
The Complexity of
Multiparty PSM Protocols and Related Models?

Amos Beimel1, Eyal Kushilevitz2, and Pnina Nissim1

1 Dept. of Computer Science, Ben Gurion University, Beer Sheva, Israel
amos.beimel@gmail.com,pninani@post.bgu.ac.il

2 Dept. of Computer Science, Technion, Haifa, Israel
eyalk@cs.technion.ac.il

Abstract. We study the efficiency of computing arbitrary k-argument
functions in the Private Simultaneous Messages (PSM) model of [10, 14].
This question was recently studied by Beimel et al. [6], in the two-party
case (k = 2). We tackle this question in the general case of PSM protocols
for k ≥ 2 parties. Our motivation is two-fold: On one hand, there are var-
ious applications (old and new) of PSM protocols for constructing other
cryptographic primitives, where obtaining more efficient PSM protocols
imply more efficient primitives. On the other hand, improved PSM pro-
tocols are an interesting goal on its own. In particular, we pay a careful
attention to the case of small number of parties (e.g., k = 3, 4, 5), which
may be especially interesting in practice, and optimize our protocols for
those cases.
Our new upper bounds include a k-party PSM protocol, for any k > 2
and any function f : [N ]k → {0, 1}, of complexity O(poly(k) · Nk/2)
(compared to the previous upper bound of O(poly(k) ·Nk−1)), and even
better bounds for small values of k; e.g., an O(N) PSM protocol for
the case k = 3. We also handle the more involved case where different
parties have inputs of different sizes, which is useful both in practice and
for applications.
As applications, we obtain more efficient Non-Interactive secure Multi-
Party (NIMPC) protocols (a variant of PSM, where some of the par-
ties may collude with the referee [5]), improved ad-hoc PSM proto-
cols (another variant of PSM, where the subset of participating par-
ties is not known in advance [4, 7]), secret-sharing schemes for strongly-
homogeneous access structures with smaller share size than previously
known, and better homogeneous distribution designs [4] (a primitive with
many cryptographic applications on its own).

1 Introduction

Private simultaneous messages (PSM) protocols, introduced by Feige, Kilian,
and Naor [10] and further studied by Ishai and Kushilevitz [14], are secure multi-
party computation (MPC) protocols with a minimal communication pattern. In
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a PSM protocol for a function f , there are k parties, each of them holds a common
random string r and a private input xi. Each party computes a message based on
its input and the common random string and sends it to a referee. The referee,
which gets the k messages but does not know the common random string, should
be able to compute f(x1, . . . , xk) without learning any additional information
about the inputs. This model, beside being interesting for its simplicity, implies
many cryptographic primitives e.g., constant round secure multi-party protocols
(without a common random string) [14, 15], protocols for conditional disclosure
of secrets [6], generalized oblivious transfer protocols [14], and zero-information
Arthur-Merlin protocols [1]. Several generalizations of PSM protocols have been
studied, e.g., non-interactive (or robust) MPC [5], in which security is guaranteed
even when the referee colludes with some parties, and ad-hoc PSM protocols [4,
7], in which only a subset of the parties take part in computing the function. It
was shown that PSM protocols imply these generalizations [7, 8].

The common random string is crucial for this model – without it only very
simple functions can be securely computed against an unbounded adversary;
however, given the common random string, there is a PSM protocol (i.e., with-
out any interaction) for any function [10]. Furthermore, many functions can
be computed by PSM protocols with short messages, e.g., functions that have
small non-deterministic branching programs (i.e., NL) [10] and even functions
that have small modular branching programs [14]. Beimel et al. [6] presented
improved upper-bounds for computing arbitrary functions in the 2-party PSM
model. In this paper, we present improved upper-bounds for computing arbitrary
functions in the k-party case. Then, we show that these improvements imply bet-
ter complexity for various other primitives, including homogenous distribution
designs, t-robust non-interactive secure multi-party computation protocols, and
secret-sharing schemes for, so-called, strongly-homogenous access structures. We
elaborate below.

1.1 Our results

Our main contributions are constructions of multi-party PSM protocols for every
function. Prior to our work, the length of the messages in the best known PSM
protocol for an arbitrary function f : [N ]k → {0, 1} was O(Nk−1) for k ≥ 3 [10]
and O(N1/2) for k = 2 [6]. We present, for every k > 2, a PSM protocol with
messages of length O(poly(k)Nk/2); for k = 3, 4, 5 we present better protocols
(see Fig. 1). Understanding the complexity of secure computation with small
number of parties is motivated by practical systems and was done in other secure
computation contexts (see, e.g., [13]). We also design PSM protocols for functions
in which the inputs have different lengths. For example, for any 3-argument
function f : [Nα] × [Nα] × [N ] → [N ] for some α ≥ 1 (i.e., a function in
which the largest two input domains are the same), we design a PSM protocol
whose communication complexity is O(N (2α+1)/3) (that is, proportional to the
geometric average of the domains).

There are two additional advantages for our protocols for k ≥ 6:



Num. of parties Complexity citation

2 O(N1/2) [6]

3 O(N) this paper

4 O(N5/3) this paper

5 O(N7/3) this paper

k ≥ 6 O(k3 ·Nk/2) this paper

Fig. 1. Complexity of PSM protocols for an arbitrary functions.

– They can handle long outputs with the same message length, that is for every
function f : [N ]k → [Nk], we construct a PSM protocol with complexity
O(k3 ·Nk/2).3

– By increasing the complexity by a poly(logN) factor, the protocol can be
made locally computable; that is, each party, holding an input from [N ], can
compute logN messages, where each message depends on a single bit of the
input. This property is useful when we design PSM protocols for some of
the applications (e.g., when constructing NIMPC protocols from our PSM
protocols; see below).

Following [6], our protocols use techniques from private information retrieval
(PIR) [9]; specifically, we use the cube approach of [9], where a function f :
[N ]k → {0, 1} is represented by a d-dimensional cube, for some integer d. The
2-party PSM protocol of [6] uses a 4-dimensional cube. For k = 3, 4, 5 we use a 3-
dimensional cube, and for k ≥ 6 we use a 2-dimensional cube. These turn out to
be the optimal values of d for our approach. The fact that we can only use integral
values for d results in the “somewhat unnatural” exponents in the Fig. 1. As the
number of dimensions in our protocols for k ≥ 4 is smaller than the number of
parties, our protocols have to address a few problems that were not relevant in
the 2-party protocol of [6].

We note that, by simulation arguments, if for every N , every function f :
[N ]k → {0, 1} has a k-party PSM protocol with message length O(Nα) for
some constant α, then every function g : [N ]2 → {0, 1} has a 2-party PSM
protocol with message length O(Nα/bk/2c). Thus, if one can improve the message
length for k-party PSM protocols for an arbitrary function beyond O(Nk/4) for
an even k, then this would yield 2-party PSM protocols with message length
O(Nα) for α < 1/2. Similarly, any improvement for k-party PSM protocols
for k > 6, would imply an improvement for 6-party PSM protocols compared
to our protocols. Thus, to improve the complexity of k-party PSM protocols
for arbitrary functions, one might want to start with designing k-party PSM
protocols for small values of k.

3 As the inputs are from [N ]k, we can assume without loss of generality that the size
of the domain of the outputs of f is at most Nk.



1.2 Applications

We show that our PSM protocols imply the following constructions.

Non-Interactive secure Multi-Party (NIMPC) protocols. A non-interactive MPC
protocol [5] is a PSM protocol in which the security is guaranteed even when
the referee colludes with some parties. Specifically, a k-party NIMPC protocol is
t-robust if it is secure against any coalition of the referee and at most t parties,
and it is fully robust if it is k-robust. Prior to our work, the length of mes-
sages in the best known fully robust NIMPC protocol for an arbitrary function
f : [N ]k → {0, 1} was O(poly(logN, k) ·Nk) [19] (improving on [5]). No better
t-robust protocols were known for any t > 0. We construct t-robust NIMPC
protocols for any function f : [N ]k → {0, 1} with complexity Õ(Nk/2+t); that
is, we improve the complexity when t < k/2. Our construction is based on an
information-theoretic transformation of [8] that takes any PSM (i.e., 0-robust
NIMPC) protocol and transforms it into a t-robust NIMPC protocol. An im-
mediate application of this transformation yields a t-robust NIMPC protocol
with complexity Õ(Nk/2+t+1). We use properties of our protocols and of the
transformation of [8] to improve the complexity by a factor of N . For example,
we construct a fully-robust 3-party NIMPC protocol with complexity Õ(N2.5)
(compared to O(N3) using the transformation as is). Thus, for 3 parties, we
improve the complexity of fully-robust NIMPC protocols compared to [19].

Ad-hoc PSM protocols. A k-out-of-n ad-hoc PSM protocol [4, 7] is a PSM proto-
col with n parties, where only k parties, whose identity is not known in advance,
actually participate in the execution of the protocol. For example, think of an
election, where only some of the potential voters will end up voting. Using a
transformation, presented in [7], from a t-party PSM protocol for a symmetric
function to an ad-hoc PSM protocol for the same function, we construct a k-out-
of-n ad-hoc PSM protocol for any symmetric function f : [N ]k → {0, 1} with
communication complexity O(ek · k6 · log n ·Nk/2).

Distribution designs. The goal of a distribution design, introduced in [4], is to
find a joint distribution on N random variables that satisfies a given set of
constraints on the marginal distributions. Each constraint can either require
that two sets of variables are identically distributed or, alternatively, that two
sets of variables have disjoint supports. Distribution design generalizes many
cryptographic primitives, such as secret-sharing, PSM protocols, and NIMPC
protocols. We consider k-homogeneous sets of constraints, where all sets in the
constraints are of size exactly k. In [4], it was shown that every k-homogeneous
set of constraints without contradictions can be realized by a distribution design
such that the size of the support of each variable is O(

(
N
k

)
k logN). We show that,

for every k-homogeneous set of constraints, we can define a symmetric function
f : [N ]k →

(
N
[k]

)
such that any ad-hoc PSM protocol Π for f can be used to

construct a distribution design realizing the constraints, where each variable is a
message of a party inΠ. Using the 2-party PSM of [6] and the two transformation



described above, we get a distribution design for every 2-homogeneous set of
constraints in which the size of the support of each variable is O(log2N ·

√
N).

Using our constructions of PSM protocols, we get a distribution design for every
k-homogeneous set of constraints in which the support of each variable is of size
O(k6ek logN ·Nk/2). For 3 ≤ k ≤ 5, we get better distribution designs.

Conditional Disclosure of Secrets. In Conditional Disclosure of Secrets (CDS)
protocols, introduced in [12], there are k parties, a referee, and a function f :
[N ]k → {0, 1}. As in the PSM model, each party gets a common random string
r and an input xi. In addition, all parties (excluding the referee) have a secret s.
Each party Pi sends one message to the referee, based on r, xi and s. The referee,
which in the CDS setting knows the inputs x1, . . . , xk, should learn s if and only
if f(x1, . . . , xk) = 1. It was shown in [2] that every PSM protocol for f implies a
CDS protocol for f with the same complexity. Thus, our PSM protocols imply
CDS protocols. However, there are direct constructions of CDS protocols that are
much more efficient than the known PSM protocols. Liu, Vaikuntanathan, and
Wee [16] showed a CDS protocol for an arbitrary 2-party function f : [N ]×[N ]→
{0, 1} with communication complexity 2O(

√
logN log logN) = No(1). Very recently,

Liu, Vaikuntanathan, and Wee [17] have shown a construction of k-party CDS

protocols for any function f : [N ]k → {0, 1} with complexity 2Õ(
√
k logN).

We show that CDS protocols imply secret-sharing schemes for strongly ho-
mogeneous access structures. An access structure is t-homogeneous if all minimal
authorized sets are of size t. In such access structures all sets of size less than t are
unauthorized and there can also be large sets that are unauthorized. We say that
an access structure is strongly t-homogeneous if all minimal authorized sets are
of size t or t+1 and all sets of size t+1 are authorized. Strongly 2-homogeneous
access structures are called forbidden graph access structures [18] and were stud-
ied in, e.g., [3, 2]. Secret-sharing schemes for forbidden bipartite graph access
structures with N parties are equivalent to 2-party CDS protocols for functions
f : [N ]2 → {0, 1}. We show that if every k-party function f : {0, 1}k → {0, 1} has
a CDS protocol with communication complexity Com(k), then every strongly t-
homogeneous access structure with k parties can be realized by a secret-sharing
scheme with share size k ·Com(k). Combined with the result of [17], we get that
every strongly t-homogeneous access structures with k parties can be realized

by a secret-sharing scheme with share size 2Õ(
√
k).

1.3 Discussion

CDS protocols vs. PSM protocols. The models of CDS and PSM look similar
except that, in CDS protocols, the referee knows the inputs and should learn the
secret if and only if some function of the inputs returns 1, while in PSM protocols
the referee should learn the value of the function without learning additional
information about the inputs. It was shown in [12, 6] that a PSM protocol for f
implies a CDS protocol for f with the same complexity. This similarity and the
recent dramatic efficiency improvements for CDS protocols [16, 17] may indicate
that better PSM protocols also exist.



There are, however, some differences between the models. In [11], it was
shown that a CDS protocol for a function f : [N ] × [N ] → {0, 1} can be con-
structed from a CDS for the index function – a function where P1 holds a list
of length N , party P2 holds an index i and the referee should reconstruct the
secret if and only if the ith element in the list is 1. The CDS protocols of [16] for
an arbitrary function build on a construction of a CDS protocol for the index
function. The PSM of [10] for an arbitrary function can be seen as, implicitly,
constructing a PSM for the index function. However, the correctness of PSM
protocols (even without the security requirement) implies that the communica-
tion complexity of any PSM protocol for the index function is Ω(N). Thus, for
non-binary functions there is a separation between the CDS and PSM models.
It is open if such huge separation exists for Boolean functions. We note that our
constructions of PSM protocols use PSM protocols for the (k-dimensional) index
function, however with shorter lists.

An alternative approach. We next describe an alternative approach for con-
structing PSM protocols with communication complexity that is better than
that of previously known protocols, but is worse than the complexity of the pro-
tocols constructed in this paper. We explain some difficulties in applying this
approach. Suppose we want to construct a 4-party PSM protocol for a function
f : [N ]4 → {0, 1} using a 2-party PSM protocol. Viewing the function f as a
two-argument function with domain [N2] × [N2], by [6], it has a 2-party PSM
protocol with complexity O(N), where the first message m1 depends on the in-
puts of the first two parties and the second message m2 depends on the inputs
of the other two parties. Thus, the first two parties can execute a PSM protocol
for computing m1. This can be done by O(N) invocations of a (2-party) PSM
protocol with a binary output. If the parties could have used the PSM of [6],
which has complexity O(N0.5), then the resulting PSM protocol would have
complexity O(N1.5). However, we do not know how to use the PSM protocol
of [6] here, since it only applies to deterministic functions and the messages of
the 2-party PSM protocol depend on the common randomness.4 Instead, one can
apply the protocol of [10], which can be used for randomized functions as well,
but has complexity O(N). This gives a protocol with complexity O(N2). More
generally, for k-party functions this approach results in a PSM with complexity
O(N3k/4−1). This approach is described in more details in Section 6.

Our protocols can be viewed as a generalization of the above approach. In-
stead of using the PSM protocol of [10] to compute the message of a 2-party
protocol, we use a special purpose PSM protocol to compute the message. For
example, our k-party protocol from Section 4 can be viewed as simulating the
2-party PSM protocol from Section 3.2.

4 We can treat the random string generating the message as a common input (or as
an input of, e.g, P1). However, this increases the length of the inputs, resulting in a
non-efficient protocol.



2 Preliminaries

In this section we define PSM protocols and describe two PSM protocols that
will be used in this paper.

2.1 Private Simultaneous Messages Protocols

In a PSM protocol, k parties P1, . . . , Pk hold a common random string r and
inputs x1, . . . , xk, respectively; each party Pi sends a single message to a ref-
eree, based on r and its xi, so that the referee learns the value of a function
f(x1, . . . , xk) but nothing else. It is formally defined as follows:

Definition 2.1 (PSM protocols – Syntax and correctness). Let X1, . . . , Xk,
and Z be finite domains. A private simultaneous messages (PSM) protocol P,
computing a k-argument function f : X1 × · · · ×Xk → Z, consists of:

– A finite domain R of common random inputs, and k finite message domains
M1, . . . ,Mk.

– Message computation algorithms Enc1, . . . ,Enck, where Enci : Xi × R →
Mi.

– A reconstruction algorithm Dec : M1 × · · · ×Mk → Z.

We say that the protocol P is correct (with respect to f) if Dec(Enc1(x1, r),
. . . ,Enck(xk, r)) = f(x1, . . . , xk), for every input (x1, . . . , xk) ∈ X1 × · · · ×Xk

and every random input r ∈ R. The communication complexity of PSM protocol
P is defined as

∑k
i=1 log |Mi|. The randomness complexity of PSM protocol P is

defined as log |R|.

The security of a PSM protocol requires that the message distribution seen
by the referee on input x1, . . . , xk can be generated by a simulator that has
access only to f(x1, . . . , xk); that is, everything that can be learned from the
PSM protocol can be learned from the output of f .

Definition 2.2 (PSM protocols – Security). A PSM protocol P is secure
with respect to f if there exists a randomized algorithm Sim such that, for every
input (x1, . . . , xk) ∈ X1×· · ·×Xk, the distribution of messages (Enc1(x1, r), . . .
,Enck(xk, r)) induced by uniformly choosing a common random string r ∈ R
and the distribution of the output of Sim(f(x1, . . . , xk)) are identical.

Ishai and Kushilevitz [14] have shown that every function that has a small
modular or non-deterministic branching program can be computed by an efficient
PSM protocol. We will use their result for a deterministic branching program.

Theorem 2.3 ([10, 14]). Let BP = (V,E, φ, s, t) be a deterministic branching
program of size α(k) computing a function f : {0, 1}k → {0, 1}. Then, there
exist a PSM protocol for f with communication and randomness complexity O(k ·
α(k)

2
).



Notation. Denote by [N ] the set {1, 2, . . . , N}. For a finite set S, denote choosing
a random element i from S with a uniform distribution by i ∈R S; similarly,
denote choosing a random subset T of S with a uniform distribution by T ⊆R S.

2.2 A PSM Protocol for the Index Function

In this section, we show a construction of [10] of a PSM protocol for the index
function defined below.

Definition 2.4. We represent a string D ∈ {0, 1}Nk−1

as a (k−1)-dimensional
cube (array), that is, D = (Dx2,...,xk)x2,...,xk∈[N ], where each Dx2,...,xk is a bit.
For a (k− 1)-dimensional cube D, and a position (i2, . . . , ik) let Di2,...,ik denote
the value in position (i2, . . . , ik) in the cube D. We define a k-argument function

indN,k : {0, 1}Nk−1 × [N ] × · · · × [N ] → {0, 1}, whose inputs are a (k − 1)-
dimensional cube and k−1 indices, by indN,k(D,x2, . . . , xk) = Dx2,...,xk ; that is,
indN,k(D,x2, . . . , xk) returns the value of D in the position indexed by x2, . . . , xk.
When N, k will be clear from the context, we will write ind instead of indN,k

For sake of completeness, we next present a PSM protocol for the index
function, based on a PSM from [10]; for simplicity, we assume here that N is a
power of 2 (and so values in [N ] can be represented by logN -bit strings).

Claim 2.5 ([10]). There is a k-party PSM protocol PindN,k computing the func-

tion indN,k with communication and randomness complexity is O(kNk−1).

Proof. In a non-secure protocol for indN,k, party P1 would send its input D and
parties P2, . . . , Pk would send their inputs, x2, . . . , xk respectively, to the referee
who could easily compute Dx2,...,xk . However, in a secure protocol, the referee
should not learn information on D and x2, . . . xk except for Dx2,...,xk .

To hide the indices x2, . . . , xk we permute D: we give (k− 1) random strings
r2, . . . , rk ∈ [N ] to the parties as their common randomness. Now, party P1 cre-
ates a new cube D′ such that D′x2,...,xk

= Dx2⊕r2,...,xk⊕rk for every x2, . . . , xk ∈
[N ]. Party P1 sends to the referee D′ and parties P2, . . . , Pk send to the ref-
eree x2 ⊕ r2, . . . , xk ⊕ rk respectively. The referee computes D′x2⊕r2,...,xk⊕rk =
D(x2⊕r2)⊕r2,...,(xk⊕rk)⊕rk = Dx2,...,xk as required.

In the above protocol the referee does not learn information on x2, . . . xk;
however, it learns information on the cube D because party P1 sends D′, which
is a shift of the cube D. We fix this protocol by masking D′ and revealing to
the referee only the mask of position x2, . . . , xk. Specifically, we choose (k −
1) random strings r2, . . . , rk ∈ {0, 1}Nk−1

; each string is viewed as a (k − 1)-
dimensional cube. Party P1 computes D′′ = D′ ⊕ r2 ⊕ · · · ⊕ rk and sends D′′,
which is now a random string. Each party Pj , for j = 2, . . . , k, sends xj ⊕ rj
and also rji2,...,ij−1,xj⊕rj ,ij+1,...,ik

for every i2, . . . , ij−1, ij+1, . . . , ik ∈ [N ] (the

length of the message of Pj is logN +Nk−2). The referee computes Dx2,...,xk as

D′′x2⊕r2,...,xk⊕rk ⊕ (
⊕k

j=2 r
j
x2⊕r2,...,xk⊕rk). To see that the protocol is secure note

that for each entry in the cube the referee gets at most k − 2 masks (except for



the entry (x2 ⊕ r2, . . . , xk ⊕ rk) for which the referee gets all k − 1 masks). The
communication complexity of this protocol is O(Nk−1 +k ·Nk−2) = O(k ·Nk−1)
and the randomness complexity is O(k ·Nk−1). ut

Remark: The dominant contribution to the complexity of the above protocol
comes from the size of the cube (i.e., Nk−1). We will sometimes need a natural
extension of Pind, where the dimensions are not necessarily of the same size. It
is not hard to see that the complexity of this variant remains proportional to
the size of the cube.

2.3 A PSM Protocol for S ⊕ {x}

For a set S and an element i, let S⊕{i} denote the set S\{i} if i∈S, and the set
S∪{i} otherwise.

Definition 2.6. Define the function Sxor : {0, 1}Nk×[N ]×· · ·×[N ]→ {0, 1}Nk

as the function, whose inputs are a string of length Nk (interpreted as a set con-
tained in [Nk]) and k elements from [N ], where Sxor outputs a string of length
Nk (again, interpreted as a set contained in [Nk]) such that Sxor(S, x1, . . . , xk) =
S ⊕ {x1 ◦ x2 ◦ · · · ◦ xk} (where x1 ◦ x2 ◦ · · · ◦ xk is the concatenation of the k
strings, interpreted as an element of [Nk]).

We construct a k-party PSM protocol for Sxor, where P1 holds S and x1 and
P2, . . . , Pk hold x2, . . . , xk, respectively.5

Claim 2.7. There exists a PSM protocol PSxor computing the function Sxor with
communication and randomness complexity O(k3 ·Nk).

Proof. Let S′ = Sxor(S, x1, . . . , xk) and for every i1, . . . , ik ∈ [N ] denote Si1,...,ik
and S′i1,...,ik as the i1 ◦ · · · ◦ ikth bits of the strings S and S′ respectively.

To compute Sxor, for every bit of S′ we execute a PSM protocol comput-
ing the bit as explained below. For each (i1, . . . , ik) such that (i1, . . . , ik) 6=
(x1, . . . , xk), it holds that S′i1,...,ik = Si1,...,ik , and S′x1,...,xk

= Sx1,...,xk⊕1. Let `j
be 1 if ij = xj and 0 otherwise. Notice that S′i1,...,ik = Si1,...,ik⊕(`1∧`2∧. . .∧`k).
Thus, every bit of S′i1,...,ik depends only on one bit of S and on `1, . . . , `k,
where party Pj can locally compute `j from xj and ij . Define the function
g : {0, 1}k+1 → {0, 1} such that g(s, `1, . . . , `k) = s⊕ (`1 ∧ `2 ∧ . . .∧ `k) for every
s, `1, . . . , `k ∈ {0, 1}. We have shown that S′i1,...,ik could be computed using Nk

copies of a PSM for g.
Next, we show the existence of an efficient k-party PSM protocol Pg for g,

where P1 holds the inputs s and `1 and each party Pj , for 2 ≤ j ≤ k, holds
the input `j . There is a simple deterministic branching program of size O(k)
computing g, thus, by Theorem 2.3, we get that g has an efficient PSM protocol
Pg with complexity O(k3).

5 When we use this PSM protocol, all parties know S. We do not use this advantage
as it cannot significantly improve the complexity of the protocol.



Protocol PSxor computing Sxor executes the protocol Pg for every bit of
S′, namely Nk times. The correctness and privacy of protocol PSxor follows
immediately from the correctness and privacy of the PSM protocol Pg. The
complexity of PSxor is O(k3Nk). ut

3 A 3-Party PSM Protocol for an Arbitrary Function

In this section we show that every function f : [N ]3 → {0, 1} has a PSM protocol
with communication and randomness complexity of O(N). Our construction is
inspired by the cubes approach of [9]. We describe this approach in Section 3.1.
Next, as a warm-up, we construct a 2-party PSM protocol using this approach
in Section 3.2. We describe the 3-party PSM protocol in Section 3.3.

3.1 The Cube approach

We start with a high level description of the cube approach; specifically, for the
case of 2-dimensional cubes, we present a PIR protocol with 4 servers from [9].
Recall that in a PIR protocol, a client holds an index x, each server holds a copy
of database D, and the goal of the client is to retrieve Dx without disclosing
information about x.

The starting point of the cube approach [9] (restricted here to 2 dimensions)
is viewing the database D as a 2-dimensional cube containing N2 bits, that is
D = (Di1,i2)i1,i2∈[N ]. Correspondingly, the index that the client wishes to retrieve
is viewed as a pair x = (x1, x2). The protocol starts by the client choosing a
random subset for each dimension, i.e. S1, S2⊆R [N ]. The client then creates
4 queries of the form (T1, T2) where each Tj is either Sj itself or Sj⊕{xj};
i.e. (S1, S2), (S1 ⊕ {x1}, S2), (S1, S2 ⊕ {x2}), and (S1 ⊕ {x1}, S2 ⊕ {x2}); we
denote these 4 queries by q00, q10, q01, q11, respectively. The client sends each
query to a different server (2·N bits to each server). A server, which gets a
query (T1, T2), replies with a single bit which is the XOR of all bits of D in
the sub-cube T1⊗T2, i.e.

⊕
i1∈T1,i2∈T2

Di1,i2 . The observation made in [9] is that
each element of the cube appears in an even number of those 4 sub-cubes except
the entry x = (x1, x2) that appears exactly once. Therefore, taking the XOR of
the 4 answer bits, all elements of the cube are canceled except for the desired
element in position x. Each server gets no information about x from its query. For
example, in the query q01, the sets S1 and S2 ⊕ {x2} are uniformly distributed,
independently of x1, x2.

The above approach can be generalized to any number of dimensions. Specif-
ically, for 3 dimensions, the client chooses 3 sets S1, S2, S3 ⊆ [N ] and generates
8 queries q000, . . . , q111.

3.2 A 2-Party PSM Protocol

Given a function f : [N ] × [N ] → {0, 1}, we construct a 2-party PSM protocol
P2 for f using the above approach. This PSM protocol is not as efficient as the



PSM protocol of [6]; we present it to introduce the ideas we use in our PSM
protocol for k > 2 parties. The protocol is formally described in Fig. 2.

Next, we give an informal description of an insecure protocol, and then we
fix it so it will be secure. We associate the function f with an N2-bit database,
viewed as a 2-dimensional cube (that is, the (x, y) entry in the database is
f(x, y)). The common randomness of the two parties is viewed as two random
subsets, one for each dimension, i.e. S1, S2⊆R [N ]. In the PSM protocol, party
P1 holds x1, party P2 holds x2, and the referee wishes to compute f(x1, x2), i.e.
the XOR of the answers to the same 4 queries mentioned above. This should
be done without learning information about x1, x2 (besides what follows from
f(x1, x2)). In the protocol, P1 computes the answers, denoted a00, a10, to the
queries q00, q10 (using S1, S2 and its input x1). For example, the answer to the
query q10 is

a10 = ⊕i1∈S1⊕{x1},i2∈S2
f(i1, i2).

It then sends these answers to the referee. Similarly, P2 computes the answer,
denoted a01, to the query q01 and sends it to the referee. Now, the referee has
the answers to 3 of the 4 queries and the only query that remains unanswered
is q11. To compute the answer to q11, party P1 sends to the referee S1⊕{x1}
and P2 sends S2⊕{x2}, i.e. the referee gets the query q11 and can compute the
corresponding answer a11 (as it knows the function f). Now, the referee has the
answers to all 4 queries and it can compute f(x1, x2) = a00⊕a10⊕a01⊕a11. The
correctness of this protocol follows immediately from the correctness of the cube
approach.

This protocol is not secure because the referee learns the answers to all
4 queries and this could leak information about x1 and x2. In order to deal
with this problem, we add one more random bit to the common randomness
of the two parties, i.e., b ∈R {0, 1}. Party P1 sends to the referee a00⊕a10⊕b
instead of a00, a10, and P2 sends a01⊕b instead of a01. Now, the referee only gets
random bits from the parties (from the randomness of S1, S2, b) and it learns
only f(x1, x2). The communication complexity and randomness complexity of
this protocol are O(N).

More formally, to argue that the PSM protocol P2 described in Fig. 2 is
secure, we construct a simulator whose input is f(x1, x2) and whose output
is two messages distributed identically to the messages in P2. The simulator
first chooses with uniform distribution two sets T1, T2 ⊆R [N ] and a random
bit c ∈ {0, 1}. It then computes the answer to the query q11, namely, a11 =
⊕i1∈T1,i2∈T2f(i1, i2). Finally, it outputs (c, T1), (c ⊕ f(x1, x2) ⊕ a11, T2). Note
that in the messages of P2 the sets S1⊕{x1} and S2⊕{x2} are distributed inde-
pendently with uniform distribution. Furthermore, m1 is uniformly distributed
given the two sets, since we mask m1 with a random bit b. Finally, by the cor-
rectness of P2, given m1, S1 ⊕ {x1}, S2 ⊕ {x2}, and f(x1, x2), the value of m2

is fully determined (as the sets determine a11). Thus, the simulator’s output is
distributed as the messages generated in protocol P2 on inputs x1, x2.



Protocol P2

Common randomness: Both parties share uniform random strings:

– S1, S2⊆R [N ] and b∈R{0, 1}.

The protocol:

1. P1, holding x1, computes the answers a00, a10 to the queries q00 = (S1, S2)
and q10 = (S1 ⊕{x1}, S2) respectively. It then computes q111 = S1 ⊕{x1}.
Finally, it sends m1 = a00⊕a10⊕b and q111 to the referee.

2. P2, holding x2, computes the answer a01 to the query q01 = (S1, S2⊕{x2}).
It then computes q211 = S2 ⊕ {x2}. Finally, it sends m2 = a01⊕b and q211
to the referee.

3. The referee computes the answer a11 to the query q11 = (q111, q
2
11) =

(S1 ⊕ {x1}, S2 ⊕ {x2}). The referee computes f(x1, x2) = m1⊕m2⊕a11.

Fig. 2. A 2-party PSM protocol P2 for a function f : [N ]× [N ]→ {0, 1}.

3.3 A 3-Party PSM Protocol

In this section, we show how to construct a PSM protocol P3 for any function
f : [N ]3 → {0, 1} with communication and randomness complexity O(N). As in
the 2-party case above, our construction is inspired by the cube approach [9], as
described in Section 3.1, using 3-dimensional cubes.

Again, we first give an informal description of an insecure protocol, and then
we fix it so it will be secure. The protocol P3 is formally described in Fig. 3. We
associate f with an N3-bit database that is viewed as a 3-dimensional cube. The
common randomness of the 3 parties consists of 3 random subsets, one for each
dimension, i.e., S1, S2, S3⊆R [N ]. The referee wishes to compute f(x1, x2, x3),
i.e. the XOR of the answers to 8 queries. Each query is of the form (T1, T2, T3)
where each Tj is either Sj or Sj⊕{xj}. Party P1 computes the answers a000, a100
to the queries q000, q100 respectively, and sends these answers to the referee.
Similarly, party P2 (resp. P3) computes the answer a010 (resp. a001) to the query
q010 (resp. q001) and sends the answer to the referee. There is no party that
knows the values of two inputs from {x1, x2, x3} and therefore, no party can
answer queries of weight 2; e.g. q110. However, using an idea of [9], party P1

can provide the answers to the queries (S1⊕{x1}, S2⊕{`}, S3) for all possible
values of ` ∈ [N ]. This is a list of length N in which the entry corresponding
to ` = x2 is the desired answer for the query q110. Party P1 computes the N -
bit list and represents it as a 1-dimension cube; party P2 holds x2, which is the
position of the answer a110 in the list. Now, P1 and P2 execute the (2-party) PSM
protocol Pind for the index function, described in Section 2.2, which enables the
referee to compute the answer to the query q110 without leaking any additional
information. Similarly, P1 and P3 (resp. P2 and P3) execute the PSM protocol
Pind that enables the referee to compute the answer to the query q101 (resp.



Protocol P3

Common randomness: The three parties share uniform random strings:

– S1, S2, S3⊆R [N ].
– r110, r101, r011 ∈R {0, 1}O(N) required for the PSM protocol Pind with a

list of length N .
– b100, b010, b001, b110, b101, b011 ∈R {0, 1}, b000 = b100 ⊕ b010 ⊕ b001 ⊕ b110 ⊕
b101 ⊕ b011.

The protocol:

1. Party P1:
– Computes the answers a000, a100 to the queries q000 = (S1, S2, S3) and
q100 = (S1 ⊕ {x1}, S2, S3), respectively.

– Computes the answers to all queries (S1 ⊕ {x1}, S2 ⊕ {`}, S3) for all
possible values of ` ∈ [N ] and represents the answers as a 1-dimension
database (a1110, . . . , a

N
110). Using D110 = (a1110 ⊕ b110, . . . , aN110 ⊕ b110)

and common randomness r110, party P1 computes m1
110 – the message

of the first party in the 2-party PSM protocol Pind.
– Computes the answers to all queries (S1 ⊕ {x1}, S2, S3 ⊕ {`}) for all

possible values of ` ∈ [N ], and represents the answers as a 1-dimension
database (a1101, . . . , a

N
101). Using D101 = (a1101 ⊕ b101, . . . , aN101 ⊕ b101)

and common randomness r101, computes m1
101 – the message of the

first party in the 2-party PSM protocol Pind.
– Sendsm000 = a000⊕b000,m100 = a100⊕b100,m1

110,m1
101, and S1⊕{x1}

to the referee.
2. Party P2:

– Computes the answer a010 to the query q010 = (S1, S2 ⊕ {x2}, S3).
– Using x2 and common randomness r110, computes m2

110 – the message
of the second party in the 2-party PSM protocol Pind.

– Computes the answers to all queries (S1, S2 ⊕ {x2}, S3 ⊕ {`}) for all
possible values of ` ∈ [N ] and represents the answers as a 1-dimension
database (a1011, . . . , a

N
011). Using D011 = (a1011 ⊕ b011, . . . , aN011 ⊕ b011)

and common randomness r011, computes m2
011 – the message of the

first party in the PSM protocol Pind.
– Sends m010 = a010⊕b010, m2

110, m2
011, and S2 ⊕ {x2} to the referee.

3. Party P3:
– Computes the answer a001 to the query q001 = (S1, S2, S3 ⊕ {x3}).
– Using x3 and common randomness r101, computes m3

101 – the message
of the second party in the 2-party PSM protocol Pind.

– Using x3 and common randomness r011 it computes m2
011 – the mes-

sage of the second party in the 2-party PSM protocol Pind.
– Sends m001 = a001⊕b001, m3

101, m3
011, and S3 ⊕ {x3} to the referee.

4. The referee:
– Computes the answer a111 to the query q111 = (S1 ⊕ {x1}, S2 ⊕
{x2}, S3⊕{x3}) (using the sets received from P1, P2, P3 and the truth
table of f).

– Using the PSM messages m1
110, m2

110 the referee computes D110
x2 . Using

the PSM messages m1
101, m3

101 the referee computes D101
x3 . Using the

PSM messages m2
011, m3

011 the referee computes D011
x3 .

– Output f(x) = m000⊕m100⊕m010⊕m001⊕D110
x2 ⊕D

101
x3 ⊕D

011
x3 ⊕a111.

Fig. 3. A 3-party PSM protocol P3 for a function f : [N ]3 → {0, 1}.



q011). Finally, party P1 sends to the referee S1⊕{x1}, party P2 sends S2⊕{x2},
and party P3 sends S3 ⊕ {x3}. The referee gets the query q111 and computes
the answer a111. It now has the answers to all 8 queries and it can compute
f(x1, x2, x3) as the XOR of these 8 answers.

As in the 2-party case, this protocol is not secure because the referee learns
the answers to all 8 queries, which could leak information about x1, x2, and x3.
To deal with that, we mask these answers so that the referee gets random bits
from the parties whose sum is f(x1, x2, x3) (the details of applying these masks
appear in Fig. 3).

Theorem 3.1. Let f : [N ]3 → {0, 1} be a function. The protocol P3 is a secure
PSM protocol for f with communication and randomness complexity O(N).

Proof. First, we argue that the protocol is correct. The output of the referee is

m000 ⊕m100 ⊕m010 ⊕m001 ⊕D110
x2
⊕D101

x3
⊕D011

x3
⊕ a111

= (a000 ⊕ b000)⊕ (a100 ⊕ b100)⊕ (a010 ⊕ b010)⊕ (a001 ⊕ b001)⊕ (ax2
110 ⊕ b110)

⊕(ax3
101 ⊕ b101)⊕ (ax3

011 ⊕ b011)⊕ a111
= a000 ⊕ a100 ⊕ a010 ⊕ a001 ⊕ ax2

110 ⊕ a
x3
101 ⊕ a

x3
011 ⊕ a111 (1)

= f(x1, x2, x3), (2)

where the equality in (1) follows from the fact that the exclusive or of the b’s is
zero, and the equality in (2) follows from the correctness of the cube approach.

To argue that protocol P3 is secure, we construct a simulator whose input is
f(x1, x2, x3) and whose output is three messages distributed as the messages in
P3. The simulator on input f(x1, x2, x3) does the following:

1. Chooses three random sets T1, T2, T3 ⊆R [N ] and 6 random bits c100, c010,
c001, c110, c101, c011 ∈R {0, 1}.

2. Computes the answer to the query q111, namely,

a111 = ⊕i1∈T1,i2∈T2,i3∈T3f(i1, i2, i3).

3. Computes c000 = f(x1, x2, x3)⊕ a111⊕ c100⊕ c010⊕ c001⊕ c110⊕ c101⊕ c011.
4. Invokes the simulator Simind of protocol Pind 3 times:

– (m1
110,m

2
110)← Simind(c110),

– (m1
101,m

3
101)← Simind(c101),

– (m2
011,m

3
011)← Simind(c011).

5. Outputs

(c000, c100,m
1
110,m

1
101, T1), (c010,m

2
110,m

2
011, T2), (c001,m

3
101,m

3
011, T3).

Note that in the messages of protocol P3 the sets S1 ⊕ {x1}, S2 ⊕ {x2}, and
S3⊕{x3} are distributed independently with uniform distribution. Furthermore,
m100,m010, m001, D

110
x2
, D101

x3
, D011

x3
are uniformly distributed given these 3 sets,

since we mask them using independent random bits. Since D110
x2

and c110 are
both random bits, the output of Simind(c110) is distributed as the messages of



Pind(D110, x2). The same holds for the other two invocations of Simind. Finally,
given the sets S1⊕{x1}, S2⊕{x2}, S3⊕{x3}, the bitsm100,m010,m001, D

110
x2
, D101

x3
,

D011
x3
, a111, and f(x1, x2, x3), the value of m000 is fully determined (by the cor-

rectness of P3 and by the fact that the above sets determine a111). Thus, the
simulator’s output is distributed as the messages generated in protocol P3 on
inputs x1, x2, x3.

We next analyze the complexity of P3. The communication and randomness
complexity of each invocation of Pind is linear in the length of the list, i.e.,
it is O(N). In addition, parties P1, P2, P3 send the subsets S1⊕{x1}, S2⊕{x2},
S3⊕{x3} respectively, which are of size N , and O(1) bits each for the answers
of the queries q000, q100, q010, q001. Therefore, the communication complexity and
randomness complexity of our PSM protocol P3 is O(N). ut

4 A k-Party PSM Protocol for an Arbitrary Function
and Some Extensions

In this section, we show how to construct a k-party PSM protocol Pk for a
function f : [N ]k → [Nk] with communication and randomness complexity O(k3·
Nk/2). The above complexity is achieved even when the output is of length
k logN (as the input length is k logN , we can assume, without loss of generality,
that the output length is at most k logN). In general, when the output of f is
an L-bit string, one can execute a PSM protocol for every bit of the output, and
the complexity of the PSM protocol for f is L times the complexity of a PSM
protocol for a Boolean function. In protocol Pk, we do not pay any penalty for
long outputs. We also present better protocols for 4 and 5 parties.

We first describe our construction for an even k. Our construction is inspired
by our 2-party PSM protocol presented in Section 3.2. The protocol is formally
described in Fig. 4. Next, we give an informal description of the protocol for the
case that the range of f is Boolean. We associate f with an Nk-bit database
that is viewed as a 2-dimensional cube, where each dimension of the cube is of
size Nk/2. Correspondingly, each input x = (x1, . . . , xk) ∈ [N ]k is viewed as a
pair (y1, y2) ∈ [Nk/2]2, where y1 = (x1, . . . , xk/2) and y2 = (xk/2+1, . . . , xk). The
common randomness of the k parties contains two random subsets, one for each
dimension, i.e. S1, S2⊆R [Nk/2]. The referee wishes to compute f(x1, . . . , xk),
i.e., the XOR of answers to the same 4 queries of the cube approach described
in Section 3.1. Party P1 can easily compute the answer to the query (S1, S2)
(i.e., q00) and send the answer to the referee. However, as the inputs y1, y2 are
distributed among the parties, there are two problems we have to address: (1)
how to answer the queries (S1 ⊕ {y1}, S2), (S1, S2 ⊕ {y2}), and (2) how to send
S1 ⊕ {y1} and S2 ⊕ {y2} to the referee.

We first address the first problem. The answer to query (S1⊕{y1}, S2) de-
pends on y1, i.e., on inputs (x1, . . . , xk/2), and there is no party that knows all
these inputs. We solve this problem in a similar way to what is done in [9] and
in our protocol P3, that is, by using the PSM protocol Pind. Although party P1

does not know the exact value of y1 = (x1, . . . , xk/2), it can compute the an-



swers to all queries (S1⊕{`}, S2) for ` = (x1, i2, . . . , ik/2) for all possible values

i2, . . . , ik/2 ∈ [N ]k/2−1. This is a list of length Nk/2−1 in which the entry corre-
sponding to ` = y1 is the desired answer for the query q10. We view this answer
as a (k/2−1)-dimensional cube such that the answer corresponding to the values
(x1, i2, i3, . . . , ik/2) is in position (i2, i3, . . . , ik/2). Specifically, the answer to the
query (S1⊕{y1}, S2) is in position (x2, . . . , xk/2) in the cube. Parties P1, . . . , Pk/2
use the PSM protocol Pind for the index function described in Section 2.2, from
which the referee learns the answer to the query (S1⊕{y1}, S2) and nothing else.
Similarly, Pk can compute an Nk/2−1-bit cube, corresponding to all choices of
ik/2+1, . . . , ik−1, such that the answer to the query (S1, S2⊕{y2}) is in position
xk/2+1, . . . , xk−1 in this cube. Parties Pk, Pk/2+1 . . . , Pk−1 use the PSM protocol
Pind, from which the referee learns the answer to the query (S1, S2 ⊕ {y2}) and
nothing else.

The only query that remained unanswered is the query q11. Parties P1, . . . , Pk/2
execute the PSM protocol PSxor described in Section 2.3 that enables the referee
to compute S1⊕{y1} without learning any information about y1. Similarly, par-
ties Pk/2+1, . . . , Pk execute the PSM protocol PSxor that enables the referee to
compute S2⊕{y2}. The referee learns the query q11 = (S1⊕{y1}, S2⊕{y2}) and
computes the corresponding answer a11. Now, the referee has the answers to all
4 queries and it can XOR them to compute f(x1, . . . , xk).

The main contributions to the communication complexity of the above proto-
col is the invocations of the PSM protocols Pind and PSxor. We invoke Pind with
k/2 parties and a database containing Nk/2−1 bits, thus, the complexity of this
protocol is O(kNk/2−1). We invoke PSxor with k/2 parties and a set contained
in [Nk/2], thus, its complexity is O(k3 ·Nk/2).

Note that the complexity of invoking PSxor dominates the complexity of
invoking Pind. We capitalize on this gap and construct a PSM protocol for any
function with output range [Nk]. Again, we represent f : [N ]k → [Nk] as a two
dimensional cube, where the size of each dimension is Nk/2, however now every
entry in the cube is from [Nk]. The protocol proceeds as above, where the only
difference is that we invoke Pind with a database containing Nk/2−1 elements
from [Nk].6 Thus, the complexity of this protocol is O(kNk/2−1 · k logN). The
resulting PSM protocol has complexity O(k3 ·Nk/2).

Next, we give an informal description of protocol Pk for an odd k, i.e., k =
2t+ 1 for some t. Here, we partition the input xt+1 of party Pt+1 to two parts,
i.e. xt+1 = (x1t+1, x

2
t+1) such that x1t+1, x

2
t+1 ∈ [N1/2]. Again, we associate f

with an Nk-bit database that is viewed as a 2-dimensional cube (i.e., the size of
each dimension is Nk/2). Correspondingly, each input x = (x1, . . . , xk) ∈ [N ]k

is viewed as a pair (y1, y2) ∈ [Nk/2]2, where y1 = (x1, . . . , xt, x
1
t+1) and y2 =

(x2t+1, xt+2, . . . , xk). The referee needs the answers to the same 4 queries in order
to compute f(x1, . . . , xk). The rest of the protocol is similar to the protocol for
an even k, just that in this case, party Pt+1 participates in the PSM protocols
for both queries q10, q01, each time only with half of its input, as well as in both

6 Protocol Pind (described in Section 2.3) can deal with L-bit entries and its complex-
ity, for a list of N entries, is O(L ·N).



Protocol Pk

Common randomness: The k parties share uniform random strings:

– S1, S2⊆R [Nk/2].

– r10, r01 ∈R {0, 1}O(kNk/2−1 logN) required for the PSM protocol Pind with
a list of length [N ]k/2−1, where each element is from [Nk].

– ρ10, ρ01 ∈R {0, 1}O(Nk/2) required for the k/2-party PSM protocol PSxor

with a set S ⊆ [Nk/2].
– b10, b01 ∈R {0, 1}k logN , b00 = b10⊕b01.

The protocol:

1. Party P1:
– Compute the answer a00 to the query q00 = (S1, S2).
– Compute the answers to all queries (S1 ⊕ {`}, S2) where ` = x1 ◦
i2 ◦ . . . ◦ ik/2, for all possible values i2, . . . , ik/2 ∈ [N ], and represent

the answers as a (k/2− 1)-dimensional cube (a
i2,...,ik/2
10 )i2,...,ik/2∈[N ].

Using D10 = (a
i2,...,ik/2
10 ⊕ b10)i2,...,ik/2∈[N ] and common randomness

r10, compute m1
10 – the message of the first party in Pind.

– Using x1, S1 and common randomness ρ10, compute s110 – the message
of the first party in PSxor.

– Send m00 = a00⊕b00, m1
10, and s110 to the referee.

2. Party Pj , where j ∈ {2, . . . , k/2}:
– Using xj and common randomness r10, compute mj

10 – the message
of the jth party in Pind.

– Using xj and common randomness ρ10, compute sj10 – the message of
the jth party in PSxor.

– Send mj
10 and sj10 to the referee.

3. Party Pk:
– Compute the answers to all queries (S1, S2 ⊕ {`}) where ` =
ik/2+1 ◦ . . . ◦ ik−1 ◦ xk, for all possible values ik/2−1, . . . , ik−1 ∈
[N ], and represent the answers as a (k/2 − 1)-dimensional cube

(a
ik/2+1,...,ik−1

01 )ik/2+1,...,ik−1∈[N ]. Using D01 = (a
ik/2+1,...,ik−1

01 ⊕
b01)ik/2+1,...,ik−1∈[N ] and common randomness r01, compute mk

01 –
the message of the first party in Pind.

– Using xk, S2 and common randomness ρ01, compute sk01 – the message
of the first party in PSxor.

– Send mk
01 and sk01 to the referee.

4. Party Pj , where j ∈ {k/2 + 1, . . . , k − 1}:
– Using xj and common randomness r01, compute mj

01 – the message
of the (j − k/2 + 1)th party in Pind.

– Using xj and common randomness ρ01, compute sj01 – the message of
the (j − k/2 + 1)th party in PSxor.

– Send mj
01 and sj01 to the referee.

5. The referee:
– Using the messages s110, . . . , s

k/2
10 of PSxor, compute q111 = S1 ⊕ {y1}.

Using the messages sk01, s
k/2+1
01 , . . . , sk−1

01 of PSxor, compute q211 = S2⊕
{y2}. Compute the answer a11 to the query q11 = (q111, q

2
11) = (S1 ⊕

{y1}, S2 ⊕ {y2}).
– Using the messages m1

10, . . . ,m
k/2
10 of Pind, compute D10

x2,...,xk/2
.

Using the messages mk
01,m

k/2+1
01 , . . . ,mk−1

01 of Pind, compute
D01
xk/2+1,...,xk−1

.

– Output f(x) = m00 ⊕D10
x2,...,xk/2

⊕D01
xk/2+1,...,xk−1

⊕ a11.

Fig. 4. A k-party PSM protocol Pk for a function f : [N ]k → [Nk] for an even k.



PSM protocols for S1 ⊕{y1} and for S2 ⊕{y2}. The communication complexity
and randomness complexity of this protocol are O(k3Nk/2).

Theorem 4.1. Let f : [N ]k → [Nk] be a function. The protocol Pk is a secure
PSM protocol for f with communication and randomness complexity O(k3Nk/2).

Proof. Correctness follows from the cube approach, where f(x1, . . . , xk) is the
XOR of the answers for the 4 queries q00, q10, q01, q11. The referee computes
these 4 answers (each answer is a string in [Nk]); however, the first 3 answers
are masked. Nevertheless, the XOR of the 3 masks b00, b10, b01 is zero, so when
the referee computes the XOR of the 4 masked answers, the masks are canceled
and the referee gets the correct answer.

To argue that the PSM protocol Pk is secure, we construct a simulator whose
input is f(x1, . . . , xk) and whose output is k messages distributed as the messages
in Pk. To simplify the indices, we only construct a simulator for an even k;
however, the simulator (with minor changes) remains valid also for an odd k.
The simulator on input f(x1, . . . , xk) does the following:

1. Chooses two random sets T1, T2 ⊆R [Nk/2] and two random strings c10, c01 ∈R
{0, 1}k logN .

2. Computes the answer to the query q11, namely, a11 = ⊕i1∈T1,i2∈T2
f(i1, i2)

(where i1, i2 are considered as k/2 elements from [N ]).
3. Computes c00 = f(x1, . . . , xk)⊕ a11 ⊕ c10 ⊕ c01.
4. Invokes the simulator Simind of protocol Pind twice:

– (m1
10, . . . ,m

k/2
10 )← Simind(c10),

– (mk
01,m

k/2+1
01 , . . . ,mk−1

01 )← Simind(c01).

5. Invokes the simulator SimSxor of protocol PSxor twice:

– (s110, . . . , s
k/2
10 )← SimSxor(T1),

– (sk01, s
k/2+1
01 , . . . , sk−101 )← SimSxor(T2).

6. Outputs

(c00,m
1
10, s

1
10), (m2

10, s
2
10), . . . , (m

k/2
10 , s

k/2
10 ), (m

k/2+1
01 , s

k/2+1
01 ), . . . , (mk

01, s
k
01).

Note that, in the messages of Pk, the sets S1⊕{y1}, S2⊕{y2} are distributed in-
dependently with uniform distribution. Furthermore, D10

x2,...,xk/2
, D10

xk/2+1,...,xk−1

are uniformly distributed given these 2 sets, since we mask them using inde-
pendent random strings. Since D10

x2,...,xk/2
and c10 are both random strings, the

output of Simind(c10) is distributed as the messages of Pind(D10, x2, . . . , xk/2).
Since S1 ⊕ {y1} and T1 are both random sets, the output of SimSxor(T1) is dis-
tributed as the messages in PSxor((S1, x1), x2, . . . , xk/2). The same holds for the
other invocation of Simind and SimSxor. Finally, given the sets S1⊕{y1}, S2⊕{y2},
the strings m10,m01, D

10
x2,...,xk/2

, D01
xk/2+1,...,xk−1

, and f(x1, . . . , xk), the value of

m00 is fully determined (by the correctness of Pk and by the fact that the above
sets determine a11). Thus, the simulator’s output is distributed in the same way
as the messages generated in protocol Pk on inputs x1, . . . , xk.



The communication and randomness complexity of each invocation of the
PSM protocol Pind are O(k ·Nk/2−1 ·k logN). The communication and random-
ness complexity of each invocation of the PSM protocol PSxor is O(k3 · Nk/2).
Party P1 also sends a string of length k logN to the referee (that is, m00).
Therefore, the communication complexity and randomness complexity of the
PSM protocol Pk are O(k3 ·Nk/2). ut

4.1 PSM Protocols for 4 and 5 Parties

We next show how to use the ideas of our previous protocols to construct more
efficient k-party PSM protocols, for k = 4, 5.

Theorem 4.2.

– Let f : [N ]4 → {0, 1} be a function. There is a secure 4-party PSM protocol
P4 for f with communication and randomness complexity O(N5/3).

– Let f : [N ]5 → {0, 1} be a function. There is a secure 5-party PSM protocol
P5 for f with communication and randomness complexity O(N7/3).

Proof Sketch. The protocols P4 and P5 are similar to protocol Pk, except that
we view f as a 3-dimensional cube. Specifically, in P4 the size of each dimension
of the cube is N4/3. We partition the inputs x2, x3 as follows: x2 = (x12, x

2
2)

and x3 = (x23, x
3
3) such that x12, x

3
3 ∈ [N1/3] and x22, x

2
3 ∈ [N2/3]. We view each

input (x1, x2, x3, x4) as a 3-tuple (y1, y2, y3) ∈ [N4/3]3, where y1 = (x1, x
1
2), y2 =

(x22, x
2
3), and y3 = (x33, x4). The common randomness of the parties contains 3

random sets S1, S2, S3 ⊆R [N4/3], random strings for protocols Pind and PSxor,
and random masks. The referee should get the answers of 8 queries q000, . . . , q111.
The (masked) answer to q000 is computed by P1 and sent to the referee. The
answers to the queries of weight 2 and 3 are computed using protocol Pind, where
the more expensive queries are queries of weight 2. As an example, we explain
how to answer q110. The answer to this query requires knowing (y1, y2) ∈ [N4/3]2.
As y1 = (x1, x

1
2) and party P1 has x1, party P1 can prepare a list of length

N5/3 (one entry for each possible value of x12, y2) and P1, P2, and P3 use the
3-party PSM protocol Pind to send the answer of q110 to the referee. As the list
contains N5/3 entries (where each entry is a bit), the complexity of invoking
Pind is O(N5/3) (the input of P2 is from [N ] and of P3 is from [N2/3]). Queries
q101, q011 are dealt in a similar way, where P1 and P4, respectively, construct the
list. To answer query q111, the sets S1⊕{y1}, S2⊕{y2}, S3⊕{y3} are sent to the
referee using PSxor. As each set is contained in [N4/3], the complexity of invoking
PSxor is O(N4/3). The total communication and randomness complexity of P4

is O(N5/3).
In P5, the size of each dimension of the cube is N5/3 and the 5 inputs are

partitioned into 3 inputs y1, y2, y3 ∈ [N5/3]. The details are similar to the PSM
protocol P4. As for the complexity analysis, to answer q110, party P1 needs
(y1, y2) ∈ [N5/3]2 and it knows x1 ∈ [N ] which is part of y1, thus, it creates a
list of length N7/3, and the complexity of invoking Pind is O(N7/3). As each set
in P5 is contained in [N5/3], the complexity of invoking PSxor is O(N5/3). The
total communication and randomness complexity of P5 is O(N7/3). ut



Discussion. Our protocols, and the 2-party PSM protocol of [6], use cubes of
different dimensions for different values of k; i.e., in [6], 4 dimensions are used
for 2 parties, and in this work 3 dimensions are used for 3, 4, and 5 parties, and 2
dimensions are used for more than 5 parties. These are the optimal dimensions,
when using our approach, as we next explain. If there are k inputs (each from the
domain [N ]) and d dimensions, then the size of at least one dimension is Nk/d.
Thus, communicating each set Sj ⊕ {yj} (either directly, as in the 2-party and
3-party protocols, or using the PSM protocol PSxor, as done for k > 3 parties)
requires Ω(Nk/d) bits. The parties also need to send the answers to the 2d − 1
queries of weight at most d− 1 using protocol Pind. The most expensive queries
are queries of weight d− 1, which involve d− 1 “virtual” inputs yj , each one is
taken from [Nk/d]. As each party Pj knows only xj , the parties will invoke the
PSM protocol Pind with a list of length at least N (k/d)(d−1)−1 = Nk−k/d−1; 7

the cost of this invocation will be at least Nk−k/d−1. Thus, for a given number
of parties k, we need to choose d that will minimize max{k/d, k − k/d − 1}. If,
hypothetically, we could choose a non-integral dimension, we would take d =
2k/(k − 1) and the complexity of our protocol would have been O(N (k−1)/2).
This matches the complexity of the PSM protocols for 2 and 3 parties. For k > 3,
we achieve a slightly worst complexity, since we need to round 2k/(k− 1) to the
nearest integer.

5 PSM Protocols with Inputs of Different Sizes

In this section, we construct PSM protocols for functions in which the domains
of inputs are not necessarily the same. That is, we consider functions f : [Nα1 ]×
[Nα2 ]×· · ·×[Nαk ]→ {0, 1}, for some integer N and positive numbers α1, . . . , αk.
By reordering the parties and normalization, we can assume that α1 ≥ α2 ≥
· · · ≥ αk = 1.

We first observe that the complexity of the PSM of [10] for an arbitrary
function does not depend on the size of the largest domain (i.e., of party P1).

Claim 5.1. Let f : [Nα1 ] × [Nα2 ] × · · · × [Nαk ] → {0, 1} be a function. Then,

there is a PSM protocol for f with communication complexity O(N
∑k
i=2 αi) and

randomness complexity O(k ·N
∑k
i=2 αi).

Proof. We describe a protocol with the desired complexity. Party P1 prepares a

list of length N
∑k
i=2 αi , which contains f(x1, i2, . . . , ik) for every (i2, i3, . . . , ik) ∈

[Nα2 ]× · · · × [Nαk ]. The parties invoke the PSM Pind, where the input of P1 is
this list and the input of Pj , for 2 ≤ j ≤ k, is xj . ut

We next construct more efficient k-party protocols. Again, we use the cube
approach, with 2 differences compared to the previous protocols. First, the num-
ber of dimensions d will be bigger than in our previous protocols (the number

7 For the interesting parameters (specifically, when d ≤ k), there will always be a
party whose entire input xi is part of the query and the length of the list would be
exactly Nk−k/d−1.



of dimensions grows as
∑k
i=2 αi grows). Thus, the k inputs are partitioned to d

virtual inputs. Unlike previous protocols, each Pi, where 1 ≤ i ≤ k, holds part
of each virtual input.

Lemma 5.2. Let f : [Nα1 ]× [Nα2 ]× · · · × [Nαk ]→ {0, 1} be a function where
α1 ≥ α2 ≥ · · · ≥ αk = 1. Then, there is a PSM protocol for f with communica-
tion and randomness complexity

O(min{k ·N (
∑k
i=2 αi)(1−1/dae), k3 ·N (

∑k
i=1 αi)/bac})

where a = α1/(
∑k
i=2 αi) + 2.

Proof. We view f as a d-dimensional cube, where the size of each dimension

is N (
∑k
i=1 αi)/d and d will be fixed later. We partition the inputs as follows:

xj = (x1j , x
2
j , ..., x

d
j ) for 1 ≤ j ≤ k, where x1j , x

2
j , ..., x

d
j ∈ [Nαj/d]. We define

y` = (x`1, x
`
2, . . . , x

`
k) for each 1 ≤ ` ≤ d. The common randomness of the parties

contains d random sets S1, ..., Sd ⊆R [N (
∑k
i=1 αi)/d], random strings for protocols

Pind and PSxor, and random masks. Using the cube approach, the referee should
get the answers to 2d queries. To answer query q11...1 (the query of weight d),
the sets S1 ⊕ {y1}, ..., Sd ⊕ {yd} are sent to the referee using PSxor. As each

set is contained in [N (
∑k
i=1 αi)/d], the complexity of invoking PSxor is O(k3 ·

N (
∑k
i=1 αi)/d). The (masked) answer to q00...0 (the query of weight 0) is computed

by P1 and sent to the referee. The answers to the queries of weight m for any
1 ≤ m ≤ d − 1 are computed using protocol Pind, where the more expensive
queries are queries of weight d− 1. To answer the query q11...10, party P1, which

has x11, ..., x
d−1
1 , prepares a list of length N (

∑k
i=2 αi)(d−1)/d (one entry for each

possible value of (x12, . . . , x
1
k), ..., (xd−12 , . . . , xd−1k )) and the parties P1, . . . , Pk

use the PSM protocol Pind to send the masked answer of q11...10 to the referee.

The complexity of invoking Pind is O(k ·N (
∑k
i=2 αi)(d−1)/d). All other queries are

dealt in a similar way, where P1 constructs the list. The total communication
and randomness complexity of the protocol are

O(max{k ·N (
∑k
i=2 αi)(d−1)/d, k3 ·N (

∑k
i=1 αi)/d}).

If we could choose a non-integral value for d then the optimal value of d in this
approach would be d = a = α1/(

∑k
i=2 αi) + 2. Since d must be an integral value

the communication and randomness complexity are minimized either on bac or
on dae. Thus, we get a protocol with the following complexity.

O(min{k ·N (
∑k
i=2 αi)(1−1/dae), k3 ·N (

∑k
i=1 αi)/bac}).

ut

Corollary 5.3. Let f : [Nα1 ] × [Nα2 ] × · · · × [Nαk ] → {0, 1} be a function
where α1 ≥ α2 ≥ · · · ≥ αk = 1. Then, there is a PSM protocol for f with

communication and randomness complexity O(k ·N (
∑k
i=2 αi)·c) where c < 1.



5.1 2-Party PSM Protocols

In this section, we describe results for 2-party PSM protocols summarized in the
following lemma.

Lemma 5.4. Let f : [Nα] × [N ] → {0, 1}, where α ≥ 1. Then, there is a PSM
for f with communication and randomness complexity:

– O(Nα/2) if 1 ≤ α ≤ 3/2,
– O(N (α+1)/(bα+2c)) if α− bαc ≤ 1/dα+ 2e and α > 3/2,

– O(N1− 1
dα+2e ) otherwise.

Proof. For the first item, we use the protocol of [6], which has complexity
O(Nα/2) (where we consider both domains to be of size Nα). The second and
third items follow from Lemma 5.2. ut

5.2 3-Party PSM Protocols

In this section, we consider 3-party PSM protocols and show that, for many
values of the parameters α1, α2, there is a PSM protocol whose complexity is
the geometric mean of the sizes of domains.

Claim 5.5. Let f : [Nα1 ] × [Nα2 ] × [N ] → {0, 1}, where α1 ≥ α2 ≥ 1 and
α1 ≤ 2α2 − 1. Then, there is a PSM for f with communication and randomness
complexity O(N (α1+α2+1)/3).

Proof. The idea of the protocol is similar to the protocols of Theorem 4.2. We
view f as a 3-dimensional cube, where the size of each dimension is N (α1+α2+1)/3.
We partition the inputs x1 ∈ [Nα1 ], x2 ∈ [Nα2 ], x3 ∈ [N ] to equal size in-
puts y1, y2, y3 ∈ [N (α1+α2+1)/3]. The way we partition the inputs will be de-
scribed below. The common randomness of the parties contains 3 random sets
S1, S2, S3 ⊆R [N (α1+α2+1)/3], random strings for protocols Pind and PSxor, and
random masks. The referee should get the answers to 8 queries q000, . . . , q111.
To answer query q111, the sets S1 ⊕ {y1}, S2 ⊕ {y2}, S3 ⊕ {y3} are sent to the
referee using PSxor. As each set is contained in [N (α1+α2+1)/3], the complexity
of invoking PSxor is O(N (α1+α2+1)/3). The (masked) answer to q000 is computed
by P1 and sent to the referee. The answers to the queries of weight 1 and 2 are
computed using protocol Pind, where the more expensive queries are queries of
weight 2. The details of how to answer these queries depends on the partition of
the inputs into y1, y2, y3.

We partition x1 and x2 as follows: x1 = (x11, x
3
1) and x2 = (x22, x

3
2), where

x11, x
2
2 ∈ [N (α1+α2+1)/3], x31 ∈ [N (2α1−α2−1)/3] (note that 2α1 − α2 − 1 ≥ 0 since

α1 ≥ α2 ≥ 1), and x32 ∈ [N (2α2−α1−1)/3] (note that 2α2 − α1 − 1 ≥ 0 by our
assumption). We define y1 = x11, y2 = x22, and y3 = (x3, x

3
1, x

3
2). To answer the

query q110, party P1, which has y1 = x11, prepares a list of length N (α1+α2+1)/3

(one entry for each possible value of y2) and P1, P2 use the 2-party PSM protocol
Pind to send the masked answer of q110 to the referee. The complexity of invoking



Pind is O(N (α1+α2+1)/3). Queries q101, q011 are dealt in a similar way, where P1

and P2, respectively, construct the list and all 3 parties participate (as each
has a part of y3). The total communication and randomness complexity of the
protocol are O(N (α1+α2+1)/3). ut
Claim 5.6. Let f : [Nα1 ] × [Nα2 ] × [N ] → {0, 1}, where α1 ≥ α2 ≥ 1 and
α1 ≥ 2α2 − 1. Then, there is a PSM for f with communication and randomness
complexity O(N (α1+1)/2).

Proof. The idea of the protocol is similar to the protocols of Theorem 4.2. We
view f as a 3-dimensional cube, where the size of each dimension is N (α1+α2+1)/3.
We define x1 = (x11, x

3
1), where x11 ∈ [N (α1+1)/2] and x31 ∈ [N (α1−1)/2], and

y1 = x11, y2 = x2, and y3 = (x3, x
3
1). The common randomness of the parties

contains 3 random sets S1, S3 ⊆R [N (α1+1)/2] and S2 ⊆R [Nα2 ], random strings
for protocols Pind and PSxor, and random masks. The referee should get the
answers to 8 queries q000, . . . , q111. To answer query q111, the sets S1⊕{y1}, S2⊕
{y2}, S3 ⊕ {y3} are sent to the referee using PSxor. The complexity of invoking
PSxor is O(N (α1+1)/2) (where, for S2, we use the assumption that α1 ≥ 2α2−1).
The (masked) answer to q000 is computed by P1 and sent to the referee. The
answers to the queries of weight 2 and 3 are computed using protocol Pind, where
the most expensive query is q011, for which P2 has to prepare a list of length
N (α1+1)/2 (one entry for every possible value of y3) and parties P1, P2, and P3

use the 3-party PSM protocol Pind to send the answer of q011 to the referee.
The complexity of invoking Pind is O(N (α1+1)/2). Queries q101, q011 are dealt
in a similar way. The total communication and randomness complexity of the
protocol are O(N (α1+1)/2). ut

The next two lemmas summarize the various cases of 3-argument functions;
the first claim deals with the case α2 ≥ 2 and the second claim with the case
α2 < 2.

Lemma 5.7. Let f : [Nα1 ]×[Nα2 ]×[N ]→ {0, 1}, where α1 ≥ α2 ≥ 1. If α2 ≥ 2
then there is a PSM for f with communication and randomness complexity:

– O(N (α1+α2+1)/3) if α1 < α2 + 1.
– O(min{N (α2+1)(1−1/dae), N (α1+α2+1)/bac}) where a = (α1+2α2+2)/(α2+1)

if α1 ≥ α2 + 1.

Proof. If α1 < α2 + 1, then α1 < 2α2 − 1 (since α2 ≥ 2). Thus, the first item is
implied by Claim 5.5. The second item follows from Lemma 5.2. ut
Lemma 5.8. Let f : [Nα1 ]× [Nα2 ]× [N ]→ {0, 1}, where α1 ≥ α2 ≥ 1. Assume
1 ≤ α2 < 2. Then there is a PSM for f with communication and randomness
complexity:

– O(N (α1+α2+1)/3) if α2 ≤ α1 ≤ 2α2 − 1.
– O(N (α1+1)/2) if 2α2 − 1 ≤ α1 ≤ (4α2 + 1)/3.
– O(min{N (α2+1)(1−1/dae), N (α1+α2+1)/bac}) where a = (α1+2α2+2)/(α2+1)

if (4α2 + 1)/3 ≤ α1.

Proof. The first item follows from Claim 5.5. The second item follows from
Claim 5.6. The third item follows from Lemma 5.2. ut



6 A PSM for k parties from a PSM for t parties

In this section, we show how to construct a k-party PSM protocol for a function
from a t-party PSM protocol for a related function where k > t. This is a generic
transformation, which does not result in better protocols than the protocols
presented in this paper. However, it shows that improvements in the complexity
of t-party PSM protocols for small values of t will results in better k-party PSM
protocols for all values k.

Claim 6.1. Let k, t,N be integers such that k > t and N ≥ 2t and let g :
[N ]k → {0, 1} be a function. If every function f : [n]t → {0, 1} has a t-party
PSM protocol with communication and randomness complexity O(nα) for n =
Nk/t, then there is a PSM protocol for g with communication and randomness
complexity O(k · t ·N (α+1)k/t−1).

Proof. We construct the following protocol Pk for g. We partition the inputs
x1, ..., xk to equal size inputs y1, ..., yt where yj ∈ [Nk/t] for j = 1, ..., t. Let
xi = (x1i , ..., x

t
i) for all i = t + 1, ..., k where x1i , ..., x

t
i ∈ [N1/t]. We define yj =

(xj , x
j
t+1, ..., x

j
k) for j = 1, ..., t. Furthermore, we define g′ : [Nk/t]t → {0, 1}

such that g′(y1, ..., yt) = g(x1, ..., xk). By the assumption of the claim, there
is a PSM protocol Pt for g′ with communication and randomness complexity
O(nα) = O(Nαk/t).

In protocol Pk, for every 1 ≤ j ≤ t, party Pj together with parties Pt+1, ..., Pk
simulate the j-th party of protocol Pt as follows. For this simulation, party Pj
prepares a list of length Nk/t−1 of the possible messages of the j-th party in Pt
with input yj = (xj , x

j
t+1, ..., x

j
k). As Pj knows xj and does not know xjt+1, ..., x

j
k

the list contains one entry for every possible value of (xjt+1, ..., x
j
k) ∈ [Nk/t−1].

Each entry in the list is a message taken from [Nαk/t]. Parties Pj , Pt+1, ..., Pk use
the PSM protocol Pind to send the message corresponding to their inputs to the
referee. The referee computes the t messages and then computes g(x1, ..., xk) =
g′(y1, ..., yt) according to the protocol Pt. The communication and randomness
complexities of the PSM protocol Pind are O(k · N (α+1)k/t−1) and the parties
Pt+1, ..., Pk invoke this protocol t times. Therefore, the total communication and
randomness complexity of this protocol are O(k · t ·N (α+1)k/t−1). ut

For example, for t = 2 there is a 2-party PSM protocol with complexity
O(N0.5) [6] (here α = 0.5). This implies that any function f : [N ]k → {0, 1} has a
k-party PSM protocol with complexity O(N3k/4−1). This is inferior to our proto-
cols from Sections 3 and 4. For t = 3, we get that any function f : [N ]k → {0, 1}
has a k-party PSM protocol with complexity O(N2k/3−1) (using our 3-party
PSM protocol which has complexity O(N), i.e. α = 1). In particular, for k = 4,
we can construct a 4-party PSM protocol with complexity O(N5/3) from our 3-
party PSM protocol, matching the complexity of our protocol from Section 4.1.
Thus, if one can improve the message length of 3-party PSM protocols for an
arbitrary function to o(N), then this would yield 4-party PSM protocol with
message length o(N5/3) improving on our construction.



To conclude, to improve the complexity of k-party PSM protocols for an
arbitrary functions, one might want to start with designing k-party PSM pro-
tocols for small values of k. For example, if the complexity of the 2-party PSM
protocols will be improved to O(Nβ) for β < 2/k, then we will get k-party PSM
protocols with complexity better than O(Nk/2).

7 Applications

In this section, we present some applications of our PSM protocols for several
cryptographic primitives.

7.1 t-robust NIMPC protocols

A Non-Interactive secure Multi-Party Computation (NIMPC) protocol, defined
in [5], is a PSM protocol that is secure even if some parties collude with the
referee. Such parties may send the referee their messages for every possible input
and therefore the referee can always compute the function on many inputs. The
model is defined with correlated randomness r1, . . . , rk between the k parties,
rather than common randomness, and the dishonest parties can, alternatively,
send the referee their ri’s.

In such setting, one may only hope for a so-called “best possible security”;
that is, in a t-robust NIMPC protocol, an adversary controlling at most t parties
and seeing all the messages sent by honest parties learns no information that
is not implied by the anavoidable information – the restriction of f fixing the
inputs of the honest parties.

The communication complexity of the best known fully-robust (i.e., k-robust)
NIMPC protocol, for an arbitrary function f : [N ]k → {0, 1}, wasO(poly(logN, k)·
Nk) [19] (improving on [5]). We show that every function f : [N ]k → {0, 1} has
a t-robust NIMPC with complexity Õ(Nk/2+t), which improves on previous con-
structions when t < k/2. Our construction is based on an information-theoretic
transformation of [8], which constructs a t-robust NIMPC protocol for f from
any PSM (that is, 0-robust NIMPC) protocol for f .

Theorem 7.1 ([8]). Let t be a positive integer and P be a PSM protocol for a
Boolean function f : [N ]k → {0, 1} with randomness and communication com-
plexity α(N). Then, there exists a t-robust NIMPC protocol for f with random-
ness and communication complexity O((2 max{N, k})t+1k(t log(N+k)+α(N))).

Using Theorem 7.1 and our PSM protocol Pk, we get a t-robust NIMPC
protocol for f : [N ]k → {0, 1} with randomness and communication complexity
O(k42tNk/2+t+1) (assuming that N ≥ k). We next construct a t-robust NIMPC
protocol where we improve the complexity by a factor of N . This optimization
is more significant when k and t are small. For example, consider a 3-argument
function f : [N ]3 → {0, 1}. By Theorem 3.1, the function f has a PSM protocol
with complexity O(N). Thus, by Theorem 7.1, we get a 1-robust PSM for f
with complexity O(N3). Notice that a 1-robust 3-party NIMPC protocol is a



fully-robust protocol (as even in an ideal world 2 parties can basically learn the
input of the third party). Our optimized fully robust NIMPC protocol for f will
have complexity O(N2.5 log4N).

Theorem 7.2. Let t, k,N be positive integers such that t < k/2 and k ≤ N and
f : [N ]k → {0, 1} be a Boolean function. Then, there exists a t-robust NIMPC
protocol for f with randomness and communication complexity O(k4 log4N ·
(2N)k/2+t).

Proof. The basic idea is that, instead of viewing f as a k-argument function,
where each party has an input from [N ], we consider a (k logN)-argument func-
tion f ′, where each party has an input from {0, 1} and construct a (t logN)-
robust protocol for f ′. For simplicity of notation we assume that N is a power
of 2. (This results in multiplying N by at most 2, yielding the term 2N in The-
orem 7.2). We define f ′ : {0, 1}k logN → {0, 1}, where

f ′(x1,1, . . . , x1,logN , . . . , xk,1, . . . , xk,logN )

= f((x1,1, . . . , x1,logN ), . . . , (xk,1, . . . , xk,logN )).

By Theorem 4.1, the function f ′ has a PSM protocol with communication and
randomness complexity O((k logN)32(k logN)/2) = O(k3 log3N ·Nk/2). We can-
not apply Theorem 7.1 directly, as it will not result in the desired complexity.
We observe that the NIMPC that we construct needs to be robust only against
sets T that contain t blocks of size logN (where a block is a set of logN parties
of f ′ holding the bits of some party Pj in f). By [8, Thm. 6.4], we need a matrix
H ′ that is T -admissible only for such sets T .8 If we have such matrix with ` rows
over a finite field Fq, then we can replace the term (2 max{N, k})t+1 with q`+1

in Theorem 7.1.
We next explain how to construct such H ′. In [8], it was shown that a t× k

parity-check matrix H of the Reed-Solomon code over Fq, where q ≥ max{k,N}
is a prime-power, is T -admissible for every set T of size t. We take such matrix H
over the field F2logN and construct a matrix H ′ over F2 with t logN rows and k′ =
k logN columns by replacing each entry a ∈ F2logN with a logN × logN matrix
A over F2 such that for every b ∈ F2logN it holds that ab, viewed as a vector
over F2, is the same as A(b0, . . . , blogN−1)T (when viewing elements of F2logN as
polynomials, the matrix A simulates the multiplication of the polynomial by the
polynomial representing a modulo the irreducible polynomial). The matrix H ′

is T -admissible for every T that contains at most t blocks.
By [8, Thm. 6.4], the function f ′ has an NIMPC protocol that is T -robust,

for every T that contains at most t blocks, and has complexity

O(q`+1(k′)42k
′/2)) = O(2t logN+1(k logN)4 ·2(k logN)/2) = O(k4 log4N ·Nk/2+t).

If N is not a power of 2, we need to replace N by 2N in the complexity. To
construct a PSM protocol for f , the parties P1, . . . , Pk execute the PSM for f ′,

8 A matrix H ′ is T -admissible if H ′u 6= H ′v for any two vectors u,v that agree on
all entries not indexed by T .



where each party Pj sends the messages of the block of parties holding the bits
of its input. ut

If we consider a 3-argument function f : [N ]3 → {0, 1}, we get a 1-private
NIMPC protocol with communication and randomness complexity O(log4N ·
N5/2). As discussed above, this protocol is fully robust. This improves on the
previously best known 3-party NIMPC protocol of [19] whose complexity is
O(N3 log2N). While the protocol of [19] hides the function f , in our protocol
the referee needs to know f in order to reconstruct its output. In [19], it is proved
that in any NIMPC protocol for every k-argument function f : [N ]k → {0, 1}
that hides the function, the size of the common randomness is Ω(Nk). The
proof of this lower bound actually holds for any PSM protocol in which the
reconstruction of f ’s value is independent of f . Thus, in a fully robust 3-party
NIMPC protocol with randomness complexity o(N3) for an arbitrary function
f : [N ]3 → {0, 1}, the referee has to know f in advance.

Example 7.3. For the 3-party case, the construction of the admissible matrix
H ′ is much simpler starting from the 1-admissible matrix H = (1, 1, 1). The
resulting matrix H ′ is H ′ = (IlogNIlogNIlogN ) (that is, H ′ contains 3 copies of
the (logN)× (logN) identity matrix). Consider two vectors u,v that differ only
in the first block i.e., u = (u1,u2,u3) and v = (v1,v2,v3) where u1 6= v1 while
u2 = v2 and u3 = v3. Then, H ′u −H ′v = H ′(u − v) = IlogN (u1 − v1) 6= 0.
Thus, H ′ is T -admissible for the 3 blocks T .

7.2 Ad-hoc PSM Protocols and Homogeneous Distribution Designs

A k-out-of-n ad-hoc PSM protocol is a PSM protocol with n parties, where only
k parties, whose identity is not known in advance, actually participate in the
protocol. For a formal denition of ad-hoc PSM protocols see [7].

We obtain improved k-out-of-n ad-hoc PSM protocols for symmetric func-
tions9 f : [N ]k → {0, 1} with communication complexity O(ek · k6 · log n ·Nk/2)
and randomness complexity O(ek · k8 · log n ·Nk/2), based on a transformation
from k-party PSM protocols to ad-hoc PSM protocols from [7] and on our new
PSM protocols.

Theorem 7.4 ([7]). Assume that there is a k-party PSM protocol Π for a sym-
metric function f with randomness complexity Rnd(Π) and communication com-
plexity Com(Π). Then, there is a k-out-of-n ad-hoc PSM protocol for f with
randomness complexity O(ek · k3 · log n · (Rnd(Π) + k2 ·max{Com(Π), log n}))
and communication complexity O(ek · k3 · log nmax{Com(Π), log n}).

Using Theorem 7.4 and our PSM protocol Pk, whose communication and
randomness complexity are O(k3Nk/2), we get:

9 A function f is symmetric if for every input (x1, . . . , xk) ∈ [N ]k and every permuta-
tion π : [k]→ [k], it holds that f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)).



Theorem 7.5. Let f : [N ]k → [Nk] be a symmetric function. Then, there is a
k-out-of-n ad-hoc PSM protocol for f with communication complexity O(ek · k6 ·
log n ·Nk/2) and randomness complexity O(ek · k8 · log n ·Nk/2).

We next show that ad-hoc PSM protocols imply distribution design. The
goal of distribution design, introduced in [4], is to find a joint distribution on N
random variables (X1, X2, . . . , XN ) that satisfies a given set of constraints on the
marginal distributions. If such a distribution exists we say that the set of con-
straints is realizable. Each constraint involves two equal-size sets {i1, . . . , id} and
{j1, . . . , jd} and can either be an equality constraint of the form {i1, . . . , id} ≡
{j1, . . . , jd}, in which case the two marginal distributions should be identical,
or a disjointness constraint of the form {i1, . . . , id} ‖ {j1, . . . , jd}, in which case
the two marginal distributions should have disjoint supports.10 A k-homogenous
set of constraints is one where all sets in the constraints have the same size k.
Borrowing terminology from secret sharing (which is one of the applications of
distribution design), we refer to the value of a random variable Xi as the ith
share.

We obtain distribution designs for 2-homogeneous sets of constraints with
share size O(

√
N · log2N). Previously, the best known distribution design had

share size of O(N logN). We also obtain distribution designs for k-homogeneous
sets of constraints, for k > 2, with share size O(ek ·k6 ·Nk/2 ·logN), improving on
the best known distribution design whose share size wasO(

(
N
k

)
·min{d logN,N}).

Our construction is based on a PSM protocol for a function that represents the
constraints. We use the messages of this protocol to define the random variables.

Definition 7.6. Given a k-homogenous set of constraints R on N variables, de-
fine the following symmetric function fR: Construct an undirected graph, whose
vertices are all subsets of size k. Connect two vertices (sets of size k) A and
B if and only if “A ≡ B” ∈ R and let A1, . . . ,A` be the connected compo-
nents of this graph.11 Define a symmetric function fR : [N ]k →

(
N
k

)
such that,

for every set {i1, . . . , ik} (i.e. i1 < i2 < . . . < ik), define fR(i1, . . . , ik) = j where
(i1, . . . , ik) ∈ Aj. To make this function symmetric, define fR(σ(i1), . . . , σ(ik)) =
fR(i1, . . . , ik) for every permutation σ : [k]→ [k].

Theorem 7.7. Let R be a k-homogenous set of constraints on N variables.
Assume that there is a k-out-of-N ad-hoc PSM protocol Pk,N for fR : [N ]k →(
N
k

)
with communication complexity Com(Pk,N ). If R is realizable, then there is

a distribution design X realizing R with share size Com(Pk,N ) + logN .

10 We only consider the projective case, in which the constraints are restricted to be on
sets of variables; that is, the elements in the sets are sorted. In [4], also constraints
for non-sorted elements are considered.

11 By [4], a distribution design exists if and only if for every constraint “A‖B” ∈ R,
the sets A and B are in different connected components. Furthermore, it is enough
to construct a distribution design X where XA ≡ XB whenever A and B are in the
same component Ai, and XA ‖ XB whenever A and B are in different components.



Proof. To construct the distribution design, we first choose a random permuta-
tion π : [N ]→ [N ]. Let Mπ(i) be the messages in Pk,N of party Pπ(i) with input
i. We set Xi to be (Mπ(i), π(i)) for all i ∈ [N ]. The reason that we choose the
permutation π is that an ad-hoc PSM protocol does not hide the identities of
the parties sending messages. We claim that X = (X1, . . . , XN ) realizes R:

Equivalence constraints. Let A = {i1, . . . , ik} and let B = {j1, . . . , jk} be two
sets such that “(i1, . . . , ik) ≡ (j1, . . . , jk)” ∈ R. Vertices A and B are in the
same connected component and therefore fR(i1, . . . , ik) = fR(j1, . . . , jk). From
the construction, XA = (Xi1 , . . . , Xik) = ((Mπ(i1), π(i1)), . . . , (Mπ(ik), π(ik))),
and XB = (Xj1 , . . . , Xjk) = ((Mπ(j1), π(j1)), . . . , (Mπ(jk), π(jk))). We argue that
XA and XB are equally distributed. First, π is a random permutation, thus
{π(i1), . . . , π(ik)} ≡ {π(j1), . . . , π(jk)}. We next fix a set C = {c1, ..., ck} ⊆ [N ]
of size k and show that the distribution of XA conditioned on π(i`) = c` for every
` ∈ [k] is equal to the distribution of XB conditioned on π(j`) = c` for every
` ∈ [k]. That is, XA and XB contain the messages of the same set C with inputs
i1, . . . , ik and j1, . . . , jk respectively. Since fR(i1, . . . , ik) = fR(j1, . . . , jk), by the
security of the ad-hoc PSM protocol, these messages are equally distributed.

Disjointness constraints. Let A = {i1, . . . , ik} and let B = {j1, . . . , jk} be two
subsets such that “(i1, . . . , ik) ‖ (j1, . . . , jk)” ∈ R. Vertices A and B are in dif-
ferent connected components and therefore fR(i1, . . . , ik) 6= fR(j1, . . . , jk). Let
X ′A and X ′B be the messages in XA and XB respectively sorted according to π;
i.e. X ′A = (Mπ(it1 )

, . . . ,Mπ(itk )
) such that π(it1) < π(it2) < . . . < π(itk) and,

similarly, X ′B = (Mπ(jm1 )
, . . . ,Mπ(jmk )

) such that π(jm1
) < π(jm2

) < . . . <

π(jmk). By the correctness of the ad-hoc PSM protocol Pk,N , we can recon-
struct fR(i1, . . . , ik) from the messages (Mπ(it1 )

, . . . ,Mπ(itk )
) and, similarly, we

can reconstruct fR(j1, . . . , jk) from the messages (Mπ(jm1 )
, . . . ,Mπ(jmk )

) and

therefore, XA ‖ XB . ut
Corollary 7.8. Let R be a k-homogenous set of constraints on N variables. If
R is realizable, then there is a distribution design X realizing R with share size
O(k3Nk/2). If k = 2, the size of the shares is O(N0.5), if k = 3, the size of the
shares is O(N), if k = 4, the size of the shares is O(N5/3), and if k = 5, the
size of the shares is O(N7/3).

The size of the shares in our distribution design is smaller than the size of
the shares in the distribution designs of [6] for homogeneous sets of constraints
when the number of constraints is large. However, the distribution designs in [6]
have extra properties that can be used to construct distribution designs for non-
homogeneous sets of constraints. We do not know how to use our distribution
designs to realize non-homogeneous sets of constraints.

7.3 Conditional Disclosure of Secrets and Strongly-Homogeneous
Secret-Sharing Schemes

A CDS protocol allows a set of parties P1, . . . , Pk to disclose a secret to a referee,
subject to a given condition on their inputs. In such a protocol, each party Pi



holds an input xi ∈ [N ], a joint secret s, and a common random string, and
there is a public function f : [N ]k → {0, 1}. The referee knows x1, . . . , xk. The
protocol involves only a unidirectional communication from the parties to the
referee, which should learn s if and only if f(x1, . . . , xk) = 1.

Using the transformations of [6, 12] from PSM protocols to CDS protocols,
our PSM protocols from Section 4 imply k-party CDS protocols with complex-
ity O(k3 ·Nk/2) for an arbitrary function. However, in a very recent result, Liu,
Vaikuntanathan, and Wee [17] have constructed much more efficient CDS proto-
cols; they construct a k-party CDS protocols for any function f : [N ]k → {0, 1}
with complexity 2Õ(

√
k logN).

We show that a CDS protocol implies a secret-sharing scheme for strongly
t-homogenous access structures in which the share size is the communication
complexity of the CDS protocols. An access structure is said to be t-homogeneous
if the size of every minimal authorized sets is t. An access structure is said to be
strongly t-homogeneous if the size of every minimal authorized sets is either t or
t + 1 and all sets of size at least t + 1 are authorized. That is, every set of size
< t is unauthorized, every set of size > t is authorized and some sets of size t are
authorized. Our construction realizing a strongly homogeneous access structure
takes a CDS protocol for a function f : {0, 1}k → {0, 1} and transforms it to a
secret-sharing scheme realizing a strongly t-homogenous access structure (with
k parties).

Definition 7.9. Let P = {P1, . . . , Pk} be a set of parties. We represent a subset
of parties A ⊆ P by its characteristic string xA = (x1, . . . , xk) ∈ {0, 1}k where
for each i ∈ [k], xi = 1 if and only if Pi ∈ A. For a strongly t-homogenous access
structure A, we define a function fA : {0, 1}k → {0, 1} such that for every subset
of parties A ⊆ P, f(xA) = 1 if and only if A ∈ A. In particular, if |A| > t then
f(xA) = 1.

Theorem 7.10. Let A be a strongly t-homogenous access structure on a set of
parties P = {P1, . . . , Pk}, and let Π be a CDS protocol for the function fA :
{0, 1}k → {0, 1} with a secret s. If Π has communication complexity Com(Π),
then there is a secret-sharing scheme for A with share size

O(k ·max{Com(Π), log k}+ log k).

Proof. Assume the dealer wants to share a secret s ∈ {0, 1}. The dealer chooses
at random a bit s1 ∈ {0, 1} and shares s1 using Shamir’s t-out-of-k secret-
sharing scheme. Let s2 = s⊕ s1. The dealer chooses the randomness r, required
for the CDS protocol Π. Let Mi,0,Mi,1 be the message of party Pi on inputs
0 and 1 respectively in the CDS protocol Π with secret s2 and randomness r.
For each i ∈ [k] the dealer shares Mi,0 in Shamir’s t-out-of-(k − 1) threshold
secret-sharing scheme among all the parties except for party Pi. Next, the dealer
gives to each party Pi the share Mi,1. The size of Mi,b is Com(Π) for each
i ∈ [k], and b ∈ {0, 1}. The share of each Pi party is Mi,1 and k − 1 additional
shares created in the t-out-of-(k − 1) Shamir’s threshold secret-sharing scheme
for messages of the CDS, and a share of the bit s1. Thus, the total share size



is k · Com(Π) + log k (assuming that Com(Π) ≥ log k). We claim that this
secret-sharing scheme realizes A.

First, let A be an authorized set of parties such that |A| ≥ t, thus, f(xA) = 1
and the parties in A can reconstruct s1. By the correctness of Π, if the parties
have the messages Mi,1 for each Pi ∈ A and Mi,0 for each Pi /∈ A, then they can
reconstruct the secret s2. As |A| ≥ t, the parties in A hold at least t shares of
Mi,0 for every Pi /∈ A and therefore, they can reconstruct Mi,0. The parties in
A also have their message on input 1; i.e. Mi,1 for each Pi ∈ A. Therefore, they
can reconstruct the secret s2, and therefore, reconstruct s.

Second, let A be a set of parties such that |A| < t. The parties have no
information on s1, hence no information on s. Finally, let A be an unauthorized
subset of parties such that |A| = t. From the correctness of Shamir’s secret-
sharing scheme, the parties in A can reconstruct Mi,0 for every Pi /∈ A and have
no information on Mi,0 for Pi ∈ A (since Pi does not get a share of Mi,0). The
parties in A also have their message on input 1; i.e. Mi,1 for each Pi ∈ A. The
set A is unauthorized, thus, f(xA) = 0. From the security of Π, the parties in
A do not learn any information on the secret s2 from the messages on input
f(xA) = 0, therefore, they learn no information about s. ut

Corollary 7.11. Let A be a strongly t-homogeneous access structure with k
parties. Then, there exists a secret-sharing scheme realizing A with shares of

size 2Õ(
√
k).
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