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Abstract

We construct new four-party protocols for secure computation that are secure against a
single malicious corruption. Our protocols can perform computations over a binary ring, and
require sending just 1.5 ring elements per party, per gate. In the special case of Boolean circuits,
this amounts to sending 1.5 bits per party, per gate. One of our protocols is robust, yet requires
almost no additional communication. Our key technique can be viewed as a variant of the “dual
execution” approach, but, because we rely on four parties instead of two, we can avoid any
leakage, achieving the standard notion of security.

1 Introduction

As secure multi-party computation (MPC) is transitioning to practice, one setting that has moti-
vated multiple deployments is that of outsourced computation, in which hundreds of thousands, or
millions of users secret share their input among some small number of computational servers. In
this setting, the datasets can be extremely large, while the number of computing parties is small.
The use of secure computation in such settings is often viewed as a safeguard that helps to reduce
risk and liability. While companies and government agencies are increasingly choosing to deploy
this safeguard, it is a security / performance tradeoff that many are not yet willing to make.

One important notion related to the security of an MPC protocol is the choice of adversarial
threshold: a higher threshold means that the protocol can tolerate more corrupted parties, and is
thus more secure. However, requiring a higher threshold usually results in feasibility and efficiency
obstacles. For example, the earliest results in the field demonstrated key distinctions between
t ≥ n/2, t < n/2, and t < n/3 corruptions [RBO89, BMR90, GMW87, BOGW88], including
whether fairness could be guaranteed (t < n/2), whether a broadcast channel is needed (t > n/3),
and whether cryptographic assumptions are necessary (t > n/3). More recently, when t > n/2,
there are results showing how to reduce the bandwidth to just a constant number of field elements
per party, per gate [FY92, DIK+08, DIK10]. In contrast, when t ≥ n/2, our best protocols require
expensive preprocessing, with communication cost that grows quadratically in n.

In this work, we develop a new protocol in the honest majority setting, tailored to the case
where n = 4. Our protocol is secure against a single malicious corruption, consistent with the
requirement that t < n/2. Focusing on this domain, we are able to construct extremely efficient
protocols.

Looking at concrete costs, the most efficient secure two-party computation protocol (in terms
of communication) requires roughly 290 bytes of communication per party per gate [WRK17a,
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NNOB12]. If we are willing to relax the setting by assuming that a malicious adversary can
only corrupt one out of three parties, then we can further reduce the cost to 7 bits per party per
gate [ABF+17]. Our protocol further reduces the cost significantly: our four-party protocol requires
only 1.5-bits of communication per party. Furthermore, the results just cited for the two-party and
three-party settings are for 40-bit statistical security, and their costs per gate increase for higher
statistical security. Our protocol has no dependence on a statistical security parameter, and has
only an additive O(κ) term (where κ is a computational security parameter).

We also note that we can achieve 1-bit communication per party in the six-party setting. For
these previous works as well as the protocol in this paper, all computation can be hardware accel-
erated and thus communication complexity is the most suitable indicator of real performance.

Contributions. We now summarize our contributions. Our main result is summarized in the
theorem below. The construction and proof of security appear in Sections 3 and 4. An additional
improvement appears in Section 5.

Theorem 1. In the four party setting, it is possible to construct a protocol for securely computing
a circuit of size |C| whose total communication complexity is 6|C| log |F |+O(κ). In particular, for
a Boolean circuit, this amounts to 1.5 bits per player, per gate.

Binary Rings. An interesting result of our work is that we can securely evaluate an arithmetic
function over binary rings, such as (Z232 ,+, ∗), where (+, ∗) denotes modular addition and multi-
plication. Note that most MPC protocols do not work over rings that are not fields. In particular,
MAC-based protocols based on SPDZ [DPSZ12] do not work over Z232 , as the multiplicative in-
verse is necessary for constructing linear MAC schemes. The security of our protocol only relies
on additive maskings, so we do not need a multiplicative inverse. The correctness of our protocol
when computing over a binary ring follows from the distributivity property of rings. A similar
observation, in the semi-honest setting, was recently made by Mohassel and Zhang [MZ17].

Robustness. We construct a robust variant of our protocol, guaranteeing that the honest parties
always receive correct output. The cost of adding robustness is free if nothing goes wrong, and
requires an additional O(κ log |C| log |F|) overhead when a player misbehaves (Section 6).

1.1 Technical Overview

From a high-level view, the construction of our protocol starts with a semi-honest protocol, π1, for
two-party computation in the preprocessing model. We would like two participants in the protocol
to execute π1. There are two main tasks towards our final goal:

1. Generating the preprocessing data for π1 with malicious security.

2. Strengthening the security of π1 from semi-honest to malicious security.

Our solutions to these challenges rely heavily on the fact that we work in the four-party setting with
only one corruption. In order to generate maliciously secure preprocessing, we ask the other two
parties to locally emulate the preprocessing ideal functionality, both using the same randomness.
To ensure that the computation of the preprocessing is done correctly, each of the parties executing
π1 verifies that he was sent two identical copies of the preprocessing.

The second challenge is trickier. Existing work that compiles semi-honest security to malicious
security are not suitable for our use. The techniques can be broadly described as follows: 1) Using
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generic zero-knowledge proof, which is impractical for most cases; 2) Using certain forms of MACs
on each parties’ share to ensure honest behavior. This approach has been made practical, but it
requires preprocessing data of size (at least) Ω(ρ) bits per gate, to achieve 2−ρ statistical security.
3) In the honest majority setting, one can use Shamir secret sharing, but our π1 is a two-party
protocol, where one can be malicious. Instead, our approach is based on a technique called “dual-
execution” [MF06, HKE12], which is known to have one-bit leakage in general. However, we show
that in the four-party setting, by performing a special cross checking protocol at the end, we are
able to eliminate the leakage without any penalty to the performance. Details follow below.

Dual execution without leakage. In order to accommodate dual execution, we require that
π1 has certain special properties. Intuitively, the outcome of π1 should leave both parties with
“masked wire values” for all wires in the circuit, together with a secret sharing of the masks. This
property can be satisfied by many protocols, e.g. the modified Beaver triple protocol [Bea92] as we
used in the paper, as well as the semi-honest version of TinyTable [DNNR17].

Now we are in the setting, where, say, P1 and P2 have generated the preprocessing, and each
hold the full set of wire masks, namely λ1. P3 and P4 have executed π1, and recovered masked
values, namely m1. Our dual execution is done by letting P1 and P3 switch roles with P2 and P4.
As a result, P1 and P2 will obtain m2, while P3 and P4 will obtain λ2 in the second execution.
Conceptually, our cross-checking compares, for all wire values in the circuit, whether

λ1 + m2 = λ2 + m1.

Note that the above holds if both executions are honest, since both sides of the equation are equal to
the true wire values, masked by both masks (λ1 and λ2). For details of the protocol, see Section 3.

Readers that are familiar with the dual execution paradigm in the two-party setting, from
garbled circuits, might wonder how we remove the bit of leakage. There are two key insights here.
First, when using garbled circuits, it seems difficult to check the consistency of internal wires,
whereas the masked wires of the form just described allows us to easily check the consistency of all
wires in the two evaluations. This eliminate the possibility of input inconsistency, and also prevents
the adversary from flipping a wire value to see if it has any impact on the output. Second, in a
garbled circuit implementation, the adversary can fix the output of a particular gate arbitrarily,
creating a “selective failure attack”: the change goes undetected if the output he chooses is consistent
with the true output on that wire, and would otherwise cause an abort. With these masked wire
evaluations, the adversary cannot fix a wire value arbitrarily; he is limited to adding some value to
the wire, changing it in all cases, and always causing an abort. In particular, then, whether he is
caught cheating no longer depends on any private value. By exploiting the structure of masks and
masked values, checking for inconsistencies requires only O(κ) bits of communication.

Reducing communication. The protocol described until this point is already extremely efficient,
but we further reduce the communication in several interesting ways. In the preprocessing, we do
this in a fairly straightforward way, using PRG seeds and hash functions to compress the material.
In the cross checking, recall that we need the parties to verify, twice, whether λ1 + m2 = λ2 + m1,
where these values have size |C|. (They verify twice because each member of one evaluation
compares with one member of the other evaluation.) A naive way here would be to twice compare
the hash of these values, but this is in fact insecure. If an adversary changes a value on one of the
wires in his evaluation, as we have already noted, he will always be caught, because his partner
will compare the hash of his modified masked wire values with an honest party from the other
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evaluation. However, the adversary can still learn sensitive information from the result of his own
comparison with a member of the other evaluation. Instead, we can use any honest-majority, four-
party protocol for comparing these two hash values. The circuit for this comparison has only O(κ)
gates, so this introduces very little overhead. Nevertheless, in Section 5 we show how to bootstrap
this comparison, removing the reliance on other protocols.

Related work. Maliciously secure protocols, tailored for the three-party setting, have been studied
in many works. Choi et al. [CKMZ14] studied the dishonest majority setting based on garbled
circuits. Araki et al. [ABF+17], Mohassel et al. [MRZ15], Furukawa et al. [FLNW17] studied the
honest majority setting. However, we are not aware of any MPC protocol tailored for the four-party
setting.

Other protocols that work in the four-party setting include honest majority protocols [BDNP08,
DGKN09, DI05, DI06, LN17] and dishonest majority protocols [IPS08, BDOZ11, DPSZ12, NNOB12,
LPSY15, WRK17b]. These protocols can be used for MPC with more parties, but when applied in
the four-party setting, their concrete performances are worse than our protocol.

2 Preliminaries

In this paper, we mainly consider arithmetic circuits C with addition gates and multiplication
gates. Each gate in the circuit is represented as (a, b, c, T ), where T ∈ {+,×} is the operation; a
and b are the input wire indices; and c is the output wire index.

We denote the set of wires as W, the set of input wires as Winput, the set of output wires of all
addition gates as Wplus, the set of output wires of all multiplication gates as Wmult.

Masked evaluation. One important concept that we use in the paper is masked evaluation.
Intuitively, every wire w in the circuit, including each input and output wire, is associated with a
random mask, namely λw. The masked evaluation procedure works in a way such that for each
gate two parties, holding masked input and some helper information, are able to obtain the masked
output. All parties hold only secret shares of λw, namely 〈λw〉, therefore obtaining masked wire
values does not reveal any information. We will use mw to denote the masked wire value on wire
w. That is, mw = λw + x, assuming that the underlying wire value on wire w is x.

Secure evaluation-masking two-party protocol. A secure two-party protocol for computing
circuit C is an evaluation-masking scheme if (1) the protocol uses preprocessing, (2) the prepro-
cessing assigns to the circuit C a masking λ (3) the players evaluate the gates of the circuit layer
by layer; if a gate g is in layer L, then the evaluation of L allows both players to learn the masked
values for the given layer, (4) if an adversary starts deviating from the protocol, the adversary
should not learn any information about the computation unless the output is revealed. (5) any
misbehavior from the adversary for a given wire is equivalent to him adding a fixed value to the
wire that can be computed from his misbehavior. This type of attack is described as an additive
attack in the work of [GIP+14]. They showed that certain MPC protocols have this property.

In this paper, we build upon a variant of Beaver’s scheme [Bea92] which is an evaluation-masking
scheme. The main modification of beaver is that the players will hold for each wire, secret shares
of masks and both players will learn the sum of the mask and the actual underlying value. We
denote the sum of a mask and a value as either a masking or a masked value.
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Committing encryption. A public-key encryption scheme is committing if the ciphertexts serve
as commitments.

• Completness A person who encrypts a message m resulting in a ciphertext c needs to be
able to prove that c is indeed an encryption of m.

• Soundness If the player who generated c can prove that c is an encryption of m then
dec(sk, c) = m.

• Verifiability Given the public-key, it is easy to determine if a ciphertext is valid.

Theorem 2. (Informal) From any secure evaluation-masking two-party protocol π1, secure against
a semi-honest adversary, we can construct a protocol π2 for four parties that is secure against a
malicious adversary corrupting at most one player.

3 Our Main Construction

A quick summary of our idea is that we run two executions of a two-party, semi-honest protocol in
the preprocessing model, and verify consistency between these two executions through a strategy
that we call cross-checking. We start by partitioning the players into two evaluation groups with
two players in each group. Each group prepares preprocessing for the other. They leverage the fact
that there is at most one corruption to verify that the preprocessing was done correctly. Then, each
group evaluates the circuit using that preprocessing. As the outcome of the evaluation, each party
holds masked wire values for all wires in the circuit. Finally, the two groups check the consistency
of the two evaluations using their masked wire values and masks. Since one of the evaluations is
guaranteed to be correct, any cheating will be caught in this step. Below we provide the details
of each of these steps as well as why it is secure. A formal description of the protocol appears in
Fig. 1, and in the other figures referenced from there.

Pre-processing. Recall that we partition four parties into two equal-sized groups. We first let
one group create preprocessing material, and distribute the preprocessing to the other group. This
procedure is then repeated with the roles reversed; we describe it only for one group. We will often
refer to the group that is performing the pre-processing step as D1 and D2, and to the group that
uses the preprocessing in the evaluation phase as E1 and E2, recognizing that one party plays the
role of (say) D1 in one execution while playing E1 in the other execution. An ideal functionality
for the pre-processing appears in Fig. 2.

To generate the preprocessing material, D2 chooses a random string and sends it to D1. They
then each use this randomness to locally generate preprocessing, choosing mask values for every
wire in the circuit as follows. They select a random field element for every wire w ∈ Winput∪Wmult

(that is, for every input wire, and every wire that is the output of a multiplication gate). We
refer to these mask values as λ1, and the ones generated by the other 2 parties, in the second pre-
processing execution, are denoted by λ2. For the output wire of addition gate (a, b, c,+), suppose
the input wires a and b have already been assigned mask values λa and λb. Then the output wire
of the gate is assigned the mask value λa + λb. Note that all circuit wires now have well defined
masks. For each multiplication gate (a, b, c,×), the two parties additionally compute γc = λa · λb.
We let γ1 = {γc}c∈Wmult . D1 and D2 use their shared random string to construct secret sharings
λ1 = Λ1 + Λ2 and γ1 = Γ1 + Γ2. That is, they create two identical copies of the secret sharing.
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The main protocol takes input from all 4 parties, and outputs the evaluation of C on those inputs. It
makes use of the 3 components: Fpre, πeval, and πcross.

Pre-processing
1. The four parties make two calls to Fpre (Fig. 2). In the first call, P1 and P2 receive the output
〈λ2〉, 〈γ2〉 for E1 and E2 respectively, while P3 and P4 receive λ2, the output of D1, D2. In the
second call, they reverse their roles, with P1 and P2 receiving λ1, the output of D1 and D2, and
P3 and P4 receive 〈λ1〉, 〈γ1〉, the output of E1 and E2.

Evaluation
1. The four parties run two instances of πeval (Fig. 4). In the first instance, the players P1 and P2

take the role of evaluators E1 and E2 using 〈λ2〉, 〈γ2〉. Let m1 denote the resulting masked wire
values. In the second instance P3 and P4 take the role of evaluators E1 and E2 using 〈λ1〉, 〈γ1〉.
Let m2 denote the resulting masked evaluation.

Cross Checking
1. The four parties run πcross (Fig. 5) where P1, P2 each input m1, λ2 while P3, P4 both input m2, λ1.
2. If πcross outputs 0, then abort.
3. We define λ1out to be output masks for the first evaluation.
4. We define m1

out to be the masked output wires for the first evaluation.
5. Player P1, P2 broadcast m1

out, if their broadcasts disagree then all players abort
6. Player P3, P4 broadcast λ1out, if their broadcasts disagree then all players abort.
7. Players compute the output by using m1

out and λ1out.

Figure 1: Main protocol in the hybrid model

This 4-party, randomized functionality is called by two distributors and two evaluators. No parties
contribute any input. The functionality generates a vector of random masks as output for the
distributors, and a secret-sharing of these masks for the evaluators.

Input: None.
Computation

1. Sample seed1 and seed2 uniformly at random. If the adversary corrupts D2, allow him to specify
the seeds.

2. For each wire w ∈ Winput ∪Wmult:
(a) Λ1,w ← G(seed1),
(b) Λ2,w ← G(seed2)
(c) λw ← Λ1,w + Λ2,w.

3. For each addition gate (a, b, c,+): compute λc ← λa + λb.
4. For each multiplication gate (a, b, c,×)

(a) γc ← λa · λb
(b) Γ1,c ← G(seed1)
(c) Γ2,c = γc + Γ1,c

Output
1. Output 〈γ〉, 〈λ〉 to E1, E2 (by sending seed1 to E1 and (seed2, {Γ2,w}w∈Wmult

) to E2)
2. Output both seed1 and seed2 to both D1, D2

Malicious party: A malicious D2 can choose the randomness.

Figure 2: Fpre: Ideal functionality for preprocessing

They both send Λ1 and Γ1 to E1, and they both send Λ2 and Γ2 to E2. E1 and E2 each verify
the equality of the two values he received before proceeding to the evaluation phase. Note that
after agreeing on the random string at the beginning of the procedure described above, D1 and
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Two distributors D1, D2 want to generate preprocessing for players E1, E2.
Creation

1. D2 chooses two random seeds, seed1 and seed2, and sends them to D1.
2. For each wire w ∈ Winput ∪Wmult:

(a) Λ1,w ← G(seed1),
(b) Λ2,w ← G(seed2)
(c) λw ← Λ1,w + Λ2,w.

3. For each addition gate (a, b, c,+): compute λc ← λa + λb.
4. For each multiplication gate (a, b, c,×)

(a) γc ← λa · λb
(b) Γ1,c ← G(seed1)
(c) Γ2,c = γc + Γ1,c

Distribution
1. D1 sends seed1 to E1 and (seed2,Γ2) to E2.
2. D2 sends seed1 to E1 and H(seed2||Γ2) to E2.
3. D1 and D2 output λ

E1 Reconstruction
1. Receive seed1 from D1 and D2 and check they are the same. If not, abort.
2. {Λ1,w}w∈Winput∪Wmult

, {Γ1,w}w∈Wmult
← G(seed1)

3. Output ({Λ1,w}w∈Winput∪Wmult
, {Γ1,w}w∈Wmult

).
E2 Reconstruction

1. Receive (seed2,Γ2) from D1 and H(seed2||Γ2) from D2 and check they are consistent. If not,
abort.

2. {Λ2,w}w∈Winput∪Wmult
← G(seed2)

3. Output ({Λ2,w}w∈Winput∪Wmult
, {Γ2,w}w∈Wmult

).
Notation

1. For each wire w ∈ Winput ∪Wmult: 〈λw〉 ← (Λ1,w,Λ2,w)
2. For each multiplication gate (a, b, c,×) : 〈γc〉 ← (Γ1,c,Γ2,c)

Figure 3: Distributed Preprocessing of masked beaver triples

D2 require no further communication with each other. Because one of the parties must be honest,
the equality checks performed by E1 and E2 suffice to catch any malicious behavior. Note that
this idea shares some similarity with the one by Mohassel et al. [MRZ15] in the three-party setting
based on garbled circuit.

We do not present the pre-processing protocol in quite the way that was just described. Instead,
an optimized variant with reduced communication complexity is presented in Fig. 3. First, instead
of choosing and sending random strings of length O(|C|), the two parties choose two short seeds
for a PRG: we let Λ1 = G(seed1), and Λ2 = G(seed2). As before, λ1 = Λ1 + Λ2. Since the value of
γ1 depends on λ1, we cannot do the same thing there, but we can generate the shares Γ1 from the
same seed1, and then fix Γ2 appropriately, using O(|Wmult|) bits. This reduces the communication
cost for each of the parties from (2|F|+1) · |Wmult| to 2κ+ |F| · |Wmult|. Recall that D1 and D2 send
identical copies of these values to an evaluator; we further reduce the communication by having
one party send only a single hash of the pre-processing, which suffices for allowing each evaluator
to verify the consistency of what he has received. Finally, note that this last optimization causes
the communication costs to become unbalanced. Although we do not present it, note that we can
re-balance the cost by having one party send the first half of Γ2 together with a hash of the second
half, while the other party sends the second half of Γ2 together with a hash of the first half.

Evaluation. After receiving and verifying the consistency of the pre-processing, E1 and E2
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There are two evaluators E1, E2 who want to evaluate a circuit C using preprocessing provided by
distributors D1, D2. Each of the four players is assigned a set of input wires corresponding to his input
to C.

Input
1. For each input wire w, one party holds input xw.
2. For each input wire w, D1 and D2 hold λw.
3. For each w ∈ W, E1 and E2 hold 〈λw〉.
4. For each multiplication gate (a, b, c,×), E1 and E2 hold 〈γc〉 ← 〈λa · λb〉.

Sharing Input Values
For each input wire w belonging to E1 with value xw:

1. D1, D2 both send λw to E1. E1 aborts if they are different.
2. E1 sends λw + xw to E2

For each input wire w belonging to D1 with value xw:
1. D1 sends mw ← xw + λw to E1 and E2.
2. E1 and E2 verify that they each received the same value and abort if it is not the case.

The input of E2 is processed similarly to the input of E1.
The input of D2 is processed similarly to the input of D1.

Evaluation
For each gate (a, b, c, T ) following topological order:

1. if T = +
(a) mc ← ma + mb.

2. if T = ×
(a) 〈mc〉 ← ma ·mb −ma · 〈λb〉 −mb · 〈λa〉+ 〈λc〉+ 〈λa · λb〉
(b) mc ← open(〈mc〉)

Figure 4: πeval : Two-party Masked Evaluation

proceed to perform a mask-evaluation of the circuit, layer by layer. To begin, they first need
masked input values for every input wire; these are of the form mw ← λw + xw. For an input wire
w held by E ∈ {E1, E2}, D1 and D2 send λw to E. E verifies that they each sent the same value: if
not, he aborts. Otherwise, he computes λw + xw and sends it to the other evaluator. For input
wire w belonging to D ∈ {D1, D2}, D sends λw +xw to E1 and E2. The evaluators compare values
and abort if they don’t agree.

For every gate (a, b, c,+), E1 and E2 both locally compute mc = ma + mb. For every gate
(a, b, c,×), they locally compute 〈mc〉 ← ma ·mb −ma · 〈λb〉 −mb · 〈λa〉+ 〈λc〉+ 〈λa · λb〉. (Recall,
they can compute the last term using 〈γc〉.) They then compute mc ← open(〈mc〉) by exchanging
their shares of mc. At the conclusion of evaluation phase, one set of evaluators holds m1, which is
the set of masked values of all wires in the circuit, and the other group of parties hold m2 after
their evaluation phase.

Cross-checking. Note that during the evaluation phase, a malicious evaluator can modify
the value on any w ∈ Wmult simply by changing his share of mw before reconstructing the value.
Therefore, before either group recovers output from their computation, they first compare their
masking with the masking of the other evaluation. Of course, they cannot reveal the values on
any wires while doing this check. Instead, for wire w that carries value x, each set of evaluators
uses the masking from their evaluation, together with the masks that they generated for the other
group during pre-processing, to compute

x+ λ1w + λ2w = m1
w + λ2w = m2

w + λ1w.
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Input
1. P1 has input (m1

1, λ
2
1).

2. P2 has input (m1
2, λ

2
2).

3. P3 has input (m2
3, λ

1
3).

4. P4 has input (m2
4, λ

1
4).

Computation
1. P1 computes h1 = H(m1

1 + λ21),
P2 computes h2 = H(m1

2 + λ22),
P3 computes h3 = H(m2

3 + λ13),
P4 computes h4 = H(m2

4 + λ14).
2. All players sends hi to F4pc, which outputs 1 if and only if h1 = h3 and h2 = h4.

Figure 5: πcross : Cross Checking

They then compare these “doubly masked” values for consistency.
As in the case of pre-processing, we use a hash function where possible, in order to reduce the

communication cost. Each party begins by computing a hash of the doubly masked wire values
described above; for Pi, we denote this hash by hi. The four parties then call an ideal functionality,
Feq, which takes input hi, and outputs 1 if and only if h1 = h3, and h2 = h4.

Taking P1 as example, he obtains m1
1 during evaluation and λ21 when acting as a D. He will

then compute h1 = H(m1
1 + λ21). For the other three parties, it is defined similarly as follows:

superscripts denote the index of the masked evaluation and subscripts denote the identity of the
party.

h2 = H(m1
2 + λ22), h3 = H(m2

3 + λ13), h4 = H(m2
4 + λ14)

To see why this suffices for providing security, suppose P1 changes some masking during evalu-
ation, effectively changing a wire value for him and P2. In this case, the doubly masked evaluations
of P2 and P4 are inconsistent, and Feq will return 0; intuitively, comparing these hash values is
equivalent to checking the masked values wire by wire.

3.1 Concrete Performance

Here we briefly discuss the concrete performance of our protocol against the most related state-
of-the-art protocol by Araki et al. [ABF+17]. As mentioned previously, our protocol requires 1.5
bits of communication per gate per party, a 4.5× improvement over their protocol. Let’s see if the
same applies to the computation cost. Note that in the protocol by Araki et al., the heaviest part
of the computation is random shuffling, due to the use of the random bucketing technique in their
paper. The rest are AES and hash computation, which can be hardware accelerated or very fast.
Compared to their protocol, our protocol is much simpler and more efficient in terms of computation
cost. The bulk of our computation is in the evaluation phase, where we do not need any random
shuffling. For each 128 AND gates, each party only needs 6 calls to fix-key AES to implement the
PRG, and roughly one call to a hash function. Araki et al. have a higher computational cost than
we do, because of their random shuffle; since they are able to fill a 10Gbps LAN, our protocol will
certainly have no problem filling the same pipe. We believe the computation cost will not be the
bottleneck for any reasonable hardware configuration.

Our protocol for the cross checking appears in Fig. 5. It is in a hybrid world where the parties
have access to a functionality, Feq. We note that this functionality can be realized using any
secure four party computation. The circuit needed to realize this functionality is small: it only
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performs two equality computations on strings of length O(κ). Nevertheless, in Section 5, we also
demonstrate how we can bootstrap this functionality, communicating just a small constant number
of bits, and using almost no computation.

3.2 Achieving one bit of communication using six parties

We note that if we use six players, we can maintain of the overhead of 6 bits communicated in
total, thereby requiring each player to communicate just one bit per wire (on average). The idea is
very simple. Two people agree on randomness for the preprocessing, and then each communicates
the preprocessing material to two of the remaining four players. Those four parties now carry
out two identical evaluations, in parallel, and cross check them with one another at the end. The
communication overhead is still six bits per gate, but it is now divided among all six players.

4 Security Proof

4.1 Proof of Security for Preprocessing

Lemma 4.1. The protocol in Fig. 3 for distributed pre-processing securely realizes the functionality
of Fig. 2.

Proof. Due to symmetry, we only prove the lemma for the following two cases: 1) D1 is corrupt
and 2) E1 is corrupt.

Corrupted D1. We will first describe our simulator S.

1. S queries Fpre and obtains seed1, seed2. If the A chooses to input randomness, use A’s
choice.

2. S acts as honest D2, E1 and E2 for the rest of the protocol using the seeds obtained above.
If an honest E1 or E2 would abort, S sends abort to Fpre.

Note that none of the parties in the protocol have input. Therefore the indistinguishability of
the ideal-world protocol and the real-world protocol is immediate, given the observation that the
protocol aborts in the real world protocol if and only if it aborts in the ideal world protocol.

Corrupted E1. Note that E1 performs only local computation after receiving messages from other
parties. The simulator queries Fpre and receives the seeds. He then simulates honest D1 and D2,
sending seed1 on their behalf. If E1 aborts, the simulator will send abort to Fpre and aborts.
Indistinguishability from the real-world protocol is immediate.

4.2 Proof of Security of the Main Protocol

Theorem 3. Assuming H is a random oracle, our main protocol, in Fig. 1, securely realizes F4pc

in the (Fpre,Feq)-hybrid model.

Proof. In the following, we will prove the security of our main protocol assuming that P1 is corrupted
by A. The simulator is as follows:
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1. S honestly simulates the execution of Fpre. He sends P1 his resulting output, and records the
simulated mask values: λ1, which will mask the wire values in the evaluation of P3 and P4,
and λ2, which will mask the wire values in the evaluation of P1 and P2.

2. S simulates the masking of input values 0 from P2, P3 and P4 for use in P1’s evaluation with
P2, using mask values from λ2. He receives three maskings of P1’s input: one for each of P3

and P4 for use in their evaluation, using mask values from λ1, and one using values from λ2,
sent to P2 for his own evaluation with P1. If the values sent to P3 and P4 are not equal, S
sends abort to F4pc and terminates the simulation. Otherwise, S extracts the input sent to
P2, and the one sent to P3 and P4, using his knowledge of the masks; he notes if P1 misbehaves
by using inconsistent values in the two evaluations.

3. S acts honestly as P2, P3 and P4 in both executions of the masked evaluations. S obtains
m1 by interacting honestly with P1 on behalf of P2 for the remainder of their evaluation. He
obtains m2 by simulating (internally) the remainder of the evaluation of P3 and P4. S notes
if P1 misbehaved in the masked evaluation produced by P1 and P2.

4. S collects P1’s input to Feq. If P1 sends the wrong input, if he misbehaved during input
masking, or during his evaluation, S returns 0 from Feq to P1, and sends abort to F4pc.
Otherwise, he returns 1 from Feq to P1.

Comment: In Section 5, we describe a more efficient, interactive protocol, πvcc, which replaces
the use of Feq. To simulate our protocol when using πvcc, we would proceed as follows, in
place of the previous step. If S noted that that P1 misbehaved during evaluation, or when
sending his masked input, then S runs πvcc, simulating the messages of P2 and P4 when using
different (random) inputs from one another. Otherwise, he runs πvcc as though P2, P3 and
P4 all use input m1 ⊕ λ2. If πcross outputs 0, S sends abort to F4pc.

5. S uses the input extracted in Step 2 and sends it to F4pc. He receives y and computes
λ∗ = m1

out + y. S acts as P3 and P4 sending λ∗ to A.

Now we will show that the joint distribution of the output from A and honest parties in the
ideal world are indistinguishable from these in the real world protocol.

1. Hybrid1: Same as the hybrid protocol with S plays the role of honest players using their true
input. (The resulting distribution is equivalent to that of the real world execution.)

2. Hybrid2: Same as Hybrid1, except that S obtains m1 and λ1 and compute x1 = m1
in + λ1in. S

sends x1 to F4pc, which returns y. In step 5, S acts as P3 and P4 and broadcasts λ∗ = m1
out+y.

3. Hybrid3: Same as the Hybrid2 except that all honest parties uses 0 instead of their true input.

5 Cross Check from Veto

In this section, we will demonstrate how to construct an efficient cross checking protocol based on a
functionality for 4-party, logical OR, For. We sometimes call this a veto functionality, as the parties
use the OR to “veto” the execution, by submitting a value of 1 (veto). The cross checking protocol
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The protocol assumes access to an ideal functionality, For, for computing the logical OR of 4 input bits,
each provided by one of the parties.

Input
1. P1 has input d1 = m1

1 + λ21.
2. P2 has input d2 = m1

2 + λ22.
3. P3 has input d3 = m2

3 + λ13.
4. P4 has input d4 = m2

4 + λ14.
Checking

1. P1 samples a random seed and sends it to P3.
2. P1 (resp. P3) send H(d1‖seed) (resp. H(d3‖seed)) to P2 and P4

3. P2 (resp. P4) determines if it received the same value from P1 and P3. If it did, it will provide 0
to the For functionality, and otherwise it will provide 1.

4. Repeat the previous instructions with the variable exchanged as follows: P1 is switched with P2,
and P3 is switched with P4, d1 is switched with d3, and d2 is switched with d4.

5. Players call the For functionality with the input that they were instructed to use in step 3.

Figure 6: Cross check protocol from veto

from Section 3 required a 4-party computation of Feq, which compared 2 pairs of strings, each κ
bits long. The improved cross checking protocol based on veto requires each party to compare two
hashes locally, and then input a single bit to the veto functionality. While the cost of either of
these protocols is small compared to the evaluation phase, the simplicity of the protocol here makes
it hard to pass up. We also describe how to bootstrap For, using a variant of the protocol from
Section 3, and requiring just 6 bytes of communication per party. Perhaps one of the nicest features
of this bootstrapping, from a practical standpoint, is that it allows us to avoid any dependence on
other MPC implementations.

Naive implementation of cross checking. A naive way of implementing cross checking is to
have the two verifiers exchange their doubly masked evaluations, and compare them for inconsisten-
cies. Unfortunately, this approach fails because the adversary can modify the values carried on any
of the wires in his own evaluation, and determine precisely how the change impacted the evaluation
of the circuit by subtracting his doubly masked evaluation from the other. The differences between
these two doubly masked evaluations reveals the differences in the values carried on each wire in
the two evaluations of the circuit.

Achieving secure and efficient cross checking. Our main observation for simplifying the cross
check protocol is that, in the attack just described, P1 will always cause the verification run by P2

and P4 to fail. This is because the evaluation of P2 was also modified on wire w, but he will not
modify λ1w the way P1 did. If the output of the equality test between P1 and P3 were hidden from
P1, shown only to P2 and P4, and, symmetrically, if P1 only saw the result of their verification
(which he already knows), then we can remove the bit of leakage. Specifically, each Pi learns a
single bit, bi, indicating whether the other verifying set passed the equality test. The four parties
then run a secure protocol that computes the logical OR of these 4 bits. They can do this using
any existing 4-party protocol.

One verification group reveals the equality of their masked evaluations to the other verification
group as follows. (1) They agree on a random seed, (2) they hash it together with their doubly
masked evaluation, and (3) they send the hash output to the players of the other verification group.
The players in the other verification group can compute equality by simply checking that the hashes
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they receive are the same.
Note that For is a constant size circuit, and it likely does not matter which four party secure

computation we use to realize it. Still, it is interesting to note that we can actually bootstrap this
computation with another variant of our own protocol. In the protocol just previously described,
letting di,w denote the doubly masked value held by Pi for wire w, the parties effectively compute∨
w∈W(d1,w 6= d3,w) ∨

∨
w∈W(d2,w 6= d4,w), where the hash value received by P1 and P3 (resp. P2

and P4) reveals the first (resp. second) disjunction of size |W| to P1 and P3 (resp. P2 and P4). The
disjunction in the middle is where we use For. Following the same discussion above, the reader
can verify that it is also secure to compute

∨
w∈W ((d1,w 6= d3,w) ∨ (d2,w 6= d4,w)). This can be

achieved by having the four parties check the equality of gates in topological order by immediately
exchanging the results of every equality check, rather than “batching them” with a hash function
at the end of the evaluation. Removing the hash function in this way increases the communication
to O(|C|), so we would not want prefer to use this as our cross-checking protocol. But to bootstrap
For, which has just 3 gates, there is no need for the use of a hash function.

Security of Veto Cross Check

(Sketch.) Our main protocol is secure if we replace the cross checking in the main protocol with
the cross checking described in this section.

If the adversary acted maliciously during the masked evaluation, then it is clear that the verifi-
cation group that does not contain the corrupt player (i.e. the honest verification group) will have
inconsistent evaluations. As a result, the simulator can run the cross checking on behalf of the
honest players as though the player in the honest verification group had inconsistent evaluations.
In this case, the honest player in the same validation group as the corrupt player will always provide
a veto. As a result, the simulator can safely always provide a simulated output of veto from For,
sends abort to F4pc, and the result is indistinguishable from a real execution.

If instead the corrupt player only misbehaves in the cross checking, the only possible deviation
is to send the wrong hash value. In this case, the simulator can compute whether the corrupt player
misbehaved by analyzing the hash value that he sent, together with the seed. The simulator knows
that both players in the honest verification group will veto. As a result, the simulator can simply
provide a simulated output of veto from For, submit abort to F4pc, and the result is indistinguishable
from a real execution.

Finally, if the adversary never deviates from the protocol, the simulator accepts the adversary’s
input to For and sends it back to him as the output of For. If this value is a veto, the simulator
sends abort to F4pc, and otherwise, he submits the adversary’s input to F4pc, and simulates the
opening of the output just as in Section 4.

The view in the real and ideal world are indistinguishable since (1) the simulator can always
determine if there is a veto or not for the functionality based on the behavior of the adversary and
(2) the random oracles hides inputs from the other verification group.

6 Adding Robustness

We can make our protocol robust against a single cheater. We note that it is quite simple to
strengthen our original protocol so that it is fair. If the malicious party aborts before anyone sends
the output wire masks, then nothing is learned, and all parties can safely abort. If the adversary
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Two distributors D1, D2 want to generate preprocessing for players E1, E2. We assume D1 holds a key
pair for a public key, committing encryption scheme, and that both hold key pairs for a digital signature
scheme. The 3 public keys are known by all parties. We let (pk, sk) denote the encryption/decryption
keys of D1, and (vki, ski) denote the verifying/signing keys of Di.

Protocol
1. D2 chooses (seed1, seed2, rcom) at random and broadcasts enc(pk, seed1||seed2||rcom). If he fails

to do so, or if he broadcasts an invalid ciphertext, the other 3 parties run a 3-party, semi-honest
protocol, where D1 generates the preprocessing.

2. D1 recovers (seed1, seed2, rcom).
3. Each Di computes the preprocessing that was described in Fig. 3.
4. Each Di computes commit({λw}w∈Woutput

; rcom). He includes these commitments in the prepro-
cessing material.

5. Each Di signs the preprocessing material: σ1,i = sign(ski; seed1) and σ2,i = sign(ski; seed2||Γ2).
He sends (seed1, σ1,i) to E1, and (seed2,Γ2, σ2,i) to E2.

6. Ej receives (mj,1, σj,1) and (mj,2, σj,2). He checks whether vrfy(pk1, σj,1) = vrfy(pk2, σj,2) = 1,
and whether mj,1 = mj,2.

• If one of the signatures does not verify, Ej continues the protocol using only the preprocessing
material that was validly signed.

• If both signatures verify, but mj,1 6= mj,2,

– Ej broadcasts the two signed messages.

– D2 broadcasts (seed1, seed2), together with the encryption randomness used in the
Step 1. All honest parties can now determine whether D1 or D2 misbehaved. They
eliminate the guilty party and execute a 3-party, semi-honest protocol.

• Ej outputs mj,1.

Figure 7: Robust Preprocessing

aborts after learning the output masks, his partner can still reveal the output for the other two
evaluators. The only necessary modification is to prevent the malicious distributor from changing
his output masks, revealing output values that conflict with what his partner reveals. This is easily
handled by having all parties commit to their output masks prior to the evaluation: if the two
distributors use the same randomness in their commitments, the evaluators can verify that they
have both committed to the same mask value.

The main challenge in achieving robustness is that we cannot simply abort when we detect
improper behavior, even if the output has not been revealed yet. Instead, we have to ensure that
all honest parties correctly identify a misbehaving party, or at least a pair of parties that contains
the adversary. To facilitate this, we make several adjustments. First, we modify the preprocessing
protocol so that it either allows everyone to identify the adversary, or it ensures that both evaluators
receive good preprocessing material. The robust preprocessing appears in Fig. 7. We then modify
the input sharing to make it robust; the input sharing in Section 3 would trigger an abort if any
party used different inputs in the two executions, but it would not allow the others to determine
who cheated. After receiving the preprocessing material and the masked inputs, the evaluators
continue the evaluation protocol from Section 3 until each party has a masking of the circuit. They
then perform a robust variant of the cross checking protocol. In this variant, the parties cross check
gate by gate, and if they ever find an inconsistency, they run a sub-routine to identify a pair of
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Input phase
1. For each input wire w

(a) Suppose P1 = E1 is the player who provides input xw for wire w (we can generalize this to
the other parties)

(b) E1 awaits the mask λ2w from D1, D2, as well as signatures on λ2w.

i. If E1 receives a value for λ2w without a signature from Di then he ignores the mask that
Di sent him.

ii. Otherwise, he received inconsistent masks, E1 broadcasts the signed masks (thus iden-
tifying which evaluation group contains a cheater). If the players receive two different
masks with valid signatures, they run the protocol, using only the masked evaluation
of E1, E2.

(c) E1 broadcasts mw = xw + λ1w + λ2w.

(d) E1, E2 set m1
w = mw − λ1w while D1, D2 set m2

w = mw − λ2w.

Evaluation
Each evaluation group, using their own masked evaluation, as well as the share of the masks they

received from distributors do the following:

For each gate (a, b, c, T ) following topological order:

(a) if T = +
i. mc ← ma + mb.

(b) if T = ×
i. 〈mc〉 ← ma ·mb −ma · 〈λb〉 −mb · 〈λa〉+ 〈λc〉+ 〈λa · λb〉
ii. mc ← open(〈mc〉)

Cross Check
For every wire w ∈ Wmult ∪Winput, ordered by depth in the circuit.

For each verification group V ∈ V
1. (V1, V2)← V
2. V1 send d← m1

w + λ1w to V2.
3. V2 broadcasts (error) if d 6= m2

w + λ2w.
4. If a player in V broadcasts (error), run complaint(w).

(a) If the complaint phase returns (corrupt, P1, P2), P1, P2 broadcast decommitments to
λ1w for each output wire w. P3, P4 compute m2

w −λ1w, broadcast the result, and the
protocol terminates.

(b) If the complaint phase returns (corrupt, P3, P4), P3, P4 broadcast decommitments
to λ2w for each output wire w. P1, P2 compute m1

w − λ2w, broadcast the result, and
the protocol terminates.

(c) If the complaint phase returns (corrupt, verifier), set V ← V \ V and restart the
protocol with the updated V.

Output
For each output wire w,

1. Players P1, P2 broadcast the decommitment to λ1w.
2. Players P3, P4 broadcast the decommitment to λ2w.
3. P1 and P2 broadcast m1

w − λ2w. Denote these values by (out1, out2).
4. P3 and P4 broadcast m2

w − λ1w. Denote these values by (out3, out4).
5. All parties output Majority(out1, out2, out3, out4).

Figure 8: Robust Evaluation

15



parties that contains the adversary.1 Input sharing, evaluation, and robust cross checking are fully
described in Fig. 8. We give a detailed overview of these changes below.

Robust preprocessing: To make the preprocessing robust, one of the two distributors, D2,
starts by committing to the randomness that will be used in the preprocessing. This commitment is
constructed by broadcasting a committing encryption under the public key of D1. The randomness
used in the preprocessing is denoted by (seed1, seed2, rcom): seed1 and seed2 are used to create
masks, just as in Section 3. rcom is used to construct a commitment to the output masks, which is
then included in the preprocessing output.

After generating the preprocessing material, D1 and D2 each sign a copy of the output before
sending it to E1 and E2. If they send conflicting values to E1, the signatures allow E1 to convince
the other honest parties that one of D1 or D2 is malicious. The honest one of the two can now
be exonerated: D2 broadcasts the randomness used to encrypt the preprocessing randomness. E1

broadcasts their view, and the honest parties can check the validity of of the messages sent by D1

and D2. After removing the malicious party, the remaining three parties can run a semi-honest
protocol in which one party supplies the preprocessing, the other two perform the evaluation, and
no checking needs to be performed.

One other case of note deserves mention: suppose E1 receives nothing2 from, say, D1. In this
case, because there is no signature, E1 cannot prove that D1 or D2 is malicious: it is equally possible
that E1 is himself malicious, and that he made the problem up. In this case, though, E1 does need
to persuade anybody. Because E1 knows that D1 is malicious, E1 can simply continue the protocol
using the preprocessing he received from D2.

Robust input sharing: Let P1 and P2 perform distribution for P3, P4, and vice versa. Recall
that Section 3, P1 shares input xw on wire w with P3, P4 by using the mask λ1w that he and P2

generated together. He shares his input with P1, for their own evaluation, by using λ2w, which he
receives from P3, P4. As written, nothing prevents him from sharing inconsistent values among the
parties, and nothing prevents those parties from pretending he did so. To fix this, we first require
P3, P4 to each sign λ2w, which allows P1 to broadcast a proof of inconsistency when necessary. Then,
P1 signs and broadcasts his doubly masked input: mw = xw + λ1w + λ2w. P2 computes mw − λ1w for
use in his evaluation with P2. P3, P4 each compute mw −m2

w for use in their evaluation.

Robust cross checking: Instead of cross checking the hashes of the full circuit maskings, the
parties instead cross check gate by gate, starting at the input layer, and proceeding topologically
through the circuit. This protocol begins with a pass over the circuit, one layer at a time, with the
parties comparing their doubly masked values to locate the first gate at which the two evaluations
depart from one another. Consider the case where P3 decides that the two masked evaluations of
some gate are inconsistent, and initiates a complaint. This can be due to one of the following cases:

1. The masked evaluation performed by P1 and P2 is invalid.
2. The masked evaluation performed by P3 and P4 is invalid.
3. Both evaluations were executed correctly, but either P1 modified his input to cross-checking

(i.e. his reported masked evaluation), or P3 complained for no valid reason.

1To reduce communication of the robust cross checking, we can iteratively apply our cross check protocol from
Section 5, performing a binary search on the masked circuit layers until we find the problematic layer. We then
repeat that, performing a binary search within the problematic layer to find the problematic gate. This would yield
a worst-case communication cost of O(κ log |C|). For simplicity, we describe the protocol as operating gate per gate.

2equivalently, something that is not validly signed
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Complaint Subprotocol

The complaint subprotocol is initiated for output wire w for a multiplication gate gw when a player C
has complained that the two masked evaluations were inconsistent on that wire. We denote by V ∈ V the
verification group that contains C. This subprotocol allows the parties to identify either an evaluation
group or a verification group that contains a cheater.
Complaint

1. E1 ← {P1, P2}, E2 ← {P3, P4}, D1 ← {P3, P4}, D2 ← {P1, P2}
2. Players run the validation functionality for wire w using E1 as the evaluators and D1 as the

distributors.
3. Players run the validation functionality for wire w using E2 as the evaluators and D2 as the

distributors.
4. If any of the calls to the validation functionality results in the functionality returning

(corrupt,Pi,Pj), return the same. Otherwise, return (corrupt, verifier).

Validation

E1, E2, D1 and D2 want to verify that the masked evaluation of E1, E2 was done correctly for the gate
gw with output wire w.

Input
1. E1, E2 each input their masked evaluation for the 3 wires of gw: (ma,mb,mc).
2. D1, D2 each input the masks that they generated gw: (λa, λb, λc).

Functionality
1. If E1 and E2 provided distinct inputs, return (corrupt,E1,E2) and halt.
2. If D1 and D2 provided distinct inputs, return (corrupt,D1,D2) and halt.
3. If (ma − λa) · (mb − λb) + λc = mc, then output (valid). Otherwise output (corrupt,E1,E2).

Figure 9: Complaint

If the honest players know that the first case holds, then the corrupt player is either P1 or P2. They
can therefore use the evaluation of P3 and P4 to determine their output. By the same argument,
if the players know that the second case holds, they can all safely use the evaluation of P1 and
P2 to produce the output. Finally, if the players know they are in the third case, they know that
the malicious party is either P1 or P3. In this case, they do not dismiss either evaluation, but
they continue the cross checking using only between P2 and P4; since P2 and P4 are honest, their
cross-checking suffices for ensuring a valid computation.

When someone detects an inconsistency in the cross checking of a gate, the parties execute a
complaint subprotocol (See Fig. 9) to determine which of the above cases hold. In this subproto-
col, the parties use an ideal functionality, which can later be bootstrapped generically using any
MPC with identifiable abort. We stress that the circuit implementing this functionality is small: it
only needs to be executed on a single gate, and it used at most twice in a computation. The
functionality is called once for each of the two evaluations. In each instance, the two evaluators
provide their masked input and masked output for the gate, while the two distributors provide the
masks that they created for the gate. If the evaluators do not provide the same masked values then
the functionality indicates that the evaluation set contains the cheater. If the distributors do not
provide the same masks then the functionality indicates that the cheater is in the distribution set.
Otherwise, the functionality uses the masked wire values and the mask values to check whether the
gate evaluation was performed correctly. If the masked evaluation was invalid, the ideal function-
ality indicates that the evaluation set contains the cheater. Finally, if no error is detected, then the
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functionality indicates this, and the parties conclude that either the party that raised the alarm is
malicious, or his partner in the cross-checking is malicious (case 3 above).

6.1 Robust Evaluation Simulator

Theorem 4. If the robust evaluation protocol is instantiated using a CCA-Secure public-key com-
mitting encryption scheme then it securely realizes F4pc in the random oracle model. In addition,
the protocol is robust.

Simulator for robust preprocessing when D2 is corrupt.

1. Await that D2 broadcast the ciphertext c. If the ciphertext is invalid then the simulator
submits a default input value to F4pc on behalf of the adversary, and terminates. (This cor-
responds to the honest parties removing the adversary from the computation, upon agreeing
that he is malicious.)

2. Recover (seed1‖seed2‖rcom)← Dec(sk, c).

3. The simulator computes the preprocessing and broadcasts
commit({λw}w∈Woutput ; rcom) on behalf of D1.

4. Simulator awaits thatD2 sends the preprocessing material and signatures on the preprocessing
material to each player. Then,

(a) For each evaluator, if D2 sent an invalid signature to the given evaluator, the simulator
ignores what D2 sent.

(b) Otherwise, if D2 sent invalid preprocessing to either evaluator, then simulate the broad-
cast from the given evaluator of the the signed preprocessing and determining that D2

misbehaved. The simulator notes that D2 was identified as a cheater.

Simulator for robust preprocessing when D1 is corrupt. Same as the simulation for D2

except that the simulator broadcasts the encryption of the randomness to D1.

Simulator for robust preprocessing when an evaluator is corrupt. The simulator chooses
randomness and simulates the three honest players. If an evaluator sends a message claiming he
received inconsistent preprocessing, but the signed messages he forwards do not substantiate his
claim, the simulator sends a default input to F4pc and terminates. (Technically, we did not describe
in our protocol that the other parties remove the evaluator when he does this, because we felt it
would unnecessarily complicate the protocol description.)

Indistinguishability of robust preprocessing.

1. In the case where the distributor is corrupt, we claim the view in the real and ideal worlds
are indistinguishable. If the distributor deviates from the protocol, it is either ignored (if
it does not send a signature with the preprocessing it shares), or it is eliminated from the
computation (if it sends bad preprocessing with a valid signature). The committing property
of the encryption scheme guarantees that he gets caught if he signs and sends a wrong value.
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2. The only message sent by an evaluator is (possibly) to complain about inconsistent prepro-
cessing. If the evaluator is corrupt, then in both the ideal and real world, the complaint would
be ignored (due to the unforgeability of the underlying signature scheme).

Simulator for input sharing.

1. If the corrupt player is providing input as an evaluator,

(a) The simulator provides the signed masks from the other distributors.

(b) The simulator awaits that the corrupt player broadcasts a double masking mw. The
simulator then computes the input of the corrupt player from the masks that were
produced in the preprocessing and the double masking that the corrupt player sent.

2. If the corrupt player is a distributor, and the input wire belongs to an evaluator,

(a) The simulator awaits that the corrupt player sends out a mask to the evaluator. If the
mask is signed with the corrupt player’s signature, and is not the value produced in the
preprocessing, then the simulator produces a broadcast of the conflicting, signed masks.
The simulator provides the default value to F4pc on behalf of the corrupt player and
terminates.

3. If the corrupt player is an evaluator, and the input wire belongs to the other evaluator, the
simulator broadcasts the doubly masked input.

Indistinguishability of input phase. We argue that since the view until the end of the prepro-
cessing phase in the ideal world is indistinguishable from the view until the end of the preprocessing
phase in the real world, then the views are also indistinguishable up through the end of the input
phase. In the real and ideal world, when the distributor is corrupt, any deviation would either be
ignored, or would result in the dealer being caught and eliminated from the computation. If the
evaluator is corrupt, and he broadcasts an invalid complaint, he is eliminated due to the unforge-
ability of the underlying signature scheme.

Simulator for evaluation. The simulator of the evaluation step follows the same steps as the
simulator for the masked evaluation in the main protocol. In particular, the simulator stores if the
corrupt player misbehaved during his evaluation. We argue that since the view until the end of the
input phase in the ideal world is indistinguishable from the view until the end of the input phase
in the real world, then the views are also indistinguishable up through the end of the evaluation
phase.. This holds from the fact that our main protocol (in particular the masked evaluation part)
is secure.

Simulator for cross check. For every multiplication wire w ∈ Wmult,

1. if the corrupt evaluator had previously sent a wrong value in the evaluation of wire w,

(a) The simulator broadcasts (error) on behalf of the verifiers that are not in the same
verification group as the corrupt player. (He might also do with the player that is in the
same verification group as him.)
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(b) The simulator receives (λa, λb, λc) and (ma,mb,mc) from the adversary, intended for
the first and second calls to the validation functionality, respectively (and without loss
of generality). If (λa, λb, λc) are inconsistent with the values simulated during prepro-
cessing, the simulator implicates the adversary (and his partner) when simulating the
output of the first call to the validation functionality. In either case he implicates the
adversary (and his partner) in the simulated output of the second call to the validation
functionality.

The simulator then runs the protocol on behalf of the honest players using the honest evalu-
ation group’s masked evaluation.

2. Otherwise:

(a) if simulating V1, the simulator checks to see if the adversary sends a wrong doubly
masked value to his partner: m1

w + λ1w.

(b) if simulating V2, the simulator checks to see if the adversary broadcasts (error).

The simulator receives (λa, λb, λc) and (ma,mb,mc) from the adversary, intended for the first
and second calls to the validation functionality, respectively (and without loss of generality).
If (λa, λb, λc) are inconsistent with the values simulated during preprocessing, the simulator
implicates the adversary (and his partner) when simulating the output of the first call to the
validation functionality. If (ma,mb,mc) are inconsistent with simulated masked values of the
evaluation phase, the simulator implicates the adversary (and his partner) when simulating
the output of the second call to the validation functionality. If he is not implicated in either
instance, then any future messages he might send during cross checking are ignored.

Indistinguishability of cross check. We argue that since the view until the end of the evaluation
phase in the ideal world is indistinguishable from the view until the end of the evaluation phase in
the real world, then the views are also indistinguishable up through the end of the cross check. If
the corrupt player’s evaluation group is deemed corrupt, then the protocol in the real world would
dictate that the corrupt player no longer receive messages during the cross check phase. Therefore,
it is clear that after the elimination has taken place, the views in the real and ideal world are
indistinguishable.
We now claim that the validation function eliminates the adversary’s evaluation set in the real
world, if and only if the simulator implicates the adversary’s evaluation set in the ideal world. Note
that the simulator can detect if the adversary has modified any wire in the evaluation, as well as
whether his input to the validation function is inconsistent with his partner’s input. The reader can
verify by inspection that the claim holds. Since the complaint phase consists of just two calls to the
validation functionality, it follows that the adversary’s view in the complaint phase is identically
distributed in the two worlds. By the previous note, after this point, the cross check in the real
and ideal worlds would be indistinguishable.
To complete the argument that the adversary’s view is correctly simulated through the end of the
cross check phase, we argue that, prior to being eliminated, the simulated view in the cross check
phase is sampled from the same distribution as his view in the real world. This follows because he
only sees doubly masked wire values, which are computationally indistinguishable from uniformly
distributed strings (because they are generated using a PRG).
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Simulator for output phase. The output phase is the easiest to simulate.

1. First the simulator queries the ideal functionality with the adversary’s input and receives an
output.

2. The simulator selects masks for the honest evaluation group so that the sum of the output
and the masks of the honest evaluation group is equal to the masked evaluation of the cor-
rupt player. The simulator then “broadcasts” decommitments to the masks of the honest
evaluation group.

3. The simulator selects masked evaluation for the honest evaluation group so that the sum
of the output and the masks of the corrupt player add up to the masked evaluation. The
simulator then “broadcasts” the masked evaluations.

Indistinguishability of output phase. We now argue that the output distribution, conditioned
on the adversary’s view, is indistinguishable in the two worlds. We have already argued that the
adversary is caught if he ever manipulates his evaluation. The reader can verify that whenever a
transcript results in the use of a default adversarial input in the real world, the simulator submits
default input in the ideal world. If the adversary never changes the masked values, then the input
used in both worlds is the one he committed to in the input sharing phase.
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