Can you find the one for me?
Privacy-Preserving Matchmaking via Threshold PSI

Yongjun Zhao and Sherman S.M. Chow

Department of Information Engineering
The Chinese University of Hong Kong, Hong Kong
{zy113, sherman}@ie.cuhk.edu.hk

Abstract. Private set-intersection (PSI) allows a client to only learn
the intersection between his/her set C' and the set S of another party,
while this latter party learns nothing. We aim to enhance PSI in different
dimensions, motivated by the use cases of increasingly popular online
matchmaking — Meeting “the one” who possesses all desired qualities
and free from any undesirable attributes may be a bit idealistic. In this
paper, we realize over- (resp. below-) threshold PSI, such that the client
learns the intersection (or other auxiliary private data) only when |C'N
S| > t (resp. < t). The threshold corresponds to tunable criteria for
(mis)matching, without marking all possible attributes as desired or not.
In other words, the matching criteria are in a succinct form and the
matching computation does not exhaust the whole universe of attributes.
To the best of our knowledge, our constructions are the very first solution
for these two open problems posed by Bradley et al. (SCN ’16) and Zhao
and Chow (PoPETS ’17), without resorting to the asymptotically less
efficient generic approach from garbled circuits.

Moreover, we consider an “outsourced” setting with a service provider
coordinating the PSI execution, instead of having two strangers to be
online simultaneously for running a highly-interactive PSI directly with
each other. Outsourcing our protocols are arguably optimal — the two
users perform O(|C|) and O(1) decryptions, for unlocking the private set
C and the outcome of matching.

1 Introduction

In this big-data era, information is an asset. Sharing of information often leads
to a win-win situation. The key issue is how to share selectively and strategically.
People nowadays tend to share their information over the online social network
(OSN). Usually, the sharing decision is based on whether the “subscribing user”
has been admitted into a certain “circle” or not. The admission decision can be
easy to make if we can rely on real-world friendship. Yet, people often reach out
and expand their networks to enjoy the real benefits brought by OSN. That will
be desirable if this decision can be made in a more systematic and intelligent
way, e.g., if a user possesses a sufficient number of common interests/attributes.

Private set intersection (PSI) is a handy cryptographic primitive which al-
lows two parties P; and Ps, traditionally referred to as a client and a server,

2 Yongjun Zhao and Sherman S.M. Chow

to compute the intersection of their respective private sets. For example, two
companies can learn their common customers without sharing their databases.
Yet, apart from hiding elements not in the set of the counter-party, PSI offers
no more control. For example, if two companies do not share a high number of
common customers, they may not bother to discuss any joint campaign, not to
say revealing common customers to each other.

Recently, Zhao and Chow [45] initiated the study of PSI with access struc-
ture, i.e., the client gets to know the intersection set only if its private set satisfies
some policy specified by the server. As a special case, they consider threshold PSI
which only reveals the intersection if its size is greater than a threshold agreed
upon by both parties. While the vision of incorporating a sharing strategy to a
vanilla PSI is great, the actual protocols realized by Zhao and Chow are a bit
unsatisfactory. Without resorting to non-standard cryptographic assumptions,
their design always leaks how many elements “contribute” to the satisfaction of
the policy. Specifically, for threshold policy, they only achieved a weaker vari-
ant under the name of threshold private set-intersection cardinality (t-PSI-CA),
which always leaks the size of the intersection to the client, regardless of whet-
her it is greater than the threshold or not. They argue that this level of privacy
protection is enough for applications such as online dating, where the matching
criteria are sensitive, and revealing the degree of overlapping even in a misma-
tch is a nice feature. Nevertheless, threshold PSI protocol based on standard
cryptographic assumptions remains open [45].

From the perspective of finding common interests, the “over threshold” policy
discussed above appears to be a natural choice. Yet, considering matchmaking
or access control in general, it is equally interesting to realize the complementary
notion of below-threshold private set-intersection. To unify the notion, we rename
the two functionalities above as t=-PSI [45] and ¢t=-PSI [9] respectively.

The benefits of supporting both kinds of policy are apparent. For the da-
ting application, using ¢=-PSI alone only allows the search for desired quality.
Users probably also want to match with others who do not possess a certain set
of undesired attributes (e.g., smoking, over-gregarious). With t=-PSI, users can
simply make sure that their number of occurrence is below an acceptable thres-
hold instead of specifying every possible negated attribute (e.g., non-smoking).
Unfortunately, t<-PSl is also posed as an open question [9].

1.1 Technical Overview

Despite the conceptual similarity, it is fair to say that t<-PSI and t=-PSl are
two different problems. We have a weakened version of ¢t=-PSI (namely t-PSI-
CA) [45], but the corresponding weakened form of +=-PSI does not exist in the
literature. To the best of our knowledge, there is no solution for these two pro-
blems (perhaps except the generic approach of using garbled circuits [30,43]).
The fundamental issue is that, t=-PSI (resp. t=-PSl) fall within the framework
of private set-intersection with monotone (resp. mon-monotone) access struc-
ture [45]. It is not clear how to construct non-monotone access structure from
monotone one (and vice versa).

Can you find the one for me? 3

In this work, we unify the design of both protocols. We take an innovative
approach to realize both kinds of threshold PSI protocol, without the deficiency
of leaking the intersection size. To better understand the difficulty of hiding
the intersection size, we briefly go over the design of the protocol of Zhao and
Chow [45]. Roughly, it works by generating “secret shares” to the participant.
With enough shares, the intersection set can be “unlocked”. The difficulty faced
by Zhao and Chow in hiding the size of the intersection appears to be the
following. On one hand, there should be a way to quickly identify what shares
can be used to reconstruct the unlocking key; for otherwise one needs to exhaust
an exponential number of possible combinations among the shares. On the other
hand, it reveals the number of matches, i.e., the size of the intersection, via the
counts of how many individual shares are potentially useful.

Interestingly, we got inspiration from an apparently even more restrictive
variant of PSI proposed by Carpent et al. [11], which is known as existential PSI
(or PSI-X in short). PSI-X only outputs a single bit instead of a set. The output
denotes whether the two private sets have any overlapping. As minimal as it
may seem, we “upgrade” our own design of PSI-X protocol (ITx, see Appendix
for more details) to encode more information. Specifically, we build a protocol
Hepsi.ca which we call encrypted private set-intersection cardinality (ePSI-CA).
In this design, cardinality is no longer an unintended leakage but intentionally
encrypted. This provides a basis useful for realizing the threshold functionality.

With ePSI-CA, we obtain a t=-PSI protocol by a simple modification of our
t<-PSI protocol IT,<_pg;. Underlying both designs is a technique for computation
over encrypted data realized by oblivious polynomial evaluation (OPE) [24].

Appendix [summarizes the relations between the PSI variants.

1.2 Merits of Our Constructions

Our proposed protocols are of both practical and theoretical interest. From the
efficiency perspective, the complexities of our constructions are linear in the set
size n. This beats the classical garbled circuit approach that uses sort-compare-
shuffle network with O(nlogn) complexity [30], as well as recent advancement
that achieves almost linear (namely w(n)) complexity [43].

From the design perspective, we demonstrate how to use old techniques in the
PSI literature in a novel way to realize PSI functionalities for which no efficient
solutions are known. Specifically, many PSI protocols use OPE to encode the
private set [[13,24,27,28,87,145]. Another idea of realizing PSI, which uses Bloom
filter related techniques, was first brought by Dong et al. [20] and has a shorter
history [IL6,[17,45]. To the best of our knowledge, for the first time, we combine
these two techniques in a non-trivial way. It also suggests a new avenue for
addressing other open problems such as private set projection (PSI-P) [11] with
linear computational complexity. See Appendices @pand for more details.

Lastly, our protocols remain conceptually simple and modular. Both deside-
rata greatly simplify the security analysis. Future more efficient Fepsj.ca instan-
tiation will immediately result in more efficient II;<_pg; and I1;>_pg protocols.

4 Yongjun Zhao and Sherman S.M. Chow

1.3 Outsourced Threshold PSI Protocols

Although our protocols are asymptotically efficient, they still rely on public-key
techniques, which are difficult to avoid and are not as efficient as symmetric-
key primitives (say, hash functions or blockciphers) which often fail to provide
algebraic structure for fancy functionalities. PSI protocols are also often highly
interactive. For our motivating applications of matchmaking, the interactive na-
ture and the heavy use of public key cryptography hinder the practical usage of
PSI.

Our final contribution lies in outsourcing the heavy computations in our
protocols to an oblivious cloud. Beyond simply following the trend of leveraging
cloud service, we believe that most of the popular mobile applications nowadays,
no matter privacy-preserving or not, are often executed with the help of some
central servers operated by the service provider. As such, outsourcing PSI not
only leads to better efficiency, but also better matches the business model and
the usage habits of mobile applications. In the context of using threshold PSI
for matchmaking, the user who is a potential match may respond to notification
of the smartphone from time to time but would not permanently stay online. It
is thus desirable to have the service provider which arbitrates between two users
instead of having two users interact with each other directly.

While there is a server which mediates requests between clients, the privacy
guarantees of PSI still carry over. In other words, with our outsourced extensions,
not only we can enjoy the richer functionalities on top of the privacy provided
by our PSI protocols, but also a more deployable protocol which is closer to the
real-world model from the perspective of both users and the service provider.

1.4 Related Work

Freedman et al. [24] first proposed a PSI protocol based on oblivious polynomial
evaluation. Dong et al. [20] proposed PSI protocol using oblivious transfer ex-
tension. Subsequently, more efficient PSI protocols using similar technique are
proposed [38,89,42,44].

A branch of work aims to restrict the output or the leakage of PSI. PSI-
CA/PSU-CA reveals only the (approximate) cardinality of the intersection/union
but not the set itself [3, 6,15, 16, 18, 2124, 29,87]. Some [B,[15,18,22] also use
Bloom filter, but none of them can be directly adapted to Ilpsi.ca (see Sec. H)).
Ateniese et al. [4] and D’Arco et al. [14] proposed (input-)size-hiding PSI. Brad-
ley et al. [9] further enable imposing an upper bound on the input set size.

PSI is also considered in the outsourced setting [1,33-35]. These works do
not support advanced threshold set operations.

Concurrent Work. Recently, Hallgren et al. [26] also study over-threshold
private set-intersection with application in ride sharing. They also consider se-
curity in the semi-honest model, but the complexity of their protocol is of or-
der O(n?), which is worse than the garbled circuit approach. A very recent
manuscript by Ciampi and Orlandi [12] studies how to perform secure post-
processing of the output of PSI protocols in the semi-honest model. Combi-
ning their solution with two-party computation techniques allows computation

Can you find the one for me? 5

of f(CNS) for arbitrary function f. Our protocols are specific protocols which are
more efficient (O(n) vs. O(n?)). Also, our design naturally allows the revelation
of some auxiliary data (e.g., a session key K encrypting the contact information
for matchmaking) when the threshold policy is satisfied. Extending their two-
party computation approach [[12] in a straightforward way to also support this
feature requires a more complicated function f.

Pinkas et al. [43] introduce new variants of Cuckoo hashing technique to
reduce the number of gates from O(nlogn) to w(n) in garbled-circuit based
PSI protocol. It is possible to adapt their solution to compute threshold PSI by
adding an additional circuit. Therefore, the overall complexity will be at least
w(n).

2 Preliminary

For a finite set S, |S| denotes its size and s & S denotes picking an element
uniformly at random from S. We denote [i] = {1,...,i}. We write {s;}, as a
shorthand for the set S = {s1,..., s, } of n elements. We drop the subscript n if it
is clear from context. We use F, to denote an ideal functionality that implements
the protocol p, and use 11, to denote a concrete construction of the protocol p.

A probability ensemble indexed by I is a sequence of random variables in-
dexed by a countable index set I, namely, X = {X;};c; where X; is a random
variable. Two distribution ensembles X = {X,} and Y = {Y},} are computati-

C

onally indistinguishable, denoted by X = Y, if for every PPT algorithm D,
there exists a negligible function negl(-) such that for every n € N,

|Pr[D(X,,,1") = 1] — Pr[D(Y,, 1") = 1]| < negl(n).

2.1 Additive Homomorphic Encryption and Oblivious Polynomial
Evaluation

We will use CPA-secure additive homomorphic encryption (AHE) (KeyGen, Enc,
Dec) such as Paillier encryption [41]. Given two ciphertexts Enc(pk,mg) and
Enc(pk,m1), one can efficiently compute their addition Enc(pk,mq + my) =
Enc(pk,mg) ® Enc(pk, m1) without using private key sk. For a constant ¢, given
one ciphertext Enc(pk, m), one can easily compute Enc(pk, c-m) = c®Enc(pk, m).

To build an OPE protocol, a polynomial p(z) can be hidden by encryp-
ting its coefficients ag,...,ar. With these encrypted coefficients, denoted by
Enc(pk,p(-)), anyone holding a plaintext s can compute an encryption of p(s)
as Enc(pk, ag) @ (Enc(pk,a;) ® s) @ --- @ (Enc(pk, ar) ® s*) using addition and
constant-multiplication.

2.2 Bloom Filters

A Bloom filter [§] is a compact array of m bits that represents a set S of n
elements for efficient set membership testing. It consists of a set of k independent
hash functions H = (hq, ..., hy), h; uniformly maps elements to index in [m].

6 Yongjun Zhao and Sherman S.M. Chow

All bits in the array are initialized to 0. To insert an element x € S, z is
hashed by the k hash functions to get k index numbers. All the bits at these
indexes in the array are set to 1, regardless of its original value. To check if
an item y is in 9, y is hashed by the k hash functions to get k indexes. If
any of the bits at these indexes is 0, we conclude that y is certainly not in S
(no false negative). Otherwise, y is probably in S. So it incurs only a small
fraction of false positives. The upper bound of the false positive probability [§]

is: e = pF <1 + O (I;\/ h””;““”)) wherep=1—-(1-— %)k”

If we set the false positive rate to be less than a threshold ¢y, it can be shown
that the length of the bit array size m should be at least m > nlog, e-log, 1 /€,
where e is the base of the natural logarithm. Equality is achieved when k =
(m/n) - In2 = logy 1/€9. We will stick with these optimal values as follows: the
false positive probability is € = 27982 5o that e is negligible in the security
parameter A. As a result, k = w(log A\) and m = k - nlog, e.

2.3 Secure Two-Party Computation

We use the simulation-based security definition for two-party computation (2PC).
More details can be referred to [25]. A 2PC protocol m computes a function that
maps a pair of inputs to a pair of outputs f : {0,1}*x{0,1}* — {0,1}* x{0,1}*,
where f = (f1, f2). For every pair of inputs z,y € {0, 1}*, the output-pair is a
random variable (f1(z,y), fo(x,y)). The first party obtains fi(z,y) and the se-
cond party obtains fo(z,y). When f;(x,y) = L, it means party i’s output is
empty.

We first consider static semi-honest adversaries, which can control one of the
two parties and assumed to follow the protocol specification exactly. However,
it may try to learn more information about the input of the other party.

In the semi-honest model, a protocol 7 is secure if whatever can be computed
by a party in the protocol can be obtained from its input and output only. This
is formalized by the simulation paradigm. We require the view of a party in a
protocol execution to be simulatable given only its input and output. The view of
the party ¢ during an execution of 7 on input (z,y) is denoted by View] (z,y) =
(w, 7", mi, ..., m), where w € (z,y) is the input of 4, 7% is i’s internal random
coin tosses, and m; denotes the j-th message that it received.

Definition 1 (Semi-honest Model). Protocol 7 is said to securely compute
a deterministic function f = (f1, f2) in the presence of static semi-honest ad-
versaries if there exists PPT algorithms Simq, Simg such that

{Simi(z, f1(2,9)) bay = {View] (2,1)}a.y,
{Sima(y, fo(@,¥) Yoy = {View] (2,1) ba.y-

The F-hybrid model. We will use some secure two-party protocols as sub-
protocols. We will describe our protocols in a “hybrid model” where the two

Can you find the one for me? 7

parties interact with each other and use trusted help. When constructing a pro-
tocol 7 which uses a sub-protocol that securely computes some functionality F,
we consider that the parties run 7 and use “ideal calls” to a trusted party for
computing F. Upon receiving the inputs from the parties, the trusted party com-
putes F and sends all parties the corresponding output. After receiving these
outputs back from the trusted party, the protocol 7 continues. By the composi-
tion theorem [IL(], any protocol that securely implements F can replace the ideal
calls to F.

3 PSI with Threshold Policy

3.1 Definitions

We begin with the formal definitions of two private set-intersection with thres-
hold policy functionalities in the literature. We remark that for the second party
P, (often referred to as “server” in the literature), its output is always L: it
never knows whether the threshold policy is satisfied or not. For the first party
Py (often referred to as “client” in the literature), if its output is not L, it knows
that the threshold policy is satisfied; however, when its output is L, it cannot
distinguish whether that is due to C NS = ¢, or |C' N S| not meeting the policy.
Here, the input of the parties includes the size of the input set of the counter-
party. This is the standard practice in the multi-party_computation literature,
when the protocol considered is not “input-size hiding” [40]. We leave “input-size
hiding” variants of threshold PSI as a future work.

Definition 2 (Below-Threshold Private Set-Intersection (¢t=-PSl) [9]).
Let S and C' be subsets of a predetermined domain, the functionality Fi< pg 15:

(Cns, L)y f|lcnsS|<t
(L,1) otherwise

(¢, 15D (S, 1¢1)) H{

Definition 3 (Over-Threshold Private Set-Intersection (¢t=-PSl) [26,45]).
Let S and C' be subsets of a predetermined domain, the functionality Fi> pg 15:

(Ccns, L) fjlCnsS|>t
(L,1) otherwise

(@, 15D, (S, 1¢1)) H{

To realize both F;<_ps and F;>_pg, our key insight is to leverage a primitive
called encrypted PSI cardinality (ePSI-CA) functionality in a novel way. This new
functionality is formally defined below.

Definition 4 (Encrypted PSI Cardinality (ePSI-CA)). Let S and C' be sub-
sets of a predetermined domain. Let (pky,skyi) be a public / secret key pair of a
homomorphic encryption scheme. The functionality Fepsi.ca iS:

((07 ‘S|’ pk175k1)a (Sa |C‘7 pkl)) = (J-v Enc(pkla |C N SD)

8 Yongjun Zhao and Sherman S.M. Chow

We choose to single out Fepsi.ca not only for a more compact presentation of
11,<_ps and II;>_pg, but also because we believe that Fepsi.ca itself is an interes-
ting primitive. In Appendix [B, we use it to construct the most efficient existential
private set-intersection protocol (PSI-X) and private set projection [11] to date.
Motivations and applications of these two protocols can also be found in Appen-
dix E and [11].

3.2 Intuition

We describe our IT;<_ps, and I1,>_pg constructions in the (Fepsi.ca, Fpsi)-hybrid
model, while the concrete instantiation for Fepsi.ca is deferred to Sec. E In what
follows, we use t<-PSl as an example to showcase how it is readily achievable
with Fepsi.ca as a building block. The crux of our novel combination of ePSI-CA
and oblivious polynomial evaluation (OPE) is that we use OPE to transform
Enc(pky, |C NS|) (namely, the output of Fepsi.ca) to an encryption of a session
key K if and only if |C' N S| € [0,¢]. If |C N S| ¢ [0,¢], the evaluation result is
random and contains no information about K.

In more details, P> re-randomizes the encrypted cardinality obtained from
Fepsi.ca by a random number 7 as Enc(pky,|C N S| 4+ r) such that P; knows
nothing about |C' N S| after decrypting Enc(pk,, |C N S| + r), but can
obliviously evaluate a polynomial at |C' N S| + r. To be more specific, Py first
prepares a polynomial p(-) whose roots are r,r + 1,...,7 + t, and chooses a
random symmetric key K. P, then sends encrypted coefficients of polynomial
P’ (1) = 7" -p(-)+ K under its own public key pk,. In this way, when P; obliviously
evaluates p/(+) at |C' N S|+ r via additive homomorphism (See Section P.1)), the
result will be an encryption of K if and only if |C N S| < t; otherwise it will
be encrypting a random number that reveals no information about K (because
" - p(-) serves as a one-time pad encrypting K, while P, only used r’ once).

To retrieve the value of p'(-) at |C'N S|+ (which is either the correct session
key K or a random value) in plaintext from the previous OPE (which produces
Enc(pksy, p'(JCNS|47)), P randomizes this ciphertext (denoted by Enc(pky, K)
in Step (4) in Fig. [I|) simply by further blinding it with a random number " and
asks P, for decryption. What P; eventually obtains is a value K’ which equals to
K if and only if [CN S| < t. This K’ serves as a token showing if the intersection
|C' N S| is below the threshold. The final step is to have P; and P, engage in
a normal IIps;, in which P; and P, uses CX' = {¢;||K'} and S¥ = {s;||K} as
input respectively. Hence P; can recover the intersection if it possesses the same
key K' = K.

3.3 t=-PSI Protocol: IT,< pg,

We describe our t<-PSI protocol I1;<_pg in the (Fepsi.ca, Fpsi)-hybrid model in
Fig. [ll, following to the intuition above. Some points to note are in order.

In Step (2), P, blinds the encrypted cardinality Enc(pk,, |C'N.S|) obtained from
Fepsi-ca by a uniformly random number r as Enc(pk,, |C'NS|+r), which can be

Can you find the one for me? 9

viewed as the result of double encryption: firstly encrypt |C'N.S| using a one-time
pad 7, and then further encrypt under pk;.

In Step (3), the polynomial p’(-) and p(-) are both degree (¢t + 1), so the number
of coefficients to be encrypted and transmitted is (t + 2) € O(|C| + |S]). Also,
note that these coefficients are independent of the set S. Looking ahead, such
independence allows outsourcing computation to a cloud server.

In Step (4), P; needs to blind the evaluation of polynomial by a one-time pad
similar to what P, does in Step (2). This is because if Py sees K’ in plaintext,
it can check if K = K’ and learn a single bit of information b = (|C' N S| > 1),
violating the requirement of F,< pg. Recall that in Definition E, the output of
P; is always L.

In Step (6), the session key K’ serves as a token that allows P; to obtain the
intersection when the threshold policy is satisfied via Fps; on transformed sets.
Yet, when the output of Fps is L, P; does not know whether it is due to
C NS = ¢, or the threshold policy is not met. Meanwhile, P, learns nothing
from Fpg, thus satisfying the requirement of F;<_pg.

HtS-PSI
Input: Pi’s input is (C, |S]). P2’s input is (S, |C]).

1. [invoke Fepsi-ca] P1 sends his AHE public key pk; to P». Next, they invoke
an ideal execution of Fepsi.ca where the input of Py is (C,|S], (pk,,sk1)) and
the input of P is (5, |C|, pk,)). P2 then gets Enc(pk,, |C'N S])).

2. [P> masks encrypted |C'NS|] P, randomly chooses r and homomorphically
computes Enc(pk,, |C N S|+ 7).

3. [P prepares encrypted polynomials] P> prepares a polynomial p(-) whose
roots are r,r+1,...,7+t. Py also chooses a random number 7’ and a random
symmetric key K. Finally, P> sends encrypted coefficients of the polynomial
p'(-) =7 - p(-) + K under pk,, as well as Enc(pk,,|C N S|+ r).

4. [P1 evaluates polynomial] P decrypts the received ciphertext to get |C'N
S|+ r, and obliviously evaluates p’(-) at point |C' N S| + r. Denote the result
by Enc(pky, K’). Pi blinds it with randomness r”’ into Enc(pk,, K’ + r"’) and
asks P for decryption.

5. [P>» decrypts] P> decrypts Enc(pky, K’ + ") and returns K’ +r” to Pi, who
recovers K'.

6. [invoke]:PS|] P and P» invoke an ideal execution of Fpsi where the input of
P is (CK/, |S]) and the input of P» is (S*,|C|), where cK' = {ci||K'} and
S = {s||K}.

7. [output] P; outputs whatever it receives in the previous step (stripping away
the trailing key K’ if the output is non-empty).

Fig. 1: Below-Threshold Private Set-Intersection (I1,<_pg)

10 Yongjun Zhao and Sherman S.M. Chow

3.4 Analysis

By the correctness of Fepsi.ca functionality, P» obtains Enc(pk,|C' N S]) in
Step (1). If the size of intersection |C N S| < ¢, then in Step (3) the polynomial
p(-) will be evaluated to 0, and hence the evaluation of p/(-) will be K’ = K. On
the other hand, if |C'N S| > ¢, the evaluation of p’(-) will be K’ # K. Then by
the correctness of Fpsj, Py obtains C'N S if and only if |C N S| < ¢.

For efficiency, since public-key operations are much slower than symmetric-
key ones, we only count the total number of public-key operations, including
encryption, decryption, and homomorphic operations (addition and multiplica-
tion by a constant). We assume using Ilepsi.ca to instantiate Fepsi.ca in Step (1).
The number of public-key operations of Ilepsi.ca will be presented in Table é
We also assume_an_efficient Ilps; construction. Note that the state-of-the-art
IIps) protocols [38, 42, 44] under the semi-honest model require linear compu-
tation and communication complexities. Table [I| summarizes the overall result,
showing that the IT,<_ps, protocol features linear computational complexity.

Table 1: Computational Efficiency of I1,<_pg
(Fepsi-ca is instantiated by ITepsi.ca with complexity in Table E)

Enc Dec addition multiplication IIps)
Step 1 (P1)|w(logN)O(IC|+1S])] 0 |w(log\)O(IC| + |S]) 0 0
(P2)|w(og M)O(IC] + |S])|O(|C]) |w(log M)O(|C| + |S]) |w(log N)O(|C]) 0
Step 2 (P;) 1 0 1 0 0
Step 3 (P2) t+3 0 0 0 0
Step 4 (P1) 1 1 t+2 t+1 0
Step 5 (P) 0 1 0 0 0
(P1) 0 0 0 0 o(|C| +|S])
Step S1py) 0 0 0 0 [o(C[+SD
Total |w(log A\)O(|C] + [S))|O(|C|)|w(log M)O(|C] + |S])|w(log)O(|C])|O(IC] + |S])

Theorem 1. Assuming the existence of CPA-secure additive homomorphic en-
cryption scheme (KeyGen, Enc, Dec), whose plaintext space is super polynomial in
the security parameter; then the protocol Ili< pg in Fig. |1 securely implements
the functionality Fi<_pg in Def. |8 in the presence of semi-honest adversaries
under the (Fepsi-ca, Fpsi)-hybrid model.

Proof. Simulating the view of P, using Simf'PS'. The view of P, contains
the messages sent by P: Enc(pk;, |C'NS|+ 1), pky, Enc(pky,p’(+)) (encryptions
of coefficients of the polynomial p’(+)), (K’ +r"), the fixed empty output L from
Fepsi-ca, as well as the output from Fpg;.

Let A be a probabilistic polynomial time (PPT) adversary corrupting party

P;. We design a PPT simulator Sim'f'PSI
<.PSI

that invokes A by playing the role of

the honest party P, and Simﬁ emulates the two ideal functionalities Fepsi-ca,

Can you find the one for me? 11

Fpsi- The simulator will generate a view indistinguishable from a hybrid one.

<
Simtlf'PSI has different simulation strategies for different outputs of P;. We con-
sider two disjoint cases.

(1) the output is L:

<
1. Given input ((C,[S],t), L), Sim} """ invokes A on input (C, |S|,t), and re-
ceives A’s first message pk;.
<
2. Simif'PSI plays as the trusted party and emulates the ideal calls to Fepsi.ca.

3. Simtlg'PSI generates a random public/private key pair (pk,,sks), a random
symmetric key K, just as what P, will do, and continues the protocol emu-
lation by sending encryptions of 0 under pk, (representing an all-zero poly-
nomial) instead of encryption of coefficients of the polynomial p(-). It also
encrypts a random number R; under pk; to emulate the intended message
Enc(pky, |[C N S|+ 7).

4. When A obliviously evaluates the zero-polynomial at point R in Step (4), the

result will be an encryption of 0 under pk,. A randomizes this encryption

< <
of 0 into an encryption of 7"/ and asks Sim’if'PSI for decryption. Sim’if'PSI

returns yet another random value Rj.
5. Finally, A will compute K’ = Ry — 1" (# K with overwhelming probability).
Then A uses (C' = {¢;||K'},|S]) as input to the Fpgi functionality emulated

<
by Simtf'PSI7 who will return L as intended.

We argue that this simulated view is indistinguishable from the real one.
First, notice that the simulated messages Enc(pky, R1) and Ra, are identically
distributed as the real ones Enc(pky, |C' N S|+ r) and K’ + r”. It is because, in
the real protocol, r is selected by P, uniformly at random and K’ is distributed
uniformly at random when |C'N S| > ¢ thanks to the randomness r’ in Step (3).
Second, notice that the other simulated messages are encryptions under pk,. Any
distinguisher of these two views can be transformed to an adversary breaking
CPA-security of the encryption scheme.

(2) the output is a subset C' C C' whose size |C| is less than t:

Simtf'PSI works as the previous case, except in Step (4) it decrypts the ciphertext
to get r”’. In Step (5) it computes K’ = Ry — 1", converts the set C into CX' by
appending K’ to each element in C. Finally, it uses CX' to emulate the output
of fp5| for A.

This simulated view is indistinguishable from the real view because every-
thing is the same as the other case with the only exception being the output
of .Fp5|.

Simulating the view of P, using Sim,
This part is easy because P’s view contains only Enc(pky, |C'NS|) from Fepsica,
1L from Fpg) and Enc(pky, K’ +7"). The third element is an encryption of a truly
random value (because " is chosen by P; uniformly at random), which can
be perfectly simulated using Enc(pk,, R) where R is also chosen uniformly at
random. The first element can be simulated by Enc(pk;,0). A straightforward

<-PSI

12 Yongjun Zhao and Sherman S.M. Chow

reduction shows that any distinguisher who can distinguish Enc(pk,, |CNS]) from
Enc(pk;,0) can be used to break the CPA-security of the encryption scheme.

3.5 t2-PSl Construction and Generalizations

To construct I1;>_pg;, we modify IT;<_pg in Fig. m The modification is simple and
straightforward: in Step (3), P> prepares a polynomial whose roots are r+¢,r +
(t+1),...,7 +min(|S],|C]), where the function min(z,y) returns the smaller
value of x and y. The rest of the protocol remains exactly the same. Note that the
degree of this polynomial is min(|S|, |C|)—t+1, which remains to be O(|S|+|C1),
and hence the efficiency analysis in Table [I] also holds for I;> pg;.

In general, P, can specify the roots of the polynomial at will. For example,

the roots could be integers within a certain interval {r+a,r+(a+1),...,7+b}.
It means P; only learns the intersection if |C' N S| falls within the range [a, b].
Further generalizing, we can change the criteria to be |CNS| € {m1,mo, ..., mq},

i.e., an arbitrary set of numbers (a subset of even numbers, a subset of prime
numbers, etc.) instead of consecutive numbers.

Proving the security of IT;> ps (and its generalizations) just takes a very
straightforward adaption of Theorem [l| and thus we omit the repetitive details.

4 Encrypted PSI-Cardinality

Both our I1,<_pg; and II;>_pg protocol heavily rely on Fepsi.ca, which is a novel
variant of PSI and PSI-CA protocol in the literature. It is tempting to instantiate
Fepsi-ca from Fpsi.ca by just adding encryption: P; and P, execute Fpsi.ca, and
Py encrypts the output |C'N S| under its public key pk;, forwards the ciphertext
to Ps. Yet, this approach leaks |C' N S| to P; and hence does not satisfy our
Definition E, namely, P; should output nothing but L.

One may instead wonder if some trivial extensions of Ilpsi.ca can do. Yet, all
IIps).ca protocols that we are aware of proceed by transforming elements in the
two parties’ respective set via some one-way transformation, and let P; count
the number of common elements in the transformed domain. If one follows this
paradigm, it seems impossible to hide the number |C' N S| from P;. After all, in
Fpsi.ca and Fps|, it is P; who has non-trivial output while in Fepsi.ca, it is P
instead. Such inherent inconsistency suggests that new techniques are required
to design ePSI-CA.

4.1 ePSI-CA Protocol: Ilepsi.ca

Our construction is inspired by the existential private set-intersection (denoted
by Fx) protocol by Carpent et al. [11]. We observe that the core of their pro-
tocol is implementing an encrypted private membership test protocol, a special
case of Fepsi.ca where P;’s input set consists of a single element. Unfortunately,
their construction is too inefficient, making it unsuitable for our application.
We significantly improve their construction by a novel combination of OPE and

Can you find the one for me? 13

Bloom filter. Here we only highlight our design principle. A detailed discussion
of Fx is deferred to Appendix [B.

Recall that a Bloom filter BFg encoding a set S supports efficient members-
hip test by hashing the test element x into k locations using k hash functions. If
the value of BFg at those locations are all “1”, we conclude that x € S. Namely,
the predicate “z € S or not” is transformed to determining the number of “1”s.

1 z€8
0 =¢S5

)1 exactly k “1”s in {BFs[hi(2)],..., BFs[h(x)]}
" |0 less than k “1”s in {BFg[hi(z)], ..., BFs[hx(z)]}

P(xaBFS){

Suppose that P5’s Bloom filter BFyg is encrypted under its public-key pks,
then P; can obliviously compute an encryption of the number of “1”s under pky
by adding the ciphertexts of those k locations for element z. Let nx be such
number of “1”s, and e, , be its encryption under pky. Our task becomes how to
transform e, to an encryption of 0 if nx € [0,k — 1]; or to an encryption of 1 if
nx = k. This task is similar to what we have in Sec. é, in which we transform an
encryption of |C'N S| to an encryption of 0 if |C'N S| € [0,¢]; or to an encryption
of a non-zero number otherwise.

Fig. E gives the full details of ITepsi.ca. Two notes are in order. In Step (1),
kE = w(logA) and N = w(log \)|S]|log, e, which are optimal values for a false
positive rate of e that is negligible in the security parameter A (see Sec. @) In
Step (4), Py can precompute or outsource this step since the polynomials p;(-)
is independent of the private set C.

4.2 Analysis

Regarding the correctness, in Step (3), the resulting ciphertext is encrypting
an integer 1; € {ry,...,r; + k} because the sum consists of a random r; and
k encrypted numbers in {0,1}. For any element ¢; ¢ S, P; can only collect
less than k encryptions of “1” in Step (3) (otherwise a false positive of Bloom
filter has occurred). Therefore, the polynomials p;(7i;) will be evaluated to 0 in
the ciphertext domain in Step (5). On the other hand, for ¢; € S, then the
polynomial evaluation p;(1i;) =k x (k—1) x --- x 1 = kl. After normalizing by
a factor of (k!)~!, the protocol output is an encryption of |C' N S|.

Next, we analyze the efficiency by counting the total number of public-key
operations from Step (2) to Step (5). We assume that the false positive rate of
Bloom filter is set to be ¢ = 279098 50 k = w(log \). The other parameters
of Bloom filter are set to the optimal values accordingly. Moreover, we assume
that Horner’s rule is applied in the evaluation of p;(-) in Step (5), which requires
k additions and k£ multiplications for evaluating a degree-k polynomial. Table
summarizes the result, which shows that the complexity of our construction is
only linear in the set size.

In terms of security, we have the following theorem:

14

Yongjun Zhao and Sherman S.M. Chow

Lepsi-ca

Input: Pi’s input is C, |S|, and an AHE key pair (pky,ski).

P

1.

’s input is S, |C|, and an AHE key pair (pk,, sk2).

[setup] The parties perform a secure coin-tossing sub-protocol to choose
random seeds for Bloom filter hash functions hi,...,hy : {0,1}* — [N].

[P> encrypts its Bloom filter] P, builds an N-bit Bloom filter of his set
S using ha, ..., hy, encrypts the bits of the Bloom filter under pk,, and sends
the resulting encrypted bits e1,ez,...,en to Pi.

[P masks the query results] For each element ¢; € C, P; hashes ¢; using
those k hash functions to obtain k indices hi(c;), ha(ci), ..., hie(ci). Pi cre-
ates a ciphertext e,; to be sent to P» by homomorphically summing up all
ciphertexts at those indices (en, (c;),- - -»€h,(c;)) and another ciphertext of a
randomly chosen number 7;.

[P. prepares encrypted polynomials] For all ¢, P; encrypts under pk; the
coeflicients of a degree-k polynomial p; () = (z—r;)(z—r;—1) - - - (x—r; —k+1).
Py sends the encrypted coefficients of p;(-) and e, to Ps.

[output] P, decrypts e, to get 7i;. P> obliviously evaluates (k!) ™" (3°, pi(13:))
via additive homomorphism. Outputs this encrypted result.

Fig. 2: Encrypted PSI Cardinality (I1epsi.ca)

Table 2: Computational Complexity of Il.psi.ca
(false positive rate e = 27«98 "4 of hash k = w(log \))

Enc Dec addition multiplication
Step 2 (P») (log, e)k|S| 0 0 0
Step 3 (P1) |C| 0 k|C| 0
Step 4 (P1) (k+ 1)|C] 0 0 0
Step 5 (P2) 0 IC | (k+DIC] 1 kKO + 1
P; Total |w(logA\)O(|C|+1S])] 0 |w(ogA)O(|C]+ |S]) 0
P, Total |w(log A)O(IC] + |S])|O(|C])|w(log N)O(IC] + |S])]w(log A)O(IC])

Can you find the one for me? 15

Theorem 2. Assuming the existence of a CPA-secure additive homomorphic
encryption scheme (KeyGen, Enc, Dec), whose plaintext space is super-polynomial
in the security parameter; then the protocol Ilepsi.ca in Fig. |4 securely implements
the functionality Fepsi-ca under the semi-honest model.

Proof. We consider two corruption cases.
Simulating the view of P, using SimiPSI'CA. The view of P; only contains

its view in the coin-tossing protocol View{*, pky, and (eq,...,ex) (encrypti-
ons of binary numbers under pk,). SimiPS"CA can generate the first two using

the Sim{°"™, KeyGen algorithm, while the third one can be simulated by encryp-
tions of zero due to the CPA-security of the encryption scheme. Assume for
contradiction that there exists a distinguisher D for the simulated view and the
real view. One can build a distinguisher D’ breaking the CPA-security of the
encryption scheme. In the CPA-security game, D’ is given a public-key pk. D’
submits two vectors of plaintexts mg,m, where mg is an all-zero bit vector
as constructed in the simulated view, and m is the Bloom filter as in the real
execution. D’ receives a vector of ciphertext ¢ corresponding to an encryption of
either mg or mq, and directly forwards (pk,¢) to D. Finally, D’ outputs what
D outputs. It is easy to see that the advantages of D and D’ are the same.

Simulating the view of P, using SimSPSI'CA. The view of P, can also be
simulated in an analogous way. In particular, the view of P, contains Viewgom,
P,’s public-key pk;, encryptions of random numbers 7; = r; + n; under pk,,
where n; is a number in [0, k], encryptions of coefficients of a polynomials p;(-)
whose roots are r;,7; +1,...,7; +k—1 under pk;. The first two elements can be
simulated using Sims”" and KeyGen. Encryptions under pk, can be generated
by encrypting random numbers, while encryptions under pk; can be emulated
by encryptions of 0. By a similar argument as above, the simulation will be

indistinguishable from the real view.

4.3 Reducing Communication Cost

We can reduce the communication cost of Step (2) (sending N encryptions) and
Step (4) (sending k|C| encryptions) via private information retrieval (PIR) and
oblivious transfer (OT) respectively.

In Step (2), instead of transferring the whole encrypted Bloom filter eq, es, . . .,
from P, to P, it suffices to obliviously transfer only a subset of those cipher-
texts which will be used by P; in Step (3). The exact number of such ciphertexts
depends on P;’s set size |C| and the number hash functions k, and can be upper-
bounded by k|C|. In more detail, Steps (2) and (3) are replaced by the following
steps: Firstly, P, constructs a Bloom filter for its private set C' according to
the hash functions specified in Step (1). Then P; records the indices of non-zero
bits of the Bloom filter, and uses these indices as input to k|C| instances of a
single-server PIR protocol, in which P» plays the role of the server holding a
database (e1,es,...,en) of size N.

16 Yongjun Zhao and Sherman S.M. Chow

Let PIR(N) be the communication cost of a single server PIR scheme whose
database size is N. The overall communication cost of the above approach
can be bounded by k|C| x PIR(N). Since the state-of-the-art scheme [L9] gives
PIR(N) € O(loglog(N)), the above approach incurs O(k|C|loglog(N)) com-
munication cost instead of O(N). The improvement can be significant when

[S]
ICl e O(loglog(\s\)

lanced set size setting is considered in the literature [36] recently.

), namely Py’s set size is much larger than P;’s. Such an unba-

The security of this optimization can be easily understood as follows: (1)
With PIR optimization, P; obtains fewer ciphertexts, so it will not harm the
security of P. (2) PIR also guarantees that P, does not know which ciphertexts
P; has queried, just like the case without optimization in which P sends all
ciphertexts and lets P; locally decides which of them are useful.

Conceptually, Steps (4) and (5) are executing |C| instances of the following
variant of 1-out-of-(k+1) OT. Namely, P» is holding an index ri; and P is holding
a number 7; and an array of (k+ 1) ciphertexts, the first k being Enc(pk;,0) and
the last one being Enc(pky,1). In the end, P, obtains the (1; —r;)-th ciphertext.
A concrete instantiation of the above protocol using log(k + 1) instances of 1-
out-of-2 OT was given by Jarrous and Pinkas [31] as a part of their binHDOT
protocol (Fig. 1in [B1]). After applying this technique, the communication cost of
Step (4) is reduced from sending (k+1)|C| ciphertexts to executing |C| xlog(k+1)
1-out-of-2 OT.

The benefits of reduced bandwidth using these two techniques come with a
price. On one hand, the use of PIR significantly increases P»’s computational
cost. On the other hand, we will discuss how to outsource heavy computations
of Ilepsi.ca to an untrusted cloud in the next section. Unfortunately, these two
optimizations do not seem to be compatible with our outsourcing techniques.
Therefore, we choose to present Ilepsi.ca as in Fig. B. The complexity analysis
of Ilepsi.ca is computed according to the protocol in Fig. P, without taking the
above techniques into consideration.

5 Outsourcing Threshold PSI

Heavy computations in our protocols can be outsourced to an oblivious cloud. As
discussed in Sec. [L.4, there are quite a few outsourced PSI protocols [1,2,33-35].
However, they only implement the basic PSI protocol with different degrees of
outsourceability. None of them supports flexible control as our t<-PSl and ¢Z-PSl|
do. We extend the PSI model by introducing an additional cloud server, denoted
by CSP. This party serves as an oblivious helper in our ePSI-CA,¢=-PSl, and
tZ-PSI protocols: it helps P, and P, to perform some heavy computations but
remains oblivious to both P; and P,’s inputs, and the protocol outcome. CSP
may share information with Py or Py (when P, or P; is an adversary respectively)
but we assume that it follows the protocol specification faithfully. Such a semi-
honest server is widely accepted in the literature [[L, B3-35].

Can you find the one for me? 17

5.1 Outsourcing Il.ps|-ca

As the major building block of the bigger protocols IT;<_pg; and I1,>_pg, we first
discuss the outsourceability of each step of Ilepsi.ca.

Step 1

Step 2

Step 3

Step 4

Step b

P; and P; run a coin-tossing protocol per execution to obtain the random
seed for hash functions. The seed should remain hidden from CSP.

P; bitwise-encrypts its Bloom filter. Note that a Bloom filter is always a
binary string. As a result, P, can prepare a set of ciphertext encrypting
“0”s and “1”s under pky offfine before any protocol execution.

Recall that P, uses an N-bit Bloom filter to represent its set. Hence it
suffices to let CSP prepare Ny = 174'6 x N encryptions of “0”s and the
same number N3 = Ny for “17s. (§ is a small constant and N is the
same as that in Sec. a) P, permutes these ciphertexts according to a
pseudorandom permutation generated from a secret random seed, and
uploads the (Ny + Np) ciphertexts to the CSP.

These ciphertexts can be reused for different protocol executions as fol-
lows: after obtaining the random seeds for the hash functions in Step (1),
P, locally generates its plaintext Bloom filter. For each bit BF[i], P
randomly selects one of the Ny (or Ni) ciphertexts stored in CSP. Ps in-
forms CSP its choice by sending NN indices in total, so that C'SP can pre-
pare an encrypted Bloom filter for P,. Note that only P, knows whether
these ciphertexts are “0”s or “1”s. Hence CSP remains totally oblivious
to the content of the Bloom filter.

Py hashes its elements according to the hash functions agreed in Step (1),
and obtains k indices for each element. P, sends these locations to CSP
so that C'SP can homomorphically calculate the sum of these ciphertexts
for P;. Since CSP does not know the random seeds for the hash functions
generated in Step (1), these indices are completely random numbers from
CSP’s point of view. Moreover, the random number r; is independent of
its corresponding element ¢;, so CSP can choose r; on behalf of P;.
The coefficients of the polynomial p;(z) = (x —r;) -+ (x —r; — k+1) are
completely determined by r;, which are now selected by CSP in Step (3).
Hence CSP can perform the whole Step (4).

The polynomial evaluation step homomorphically computes encryption
of ay, - Tiik + -+ aq - riil + ag in the ciphertext domain using 7; from
decryption. Note that we cannot reveal 17; = n; +r; to CSP because CSP
knows r;. The knowledge of n; leaks whether the i-th element is in the
intersection or not. Still, P, can locally compute ciphertexts of a; - 7’
for all j € [0,k], and then ask CSP to add them together (which saves
some computation). In this way, P» can still outsource (k + 1)|C] — 1
homomorphic additions to CSP.

Putting these together, Fig. E presents the outsourced Ilepsi.ca protocol.

Table

shows its online computational complexity, with the saving highlighted

in red. In short, P, can outsource all public key operations to the CSP while P,
can outsource some. Sec. j will show that such improvement is significant.

18 Yongjun Zhao and Sherman S.M. Chow

Table 3: Online Computational Complexity of Outsourced Ilepsi.ca
(false positive rate e = 27«18 4 of hash k = w(log \))

Enc Dec addition constant-multiplication

Step 2 (P2) 0 0 0 0

Step 3 (P1) 0 0 0 0

Step 4 (Pr) 0 0 0 0

Step 5 (P2) 0 |C| 0 ElC|+1

P, Total 0 0 0 0

P, Total 0 o(|C)) 0 w(log \)O(|C])
CSP Total|lw(log N)O(|C|+|S])] 0 |w(logA\)O(|C| +|S]) 0

Outsourcing ITepsi-ca
Input: Pi’s input is C, |S|, and an AHE key pair (pk,,sk1).
Py’s input is S, |C|, and an AHE key pair (pk,,skz2). CSP has no input.
Offline Phase:

— P> encrypts No zeros and N; ones under pk,. P> randomly permutes these
ciphertexts according to some pseudorandom permutation 7 before uploading
these (No + N1) ciphertexts (€1,...,€no+n,) to CSP.

Online Phase:

1. [setup] Pi and P> perform a secure coin-tossing sub-protocol to choose seeds
for random Bloom filter hash functions ki, ..., hs : {0,1}" — [N].

2. [P2 builds encrypted Bloom filter at CSP] P, builds an N-bit Bloom
filter BF's with k hash functions on its set S. P> sends an ordered list of N
indices (idx1,...,idxy) to CSP such that Dec(skz, éiax,) = BFs[i]. These N
ciphertexts are denoted by e1,...,en.

3. [P1 sends the query to CSP] For each element ¢; € C, P, hashes ¢; using
those k hash functions to obtain k indices hi(c;), ha(ci), ..., hi(ci). P sends
these indices to CSP.

4. [CSP forms encrypted queries] For each i, CSP creates a cipher-
text e;; by homomorphically summing up all ciphertexts at those indices
(Ehi(ci)s - - -1 Chy(cy)) and another ciphertext of a random number r;.

5. [CSP prepares encrypted polynomials] For all 7, CSP prepares encrypted
coeflicients of a degree-k polynomial p;(z) = (z — 7)) (x —r; — 1) -+ (x — 1 —
k4 1) under pk,. For all i, CSP sends the set of encrypted coefficients of p;(-)
(e.g., Ak,iy-..,a0,) and ey, to Ps.

6. [P» partially evaluates p;(-)] For each i, P» decrypts e;; to get 1;, and
computes ciphertexts of a;; - 7;7 for all j € [0,k]. P2 sends these ciphertexts
to CSP.

7. [output] CSP homomorphically adds these ciphertexts into es. CSP homo-
morphically multiplies es with the constant (k!)™'.CSP sends this encrypted
result to P2, who outputs it directly.

Fig. 3: Outsourcing Il.psi.ca

Can you find the one for me? 19

5.2 Outsourcing I1,<_pg

We use Il;< pg as a showcase. It is very straightforward to apply the same
technique to II;> pg and its generalizations. Basically, most of the public key
operations (except decryption) can be outsourced.

Step 1 Invoking of Fepsi.ca. This can be (partially) outsourced as in Sec. @

Step 2 The blinding factor r is independent of P»’s private input. Hence the
computation of Enc(pky, |C' N S|+ r) can be delegated to the cloud.

Step 3 The coefficients of the polynomial p’(-), like those in Step (4) of Fig. E,
are again independent of P,’s private input. Therefore the encryption of
coefficients can be outsourced to CSP, who will choose r’, K on behalf
of PQ.

Step 4 Since only P; knows ski, CSP cannot decrypt Enc(pky,|C N S|+ r).
Moreover, the decryption result |C' N S| + r cannot be revealed to CSP
because CSP knows r in Step (2). As a result, the evaluation of p'(-)
cannot be fully outsourced to CSP, but still P; can locally compute
encryptions of a; - (|CNS|+r)7 for j € [0,t], as well as Enc(pky, r”’), and
then ask CSP to homomorphically add them together.

Step 5 Decryption cannot be outsourced.

Step 6 Intuitively outsourcing Ilps) requires outsourceable PSI. There are quite
a few potential solutions with different levels of outsourceability in the
literature [[,2,83-85]. We refer readers to these papers for more details.

Putting these pieces together, Fig. {l presents the outsourced below-threshold
private set-intersection protocol. Table Y gives the online computational complex-
ity of outsourced I1;< pg,.

Table 4: Online Computational Complexity of I1,<_pg
(using outsourced epsi.ca (c¢f. Table E) to instantiate of Fepsi.ca)

Enc Dec addition multiplication IIps,

(P 0 0 0 0 0
Sep 1(py) 0 olcT) 0 g NO(CD] 0
Step 2 (P2) 0 0 0 0 0
Step 3 () 0 0 0 0 0
Step 4 (P1) 1 1 0 t+1 0
Step 5 (P2) 0 1 0 0 0

(Py) 0 0 0 o(IC1+15))
Step 6/(p5 0 0 0 0 o(cl+ 15D
P Total o(1) 0(1) 0 o(t) o(lCl+15])
P, Total 0 o(C) 0 w(log M)O(ICD|O(IC| +1S])
CSP Total|lw(log\)O(|C| + |S])| 0 |w(logAN)O(|C| + |S]) 0 o(|IC +|S])

20

Yongjun Zhao and Sherman S.M. Chow

Outsourcing I1,<_pg

Input: Pi’s input is (C, |S]). P2’s input is (S, |C]).
(CSP has no input.)
Offline Phase:

— Execute the offline phase of outsourced Ilepsi.ca and outsourced Ilps;.

Online Phase:

1.

[execute outsourced Ilepsi.ca] P1 generates an AHE public/private key pair
(pky,ski), sends pk; to P». Next Pi, P, and CSP engage in an execution of
outsourced Ilepsi.ca where the input of Py is (C,|S], (pky,ski)) and the input
of P5 is (pky, S, |C|).

[CSP masks encrypted |C' N S|] P> sends the encrypted cardinality
Enc(pk,,|CNS|) to CSP, who blinds it by a random number r as Enc(pk,, |C'N

S|+ 7).
[CSP prepares encrypted polynomials] CSP prepares a polynomial p(+)
whose roots are r,7 +1,...,r +t. CSP also chooses a random number r’ and

a random symmetric key K. Finally, CSP sends encrypted coefficients of the
polynomial p’(-) = 7" - p(-) + K under pk,, as well as Enc(pky, |C N S|+ r) to
Py.

[P partially evaluates polynomial] Let the decryption of Enc(pk,,|C N
S| 4+ 7) be x. Pi homomorphically computes encryption of a; - 27 under pk,
for each polynomial coefficient a;. Pi sends these ciphertexts to CSP.

[CSP completes polynomial evaluation] CSP homomorphically adds all
received ciphertexts from Pi. Denote the result by Enc(pky, K'). CSP blinds
it with randomness 7" into Enc(pky, K’ +7"") and asks P> for decryption. CSP
sends r” to P; in plaintext.

[P, decrypts] P> decrypts Enc(pky, K’ + ") and returns K’ +r" to P;, who
recovers K'.

[execute outsourced Ilps|| Py, P>, and CSP engage in an execution of out-
sourced Ilps where the input of P; is (C*' = {c;||K'},|S|) and the input of
Py is (S5 = {s.]|K},|C)).

[output] P; outputs whatever it receives in the previous step (stripping away
the trailing key K’ if the output is non-empty).

Fig. 4: Outsourcing I1;<_pg)

Can you find the one for me? 21

6 Evaluation

For examining the performance of our proposed protocols Ilepsi.ca and I1;< pg,
we conducted our experiment on a desktop machine running Windows 8.1, with
2 Intel(R) Core(TM) i5-4590 3.30GHz CPUs, and 8GB RAM. We fix the size of
the sets to be 100 and the threshold ¢ to be half of the set size, namely 50. as
they should be sufficient for private-matching application in reality. Note that a
dating site eHarmony recently only uses a couple questions that can be finished
within 10 minutes to build up a model called “29 dimensions” to build up a
user profile. The Bloom filter uses 30 hash functions instantiated by SHA-256,
implemented by the OpenSSL library®. This number of hash functions reflects a
false negative rate € = 273 and Bloom filter size 4500 bits. We note that one can
achieve better performance at the cost of a larger false negative rate by reducing
the number of hash functions, which will lead to a smaller Bloom filter. We use
existing Paillier encryption implementationa, and set the key length to be 2048.
Experiments were measured in seconds via wall clock runtime, and the reported
runtimes are the average of 100 trials.

We_report the computation time of each step of Ilepsi.ca and Il;<_pg in
Table f and g respectively. The last column represents the online computation
time for P; and P, in the outsourced setting. We do not include the running time
of the last step of II,<_pg, because it relies on existing efficient Ilps; protocol
(and its outsourced version), which is not part of the contribution of this paper.

From the tables, we see that the outsourced version achieves a significant
reduction in computation time for both P, and P,. There are several ways to
further reduce it for P». First, note that our protocols are easily parallelizable,
which means significant improvement can be achieved via multi-threading. Se-
cond, recently Jost et al. [32] reported optimizations on Paillier cryptosystem
that improves naive implementation by a factor of over 150. Taking these into
consideration, our constructions can finish within 1s.

Table 5: Execution time of Ilepsi.ca (without the optimization of [32])

time (s)|online (s)

create Bloom filter 0.001 0

Step 2 (P2) encrypt Bloom filter | 60.404 0
Step 3 (P1) query Bloom filter 2.685 0.001
Step 4 (P;) encrypt polynomial | 81.268 0
decryptions 1.322 1.322

Step 5 () evaluate polynomials| 76.627| 76.562
P, Total 83.953 0.001

P, Total 138.353| 77.884

! https://www.openssl.org
2 https://github.com/herumi/mie

https://www.openssl.org
https://github.com/herumi/mie

22 Yongjun Zhao and Sherman S.M. Chow

Table 6: Execution time of IT,<_pg), ¢ = 50 (without the optimization of [32])

time (s)|online (s)

Pi| 83.953] 0.001

Step 1 (Iepsi-cA) [b 1133 353 77584
Step 2 (P) 0.026 0
Step 3 (P2) 1.363 0
Step 4 (1) 1325 1.324
Step 5 (P2) 0.013] _ 0.013
P, Total 85278 1.325

P, Total 139.755] 77.897

7 Private Matchmaking

We discuss how to utilize our (outsourceable) protocols in our motivating sce-
nario. The matchmaking application is set up as follows. The service provider
acts as CSP. When each user joins the system, apart from generating a public
key pair for AHE, they randomly pick a symmetric key K and use it to encrypt
their profile such as photos and contact. The system suggests a set of attributes
(e.g., highly-educated, smoking). The user can mark a subset of attributes to
be desired, and mark another disjoint subset to be undesired. The unmarked
ones will be considered as “don’t care”, and they will not be part of the proto-
col input. The user also picks two thresholds: t, which is for the least number
of desired attributes, another one is t;, which is for the maximum number of
undesired attributes.

A user Alice is considered to be matched with another user Bob if and only
if she possesses of more than ¢, desired attributes specified by Bob, and possess
less than t, undesired ones. If matched, Alice should obtain the symmetric key
K that can decrypt the profile of Bob. We use t=-PSI and ¢=-PSI simultaneously
to implement the above functionality as follows: Bob splits the symmetric key K
into two parts by a simple (2, 2) secret sharing based on XOR. Specifically, Bob
picks a key K, which is as long as K, and outputs both K, and K, = K & K,.
Bob puts all the undesired (resp. desired) attributes as the private set input of
t=-PSI (resp. t=-PSl).

Users who joined the service can either be passively matched by others or
actively request for matching. Here we discuss a typical protocol run from the
perspective of an active user Alice. The service provider will pick a potential
user, called a passive user Bob, and execute the PSI protocols on behalf. In
other words, that is where the outsourced feature of our protocols comes into
the play. Suppose the number of undesired attributes of this passive user Bob is
below the threshold ¢, after running t=-PSl, and the number of desired attributes
is over the threshold ¢, after running ¢=-PSI.

Can you find the one for me? 23

If our protocols are used directly, the active user Alice will get the intersection
of either kind of attributes. This may not be the most privacy-preserving way
for doing matchmaking since Bob has no way to control about whether revealing
any secret information (such as the profile) or not. Luckily, the intersection result
can be easily removed from our protocols by removing the last step of performing
the (keyed-)PSI. As a result, even Bob passed the matching criteria, Alice only
obtains a secret key generated by Bob (from the second last step of the protocol).

Here, we utilize the idea of secret transfer with access structure from Zhao
and Chow [45]. This key will serve as a proof of criteria satisfaction. Upon the
presentation of the aforementioned secret key, the user can decide to reveal Kj
(resp. K,) or not. Such a decision can be done after the service provider executes
the PSI protocols on behalf of this passive user. If the interest is mutual, i.e., the
requesting user also satisfies the search criteria of the “passive” user, the passive
user can finally reveal the encrypted profile.

Two remarks are in order. First, note that even with the help of the service
provider who mediates the requests between two users, the outsourced PSI pro-
tocols are not entirely non-interactive. For this, the service provider still needs to
relay messages between the users. However, it matches with the workflow used
by non-private matchmaking apps nowadays which the user cannot connect to
another user until there are mutual interests. Second, some user may expect to
assign different weightings to different attributes. A trivial approach is to repli-
cate the attribute multiple times. Devising cleverer solutions which maintain a
similar level of efficiency requires further twisting of our PSI protocols (perhaps
by borrowing techniques from Zhao and Chow [45]). We left it as future work.

8 Conclusion

We propose efficient protocols for three important extensions of PSI, namely, en-
crypted private set-intersection cardinality, over threshold private set-intersection,
and below threshold private set-intersection. The last two provide affirmative
answers to two open problems posed recently in the literature. All of our con-
structions achieve linear computational complexity by utilizing and extending
existing building blocks in a novel way. We prove that our constructions are se-
cure against semi-honest adversaries. Our constructions provide useful building
blocks to realize privacy-preserving online matchmaking.

Acknowledgement

We thank anonymous reviewers for suggesting the use of the technique in [31]
to reduce communication cost.

Sherman S.M. Chow is supported by the General Research Fund (CUHK
14210217) of the Research Grants Council, University Grant Committee of Hong
Kong.

24 Yongjun Zhao and Sherman S.M. Chow
References
1. Aydin Abadi, Sotirios Terzis, and Changyu Dong. O-PSI: delegated private set

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

intersection on outsourced datasets. In SEC 2015, pages 3—-17, 2015.

Aydin Abadi, Sotirios Terzis, and Changyu Dong. VD-PSI: verifiable delegated
private set intersection on outsourced private datasets. In FC 2016, 2016.

Vikas G. Ashok and Ravi Mukkamala. A scalable and efficient privacy preserving
global itemset support approximation using bloom filters. In DBSec 2014, 2014.
Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters:
Size-hiding private set intersection. In PKC 2011, 2011.

Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422-426, 1970.

Carlo Blundo, Emiliano De Cristofaro, and Paolo Gasti. Espresso: Efficient privacy-
preserving evaluation of sample set similarity. Journal of Computer Security,
22(3):355-381, 2014.

Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on cipher-
texts. In TCC 2005, 2005.

Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin, Jason
Morrison, Michiel H. M. Smid, and Yihui Tang. On the false-positive rate of Bloom
filters. Inf. Process. Lett., 108(4):210-213, 2008.

Tatiana Bradley, Sky Faber, and Gene Tsudik. Bounded size-hiding private set
intersection. In SCN 2016, 2016.

Ran Canetti. Security and composition of multiparty cryptographic protocols. J.
Cryptology, 13(1):143-202, 2000.

Xavier Carpent, Sky Faber, Tomas Sander, and Gene Tsudik. Private set projecti-
ons & variants. In WPES 2017, 2017.

Michele Ciampi and Claudio Orlandi. Combining private set-intersection with
secure two-party computation. IACR Cryptology ePrint Archive 2018/105, 2018.
Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Efficient
robust private set intersection. In ACNS 2009, 2009.

Paolo D’Arco, Maria Isabel Gonzalez Vasco, Angel L. Pérez del Pozo, and Claudio
Soriente. Size-hiding in private set intersection: Existential results and constructi-
ons. In AFRICACRYPT 2012, 2012.

Alex Davidson and Carlos Cid. An efficient toolkit for computing private set
operations. In ACISP Part II 2017, 2017.

Sumit Kumar Debnath and Ratna Dutta. Secure and efficient private set inter-
section cardinality using bloom filter. In ISC 2015, 2015.

Sumit Kumar Debnath and Ratna Dutta. How to meet big data when private set
intersection realizes constant communication complexity. In ICICS 2016, 2016.
Sumit Kumar Debnath and Ratna Dutta. Provably secure fair mutual private set
intersection cardinality utilizing bloom filter. In Inscrypt 2016, 2016.

Changyu Dong and Liqun Chen. A fast single server private information retrieval
protocol with low communication cost. In ESORICS 2014, 2014.

Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets
big data: an efficient and scalable protocol. In CCS 2013, 2013.

Changyu Dong and Grigorios Loukides. Approximating private set
union/intersection cardinality with logarithmic complexity. IEEE Trans. Infor-
mation Forensics and Security, 12(11):2792-2806, 2017.

Rolf Egert, Marc Fischlin, David Gens, Sven Jacob, Matthias Senker, and Jorn Til-
Imanns. Privately computing set-union and set-intersection cardinality via bloom
filters. In ACISP 2015, 2015.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Can you find the one for me? 25

Ellis Fenske, Akshaya Mani, Aaron Johnson, and Micah Sherr. Distributed mea-
surement with private set-union cardinality. In CCS 2017, 2017.

Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In EUROCRYPT 2004, 2004.

Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

Per A. Hallgren, Claudio Orlandi, and Andrei Sabelfeld. Privatepool: Privacy-
preserving ridesharing. In CSF 2017, 2017.

Carmit Hazay. Oblivious polynomial evaluation and secure set-intersection from
algebraic PRFs. In TCC Part-1I 2015, 2015.

Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of mali-
cious adversaries. In PKC 2010, 2010.

Susan Hohenberger and Stephen A. Weis. Honest-verifier private disjointness tes-
ting without random oracles. In PET 2006, 2006.

Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS 2012, 2012.

Ayman Jarrous and Benny Pinkas. Secure hamming distance based computation
and its applications. In ACNS 2009, 2009.

Christine Jost, Ha Lam, Alexander Maximov, and Ben J. M. Smeets. Encryption
performance improvements of the paillier cryptosystem. IACR Cryptology ePrint
Archive, Report 2015/864, 2015.

Seny Kamara, Payman Mohassel, Mariana Raykova, and Seyed Saeed Sadeghian.
Scaling private set intersection to billion-element sets. In F'C' 2014, 2014.

Florian Kerschbaum. Collusion-resistant outsourcing of private set intersection. In
SAC 2012, 2012.

Florian Kerschbaum. Outsourced private set intersection using homomorphic en-
cryption. In ASIACCS 2012, 2012.

Agnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas. Private set
intersection for unequal set sizes with mobile applications. PoPETs, 2017(4):177—
197, 2017.

Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In
CRYPTO 2005, 2005.

Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In CCS 2016,
2016.

Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu.
Practical multi-party private set intersection from symmetric-key techniques. In
CCS 2017, 2017.

Yehuda Lindell, Kobbi Nissim, and Claudio Orlandi. Hiding the input-size in secure
two-party computation. In ASTACRYPT 2018, 2013.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In EUROCRYPT 1999, 1999.

Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private
set intersection using permutation-based hashing. In USENIX Security 2015, 2015.
Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient
circuit-based PSI via cuckoo hashing. In FEUROCRYPT 2018, pages 125-157, 2018.
Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set inter-
section based on OT extension. In USENIX Security 2014, 2014.

Yongjun Zhao and Sherman S. M. Chow. Are you the one to share? Secret transfer
with access structure. PoPETs, 2017(1):149-169, 2017.

26 Yongjun Zhao and Sherman S.M. Chow

A Private Set Projection

Recently, Carpent et al. [11] started the study of private set projection (PSI-P).
The server in PSI-P has a database DB = {di,...,d,} (which may contain
duplications) and a column of attributes A = {aq,...,a,}, while the client has
a set of attributes B = {b1,...,b,,}. After a PSI-P invocation, the server learns
nothing while the client only learns {d;|3(4, j) s.t. b; = a;}. In particular, the
client should not know which matching b; corresponding to which d;, nor how
many matching b; that d; corresponds to.

PSI-P finds application in matching indicators of compromise (IOC), where
attribute column A represents IOC (to be checked against the client set B)
while the database DB represents patches of known vulnerabilities / attacks. In
such scenarios, the correspondence between IOC and patches can be sensitive.
Attackers may slightly adapt their attack strategy to avoid being detected by
the same IOC. Using PSI-P as a solution, the server (as a security expert) can
protect its valuable information (IOC and DB of patches), yet provides a just-
enough list of patches to the client, without letting the server know the private
set B of the client (e.g., network traffic).

Carpent et al. recognize that none of the existing PSI protocols (or their
variants) satisfies the security requirements of PSI-P. While outside their radar,
oblivious transfer for a sparse array [45] can approximate PSI-P yet it leaks the
number of distinct data elements. They thus propose a series of protocols with
different leakages, and construct a full-fledged PSI-P from any existential PSI
(PSI-X) [11].

B Existential PSI (PSI-X)

ITx
Input: P;i’s input is a set C' and |S|. P2’s input is S and |C].

1. [invoke Fepsi-ca] P1 sends his AHE public key pk; to P,. Next the parties
invoke an ideal execution of Fepsi.ca where the input of Py is (C, | S|, (pk;,ski1))
and the input of P> is (pky, S, |C]).

2. [P» randomizes the encrypted cardinality] P> homomorphically mul-
tiplies Enc(pkq,|C N S|) obtained from Fepsi.ca by a random number r as
Enc(pk,,7|C' N S|) before sending it to P;.

3. [output] P, decrypts the ciphertext and returns 1 iff. the result is non-zero.

Fig. 5: Efficient PSI-X Protocol (ITx)

Unfortunately, Carpent et al. [11]’s PSI-X construction is inefficient. For client
and server set sizes being m and n, the computational complexity is of order

Can you find the one for me? 27

O(mn). Any improvement for PSI-X immediately leads to a better private set
projection protocol.

We propose an improved protocol for ITx. It can be realized by slightly
modifying Step (5) of our Iepsi.ca. Recall that in Step (5) of ITepsi.ca Pa obtains
the set-intersection cardinality encrypted under pk;. P» can rerandomize this
ciphertext before sending it to P;.

Definition 5 (Existential Private Set-Intersection (PSI-X)). Let S and C
be subsets of a predetermined domain, the functionality Fx is:

(L,L) ifCnS#¢
(G, 15D, (5. 1C1) = .
(0, L) otherwise
We begin with a high-level description of the first (but inefficient) PSI-X
construction by Carpent et al. [11]. Suppose party P; has a set C' of m elements
and party P> has a set S of size n. In the existing PSI-X [L1], they first jointly

choose a single 2-universal hash function h(-) mapping set elements to [N] where
N € O(mn).

1. Py transforms set C' into a bit string ve of length N such that the ve[i] =1
if and only if 3z € C': h(z) =i.

2. P; also performs similar operations on S to derive vg.

3. Py generates a BGN [[f] public/private key pair (pk,sk), publishes pk and
Enc(pk,vcli]) for all i € [N].

4. P; also encrypts vg under pk and evaluates the 2-DNF ¢ = \/,, (vc[i] Avg[i])
via the homomorphism of BGN.

5. P; sends encryption of r - ¢ to P; for a random r.

6. If P, gets 0 after decryption, P, concludes that the intersection is definitely
empty; otherwise it is probably non-empty.

The uncertainty stems from the possible collision due to the hash function. One
can reduce the error rate by increasing N, or repeating R independent instances
of this protocol. Both increase the overall computational complexity in terms of
the number of ciphertext multiplications.

Carpent et al. [11] show that the optimal choice is N =

mn
log 2
rate, resulting in O(mn) complexity. PSI-X with linear computatigonal complexity
was an open problem before our paper.

Fig. f gives the details of our protocol II x, which is very simple in the Fepsi.ca
model. Basically we only add one last step: P, blinds the encrypted cardinality
using a random r before sending it to Pj.

for any error

Corollary 1. Assuming the existence of a CPA-secure additive homomorphic
encryption scheme (KeyGen, Enc, Dec), whose plaintext space is super polynomial
in the security parameter; then the protocol Ilx in Fig. | securely implements
the functionality Fx in Def. | under the semi-honest model.

28 Yongjun Zhao and Sherman S.M. Chow

C A Zoo of Private Set-Intersection and its Variants

A summary of the known relations between private set-intersection and its va-
riants. An arrow from A to B means B can be constructed (solely) from A. If
the arrow is solid it means the asymptotic complexity of B is the same as A;
otherwise a dashed arrow means the asymptotic complexity of B is worse than
A. Protocols in red are proposed in this work. We do not consider protocols that
assume or imply general two party computation such as [12].

t2-PSI/t=-PSI t-PSI-CA [13])

~ -

Fig. 6: PSI Zoo

(1) setting ¢ = 0 in ¢=-PSl or ¢t = min(|C/,|S]) in t=-PSl;

(2) setting t = 0;

(3) setting the data items to be the same as set elements;

(4) setting ¢ = min(|C|, |S]);

(5) sending the output of ePSI-CA to the other party;

(6) homomorphically multiplying the output of ePSI-CA with a random number,
and sending the result to the other party;

(7) setting the client set to be a single element;

(8) invoking PSI-X for each element in the client set.

	Can you find the one for me?

