (and H ′pA = HpA ,
H ′pB = HpB). In this case, Bf(i+1) = Bf(i).

4) DpC
pC ,m−−−→◦ D′pC via EVENT’ (and H ′pA = HpA ,

H ′pB = HpB). From the IH, we can use OUT’,
SCOPE’, PAR’ and STRUCT’, to reduce Bf(i) −→◦
(context,m)Bf(i+1)=f(i)+1.

5) DpC = out(m).D′pC and HpA = in(x).H ′pA such

that Ai
(pC ,pA,m−−−−−−→◦ and σi+1 = σi ∪ {m/x} (and

H ′pA = HpA , H ′pB = HpB). From the IH, we can use
IN’, SCOPE’, PAR’ and STRUCT’, to reduce Bf(i) −→◦
(context, pA,m)Bf(i+1)=f(i)+1.

6) DpC = in(x).D′pC and HpA = out(m).H ′pA such that

Ai
(pC ,pA,m−−−−−−→◦ and σi+1 = σi ∪ {m/x} (and H ′pA =

HpA , H ′pB = HpB). W.l.o.g., x does not occur in
any Dp or Hp except DpC . From the IH, we can use
OUT’, SCOPE’, PAR’ and STRUCT’, to reduce Bf(i) −→◦
(context, pA,m)Bf(i+1)=f(i)+1 adding {m/x} to σ′.
This preserves the IH on σH and the process DpC .

9The variants of the rules in Figure 3 and 4 for the semantics on partial
normal forms [3, p. 40].

H. Proof for Lemma 5

Proof. Fix any reduction sequence A0
α1−→· · · αn−−→An. such

that tc = (α1, . . . , αn). Due to [3, Lemma B.9], w.l.o.g.,
A0 −→◦ α1 · · · −→◦ αnAn. and all Ai in partial normal form.
Hence A0 = ν~n. ‖p∈A\T \dom(δr)Hp | ‖p∈dom(δr) γ(p) | σ
with σ = {~m/~x} Let S = corrupted(tc). We will construct
δr with a domain dom(δr) = S. As the substitution tc =
tr{S/context} removes all events (p,m) with p ∈ S, including
the events with m = corrupt , w.l.o.g., we assume that any
reduction sequence starts with a complete reduction of γ(p) for
all p ∈ S. Hence there is some k after which these processes
are reduced, and Ak = ν~n. ‖p∈A\SHp | ‖p∈S γ(p) | σ] σS,
where σS =

⋃
p∈A fn(n(p)) ∪ fv(n(p)). We will iteratively

construct a deviation δr and a reduction sequence for the
decentralized semantics such that, for any pair of positions
i and f(i) in these two sequences,
• for tr the trace in the decentralized setting up to f(i),

(α1, . . . , αn) = tr{dom(δr)/context},
• Ai has the form

Bf(j)
�≡ ν~n. ‖

p∈A\T \dom(δr)

Hp | Br{~m/~x}] σH

where Br is an extended process which will be ignored.
• Bf(i), for the same plain process Hp, names ~x, ~n and

messages ~m has the form

Ai
�≡ ν~n. ‖

p∈dom(δr)

Dp | ‖
p∈A\T \dom(δr)

Hp | {~m/~x}

• Both processes are closed, i.e., all free variables are
defined by active substitutions.

• The frame σ = {~m/~x} comprises dom(σinit) =⋃
p∈A fn(n(p)) ∪ fv(n(p)).

• The frame σH contains all messages send by honest
parties to the context, i.e., for all {m/x} ∈ σH , x 6∈ ~n,
all m do not contain any name in ~n.

• If S is non-empty, δr maps all processes in S, but one
(arbitrary) to 0. The other one (we will use δr(p) as a
shorthand) is mapped to a process that only contains in
or out and fv(δr(p)) ⊆ S. For each x ∈ dom(σH), in(x)
is contained in δr(p). If S is empty, δr is, too.

• Any term m that occurs in Dp is equal to some tσ] σH
and names(t) ⊆ σ] σH .

• Dp is δr(p)’s |σH |-suffix with σH applied to it.
• δr is simple, i.e., processes in the range of δr do not

contain conditionals.
We perform induction on the length of the reduction, starting

from k instead of 0.
Base case: We set Bf(k) = B0.
Inductive case: Let Ai

α−→◦ Ai+1. We instantiate Bf(i) from
the IH. As both are closed, we can distinguish the following
cases for Ai+1 ≡ ν~n.H ′pA |H

′
pB ‖p∈A\T \dom(δr)\{pA,pB}Hp |

{~m/~x}] σ′H

1) α = (pA, context,m). By IH, pA ∈ A \ S and HpA =
(out(m).P)pA in both Ai and Bf(i). This transition must
result from a combination of OUT’, SCOPE’, PAR’ and
STRUCT’, and therefore H ′pA = PpA and σ′H = σH]
{x/m}. By the side conditions of SCOPE’ and PAR’, x
does not occur in ~n or is free in any other Hp for p 6= pA.
As Ai is closed, fv(m) ⊆ ~m ∪ range(σH).
We update δr(p) by appending in(x), to preserve the
IH. We proceed with a communication step Bf(i) −→◦
αBf(i+1) = Bf(i)+1.

2) α = (context, pB ,m). By IH, pB ∈ A \ S and HpB =
(in(x).P)pB in both Ai and Bf(i). By side condition of
SCOPE, m cannot contain variables from ~n, hence (as
Ai is closed), fv(m) ⊆ dom(σH). We update δr(p) by
appending out(m). By IH, x is bound in δr(p) and Di =
out(mσH). Therefore COMM’ applies and the IH holds
for Bf(i) −→◦ αBf(i+1) = Bf(i)+1.

3) HpA
α−→◦ H ′pA (and H ′pB = HpB) In this case,

Bf(i+1)=i+1 can perform the same transition.
4) HpA | HpB

α−→◦ H ′pA |H
′
pB via COM’ (and D′pC = DpC).

In this case, Bf(i+1)=i+1 can perform the same transition.
5) 0

context,m−−−−−−→◦ 0 via CONTEXT-EVENT’ (and H ′pA =
HpA , H ′pB = HpB). Like in the previous case where
α = (context, pB ,m), by side condition of SCOPE,
m cannot contain variables from ~n, hence (as Ai is
closed), fv(m) ⊆ dom(σH). We update δr(p) by ap-
pending event(m). From the IH, we can use EVENT’10

SCOPE’, PAR’ and STRUCT’, to reduce Bf(i) −→◦
(p,m)Bf(i+1)=f(i)+1, where Bf(i+1) is like Bf(i), but
with Dp = 0.

I. Proof for Lemma 7

Proof. Fix tc, tr, δr and S ⊆ A s.t. S ∈ apv(tc). By Def. 4,
there is t′c ∈ tracescent(JΠK) such that corrupted(t′c) = S and
¬ϕ(t′c). For Π = (A,n), we define Π′ = (A,n[δr]) where
n[δr] is δr wherever δr is defined, and n otherwise. In Π′, we
define dom(δr) to be trusted. Observe that By Lemma 5, there
is a simple relaxed deviation δ′r and a trace t′r ∈ traces(Π, δr)
such that t′c = 6�δr t

′
r and dom(δ′r) = corrupted(t′c) = S Be-

cause ¬ϕ(t′c) and ϕ is congruent w.r.t. V , this means ¬ϕ(t′r).
Because S ⊆ dom(tc), tc = |St′c, t′c = 6�dom(δ)δr t′r, and
tc = 6�dom(δ)δr tr, we can apply Lemma 6 to obtain tr = |St′r.
Therefore, and because δ′r is simple, we have δ′r = δr|S (or
there is a δ′r such that this is the case and tr ∈ traces(Pδ′r)).
Hence either S ∈ apv(tr, δr), or there is a simple relaxed
deviation δ∗r and a trace t∗r ∈ traces(Π, δr) such that ¬ϕ(t∗r),
dom(δ∗r) (S. and t′r = |dom(δ∗r)t

∗
r , and In the latter case, from

Lemma 4, we have t∗c with t∗c = 6�dom(δ)δ∗r
t∗r (hence ¬ϕ(t∗c))

and S′ = corrupted(t∗c) = dom(δ∗r) (S. From Lemma 6,
we conclude that tc =S′ t

∗
c . This, however, contradicts the

minimality requirement of Def. 4 for S ∈ apv(tc). Hence
S ∈ apv(tr, δr) has to hold.

10EVENT’ is defined like EVENT, but with −→� instead of −→.

Any S 6∈ apv(tc) is either excluded by the minimality
requirement, (in which case there is a strict subset S′ ∈
apv(tc), and, as argued before, S′ ∈ apv(tr, δr), and thus
S 6∈ apv(tr, δr)) or there is no t′c with tc =S t′c and
corrupted(t′c) = S. In the latter case, we can apply the
previous argument again: any simple relaxed deviation δ∗r
and trace t∗r ∈ traces(Π, δr) such that ¬ϕ(t∗r), t′r =S t∗r
and dom(δ∗r) = S would imply the existence of t∗c with
tc =S t∗c and corrupted(t∗c) = dom(δ∗r) = S, contradict-
ing the assumption. Therefore, S 6∈ apv(tr, δr), and thus
apv(tc) = apv(tr, δr).

	Introduction
	Related work
	Process calculus
	Accountability
	A posteriori verdict
	Discussion
	Verdict function
	Definition of accountability
	Discussion
	The trouble with provocation

	Accountability under optimality assumptions
	Sane optimality notions and accountability

	Verdict-optimality
	Knowledge optimality
	Separating verdict-optimality, knowledge-optimality and simple deviations
	Simple deviations and the soundness of the centralized-adversary setting
	Conclusion
	Appendix
	Operational semantics
	Policies for accountability
	Relaxed deviations are not weakly complete
	Proof for Theorem 1
	Proof for Lemma 3
	Partial normal form
	Proof for Lemma 4
	Proof for Lemma 5
	Proof for Lemma 7

