
1

On Evaluating Fault Resilient Encoding Schemes
in Software

Jakub Breier1∗, Xiaolu Hou2∗ and Yang Liu3

1Underwriters Laboratories, Singapore
2Acronis, Singapore

3School of Computer Science and Engineering
Nanyang Technological University, Singapore

Email: jbreier@jbreier.com, ho0001lu@e.ntu.edu.sg, yangliu@ntu.edu.sg

F

Abstract—Cryptographic implementations are often vulnerable against
physical attacks, fault injection analysis being among the most popular tech-
niques. On par with development of attacks, the area of countermeasures is
advancing rapidly, utilizing both hardware- and software-based approaches.
When it comes to software encoding countermeasures for fault protection
and their evaluation, there are very few proposals so far, mostly focusing on
single operations rather than cipher as a whole.

In this paper we propose an evaluation framework that can be used
for analyzing the effectivity of software encoding countermeasures against
fault attacks. We first formalize the encoding schemes in software, helping
us to define what properties are required when designing a fault protection.
Based on these findings, we develop an evaluation metric that can be used
universally to determine the robustness of a software encoding scheme
against bit flip faults and instruction skips. We provide a way to select a
code according to user criteria and also a dynamic code analysis method to
estimate the level of protection of assembly implementations using encoding
schemes. Finally, we verify our findings by implementing a block cipher
PRESENT, protected by encoding scheme based on anticodes, and provide
a detailed evaluation of this implementation using different codes.

Index Terms—fault injection attacks, encoding schemes, software imple-
mentations, block ciphers, cryptography, coding theory

1 Introduction

Protection and physical attacks on cryptographic implementations
are ever-evolving areas, resulting into continuous effort on each
side to make advancements over the other one. Attackers utilize
various techniques that can break the protection and reveal infor-
mation about the data or secret key. On the other hand, data owners
and custodians try to prevent these attacks by applying wide range
of countermeasures.

There are various ways to analyze a device and its implemen-
tation, Fault Analysis (FA) being one of the most popular ones.
Since the first reported attacks, protecting the implementations
of ciphers have become a major concern. When selecting a
countermeasure, one needs to decide what degree of protection
to implement, taking into account the data value and protection
price. There is no universal countermeasure, each method has its

∗This research was done while the authors were with Nanyang Technological
University, Singapore

advantages and limitations. In general, countermeasures can be
classified into hardware-based and software-based.

Implementers currently still rely more on hardware-based
approaches, such as shielding [1], sensors [1], or hardware re-
dundancy [2]. This is mostly because to inject a fault, physical
methods are normally used, such as lasers, electromagnetic pulses,
or voltage/clock glitches [3], and therefore, physical protections
are effective in detecting/thwarting these.

There are works that utilize encoding techniques in hardware
to provide fault resiliency, e.g. [4], [5], [6]. However, there is no
straightforward way to implement such schemes in software and
therefore, these papers do not provide any details on potential
efficiency and security in case the countermeasure is ported into
software.

Our Contribution
In this work we are interested in analyzing software encoding
countermeasures for a full cipher implementation. To facilitate the
evaluation, we formalize fault models and encoding countermea-
sures in software, bringing light into understanding of what is
needed and what is possible.

We formalize evaluation metrics that measure the robustness of
a code against bit flip faults and instruction skips on a full cipher
implementation. We present the exact formula of our metric for
a code used in protecting one single operation. Such an analysis
gives us insights on what kind of codes to choose – we show that
both the minimum and maximum distances of a code are important.
This leads us to the notion of anticode from coding theory which
is a definition of code that bounds both minimum and maximum
distances of a binary code.

We provide theoretical analysis for what parameters an anti-
code exists, which gives a direct overview of feasibility without
the need to manually search for the anticode existence. As the next
step, we present an algorithm to automatically select anticodes
with required properties for protecting cryptographic implementa-
tions against DFA (if such codes exist).

We develop an evaluation method for encoding countermea-
sures that is based on dynamic code analysis and works directly on
assembly implementations. We implemented a protected version
of PRESENT-80 cipher by using an AVR assembly language and

2

used our evaluation method to analyze the performance of different
anticodes w.r.t. aforementioned metric. Our results reveal what
trade-offs between the security level and the efficiency (speed,
time) can be achieved. Both advantages and disadvantages are
discussed. To the best of our knowledge, this is the first work im-
plementing and evaluating the software encoding countermeasure
on a full cipher.

The rest of the paper is organized as follows. Section 2
discusses related works. Section 3 formalizes fault attacks and
encoding countermeasures in software. In Section 4 we present
our metric for evaluating a code used in encoding countermeasure
with respect to bit flip faults and instruction skips. The exact
formula for our metric in case the code is used for protecting
one operation is provided in Section 5 along with the notion of
anticodes. Algorithms used for code selection and for evaluation
of software implementations are detailed in Section 6. Section 7
provides a case study on block cipher PRESENT. Section 8 gives
a guideline on how to choose anticode parameters. Discussion is
stated in Section 9 and finally, Section 10 concludes this paper and
provides a motivation for future work.

2 RelatedWork
2.1 Differential Fault Analysis

When it comes to analyzing symmetric block ciphers under
fault conditions, the most effective and popular method is the
Differential Fault Analysis (DFA) [7]. Following this method,
the attacker normally disturbs the computation circuit during the
last three rounds of the encryption and then she compares the
faulted ciphertext with the non-faulty one. By analyzing this pair
of ciphertexts, she can get the information about the secret key
used in the encryption. In some cases, single pair is enough to
reduce the key search space to a feasible number [8], [9]. In other
cases, several fault injections are necessary [10], [11].

2.2 Countermeasures

Software countermeasures against fault attacks can be generally
divided into two main groups: instruction-level and algorithm-
level techniques [12]. Instruction-based countermeasures include
instruction duplication or triplication, and fault-tolerant instruction
sequences, where an instruction is replaced by functionally equiv-
alent sequence of more secure instructions [13]. This technique
was recently extended to a new approach, called intra-instruction
redundancy [14]. In this technique, data is split among several
instructions, by using a redundant bit-slicing.

On the other hand, algorithm-level countermeasures include
temporal and information redundancy on an algorithm level [15].
Temporal redundancy techniques normally execute the algorithm
several times and then compare the results for inconsistencies [3],
[16].

Software encoding countermeasures fall in the second cate-
gory, introducing the redundancy in the information being pro-
cessed. Depending on the encoding scheme design and amount
of redundancy, these countermeasures can provide a robust alter-
native to hardware-based approaches [17]. Breier and Hou [18]
showed how to select codes with desired fault properties for
protecting binary operations. Theoretical bounds of software en-
coding countermeasure used in a whole cipher implementation
are considered in [19], [20]. However, no real implementation or
simulation was given in either work. Servant et al. [20] considered

a particular code when used in a full cipher, which they referred
to as (3,6)-code, that is actually a (6, 16, 2)−binary code (see
Definition 3). The probability of detecting a fault was analyzed in
this case and it is 93.75%. The approach in [19] does not consider
some important aspects of fault injection, such as ability of the
attacker to precisely select the fault mask or his ability to inject
instruction skips. Generally, to avoid a successful fault injection
attack for the countermeasure in [19], used code would have to
remain a secret.

2.3 Countermeasure Evaluation Methods

Moro et al. [21] developed an evaluation platform based on
electromagnetic fault injection to experimentally verify temporal
redundancy countermeasures at assembly instruction level. They
implemented a protected version of FreeRTOS to conduct the
study. Two countermeasures were tested – an instruction skip
protection and a fault detection that is applicable to a subset
of assembly instructions. Their experiments showed that both
countermeasures work in a way they are supposed to, however
with obvious limitations that come from their designs – they either
protect only against instruction skips and not against other, more
complex fault models, or they can only protect several chosen
instructions of the code.

Yuce et al. [12] provided experimental evaluation of several
instruction level countermeasures by using a single clock glitches.
They showed that the most popular choices, such as instruction du-
plication/triplication, parity, and instruction skip countermeasure
can be broken by a careful choice of fault scenario.

Goubet et al. [22] aimed at formal verification of countermea-
sures by using automata and SMT solver. Such approach required
a decomposition of a code into pieces, while analyzing each piece
separately. Also, the method works by comparing the unprotected
code with the protected one. The proposed method, however, is
not scalable for a full cipher evaluation – for code snippets, where
10 lines of code need 10.7 s to evaluate. Furthermore, analyzing
small snippets separately might not reveal the vulnerabilities that
might arise from connecting them to a full implementation (cf.
Remark 10).

Breveglieri et al. [6] evaluate a subset of encoding-based
countermeasures for hardware, based on parity/residue check bits.
However, such methods provide only a limited amount of security
– odd number of bit-flips is detected, but even number always
passes the checks. Moreover, the attacker can also disturb the
parity bit or the “checkpoint” which provides the integrity check.

In case of encoding based software countermeasures, there are
no works proposing a full cipher evaluation to the best of our
knowledge. The closest works to this one evaluate only a single
operation on encoded data [18], [17].

Our method is universal for encoding based software coun-
termeasures and provides details on all the possible bit flips and
instruction skips. Also, the dynamic code analysis technique that
was implemented can efficiently evaluate a full cipher implemen-
tation in a short time.

3 Software Encoding Schemes
In this section we first give the formalization of fault attacks in
software. Then, we provide necessary coding theory background
and present the formalization of encoding countermeasure that
can be applied to all symmetric ciphers, which we refer to as fault
resilient encoding scheme.

3

3.1 Fault Attacks in Software

Assembly language is a low-level programming language, specific
to a particular architecture. Normally, there is a one-to-one map-
ping between assembly instructions and machine code that is being
executed on the device. Assembly language uses a mnemonic to
represent machine operations in the form of instructions. Each
instruction falls into one of three categories: data movement,
arithmetic/logic, and control-flow.

Operands are entities operated upon by an instruction. Ad-
dresses are the locations of specified data in the memory. Operands
can be immediate (constant values), registers (values in the pro-
cessor number registers), or memory (value stored in the memory).
Standard instruction can have zero to three operands, the leftmost
operand being usually the destination register, the second and the
third are source registers.

For our purpose, registers are the most important storage units.
Size of the register is typically stated in bits and depends on the
device architecture (e.g. 8-bit, 32-bit, 64-bit). Normally, all the
registers for a particular device have the same size. It is the fastest
type of memory in a computer and it is directly accessible by the
arithmetic logic unit (ALU) performing the operations.

Definition 1. We define a program to be an ordered sequence
of assembly instructions F = { f1, f2, . . . , fNF }. NF is called
the number of instructions for the program. For any assembly
instruction f ∈ F , if f has a destination register, we denote this
register by r f . Let S denote the set of all programs.

Fault attack is an intentional change of the original data
value into a different value. This change can either happen in a
register/memory, on the data path, or directly in ALU. In general,
there are two main fault models to be considered – program flow
disturbances and data flow disturbances. The first one is achieved
by disturbing the instruction execution process that can result in
changing or skipping the instruction currently being executed. The
second one is achieved either by directly changing the data values
in storage units, or by changing the data on the data paths or inside
ALU. For the purpose of a fault injection attack, these three data
flow changes are equivalent and can be modeled by changing the
values in registers.

Definition 2 (Instruction skip and fault mask). 1) For any i ∈
Z>0, an ith instruction skip is a function ϑi : S → S , such
that ϑi(F) = F if NF < i and ϑi(F) = F \{ fi} otherwise.

2) For any j ∈ FN
2 \{0} (N ∈ Z>0), a fault mask j on in-

struction i is a function ςi, j : S → S such that for any
F = { f1, f2, . . . , fNF } ∈ S ,

• if 1 ≤ i < NF and fi has a destination register r fi
whose length is at least N, then ςi, j(F) = { f1, f2, . . . ,
fi, f̃i, fi+1, fNF }, where f̃i = eor r fi j, i.e. f̃i changes the
value in r fi , to be the xored result of value in r fi and j.

• ςi, j(F) = F otherwise.

In our evaluation framework, we consider a single fault adver-
sary – under this attacker model, at most one fault is injected dur-
ing the encryption/decryption algorithm execution. The attacker
can inject a random m−bit flip fault such that all the bits have
equal probability to be affected by the fault. In other words, for a
random m−bit flip, each fault mask value between 1 and N has the
same probability to occur.

3.2 Fault Resilient Encoding Scheme

Encoding scheme in our context is a protection method that
acts against fault injection attack by detecting malicious changes
to secret data processed by the encryption algorithm. In this
part we provide a necessary formalization which establishes the
foundation for Section 4, where a generic metric for evaluating
encoding scheme robustness is proposed.

A binary code, which we denote by C, is a subset of Fn
2, the

n−dimensional vector space over F2, where n is called the length
of the code C. Each element c ∈ C is called a codeword of C
and each element x ∈ Fn

2 is called a word [23, p.6]. Take two
words x, y ∈ Fn

2, the Hamming distance between x and y, denoted
by dis (x, y), is defined to be the number of places at which x
and y differ [23, p.9]. More precisely, if x = x1x2 . . . xn and y =

y1y2 . . . yn, then

dis (x, y) =

n∑
i=1

dis (xi, yi) ,

where xi and yi are treated as binary words of length 1 and hence

dis (xi, yi) =

1 if xi , yi

0 if xi = yi
.

Furthermore, for a word x ∈ Fn
2, the Hamming weight of x,

wt(x) := dis (x, 0) [23, p.46]. For a binary code C, the (minimum)
distance of C, denoted by dis (C), is [23, p.11]

dis (C) = min{dis
(
c, c′

)
: c, c′ ∈ C, c , c′}.

Definition 3. [24, p.75] For a binary code C of length n, with
dis (C) = d, if M = |C| is the number of codewords in C. Then C is
called an (n,M, d)−binary code.

Remark 1. In case C is a subspace of Fn
2, C is called a linear code.

For a linear code with dimension k, a standard notion would be
[n, k, d], where n is its length and d is its minimum distance. For
a non-linear code, there is no notion of dimension and we follow
the standard notion (n,M, d) as presented in [24]. We would like
to emphasize that we do not restrict the code to linear codes,
allowing the analysis to more code candidates used in encoding
countermeasure.

To simplify the notation we introduce the symbol ⊥, which
indicates an error. Note that the exact implementation of ⊥ gives
certain restrictions on the code C that can be used: if zero is used
to implement ⊥, we should require that 0 < C.

To formally define encoding countermeasure, we first adopt
the definition of symmetric cipher from [25]:

Definition 4. A symmetric cipher (see e.g. [25, p.37]) is a 5−tuple
(K ,P,M, E,D) such that

E : K × P →M, D : K ×M→ P,

and ∀κ ∈ K , ∀P ∈ P, D(κ, E(κ, P)) = P. We refer to K , P,M, E
and D as key space, plaintext space, ciphertext space, encryption
and decryption of this cipher, respectively. We define S to be the
set of all symmetric ciphers (K ,P,M, E,D) such that

K = FN1
2 , P = FN2

2 , M = FN3
2 ,

for some N1,N2,N3 ∈ Z>0.

A symmetric cipher with encoding countermeasure either
outputs an error message or the correct ciphertext. We give the
formal definition of such a cipher as follows:

4

Definition 5. An error detection symmetric cipher is a 5−tuple
(K ,P,M, E,D), where

1) ⊥∈ M,
2) E : K × P → M,D : K ×M → P ∪ {⊥} are functions such

that ∀κ ∈ K , ∀P ∈ P
a) if D(κ, E(κ, P)) ,⊥ then D(κ, E(κ, P)) = P;
b) D(κ,⊥) =⊥.

Let S⊥ denote the set of all error detection symmetric ciphers
(K ,P,M, E,D) such that

K = FN1
2 , P = FN2

2 , M = FN3
2 ∪ {⊥},

for some N1,N2,N3 ∈ Z>0.

In encoding countermeasure, the important part is the error
detection, which is closely related to the encoding and decoding.
Here we formalize the notion of encoder and decoder.

Definition 6. Given an (n,M = 2k, d)−binary code C, an
encoding-decoding scheme associated with C is a pair of functions
(EncoderC, DecoderC)

EncoderC : Fk
2 → C, DecoderC : Fn

2 ∪ {⊥} → F
k
2 ∪ {⊥}

such that DecoderC
∣∣∣
(Fn

2∪{⊥})\C
= {⊥} and EncoderC is bijective

with DecoderC
∣∣∣
C

being its inverse.

Thus for DecoderC an error message ⊥ will be returned if
the input is not a codeword. More details regarding encoding-
decoding schemes can be found in Appendix A.

Definition 7. An operation is a map g : FM1
2 × F

M2
2 × · · · × F

Mm
2 →

FMm+1
2 for some positive integers M1,M2, . . . ,Mm+1. Let S denote

the set of all operations.

Note that an assembly implementation of an operation is a
program (see Definition 1).

Example 1. The xor operation defined on 1-bit strings is an
operation g : F2 × F2 → F2 such that

g(0, 0) = 0, g(0, 1) = 1, g(1, 0) = 1, g(1, 1) = 0.

Definition 8. An operation with error detection is a map h :
(FM1

2 ∪ {⊥}) × (FM2
2 ∪ {⊥}) × · · · × (FMm

2 ∪ {⊥}) → FMm+1
2 ∪ {⊥}

for some positive integers M1,M2, . . . ,Mm+1 such that if x =

(x1, x2, . . . , xm) ∈ (FM1
2 ∪ {⊥}) × (FM2

2 ∪ {⊥}) × · · · × (FMm
2 ∪ {⊥})

satisfies xi =⊥ for at least one i ∈ {1, 2, . . . ,m}, then h(x) =⊥. Let
S⊥ denote the set of all operations with error detection.

Remark 2. By the above definition, for any symmetric cipher
(K ,P,M, E,D) ∈ S, E,D ∈ S. For any error detection sym-
metric cipher (K ,P,M, E,D) ∈ S⊥, D ∈ S⊥. Furthermore,
for an (n,M = 2k, d)−binary code C with associated encoding-
decoding scheme (EncoderC, DecoderC), EncoderC ∈ S and
DecoderC ∈ S⊥.

Example 2. Consider the following operation with error detection
h : (F2 ∪ {⊥}) × (F2 ∪ {⊥}) → F2 ∪ {⊥}. h outputs the xor of two
bits when no error is detected:

h(0, 0) = 0, h(0, 1) = 1, h(0,⊥) =⊥, h(⊥, 0) =⊥, h(⊥,⊥) =⊥,

h(1, 0) = 1, h(1, 1) = 0, h(1,⊥) =⊥ h(⊥, 1) =⊥ .

An operation g ∈ S can be changed to an operation with error
detection utilizing binary codes:

Definition 9. Given an (n,M = 2k, d)−binary code C, ϕC : S →
S⊥ is defined as follows:
Take any g : FM1

2 ×F
M2
2 ×· · ·×F

Mm
2 → FMm+1

2 ∈ S, for 1 ≤ i ≤ m+1,
suppose {EncoderC(x)|x ∈ FMi

2 } = Cki ⊆ Fnki
2 , ϕC(g) is a function:

ϕC(g) :
(
Fnk1

2 ∪{⊥}
)
×

(
Fnk2

2 ∪{⊥}
)
× · · ·×

(
Fnkm

2 ∪{⊥}
)
→ Ckm+1 ∪{⊥}

such that for x =
(
EncoderC(x1), EncoderC(x2), . . . , EncoderC(xm)

)
∈ Ck1 ×Ck2 × . . .Ckm , ϕC(g)(x) = EncoderC

(
g(x1, x2, . . . , xm)

)
, and

∀x ∈
(
Fnk1

2 ∪{⊥}
)
×
(
Fnk2

2 ∪{⊥}
)
×· · ·×

(
Fnkm

2 ∪{⊥}
)
\Ck1×Ck2×. . .Ckm ,

ϕC(g)(x) =⊥.

Example 3. Let us take the function g from Example 1 and take
the following (2, 2, 2)−binary code C = {00, 11} with the following
encoding-decoding scheme:

EncoderC : 0 7→ 00, 1 7→ 11,

DecoderC : 00 7→ 0, 01 7→⊥, 10 7→⊥, 11 7→ 1.

Then ϕC(g) : (F2
2 ∪ {⊥}) × (F2

2 ∪ {⊥}) → C is an operation with
error detection and

ϕC(g)(x1, x2) =


00 x1 = x2 = 00 or 11
11 x1 = 00, x2 = 11 or x1 = 11, x2 = 00
⊥ otherwise.

Lemma 1. Let g1, g2 ∈ S such that g2 ◦g1 ∈ S, then ϕC(g2 ◦g1) =

ϕC(g2) ◦ ϕC(g1).

(The proof can be found in Appendix B.1.)

Remark 3. For any symmetric cipher (K ,P,M, E,D) ∈ S,
any (n,M = 2k, d)−binary code C with an associated encoding-
decoding scheme (EncoderC, DecoderC), if we write E = g1 ◦g2 ◦

· · · ◦ gm for g1, g2, . . . , gm ∈ S, then ϕC(E) = ϕC(g1) ◦ϕC(g2) ◦ · · · ◦
ϕC(gm).

This justifies that we can split or merge multiple cipher
operations while considering applying encoding countermeasure
to a symmetric cipher (cf. Section 7.1).

Encoding countermeasure applied to a symmetric cipher can
be considered as applying a function which is closely related to a
binary code on the encryption and decryption of the cipher. Here
we give the definition of such a function.

Definition 10 (Fault resilient C-map). Given an (n,M = 2k, d)−
binary code C with an associated encoding-decoding scheme
(EncoderC, DecoderC), we define fault resilient C-map to be the
following function

ΦC : S → S⊥

(K ,P,M, E,D) 7→ (K ,P,M∪ {⊥}, E′,D′),

such that ∀P ∈ P, κ ∈ K , Msg ∈ M\{⊥},

E′(κ, P) = DecoderC
(
ϕC(E)

(
EncoderC(κ), EncoderC(P)

))
,

D′(κ, Msg) = DecoderC
(
ϕC(D)

(
EncoderC(κ), EncoderC(Msg)

))
,

and D′(κ,⊥) =⊥.

Now we are ready to formalize encoding countermeasure,
which we refer to as fault resilient encoding scheme.

Definition 11 (Fault resilient encoding scheme). Given (K ,P,M,
E,D) ∈ S a symmetric cipher and C an (n,M = 2k, d)−binary
code with an encoding-decoding scheme (EncoderC, DecoderC).

5

A cipher of the form ΦC
(
(K ,P,M, E,D)

)
is called a fault resilient

encoding scheme.

Remark 4. Taking k = 1 and C = {01, 10}, we get the bit-
sliced encoding, e.g. the one used in [26] (EncoderC(0) = 01,
and EncoderC(1) = 10) which follows the principle of a dual-
rail precharge logic. In Section 7.1, we use k = 4 mainly because
PRESENT cipher uses 4-bit SBox (see Section 7.1).

P

κ

EncoderC(P)

EncoderC(κ)

E ϕC(E)
(
EncoderC(P), EncoderC(κ)

)
Msg

DecoderC

Msg

κ

EncoderC(Msg)

EncoderC(κ)

D ϕC(D)
(
EncoderC(Msg), EncoderC(κ)

)
P

DecoderC

Fig. 1: Overview of the fault resilient encoding scheme.

For a better understanding of how the fault resilient encoding
scheme works, the design overview is stated in Figure 1. Infor-
mally, first, an encoder is applied to both the plaintext and the
key. Then, the encryption process is performed, preserving the
encoding. In the end, a decoder is applied in order to get the
encrypted message. The decryption process is analogous.

4 Evaluation Metric
In this section we first formalize faults in encoding schemes and
provide concepts of safe and missed faults. Then, we propose
two metrics for evaluating different binary codes used for fault
resilient encoding scheme: one for bit flip fault model and one for
instruction skip fault model.

4.1 Faults in Fault Resilient Encoding Schemes

We first give the definition of safe and missed faults for an
implementation of ϕC(g) (i.e. for a single operation), where C
is a binary code and g is an operation.

Definition 12. Given an (n,M = 2k, d)−binary code C with
encoding-decoding scheme (EncoderC, DecoderC), an operation
g ∈ S, let F be an assembly implementation of ϕC(g). Suppose
F = { f1, f2, . . . , fNF },

1) The set of possible instruction skips for F is

G(F ,sk) := {ϑi : 1 ≤ i ≤ NF }.

2) The set of possible fault masks for F is

G(F ,fm) := {ςi, j : 1 ≤ i ≤ NF , j ∈ Fn
2\{0}, fi

has a destination register}. (1)

3) For an integer 1 ≤ m ≤ n, the set of possible m−bit flips for
F is

G(F ,fm,m) := {ςi, j : ςi, j ∈ G(F ,fm),wt(j) = m}.

4) A fault on F is defined to be a function % such that % ∈ G(F ,sk)

or % ∈ G(F ,fm).
5) Fixing an input x, a fault % on F is said to be safe if %

(
F

)
=⊥

or g(x); and it is said to be a missed fault otherwise.

Remark 5. A fault is closely related to a tampering function
defined in [27]. In our notation, a fault is defined on the program
code level, but in a broader sense, the effect of introducing a fault
in the program execution can be considered as an application of
a tampering function.

Given an (n,M = 2k, d)−binary code C associated with an
encoding-decoding scheme (EncoderC, DecoderC) and a sym-
metric cipher (K ,P,M, E,D). Let (K ,P,M ∪ {⊥}, E′,D′) :=
ΦC

(
(K ,P,M, E,D)

)
. The assembly implementations of E′ and D′

are programs. If we let F1 and F2 be the assembly implementa-
tions of E′ and D′ respectively, then for any κ ∈ K , P ∈ P, Msg ∈
M ∪ {⊥}, F1(κ, P) = E′(κ, P) and F2(κ, Msg) = D′(κ, Msg). We
assume the registers involved in the implementation all have length
at least n. Recall that E,D ∈ S (Remark 2), we hence give the
following definition of safe and missed faults for a fault resilient
encoding scheme.

Definition 13 (Safe and missed faults). For a fixed plaintext P ∈ P
and a key κ ∈ K , a fault %1 on F1 is safe if %

(
F1

)
(κ, P) =⊥ or

E(κ, P) and it is called a missed fault otherwise. Similarly, a fault
%2 on F2 is safe if %

(
F2

)
(κ, P) =⊥ or D(κ, P) and it is called a

missed fault otherwise.

Recall that for a differential fault analysis [7], the attacker
needs to inject a fault during the execution. Based on where the
fault is introduced, diffusion can spread it up to the whole cipher
state by the end of encryption. Attacker then compares the faulty
output with the correct one and can gain information about the
secret key. If the fault is missed, the attacker can use similar
technique. In this case, the cipher output would be equivalent
to the faulty output obtained by attacking an unprotected cipher
implementation. On the other hand, if the fault is safe, it means
the output is either ⊥ or the correct output, which will not give the
attacker valuable information.

4.2 Metrics for Bit Flips and Instruction Skips

In this part we give the metrics we use to evaluate the fault
resistance property of a binary code used in fault resilient encoding
scheme. Since bit flips and instruction skips are quite different
fault models in nature, we propose different metrics for each of
them.

The metrics are defined for the implementation of encryption.
Similar metrics can be defined for the implementation of decryp-
tion.

As mentioned earlier, for an m−bit flip fault attack model, we
assume all combinations of m bits have equal probability to be
flipped. Thus,

Pr[ς was injected] =
1

|G(F1 ,fm,m)|
, ∀ς ∈ G(F1 ,fm,m).

Furthermore, given a particular fault %, the probability that % is safe
is calculated assuming that the plaintext and key are independent
random variables following uniform distribution1. More precisely,

Pr[% is safe] =
|{p, κ : P ∈ P, κ ∈ K , % is safe for plaintext P, key κ}|

|P||K|
.

Definition 14 (m−bit fault resistance probability). Following the
notations from Definition 13. Let m be an integer such that

1. This means Pr[plaintext = P] = 1
|P|
∀P ∈ P, similarly for κ.

6

1 ≤ m ≤ n, the m−bit fault resistance probability of C w.r.t.
(K ,P,M, E,D) and F1, denoted by pC,m, is defined as

pC,m :=
∑

ς∈G(F1 ,fm,m)

Pr[ς is safe]Pr[ς was injected]

=
1

|G(F1,fm,m)|

∑
ς∈G(F1 ,fm,m)

Pr[ς is safe].

We are interested in the best case for the attacker, i.e. we
consider she can inject a fault that has the highest probability to
be missed by the encoding scheme. Therefore, we have to take
the minimum of the m−bit fault resistance probabilities. To check
the overall resistance of a code in fault resilient encoding scheme,
we consider all the possible bit flips and define bit flip resistance
probability as follows:

Definition 15 (bit flip fault resistance probability). Given
an (n,M = 2k, d)−binary code C, a symmetric cipher
(K ,P,M, E,D), and an implementation F1 of E, the bit flip
fault resistance probability for C w.r.t. to (K ,P,M, E,D) and F1,
denoted by pC,bf, is defined as:

pC,bf := min
1≤m≤n

pC,m,

where pm,C is the the m−bit fault resistance probability of C w.r.t.
to (K ,P,M, E,D) and F1.

The bit flip fault resistance probability will be used as our
metric for evaluating a code used in fault resilient encoding
scheme w.r.t. bit flip fault attacks.

For instruction skips, we give the following metric:

Definition 16 (instruction skip resistance probability). Given
an (n,M = 2k, d)−binary code C, a symmetric cipher
(K ,P,M, E,D), and an implementation F1 of E, the instruction
skip resistance probability for C w.r.t. to (K ,P,M, E,D) and F1,
denoted by pC,sk, is defined as:

pC,sk :=
∑

ϑ∈G(F1 ,sk)

Pr[ϑ is safe]Pr[ϑ was injected]

=
1

|G(F1,sk)|

∑
ϑ∈G(F1 ,sk)

Pr[ϑ is safe].

Remark 6. We do not assume faults on input data, such as
plaintext and key. In case the attacker wants to attack these,
she could do it anytime before the actual algorithm execution,
even before the encoding. Similarly, we do not assume faults on
ciphertext – in this case, the attacker would not get any meaningful
information about the secret key.

5 Anticodes for Fault Resilient Encoding Scheme
In this section, we first provide the exact formulas for pC,bf and
pC,sk in case of a simple “cipher” which consists of one binary
operation (Section 5.1). Binary operations are very common in
symmetric ciphers, e.g. xor, and, modular addition.

We remark that analyzing the fault resistance property of a
code C with respect to a single operation gives insights on the
overall fault resistance of using C in fault resilient encoding
scheme. Hence it provides a good approximation of the fault
resistance of a full cipher implementation.

In Section 5.2 we introduce anticodes which give improved
resistance probabilities compared to codes with unbounded dis-
tances.

Finally, Section 5.3 provides a way to check the existence of
an anticode for given parameters.

1 LDI r0 x // loading of plaintext
2 LDI r1 key // loading of key
3 EOR r2 r2 // pre-charge register r2 to zero
4 LPM r2 r0 r1 // execution of g by table look up
5 ST y r2 // storing ciphertext

TABLE 1: Assembly implementation F for ϕC(g), where g : FM1
2 ×

FM2
2 → FM3

2 is a binary operation.

5.1 Evaluation of Single Operations

Let g ∈ S be a binary operation g : FM1
2 × F

M2
2 → FM3

2 and let C be
an (n,M = 2k, d)−binary code with associated encoding-decoding
scheme (EncoderC, DecoderC) and distance d ≥ 2. We will use
zero string to denote ⊥, the error message. Hence we further
require that 0 < C. And we choose k such that k = max{M1,M2}.

Remark 7. As mentioned in Remark 1, we do not restrict our
codes to be linear. Thus the method of calculating syndrome [23,
p.62] of a word and check if this word is a codeword does
not apply in our setting. Furthermore, using table lookup for
implementation and a null word for denoting error does not
require an extra computation (e.g. calculating syndrome) to detect
error.

Let F be the assembly implementation (in Figure 1) of ϕC(g).
In F , two different instructions are used: LDI loads immediate
data into the destination register, LPM loads data from a program
memory to the destination register – serving as a table lookup for
the binary operation g. Before executing each table look-up we
precharge the destination register to zero by using exclusive or
operation (EOR in line 3). Note that the table has 2n × 2n entries.
The value stored at address (a, b) is zero if a, b < C and the value
is EncoderC(g(EncoderC(x), EncoderC(y))) if a = EncoderC(x)
and b = EncoderC(y).

By Definition 12 and the assumptions stated in Remark 6, the
set of possible instruction skips and the set of possible fault masks
for F are given by

G(F ,sk) = {ϑ3, ϑ4}, G(F ,fm) = {ςi, j : i = 3, 4, j ∈ Fn
2\{0}}.

The values of pC,m and pC,sk with respect to the program F and
ϕC(g) can be then calculated as follows:

Proposition 1. 1. For 1 ≤ m ≤ n, let S m,C :=
∑

c∈C |{c′ ∈ C :
dis (c′, c) = m}|, then2

pC,m = 1 −
S m,C

2M
(

n
m

) . (2)

2. pC,sk = 1.

(The proof can be found in Appendix B.2.)

Remark 8. If S m,C = 0, then pC,m = 1. This is equivalent to saying
that in case there are no two codewords in C that are at distance m
from each other, m−bit flip fault model would not result in missed
faults.

5.2 Fault Resilient Anticode Scheme

In this part, we explain the rationale behind extending the encod-
ing scheme with a usage of anticodes to provide better bit flip
resistance probabilities.

2. [18, Definition 9] gives a similar formula as bit flip resistance probability
for binary code used in binary operations. The difference is that in [18] the
authors do not assume a precharge of a register.

7

When selecting the code parameters, the choice of n is
dependent on the architecture of the device and the memory
constraint. The value of M is mostly related to the cipher design
(see Section 8).

For binary codes with the same length n and cardinality M,
the formula from Proposition 1 shows that the smaller the value
of S m,C

(n
m) , the bigger pC,m can be achieved. By Definition 15, to get

a code with higher bit flip fault resistance probability, we want to
look at codes where the value of S m,C

(n
m) is small.

Since
∑n

m=1 S m,C = M(M − 1) is always true, to make S m,C

(n
m)

small, one strategy is to make S m,C small or even equal to zero for
smaller values of

(
n
m

)
. Let

` :=

 n
2 if n is even
n+1

2 if n is odd
. (3)

It is known that (see e.g. [28, p.26])
(

n
i−1

)
<

(
n
i

)
if 1 ≤ i < `(

n
i−1

)
>

(
n
i

)
if ` < i ≤ n

, and


(

n
`−1

)
=

(
n
`

)
if n is odd(

n
`−1

)
<

(
n
`

)
if n is even

. (4)

Hence, we would like to have S m,C = 0 for m “close to” n and we
do not want S m,C = 0 for too many m (see Lemma 2).

In the view of the above, we recall the notion of anticode:

Definition 17. [29] A binary anticode is an array of binary digits
with n rows and M columns, constructed so that the maximum
Hamming distance between any pair of rows is less than or equal
to a certain value δ. This value δ is the maximum distance of the
anticode.

If we have a binary code, we can take its codewords as rows
and then get an anticode. Note that a binary code does not have
repeated codewords but an anticode can have repeated rows [29].
The above discussion shows that essentially what we want is a
binary code which is also an anticode with a proper maximum
distance δ. We introduce the following definition.

Definition 18. Let C be an (n,M, d)−binary code and let

δ := max
c,c′∈C

dis
(
c, c′

)
,

then C is called an (n,M, d, δ)−binary anticode (we can see that
d ≤ δ ≤ n). Furthermore, d (resp. δ) is called the minimum
distance (resp. maximum distance) of C.

From the definition, it is clear that a binary code can always be
considered as a binary anticode. The difference is that the notion
of anticode captures the maximum distance of the code, which
is closely related to the selection of codes with better bit flip
fault resistance probability. Here, we rename our fault resilient
encoding scheme below to emphasize the usage of anticode.

Remark 9. Let C be an (n,M, d, δ)−binary anticode, by Proposi-
tion 1, for m < d and m > δ, pC,m = 0 with respect to F and ϕC(g)
in Section 5.1.

Definition 19 (Fault Resilient Anticode Scheme). Given
(K ,P,M, E,D) ∈ S a symmetric cipher and C an (n,M =

2k, d, δ)−binary anticode with an encoding-decoding scheme
(EncoderC, DecoderC). A cipher of the form ΦC

(
(K ,P,M, E,D)

)
is called a fault resilient anticode scheme.

To analyze the choice of C that is used in a fault resilient
anticode scheme, we theoretically study the performance of C with

respect to F and ϕC(g) in Section 5.1. Although the following
theoretical analysis only analyzes a single operation of a cipher,
we will see from the simulation results in Section 7.2 that it
gives good insights on what anticode to choose for a full cipher
implementation.

Next, we consider n,M as fixed parameters and we assume
` > 2 (Equation 3), hence we also assume n ≥ 6. For any
(n,M, d, δ)−binary code C, let pC,bf (resp. pC,m) denote its bit flip
fault resistance probability (resp. m−bit fault resistance probabil-
ity) w.r.t. F and ϕC(g) in Section 5.1.

We have the following observations.

Lemma 2 (Advantage of anticodes for fault detection). 1. Let C1

be an (n,M, d1, n)−binary anticode, we have pC1,bf ≤ 1 − 1
M .

2. Let C2 be an (n,M, d2, δ2)−binary anticode such that δ2−d2 ≤ 2,
we have pC2,bf ≤ 1 − M−1

6(n
`)

.
3. Let C3 be an (n,M, d3, δ3)−binary anticode,

a. if S m,C1 < 2
(

n
m

)
∀1 ≤ m ≤ n, then pC3,bf > pC1,bf;

b. if S m,C3 <
M(M−1)(n

m)
3(n

`)
∀1 ≤ m ≤ n, then pC3,bf > pC2,bf.

(The proof can be found in Appendix B.3.)
We remark that in 3-a, taking m = n implies S n,C3 = 0, which

means in this case δ3 < n. This corresponds to our previous
observation that S m,C = 0 for m “close” to n may give anticode
with better fault resilient property. Condition 3-b implies that there
are at least 3 m such that S m,C3 , 0, which corresponds to our
observation that it is not desirable to have S m,C = 0 for too many
m.

5.3 The Possible Choices of Anticodes

The next natural question would be: for what kind of parameters
n,M, d, δ, there actually exists an (n,M, d, δ)−binary anticode? We
introduce the following notation.

N(n, d, δ) := max{M : ∃(n,M, d, δ) − binary anticode}. (5)

Two related well-studied coding theory concepts are [30, p.42]

A(n, d) := max{M : ∃(n,M, d) − binary code},

and [31]

B(n, d) := max{M : ∃(n,M, d) − binary code C, s.t. ∀c, c′ ∈ C,
dis

(
c, c′

)
= 0 or d}.

We have

Lemma 3. i N(n, d, d) = B(n, d);
ii N(n, d, n) ≤ A(n, d);

iii N(n, d, δ) ≤ N(n + 1, d, δ);
iv N(n, d, δ) ≤ N(n + 1, d, δ + 1), where δ ≥ d + 1;
v N(n, d + 1, δ) ≤ N(n, d, δ), where δ > d + 1;

vi N(n, 2r − 1, 2` − 1) ≤ N(n + 1, 2r, 2`) where r, ` ∈ Z>0;
vii N(n, 2r − 1, 2`) ≤ N(n + 1, 2r, 2`), where r, ` ∈ Z>0;

(The proof can be found in Appendix B.4.)
In Section 7.1 we will study and analyze the implementation of

a fault resilient anticode scheme with PRESENT cipher. Because
of the cipher design we will be interested in anticodes with
cardinality 16 (see Section 7.1).

By the above Lemma, we computed the possible values of
d and δ for n = 8, 9, 10 and M = 16, stated in Table 2. These
values are useful when considering the selection of anticodes (see
Section 8). On the other hand, the existence of binary anticodes

8

TABLE 2: Possible values of d, δ such that there exists an
(n, 16, d, δ)−binary anticodes for n = 8, 9, 10.

n d δ

8 2 4, 5, 6, 7, 8
8 3 6, 7, 8
8 4 8
9 2 4, 5, 6, 7, 8, 9
9 3 6, 7, 8, 9
9 4 6, 8, 9
10 2 4, 5, 6, 7, 8, 9, 10
10 3 6, 7, 8, 9, 10
10 4 6, 7, 8, 9, 10

satisfying condition 3-a or 3-b in Lemma 2 is not guaranteed.
However, by using our anticode selection algorithm (Section 6.1),
we were able to find anticodes satisfying both conditions 3-a
and 3-b in Lemma 2. As expected, they have high bit flip fault
resistance probability when used in fault resilient anticode scheme
(cf. Remark 10).

We would like to emphasize that searching for an anticode with
Algorithm 1 is time-consuming, especially for codes with high n.
Also, it might not be apparent whether an anticode exists until the
whole code space is searched. Therefore, Lemma 3 helps in this
direction – it tells us whether it makes sense to run Algorithm 1
for given parameters.

6 Algorithms
In this section, we provide two useful algorithms for practical
evaluation of encoding schemes. The first one selects binary
anticodes according to user requirements and the second one
evaluates software implementations that follow the fault resilient
anticode scheme.

6.1 Anticode Selection Algorithm

In order to use and analyze the fault resilient anticode scheme, we
first need to select the binary anticodes. The algorithm created for
this purpose is described in this section.

Similarly to previous section, we choose the anticodes based
on their performance on a single cipher operation. This gives a
good approximation of an overall resistance when it is used for a
full cipher implementation.

Pseudocode outlining the main idea of the anticode selection
is stated in Algorithm 1. The inputs are: parameters n,M, d, δ for
the binary anticode, and ε such that we require that the selected
binary anticode C satisfies 1 − pC,m < ε for all 1 ≤ m ≤ n, where
pC,m is the m−bit fault resistance probability of C with respect to
F and ϕC(g) in Section 5.1. Thus the calculation of pC,m follows
from Proposition 1.

We note that for our implementation we use zero word as ⊥
and thus in line 3 we choose sets S which do not contain 0.

The algorithm takes each possible binary code S that consists
of M codewords, each of length n (line 3), and test if the distance
conditions are satisfied (line 4). I.e. whether the following two
conditions are satisfied: 1) min{dis (c, c′) : c, c′ ∈ S , c , c′} = d;
2) max{dis (c, c′) : c, c′ ∈ S , c , c′} = δ. In case the distance
conditions are satisfied, we further check if the fault resistance
probability of S can be fulfilled (line 5).

The ε parameter is crucial for selecting an anticode with good
fault resilient capabilities. As long as at least one anticode exists

Algorithm 1: Anticode Selection Algorithm.
Input : n : length of the anticode, M : number of

codewords, d : minimum distance of the
anticode, δ : maximum distance of the anticode,
and ε : probability of missed faults.

Output: An (n,M, d, δ)−binary anticode C.
1 do
2 boolean codeExists := false;
3 for Every set S of M words which does not include ⊥

do
4 if S is an (n,M, d, δ)−binary anticode then
5 if 1 − pC,m < ε∀1 ≤ m ≤ n then
6 codeExists := true;
7 C := S;
8 break for;

9 ε := ε − const;
10 while codeExists;
11 return C.

for given ε, the algorithm will try to lower this value (line 9) by
a pre-specified constant, to find binary anticodes which satisfy the
conditions with even smaller ε.

6.2 Dynamic Code Analysis

For the purpose of fault analysis, we have designed a dynamic
code analyzer that is able to simulate the code execution and
fault injection with a bit precision in any instruction of the code.
Along with the bit flips, it can simulate instruction skips (see
Definition 2). Pseudocode implementing the evaluation is stated
in Algorithm 2.

For a symmetric cipher (K ,P,M, E,D), and an (n,M, d,
δ)−binary anticode C, let (K ,P,M∪{⊥}, E′,D′) denote the corre-
sponding fault resilient anticode scheme (Definition 19). Given F ,
an implementation of E′, Algorithm 2 calculates approximations
of the m−bit fault resistance probability pC,m (Definition 14), bit
flip fault resistance probability pC,bf (Definition 15) and instruc-
tion skip resistance probability pC,sk (Definition 16) of C with
respect to (K ,P,M, E,D) and F .

By definition, the values of pC,m, pC,bf, pC,sk should be calcu-
lated by evaluating each pair of plaintext and secret key. However,
for a symmetric cipher, this would require an infeasible amount of
calculations. For PRESENT-80, it would need 2144 evaluations of
each fault model (80-bit key and 64-bit plaintext). Thus, we allow
a user input noOfIter which specifies how many pairs of random
plaintext and random secret key to consider. Hence the output will
be approximations of our evaluation metrics.

We first select a random pair of plaintext and secret key, then
compute the corresponding correct ciphertext (line 3).

From line 4 to 13, we evaluate bit flip faults for the selected
pair of plaintext and key. The first loop iterates over every possible
fault mask, which will be later xor-ed with the intermediate value
in order to change the original value in the destination register of
an instruction (line 9). According to Definition 2, fault mask is a
binary string, however, it is more convenient and efficient to use
an integer in the implementation. The second loop iterates over
every instruction in F , to select the position in the program to be
faulted. The last loop is the program execution itself, it iterates
over instructions in F and executes them one by one. In case the

9

instruction number corresponds to the number that is currently
being targeted, a bit-flip is performed (line 9). After the execution
of F finishes, there is a checking of the output value (lines 10-
13). If the value equals to the expected ciphertext E(P, κ), or the
value is ⊥, it is a safe fault. Otherwise, it is a missed fault (see
Definition 13). In each case we increment a corresponding value
in the array, where the array index indicates the Hamming weight
of the fault mask.

Lines 14-23 evaluate instruction skips. It works in the same
fashion as the previous part, however, in this case we save one
loop because we do not need a fault mask. Output evaluation is
analogous, but the records of safe/missed faults will be integers
instead of array of integers.

Lines 24-25 calculate the approximated values of pC,m for each
m, which is equal to the number of safe m−bit flip faults divided by
the total number of m−bit flip faults considered. Line 26 calculates
the approximated value of pC,bf, which is the minimum of pC,m for
all m. Line 27 calculates the approximated value of pC,sk, which is
equal to the number of safe instruction skips divided by the total
number of instruction skip faults considered.

The time complexity of lines 4 − 13 is O(NF (2n − 1)), where
NF = |F |, since the algorithm needs to evaluate every possible
fault mask on every instruction of the code. The time complexity
of lines 14 − 23 is O(NF) because in this case, the total time
depends only on the number of instructions. To give an overview,
for 8-bit microcontroller implementation of PRESENT-80, time
required to analyze the assembly code is ≈ 610 seconds.

7 Case Study

In this section, we present the case study on block cipher
PRESENT, fully implemented by using fault resilient anticode
scheme with (n, 16, d, δ)−binary anticodes for n = 8, 9, 10 (Ta-
ble D lists all the anticodes used). The anticodes are selected by
Algorithm 1. In Section 7.1, we provide implementation details by
using a generic microcontroller. Section 7.2 provides the results of
the code analysis using Algorithm 2.

7.1 PRESENT Cipher Implementation

PRESENT is an ultra-lightweight block cipher, developed in
2007 [32]. It is a symmetric cipher, following an SPN structure,
where the block length is 64 bits and key length can be either
128 bits or 80 bits. A round function consists of three operations:
addRoundKey (xor of the state with the round key), sBoxLayer
(substitution by 4-bit SBox, which we refer to as PRESENT
SBox), and pLayer (bitwise permutation). After 31 rounds, there
is one more addRoundKey, used for post-whitening. The whole
process is depicted in Figure 2. Because of its lightweight char-
acter, it is recommended to use 80-bit key length in order to keep
the computation fast and energy efficient [32]. We will focus on
this variant, denoted by PRESENT-80. For our implementation,
we take pre-computed round keys which are already encoded and
therefore, we omit the description of the key schedule here.

By definition, evaluations of pC,m, pC,bf, pC,sk are done on an
assembly implementation, thus it is important to specify what
kind of implementation is used. The main properties of the
implementation in our case study are as follows:

1) Each operation is implemented as a table look-up from
memory.

Algorithm 2: Fault simulation algorithm.
Input : noOfIter:number of random plaintexts and key

pairs to compute, C: (n,M, d, δ)−binary anticode,
F : sequence of assembly instructions
implementing ϕC(E), P: plaintext space, K : key
space.

Output: SafeBitFlip (SafeBitFlip[m]= pC,m); pC,bf; pC,sk.
1 for Int k: 1 to noOfIter do
2 Take random P ∈ P, random κ ∈ K ;
3 Compute the corresponding ciphertext E(P, κ);
4 for Fault mask Int j: 1 to 2n do
5 for Int i: 1 to |F | do
6 for Instruction f in F do
7 Execute instruction f ;
8 if f is the ith instruction and f has a

destination register then
9 r f = r f⊕ j;

10 if output == ⊥ or output == E(P, κ) then
11 SafeBitFlip[HammingWeight(j)]++;

12 else
13 MissedBitFlip[HammingWeight(j)]++;

14 for Int i: 1 to |F | do
15 for Instruction f in F do
16 if f is the ith instruction then
17 continue;

18 else
19 Execute instruction f ;

20 if output == ⊥ or output == E(P, κ) then
21 SafeSkip++;

22 else
23 MissedSkip++;

24 for Int m: 1 to n do
25 SafeBitFlip[m] = SafeBitFlip[m] / (SafeBitFlip[m] +

MissedBitFlip[m]);

26 pC,bf = min
m

SafeBitFlip[m];

27 pC,sk = SafeSkip / (SafeSkip + MissedSkip);
28 return SafeBitFlip, pC,bf, pC,sk.

2) Before the table look-up, the destination register of an oper-
ation is precharged to a zero so that single instruction skip
will be protected.

3) The error message ⊥ is denoted by the value zero 0.
We note that for PRESENT-80, pLayer can be considered

as four parallel bitwise operations where each is a function:
F16

2 → F
16
2 . sBoxLayer is 16 parallel Sbox substitution operation:

F4
2 → F

4
2. addRoundKey: F64

2 × F
64
2 → F

64
2 is a bitwise operation.

Furthermore, 64 and 16 are multiples of 4. Thus we can use code
with cardinality 24 = 16. In particular, to apply fault resilient
anticode scheme with PRESENT-80, we use (n, 16, d, δ)−binary
anticodes.

Figure 3 shows one round of PRESENT and gives an overview
of how the sBoxLayer and pLayer work. There are 4 groups of
Sboxes in the sBoxLayer, indicated by different colors. Output
bits from each group serve as inputs to 4 distinct Sboxes in the

10

Plaintext

addRoundKey

sBoxLayer

pLayer

addRoundKey

Ciphertext

31×

Fig. 2: Sequence of operations of PRESENT block cipher.

Fig. 3: One round of PRESENT.

subsequent round, thanks to the state-wise diffusion function. As
illustrated in the figure, outputs of Sboxes 0, 1, 2, 3 denoted by
red color, will be inputs of Sboxes 0, 4, 8, 12 in the next round.
This property helps us to tailor the look up tables in a way that
can provide more efficient space/time implementation compared
to implementing the two layers separately. In the following, we
will explain the design of such an implementation .

Encoded Round Function for PRESENT

In this part, we will explain the implementation of the round
functions for fault resilient anticode scheme with PRESENT-80
by using (n, 16, d, δ)− binary anticodes. Remark 3 justifies that we
can split or merge multiple cipher operations while using the fault
resilient C−map (Definition 10), preserving the correct data-flow.

The addRoundKey is a binary operation, xor-ing the key
with the current state. Therefore, it can be directly implemented
by an xor lookup table, similar to the implementation F of
ϕC(g) in Section 5.1. The sBoxLayer maps an input value to an
output value, therefore the standalone implementation would be
even easier than the xor. However, we have decided to merge
sBoxLayer together with the pLayer, because the latter cannot
be implemented in a straightforward way. The overview of this
merged implementation is depicted in Figure 4, which explains
how the first encoded nibble is obtained. The explanation of this
approach is given below.

Let C be an (n, 16, d, δ)−binary anticode. The implementation
of ΦC

(
pLayer◦sBoxLayer

)
relies on the xor lookup table and eight

other tables, which can be divided into two groups:
1) Bit-extracting Sbox tables: This group has four ta-

bles: T0, T1, T2, T3 such that Ti takes a code-
word, say EncoderC(x0x1x2x3) and returns the codeword
EncoderC(xsi000). If the input is not a codeword, the return
value will be ⊥. Here we assume that after PRESENT SBox,
x0x1x2x3 becomes xs0xs1xs2xs3.

In other words, this group first computes an Sbox on the
encoded data, and then extracts one bit – the bit position
depends on which of the four tables is used. So, the output of
these tables is the codeword corresponding to either 0 or 8.

2) Bit-shifting tables: This group has four tables as well:
T B0, T B1, T B2 and T B3. For a codeword of the form
EncoderC(x000), T B0, T B1, T B2, T B3 return the code-
words EncoderC(x000), EncoderC(0x00), EncoderC(00x0),
EncoderC(000x), in their respective order. If the input is not
a codeword, the return value will be ⊥ for all the four tables.
In other words, the tables in this group provide bit shifting
operations, that are necessary to finalize the pLayer. The
outputs of tables T B0, T B1, T B2, T B3 can be codewords
corresponding to 8, 4, 2, 1 or 0, depending on the value and
the bit position.

After the Sbox is computed and the bit shifts on the resulting
data are done, the data is combined back to 4-bit format by using
an xor table – in total, three xor operations are required to combine
the data. In the following, we will explain this process step-by-
step.

Assume we have EncoderC
(
a0a1a2a3b0b1b2b3c0c1c2c3d0d1d2d3

)
,

representing a cipher state, where each letter represents one nibble
of information. This is what happens:

1) EncoderC(a0a1a2a3) is passed to tables T0, T1, T2, T3, the
four returned values are passed to T B0 and we get:
EncoderC(as0000), EncoderC(as1000), EncoderC(as2000),
EncoderC(as3000);

2) EncoderC(b0b1b2b3) is passed to tables T0, T1, T2, T3, the
four returned values are passed to T B1 and we get:
EncoderC(0bs000), EncoderC(0bs100), EncoderC(0bs200),
EncoderC(0bs300);

3) EncoderC(c0c1c2c3) is passed to tables T0, T1, T2, T3, the
four returned values are passed to T B2 and we get:
EncoderC(00cs00), EncoderC(00cs10), EncoderC(00cs20),
EncoderC(00cs30);

4) EncoderC(d0d1d2d3) is passed to tables T0, T1, T2, T3, the
four returned values are passed to T B3 and we get:
EncoderC(000ds0), EncoderC(000ds1), EncoderC(000ds2),
EncoderC(000ds3).

Afterwards, we need three xor table lookups:
1) The first four encoded nibbles are given by(
EncoderC(as0000)⊕̃EncoderC(0bs000)

)
⊕̃
(
EncoderC(00cs00)

⊕̃EncoderC(000ds0)
)
;

2) The second four encoded nibbles are given by(
EncoderC(as1000)⊕̃EncoderC(0bs100)

)
⊕̃
(
EncoderC(00cs10)

⊕̃EncoderC(000ds1)
)
;

3) The third four encoded nibbles are given by(
EncoderC(as2000)⊕̃EncoderC(0bs200)

)
⊕̃
(
EncoderC(00cs20)

⊕̃EncoderC(000ds2)
)
;

4) The fourth four encoded nibbles are given by(
EncoderC(as3000)⊕̃EncoderC(0bs300)

)
⊕̃
(
EncoderC(00cs30)

⊕̃EncoderC(000ds3)
)
;

Here ⊕̃ represents xor table lookup.

7.2 Results

For selecting anticodes, we run Algorithm 1 for all the parameters
n,M, d, δ combination in Table 2. For each (n,M, d, δ), ε was set
to 1 and the anticodes selected are presented in Table 4.

11

EncoderC()c0 c1 c2 c3

cs00 0)

cs1)0 0

cs2)0 0 0

cs3)0 0 0

0

0EncoderC(

EncoderC(

EncoderC(

EncoderC(

EncoderC()b0 b1 b2 b3

bs0 0 0)

bs1)0 0 0

bs2)0 0

bs3)0 0

0

0

0

EncoderC(

EncoderC(

EncoderC(

EncoderC(

EncoderC()d0 d1 d2 d3

ds00 00)

ds1)0 00

ds2)0 0 0

ds3)0 0 0

EncoderC(

EncoderC(

EncoderC(

EncoderC(

a0 a1 a2 a3EncoderC()

as1)0 0

as2)0 0

as3)0 0

0

0

0

as0 0 0 0)EncoderC(

EncoderC(

EncoderC(

EncoderC(

0 0 0)

)0 0 0

)0 0 0

)0 0 0

EncoderC(

EncoderC(

EncoderC(

EncoderC(

as0

bs0

cs0

ds0

EncoderC()as0 bs0 cs0 ds0

~

~
~

Fig. 4: Illustration of the implementation of PRESENT-80 sBoxLayer and pLayer in fault resilient anticode scheme.

To analyze the performance of different anticodes in fault
resilient anticode scheme, for each anticode in Table 4, we run
Algorithm 2 using implementation of PRESENT-80 following the
specification stated in Section 7.1. To decide the input noOfInter,
we randomly picked 10 anticodes and executed the algorithm
with different values of noOfInter. Our results showed that for
noOfInter≥200, the change in the output probabilities for differ-
ent values of noOfInter became negligible (< 10−6). Therefore,
we have set noOfInter= 200 for our evaluation of each anticode.

The analysis results for anticodes (Table 4) with n = 8, d =

2, 3, and n = 10, d = 2 with various δ values are stated in Figures 5
and 6, respectively. Additional results for n = 8, d = 2, 3, n =

9, d = 2, 3, 4, and n = 10, d = 3, 4 are stated in Appendix C. We
have the following observations.

1) The instruction skip resistance probability is 1 for all anti-
codes. This is due to the precharge of destination register of
our implementation specification.

2) The improvement of using a longer length for encoding the
data is obvious – bit flip fault resistance probabilities faults
for length 8 go up to ≈0.933, for length 9 up to ≈0.966, and
for length 10 up to ≈0.979.

3) For n = 8, 9, 10 the anticode with the best performance (i.e.
the highest bit flip fault resistance probability pC,bf) are an-
ticodes with parameters (8, 16, 3, 6), (9, 16, 3, 7), (10, 16, 3, 8)
respectively.

4) Every (8, 16, 4, 8)−binary anticode has a property that 8−bit
flip has a probability 1 of being missed, i.e. pC,8 = 0. We
note that this finding is in accordance with the one described
in [18].

Remark 10. • The anticodes that achieve the best bit flip fault
resistance probabilities satisfy both conditions 3-a and 3-b in
Lemma 2.

• Comparing the last two columns of Table 4, we can see the
theoretical analysis of one operation does give insights on
what kind of parameters to look for.

• However, the theoretical analysis results differ from the
simulated probabilities for most of the codes, showing that
the analysis of one code snippet cannot capture what happens
when a full cipher implementation is considered. To be more
specific, the implemented tables can provide an output which
follows a non-uniform distribution over the codewords, such
as bit-extracting and bit-shifting tables in the case of the
PRESENT-80 implementation detailed in Section 7.1. There-

pC,sk pC,1 pC,2 pC,3 pC,4 pC,5 pC,6 pC,7 pC,8 pC,bf
0.75

0.80

0.85

0.90

0.95

1.00

R
es

is
ta

nc
e

pr
ob

ab
ili

ty

(8,16,2,4)
(8,16,2,5)
(8,16,2,6)
(8,16,2,7)
(8,16,2,8)
(8,16,3,6)
(8,16,3,7)
(8,16,3,8)

Fig. 5: Simulated results for anticodes with n = 8, d = 2, 3.

pC,sk pC,1 pC,2 pC,3 pC,4 pC,5 pC,6 pC,7 pC,8 pC,9 pC,10 pC,bf
0.75

0.80

0.85

0.90

0.95

1.00

R
es

is
ta

nc
e

pr
ob

ab
ili

ty

(10,16,2,10)
(10,16,2,4)
(10,16,2,5)
(10,16,2,6)
(10,16,2,7)
(10,16,2,8)
(10,16,2,9)

Fig. 6: Simulated results for anticodes with n = 10, d = 2.

fore, it shows the importance of simulating the cryptographic
implementation execution for getting more precise insights on
the code robustness.

8 Selection of Anticode Parameters

Now a natural question to ask is how to choose the parameters
for anticodes in general, e.g. for different device architectures and
security requirements. We propose the following guidelines:

1) Code length (n): This parameter depends entirely on the
underlying device architecture. Because of the addressing in
the table look-up implementations, it is necessary to fit the
whole address into one instruction. Therefore, e.g. for 8-
bit device, one can use at most n = 8. For 16- or 32-bit
architectures, greater lengths can be used. However, in that
case, memory requirements need to be taken into account
(these are explained more in Section 9).

12

2) Number of codewords (M): Number of codewords is, on
the other hand, independent on the underlying architecture
– it does not affect table size or require specific register
size. The designer needs to take the cipher and the security
requirements into account when deciding on number of
codewords. For example, in case of PRESENT, the operations
are computed on nibbles and therefore, 16 codewords is
the preferred number, providing a good trade-off between
security and execution speed. Lower number of codewords
would mean higher security, but slower speed since the
operations need to be carried on smaller chunks of data.

3) Distance (d) and maximum distance (δ): These parameters
are not dependent on the device architecture, but can affect
the resulting security significantly.
The first, and obvious selection criterion is whether a code
with certain d, δ exists for some n and M. For this purpose,
Lemma 3 provides an answer, with results for n = 8, 9, 10
stated in Table 2.
Another selection criterion is whether some particular fault
models can be prevented by other means – suppose we have
an additional error detecting module that can detect 2 or 4 bit-
flips. Then, we can use (8, 16, 2, 4)-anticode from Figure 5,
since only these two models are undetected using this code.
Furthermore, the selection is also dependent on the attacker
model assumption. In case we want to build an implementa-
tion resistant against specific fault model, e.g. nibble flip [33],
then we would like to select an anticode with the highest
4−bit flip fault resistance probability, pC,4.
For any case, while the values of n,M can be decided before
the actual cipher implementation, d and δ should be decided
after running the evaluation in Section 6.2.

9 Discussion
Memory and Speed Trade-Offs
Table 4 shows that if the anticode C has longer length, fault
resilient anticode scheme using C has better fault resistance
properties. On the other hand, it also means a bigger memory con-
sumption that increases sub-exponentially with the code length. In
the following, we will discuss the overheads.

When it comes to speed, the fastest non-bit sliced 8-bit
implementation of PRESENT-80 requires 8,721 clock cycles [34],
out of which ≈ 1,248 is a key schedule (since we consider the
round keys already in the memory, we will only count 7,473 clock
cycles for the implementation from [34]). In case the selected
code can be fully implemented in the SRAM (and therefore, a
table look-up operation LD takes 2 clock cycles), fault resilient
anticode scheme implementation takes 9,424 clock cycles (≈
26.1% overhead). In case all the look-up tables are stored in the
flash memory (LMP instruction taking 3 clock cycles has to be
used), the approach takes 13,640 clock cycles (≈ 82.5% overhead).
Therefore, compared to the most popular time redundancy that
repeats the encryption twice and compares the results [3], the
encoding method provides reasonable timing overheads, especially
if the look-up tables can be stored in the SRAM.

While the speed of the implementation might be reasonable,
the memory overheads quickly grow to sizes that are not practical
for real-world cryptography. It has to be noted that even if the
code length is smaller than the memory address length, the table
normally has to occupy the size according to this length, otherwise
the unused bits in the address could be faulted and would point

to another part of the memory that is used for a different purpose.
Therefore, if we want to use a binary anticode of length 6 in a
16-bit addressing space device, the constructed table still has to be
of size of 8×8 bits. For such architecture, codes longer than 8 bits
would not be possible – in case of code length is between 9 − 16,
we need a 32-bit addressing space. Also, number of codewords
does not affect the memory requirements since the table size for
the same code length is constant, only the number of non-zero
values will change with different number of codewords. Efficient
implementation of encoding schemes therefore still remains an
open problem.

Table 3 provides memory requirements for some standard
cryptographic operations. Since block ciphers combine several
functions in order to achieve the security requirements for confu-
sion and diffusion, several tables normally have to be stored in the
memory. For example, the PRESENT implementation in Section 7
uses one xor table and eight shifting tables for the combined
pLayer and sBoxLayer, resulting in total of 81,920 bytes of
memory. To test the feasibility, we made an implementation for
Atmel ATmega328P, an 8-bit microcontroller. However, only the
eight smaller tables could fit into the device memory, while the
big xor table had to be put on an external EEPROM module (256
Kbit Microchip 24LC256).

TABLE 3: Overheads for implementing fault resilient encoding
scheme.

Operation Type Code Length Required Memory (B)

Unary (Sbox, shifts) ≤ 8 2,048
≤ 16 524,288

Binary (XOR, AND, ≤ 8 65,536
modular addition) ≤ 16 33,554,432

Instruction Modification
Recently, a fault attack approach utilizing instruction replacement
has emerged [35]. Up to date, there is no dedicated protection
against such fault model. In [35], the attacker has to change the
instruction opcode that specifies the operation – e.g. in case of
changing ADD to SUB in AVR, as presented in [35], the instruction
opcode needs to be changed from 000011 to 000110. In case the
standard instructions are used, if the attacker is able to achieve
this model on a particular device, she can do that for any imple-
mentation executed on such device. However, in the case of the
table look-up based fault resilient anticode scheme, the means to
achieve the instruction replacement that result to executing another
operation are different. Each operation is executed as fetching the
result from a table and hence the address of this table specifies
this operation. Instead of changing the instruction opcode, the
attacker needs to know the table address she wants to change
the operation to. Such address would vary from implementation to
implementation and it is not trivial to predict whether the attacker
would be able to achieve such precise change.

Cache Timing Attacks
Look-up tables in general are susceptible to cache timing attacks,
since fetching a value from one position in the table takes a
different time compared to using another position due to cache
misses [36]. As mentioned in [37], there are various ways for
protecting such implementations. One way to do it is to use
two different round function implementations – some rounds use
look-up tables, while the others do not. This method can be

13

further investigated in order to provide the best properties w.r.t.
cache-timing, power, and fault attacks. Another approach is cache
warming that loads the whole table into the cache, resulting into
constant time of execution, avoiding cache misses completely.
Furthemore, one can add random delays in the execution to make
the attack harder.

Other Fault Analysis Methods
Apart from the Differential Fault Analysis (DFA), there are several
other methods that can be used by the attacker. There are methods
that have similar requirements to DFA, such as Collision Fault
Analysis or Algebraic Fault Analysis, where the knowledge of the
fault propagation is necessary in order to get the secret informa-
tion. Therefore, our scheme can be applied as a countermeasure
for these methods as well.

On the other hand, there are approaches that utilize the be-
havior where the fault does not propagate in all the cases, such as
Safe-Error Analysis or Ineffective Fault Analysis (recently utilized
in [38]). These two methods, when used for block ciphers, require
a stuck-at fault model, i.e. a model where certain value becomes
either ‘0’ or ‘1’, no matter what value was in the register before.
The attacker then just needs the information whether the output is
faulty or not, without the knowledge of the fault value. Therefore,
any error detection method that outputs ⊥ reveals such information
to the attacker. Even if it carries out the computation one more time
and provides a correct output on the second run, there is already
a timing difference that can be observed. However, these attacks
can be thwarted by a well-designed error correction codes. Some
results in this direction are stated in [18], along with the code
properties. Similar properties could be derived for fault resilient
anticode scheme in case such protection is necessary.

10 Conclusion
In this paper, we have formalized fault resilient anticode schemes
and provided a way to evaluate software implementations pro-
tected by anticodes. We have practically implemented and evalu-
ated symmetric block cipher PRESENT with encoded operations
by using 8-bit microcontroller assembly code.

For the future work, we would like to extend our evaluation
methodology to pipelined architectures.

Acknowledgement
This research was supported (in part) by the National Research
Foundation, Prime Ministers Office, Singapore under its Na-
tional Cybersecurity R&D Program (Award No. NRF2014NCR-
NCR001-30) and administered by the National Cybersecurity
R&D Directorate.

References
[1] N. F. Galathy, B. Yuce, and P. Schaumont, “A Systematic Approach to

Fault Attack Resistant Design,” in Fundamentals of IP and SoC Security:
Design, Verification, and Debug, S. Bhunia, S. Ray, and S. Sur-Kolay,
Eds. Springer International Publishing, 2017.

[2] P. A. Lee and T. Anderson, Fault Tolerance: Principles and Practice,
2nd ed., J. C. Laprie, A. Avizienis, and H. Kopetz, Eds. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 1990.

[3] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
Sorcerer’s Apprentice Guide to Fault Attacks,” Proceedings of the IEEE,
vol. 94, no. 2, pp. 370–382, Feb 2006.

[4] K. D. Akdemir, Z. Wang, M. Karpovsky, and B. Sunar, “Design of
cryptographic devices resilient to fault injection attacks using nonlinear
robust codes,” in Fault Analysis in Cryptography. Springer, 2012, pp.
171–199.

[5] T. Schneider, A. Moradi, and T. Güneysu, “ParTI – Towards Combined
Hardware Countermeasures Against Side-Channel and Fault-Injection
Attacks,” in Advances in Cryptology – CRYPTO 2016: 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part II, M. Robshaw and J. Katz, Eds.
Springer Berlin Heidelberg, 2016, pp. 302–332.

[6] L. Breveglieri, I. Koren, and P. Maistri, “An operation-centered approach
to fault detection in symmetric cryptography ciphers,” IEEE Transactions
on Computers, vol. 56, no. 5, pp. 635–649, 2007.

[7] E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key
Cryptosystems,” in Advances in Cryptology — CRYPTO ’97: 17th
Annual International Cryptology Conference Santa Barbara, California,
USA August 17–21, 1997 Proceedings, B. S. Kaliski, Ed. Springer
Berlin Heidelberg, 1997, pp. 513–525.

[8] M. Tunstall, D. Mukhopadhyay, and S. Ali, “Differential fault analysis
of the advanced encryption standard using a single fault,” in IFIP
international workshop on information security theory and practices.
Springer, 2011, pp. 224–233.

[9] K. Jeong and C. Lee, “Differential fault analysis on block cipher
LED-64,” in Future Information Technology, Application, and Service.
Springer, 2012, pp. 747–755.

[10] H. Tupsamudre, S. Bisht, and D. Mukhopadhyay, “Differential fault
analysis on the families of SIMON and SPECK ciphers,” in 2014
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).
IEEE, 2014, pp. 40–48.

[11] G. Wang and S. Wang, “Differential fault analysis on PRESENT key
schedule,” in Computational Intelligence and Security (CIS), 2010 Inter-
national Conference on. IEEE, 2010, pp. 362–366.

[12] B. Yuce, N. F. Ghalaty, H. Santapuri, C. Deshpande, C. Patrick, and
P. Schaumont, “Software Fault Resistance is Futile: Effective Single-
Glitch Attacks,” in 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), Aug 2016, pp. 47–58.

[13] S. Patranabis, A. Chakraborty, and D. Mukhopadhyay, “Fault Tolerant
Infective Countermeasure for AES,” in Security, Privacy, and Applied
Cryptography Engineering: 5th International Conference, SPACE 2015,
Jaipur, India, October 3-7, 2015, Proceedings, R. S. Chakraborty,
P. Schwabe, and J. Solworth, Eds. Springer International Publishing,
2015, pp. 190–209.

[14] C. Patrick, B. Yuce, N. F. Ghalaty, and P. Schaumont, “Lightweight Fault
Attack Resistance in Software Using Intra-Instruction Redundancy,”
Cryptology ePrint Archive, Report 2016/850, 2016, http://eprint.iacr.org/
2016/850.

[15] J.-M. Schmidt and M. Medwed, “Countermeasures for Symmetric Key
Ciphers,” in Fault Analysis in Cryptography, M. Joye and M. Tunstall,
Eds. Springer Berlin Heidelberg, 2012, pp. 73–87.

[16] M. Ciet and M. Joye, “Practical Fault Countermeasures for Chinese
Remaindering Based RSA (Extended Abstract),” in In Proceedings of
Workshop on Fault Detection and Tolerance in Cryptography (FDTC’05),
2005, pp. 124–131.

[17] J. Breier, D. Jap, and S. Bhasin, “A study on analyzing side-channel
resistant encoding schemes with respect to fault attacks,” Journal of
Cryptographic Engineering, Jun 2017.

[18] J. Breier and X. Hou, “Feeding Two Cats with One Bowl: On Designing
a Fault and Side-Channel Resistant Software Encoding Scheme,” in
Topics in Cryptology – CT-RSA 2017: The Cryptographers’ Track at the
RSA Conference 2017, San Francisco, CA, USA, February 14–17, 2017,
Proceedings, H. Handschuh, Ed. Springer International Publishing,
2017, pp. 77–94.

[19] J. Bringer, C. Carlet, H. Chabanne, S. Guilley, and H. Maghrebi,
“Orthogonal Direct Sum Masking,” in Information Security Theory and
Practice. Securing the Internet of Things: 8th IFIP WG 11.2 International
Workshop, WISTP 2014, Heraklion, Crete, Greece, June 30 – July 2,
2014. Proceedings, D. Naccache and D. Sauveron, Eds. Springer Berlin
Heidelberg, 2014, pp. 40–56.

[20] V. Servant, N. Debande, H. Maghrebi, and J. Bringer, “Study of a Novel
Software Constant Weight Implementation,” in Smart Card Research and
Advanced Applications: 13th International Conference, CARDIS 2014,
Paris, France, November 5-7, 2014. Revised Selected Papers, M. Joye
and A. Moradi, Eds. Springer International Publishing, 2015, pp. 35–
48.

[21] N. Moro, K. Heydemann, A. Dehbaoui, B. Robisson, and E. Encrenaz,
“Experimental evaluation of two software countermeasures against fault
attacks,” in 2014 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), May 2014, pp. 112–117.

[22] L. Goubet, K. Heydemann, E. Encrenaz, and R. De Keulenaer, “Efficient
design and evaluation of countermeasures against fault attacks using

14

formal verification,” in International Conference on Smart Card Research
and Advanced Applications. Springer, 2015, pp. 177–192.

[23] S. Ling and C. Xing, Coding Theory: A First Course. Cambridge
University Press, 2004.

[24] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups.
Springer Science & Business Media, 2013, vol. 290.

[25] J. Hoffstein, J. Pipher, J. H. Silverman, and J. H. Silverman, An Introduc-
tion to Mathematical Cryptography. Springer, 2008, vol. 1.

[26] P. Rauzy, S. Guilley, and Z. Najm, “Formally Proved Security of Assem-
bly Code Against Leakage,” IACR Cryptology ePrint Archive, vol. 2013,
p. 554, 2013.

[27] S. Dziembowski, K. Pietrzak, and D. Wichs, “Non-Malleable Codes,” in
ICS, 2010, pp. 434–452.

[28] K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods
for Physics and Engineering: A Comprehensive Guide. Cambridge
University Press, 2006.

[29] P. Farrell, “Linear Binary Anticodes,” Electronics Letters, vol. 13, no. 6,
pp. 419–421, 1970.

[30] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting
Codes. Elsevier, 1977.

[31] F.-W. Fu, T. Kløve, Y. Luo, and V. K. Wei, “On Equidistant Constant
Weight Codes,” Discrete applied mathematics, vol. 128, no. 1, pp. 157–
164, 2003.

[32] A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Rob-
shaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An Ultra-Lightweight
Block Cipher,” in Cryptographic Hardware and Embedded Systems -
CHES 2007, ser. Lecture Notes in Computer Science, P. Paillier and
I. Verbauwhede, Eds. Springer Berlin Heidelberg, 2007, vol. 4727, pp.
450–466.

[33] J. Breier and W. He, “Multiple fault attack on PRESENT with a hard-
ware trojan implementation in FPGA,” arXiv preprint arXiv:1702.08208,
2017.

[34] K. Papagiannopoulos and A. Verstegen, “Speed and Size-Optimized
Implementations of the PRESENT Cipher for Tiny AVR Devices,” in
Radio Frequency Identification: Security and Privacy Issues 9th Interna-
tional Workshop, RFIDsec 2013, Graz, Austria, July 9-11, 2013, Revised
Selected Papers, M. Hutter and J.-M. Schmidt, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 161–175.

[35] S. D. Kumar, S. Patranabis, J. Breier, D. Mukhopadhyay, S. Bhasin,
A. Chattopadhyay, and A. Baksi, “A practical fault attack on ARX-
like ciphers with a case study on ChaCha20,” in Fault Diagnosis and
Tolerance in Cryptography (FDTC), 2017 Workshop on. IEEE, 2017,
pp. 33–40.

[36] D. J. Bernstein, “Cache-timing attacks on AES,” Tech. Rep., 2005.
[37] D. Mukhopadhyay and R. S. Chakraborty, Hardware Security: Design,

Threats, and Safeguards. CRC Press, 2014.
[38] C. Dobraunig, M. Eichlseder, T. Korak, S. Mangard, F. Mendel, and

R. Primas, “Exploiting ineffective fault inductions on symmetric cryp-
tography,” Cryptology ePrint Archive, Report 2018/071, 2018, https:
//eprint.iacr.org/2018/071.

Appendix A
More Details on Encoding-Decoding Scheme (Definition 6)

In this section we elaborate more on encoding-decoding scheme
from Definition 6.

For any N , k, we extend EncoderC and DecoderC to FN
2 as

follows:

• If k - N, take any x = (x1, x2, . . . , xN) ∈ FN
2 ,

let x′ = (x1, x2, . . . , xN , 0, . . . , 0) ∈ FN+N′
2 , where

N′ = min{` : k|(N + `)}. i.e. we add zero bits to x to
get x′ so that the length of x′ is divisible by k. Let
EncoderC(x) := EncoderC(x′).

• If k|N, say N = kk′, for any x = (x1, x2, . . . , xN) ∈ FN
2 , let

xi = (xik+1, xik+2, . . . , xik+k), 0 ≤ i ≤ k′ − 1 and define

EncoderC(x) :=
(
EncoderC(x0), . . . , EncoderC(xk′−1)

)
∈ Ck′ .

It follows that EncoderC : FN
2 → Ck′ is a bijective

function. We define DecoderC : Fnk′
2 ∪ {⊥} → FN

2 such

that DecoderC
∣∣∣
Ck′ → FN

2 is the inverse of EncoderC and
DecoderC

∣∣∣
(Fnk′

2 ∪{⊥})\C
k′ = {⊥}.

Example. Let us consider a (2, 2, 2)−binary code C = {00, 11} with
associated encoding-decoding scheme as follows:

EncoderC : 0 7→ 00 1 7→ 11

DecoderC : 00 7→ 0 01 7→⊥ 10 7→⊥ 11 7→ 1.

Extend EncoderC, DecoderC to F2
2, we have the following

encoding-decoding scheme:

x EncoderC(x)
00 0000
01 0011
10 1100
11 1111

x DecoderC(x)
0000 00
0001 ⊥

0010 ⊥

0011 01
0100 ⊥

0101 ⊥

0110 ⊥

0111 ⊥

x DecoderC(x)
1000 ⊥

1001 ⊥

1010 ⊥

1011 ⊥

1100 10
1101 ⊥

1110 ⊥

1111 11

Appendix B
Additional Proofs
B.1 Proof of Lemma 1

Proof. By Definition 7, since g2 ◦ g1 ∈ S, ∃M1,M2, . . . ,Mm+2 ∈

Z>0 s.t.

g1 : FM1
2 × F

M2
2 × · · · × F

Mm
2 → FMm+1

2 , g2 : FMm+1
2 → FMm+2

2 .

For 1 ≤ i ≤ m + 2, take ki such that {EncoderC(x)|x ∈ FMi
2 } =

Cki ⊆ Fnki
2 , then

ϕC(g1) :
(
Fnk1

2 ∪{⊥}
)
×
(
Fnk2

2 ∪{⊥}
)
×· · ·×

(
Fnkm

2 ∪{⊥}
)
→ Ckm+1∪{⊥},

such that for x =
(
EncoderC(x1), EncoderC(x2), . . . , EncoderC(xm)

)
∈ Ck1 × Ck2 × . . .Ckm , ϕC(g1)(x) = EncoderC

(
g1(x1, x2, . . . , xm)

)
and ∀x ∈

(
Fnk1

2 ∪ {⊥}
)
×

(
Fnk2

2 ∪ {⊥}
)
× · · · ×

(
Fnkm

2 ∪ {⊥

}
)
\Ck1 × Ck2 × . . .Ckm , ϕC(g1)(x) =⊥. Moreover

ϕC(g2) : Fnkm+1
2 ∪ {⊥} → Ckm+2 ∪ {⊥},

such that for y = EncoderC(a) ∈ Ckm+1 , ϕC(g2)(y) =

EncoderC(g2(a)) and ∀y ∈ Fnkm+1
2 ∪ {⊥}\Ckm+1 , ϕC(g2)(y) =⊥. We

have ϕC(g2) ◦ ϕC(g1) is a map(
Fnk1

2 ∪ {⊥}
)
×

(
Fnk2

2 ∪ {⊥}
)
× · · · ×

(
Fnkm

2 ∪ {⊥}
)
→ Ckm+2 ∪ {⊥}

such that for x =
(
EncoderC(x1), EncoderC(x2), . . . , EncoderC(xm)

)
∈ Ck1 × Ck2 × . . .Ckm ,(
ϕC(g2) ◦ ϕC(g1)

)
(x) = ϕC(g2)

(
ϕC(g1)(x)

)
= ϕC(g2)

(
EncoderC(g1(x1, . . . , xm))

)
= EncoderC

(
g2(g1(x1, x2, . . . , xm))

)
= EncoderC

(
g2 ◦ g1(x1, x2, . . . , xm)

)
,

15

and ∀x ∈
(
Fnk1

2 ∪ {⊥}
)
×

(
Fnk2

2 ∪ {⊥}
)
× · · · ×

(
Fnkm

2 ∪ {⊥}
)
\Ck1 ×Ck2 ×

. . .Ckm ,(
ϕC(g2) ◦ ϕC(g1)

)
(x) = ϕC(g2)

(
ϕC(g1)(x)

)
= ϕC(g2)(⊥) =⊥ .

On the other hand,

g2 ◦ g1 : FM1
2 × F

M2
2 × · · · × F

Mm
2 → FMm+2

2 ,

and ϕC(g2 ◦ g1) is a map:(
Fnk1

2 ∪ {⊥}
)
×

(
Fnk2

2 ∪ {⊥}
)
× · · · ×

(
Fnkm

2 ∪ {⊥}
)
→ Ckm+2 ∪ {⊥}

such that for x =
(
EncoderC(x1), EncoderC(x2), . . . , EncoderC(xm)

)
∈ Ck1 × Ck2 × . . .Ckm ,(

ϕC(g2 ◦ g1)
)
(x) = EncoderC

(
g2 ◦ g1(x1, x2, . . . , xm)

)
,

and ∀x ∈
(
Fnk1

2 ∪ {⊥}
)
×

(
Fnk2

2 ∪ {⊥}
)
× · · · ×

(
Fnkm

2 ∪ {⊥}
)
\Ck1 ×Ck2 ×

. . .Ckm ,
(
ϕC(g2 ◦ g1)

)
(x) =⊥. � �

B.2 Proof of Proposition 1

Proof. 1. For any j ∈ Fn
2, ς3, j(F) always has the same output

as F for any plaintext x and any key value key. Thus ς3, j is
safe for any j ∈ Fn

2.
For a given plaintext x and a key value key, let y be the
correct output of F . Then for any j ∈ Fn

2, ς4, j(F) changes
the output to be y⊕ j. The final ciphertext output is ⊥ in
case y⊕ j < C. Otherwise, ς4, j would become a missed fault.
Furthermore, we know that y∈ C. Since we assume plaintext
and key are random variables following uniform distributions,
we can also assume that y is a random variable with values
in C, following a uniform distribution. In other words,

Pr[ς4, j is safe] = Pr[y⊕ j < C, y ∈ C] = 1−
|{c ∈ C : c ⊕ j ∈ C}|

M
.

Now we fix an integer m, 1 ≤ m ≤ n. Then we have

pC,m =
1

|G(F ,fm,m)|

∑
ς∈G(F ,fm,m)

Pr[ς is safe]

=
1

2
(

n
m

)  ∑
j∈Fn

2,wt(j)=m

Pr[ς3, j is safe] + Pr[ς4, j is safe]


=

1

2
(

n
m

) 2
(
n
m

)
−

1
M

∑
j∈Fn

2,wt(j)=m

|{c ∈ C : c ⊕ j ∈ C}|


=

1

2
(

n
m

) 2
(
n
m

)
−

1
M

∑
j∈Fn

2,wt(j)=m

∑
c∈C,c⊕ j∈C

1


=

1

2
(

n
m

) 2
(
n
m

)
−

1
M

∑
c∈C

∑
j∈Fn

2,wt(j)=m,c⊕ j∈C

1


=

1

2
(

n
m

) 2(n
m

)
−

1
M

∑
c∈C

∑
c′∈C,dis(c,c′)=m

1


=

1

2
(

n
m

) 2(n
m

)
−

1
M

∑
c∈C

|{c′ ∈ C, dis
(
c, c′

)
= m}|


=

1

2
(

n
m

) (
2
(
n
m

)
−

S m,C

M

)
= 1 −

S m,C

2M
(

n
m

) .
2. ϑ3(F) is a program that consists of instructions 1, 2, 4, 5 in

Table 1. For any fixed plaintext x and key value key, the

output of the program y is not affected by this instruction
skip. By Definition 13, ϑ3 is safe.
ϑ4(F) is a program that consists of instructions 1, 2, 3, 5 in
Table 1. For any fixed plaintext x and key value key, the
output of the program y is always 0, which corresponds to
our error message ⊥. By Definition 13, ϑ4 is safe.
Thus both ϑ ∈ G(F ,sk) are safe faults. We can conclude that
pC,sk = 1.

�

B.3 Proof of Lemma 2

Proof. Firstly, we notice that for any C, S m,C is an even integer. If
S m,C , 0, then S m,C ≥ 2.

1. By Proposition 1,

pC1 ,n = 1 −
S n,C1

2M
(

n
n

) = 1 −
S n,C1

2M
≤ 1 −

2
2M

= 1 −
1
M
.

By Definition 15, pC1,bf = min1≤m≤n pC1,m ≤ 1 − 1
M .

2. By definition, S mC2 = 0 for m < d2 and m > δ2. Since
δ2 − d2 ≤ 2 and

∑n
m=1 S m,C2 = M(M − 1), there exists an m0

such that S m0,C2 ≥
M(M−1)

3 . We have

pC2 ,bf = min
1≤m≤n

pC2,m ≤ pC2,m0 = 1 −
S m0,C2

2M
(

n
m0

)
≤ 1 −

M(M − 1)

6M
(

n
m

)
≤ 1 −

M(M − 1)

6M
(

n
`

) = 1 −
M − 1

6
(

n
`

) .

3. We give the proof for a, the proof for b is similar.
For any 1 ≤ m ≤ n, by 1,

pC3,m − pC1,bf ≥ 1 −
S m,C3

2M
(

n
m

) − (
1 −

1
M

)
= −

S m,C3

2M
(

n
m

) +
1
M

> −
2
(

n
m

)
2M

(
n
m

) +
1
M

= 0.

�

B.4 Proof of Lemma 3

Proof. i and ii easily follow from the definitions.
iii,iv. Let C be an (n, d, δ)−binary anticode. For any c = (c1, c2,

. . . , cn) ∈ C, define c̃ := (c1, c2, . . . , cn, 1) and let C′ := {c̃ :
c ∈ C}. Then C′ is an (n + 1, d, δ)−binary anticode. This
proves part iii.
Now assume δ ≥ d + 1. Take c1, c2, c3, c4 ∈ C such
that dis (c1, c2) = d and dis (c3, c4) = δ. Without loss of
generality, we can assume c3 , c1 and c3 , c2. Suppose
c3 = (x1, x2, . . . , xn) and take

C′′ :=
(
C′\{c̃3}

)
∪ {(x1, x2, . . . , xn, 0)}.

Then dis ((x1, x2, . . . , xn, 0), c̃4) = δ + 1, dis (c̃1, c̃2) = d and
∀x, y ∈ C′′, d ≤ dis (x, y) ≤ δ+ 1. Thus C′′ is an (n + 1, d, δ+

1)−binary anticode. This proves iv.
v. Let C be an (n, d + 1, δ)−binary anticode. Take c1, c2, c3, c4 ∈

C s.t. dis (c1, c2) = d + 1 and dis (c3, c4) = δ. Since δ > d + 1,
without loss of generality, we can assume c3 , c1 and c3 ,
c2. Also, we can assume the first bit of c1 and c2 are different.
For any c = (c1, c2, . . . , cn) ∈ C, define c̃ := (1, c2, c3, . . . , cn)

16

and let C′ := {c̃ : c ∈ C}. Then dis (c̃1, c̃2) = d and ∀x, y ∈ C′,
d ≤ dis (x, y) ≤ δ. If C′ is an (n, d, δ)−binary anticode, then
we’re done. Otherwise, dis (c̃3, c̃4) = δ − 1. Suppose c3 =

(x1, x2, . . . , xn) and take C′′ :=
(
C′\{c̃3}

)
∪ {(0, x2, . . . , xn)}},

then dis ((0, x2, . . . , xn), c̃4) = δ and C′′ is an (n, d, δ)−binary
anticode.

vi, vii. Let C be an (n,M, 2r − 1, δ) binary anticode. Take c1, c2, c3,
c4 ∈ C such that dis (c1, c2) = 2r − 1 and dis (c3, c4) = δ.
We add one parity check bit for each codeword in C to
get a binary anticode C′: For any c = (c1, c2, . . . , cn) ∈ C,
define c̃ := (c1, c2, . . . , cn, c1 + c2 + · · · + cn mod 2) and let
C′ := {c̃ : c ∈ C}. Since 2r − 1 is odd, dis (c̃1, c̃2) = 2r and
∀x, y ∈ C, dis (x, y) ≥ 2r.
If δ = 2` − 1 is odd, dis (c̃3, c̃4) = 2` and ∀x, y ∈ C′,
dis (x, y) ≤ 2`. So C′ is an (n,M, 2r, 2`)−binary anticode.
This proves vi.
If δ = 2` is even, ∀x, y ∈ C with dis (x, y) = δ, dis (x′, y′)
= δ and we have C′ is an (n,M, 2r, 2`)−binary anticode. This
proves vii.

�

Appendix C
Further Results on Fault Analysis

pC,sk pC,1 pC,2 pC,3 pC,4 pC,5 pC,6 pC,7 pC,8 pC,9 pC,bf
0.75

0.80

0.85

0.90

0.95

1.00

R
es

is
ta

nc
e

pr
ob

ab
ili

ty

(9,16,2,4)
(9,16,2,5)
(9,16,2,6)
(9,16,2,7)
(9,16,2,8)
(9,16,2,9)

Fig. 7: Simulated results for anticodes with n = 9, d = 2.

pC,sk pC,1 pC,2 pC,3 pC,4 pC,5 pC,6 pC,7 pC,8 pC,9 pC,bf
0.75

0.80

0.85

0.90

0.95

1.00

R
es

is
ta

nc
e

pr
ob

ab
ili

ty

(9,16,3,6)
(9,16,3,7)
(9,16,3,8)
(9,16,3,9)
(9,16,4,6)
(9,16,4,8)
(9,16,4,9)

Fig. 8: Simulated results for anticodes with n = 9, d = 3, 4.

pC,sk pC,1 pC,2 pC,3 pC,4 pC,5 pC,6 pC,7 pC,8 pC,9 pC,10 pC,bf
0.75

0.80

0.85

0.90

0.95

1.00

R
es

is
ta

nc
e

pr
ob

ab
ili

ty (10,16,3,10)
(10,16,3,6)
(10,16,3,7)
(10,16,3,8)
(10,16,3,9)
(10,16,4,10)
(10,16,4,6)
(10,16,4,7)
(10,16,4,8)
(10,16,4,9)

Fig. 9: Simulated results for anticodes with n = 10, d = 3, 4.

Appendix D
Anticodes
TABLE 4: Table of (n, 16, d, δ)−binary anticodes C selected by
Algorithm 1. For each anticode C with parameters (n,M, d, δ),
pC,bf in third column is calculated w.r.t. F and ϕC(g) (Section 5.1).
The last column gives pC,bf computed by using Algorithm 2 for
PRESENT-80 implementation in Section 7.

pC,bf
Codewords of C (n,M, d, δ) Sec. 5.1 Algo. 2
1, 7B, 68, 22, B8,
7, 46, 1A, 24, 29,
2E, 30, 33, 35,
36, 84

(8, 16, 2, 8) 0.9421 0.9068

1, 8, 2, B, 4, 1D,
1E, 30, 7, 65, 6A,
AD, B3, CE, D9, F6

(8, 16, 2, 7) 0.9688 0.8396

1, 8F, 7D, 6, 2F,
3B, C, 66, 1A, 1D,
20, 23, 34, 51,
DA, E8

(8, 16, 2, 6) 0.9665 0.9105

1, 36, 50, A2, D2,
9A, 46, C4, 8, E,
17, 30, 83, 95,
9C, A4

(8, 16, 2, 5) 0.9643 0.9322

1, 62, 64, 68, 70,
A2, A4, A8, B0,
C2, C4, C8, D0,
E3, E5, E9

(8, 16, 2, 4) 0.9063 0.8147

1, AF, FB, A, 3C,
EC, C0, 92, 17,
26, 4D, 54, 63,
99, C7, F5

(8, 16, 3, 8) 0.9375 0.9069

1, 37, 38, 42, 4C,
55, 5B, 6F, 8B,
9C, A5, AE, B2,
D6, E0, F9

(8, 16, 3, 7) 0.9625 0.9318

1, 62, 6, 65, 18,
7B, 7C, A8, 1F,
AF, B1, B6, CA,
CD, D3, D4

(8, 16, 3, 6) 0.9643 0.9326

17

4, D0, E6, A1, 43,
8A, 19, 32, 68,
97, CD, 75, BC,
5E, 2F, FB

(8, 16, 4, 8) 0.5 0.0681

n = 9
1, D5, 1D6, 2E,
42, 158, 85, 11B,
106, 108, 10D,
110, 115, 11C,
120, 12A

(9, 16, 2, 9) 0.9375 0.9060

1, F3, 167, BD,
B0, 1D3, 25, C5,
11C, 11F, 120,
123, 126, 139,
188, 1D8

(9, 16, 2, 8) 0.9844 0.9527

1, 1D9, 1A9, A4,
1C2, 1B4, D4, 10,
8D, 8E, 91, 92,
97, EA, 10A, 17F

(9, 16, 2, 7) 0.9841 0.9569

1, 180, 51, D2,
110, F8, 6A, 74,
16, 18, 1B, 26,
8D, 11C, 13B, 14C

(9, 16, 2, 6) 0.9831 0.9494

1, 115, 4C, 9F,
7D, 18D, 1D5, 99,
17, 25, 59, 94,
AD, C1, C7, F5

(9, 16, 2, 5) 0.9762 0.9497

1, 2, 4, 8, 31,
32, 34, 51, 52,
58, 94, 98, E0,
130, 150, 190

(9, 16, 2, 4) 0.9375 0.8700

1, 44, 18, 160,
9F, 1FA, A0, 1A3,
116, 11B, 125,
12A, 13C, 143,
14D, 177

(9, 16, 3, 9) 0.9375 0.9171

1, 13C, 149, 1F6,
187, 1D3, 2F, 1E5,
70, 77, 82, 8C,
95, 9B, E8, 132

(9, 16, 3, 8) 0.9836 0.9114

1, 27, A, 1B3,
7E, 2C, F0, DF,
ED, 104, 117, 118,
14B, 162, 1AA, 1C6

(9, 16, 3, 7) 0.9831 0.9660

1, 1E7, 8E, 42,
76, 11F, 1C4, 134,
2C, 55, 6F, 97,
A5, B2, DC, F9

(9, 16, 3, 6) 0.9821 0.9503

1, 16, 17B, 2A,
198, 165, 18F,
142, 3D, 4C, 70,
A4, B3, D5, E9, FE

(9, 16, 4, 9) 0.9375 0.8991

1, E4, 1B0, BD,
CA, 179, 116, 1D5,
3A, 5C, 77, 12C,
14F, 162, 19B, 1A7

(9, 16, 4, 8) 0.9643 0.9092

1, F8, 122, 1B4,
165, 76, 15F, 1EB,
3B, 4C, 97, AD,
C2, 118, 18E, 1D1

(9, 16, 4, 6) 0.9643 0.9327

n = 10
1, 399, 331, 2B3,
F6, 17D, 2C2, 294,
92, 95, 98, 9B,
9E, A0, A3, CE

(10, 16, 2, 10) 0.9375 0.9738

1, 87, 176, 102,
1F8, 200, 38F,
108, 216, 218,
21B, 222, 225,
2CC, 2F3, 351

(10, 16, 2, 9) 0.9921 0.9717

1, 202, 27E, 45,
2DD, 38A, 23, 39B,
251, 252, 260,
267, 2AC, 314,
3B7, 3E9

(10, 16, 2, 8) 0.9921 0.9639

1, 46, 23D, 16E,
107, 25F, E1, 2E7,
340, 343, 345,
349, 371, 384,
38A, 3B2

(10, 16, 2, 7) 0.9917 0.9783

1, 3AB, 14A, 20E,
1F, 15F, 23B, AF,
8E, 92, 98, CB,
122, 128, 26A, 383

(10, 16, 2, 6) 0.9906 0.9722

1, 24A, 8A, 298,
268, 25B, 109,
20F, 4C, 59, 200,
229, 28D, 2C1,
308, 3C9

(10, 16, 2, 5) 0.9854 0.9614

1, 381, 80, 140,
302, 182, 103,
304, 105, 108,
110, 121, 184,
1A0, 200, 320

(10, 16, 2, 4) 0.9542 0.9078

1, 6, 18, 1F, 2A,
2D, 33, 34, 4B,
4C, 52, 55, 60,
67, 79, 386

(10, 16, 3, 10) 0.9375 0.9447

1, 6, 18, 1F, 2A,
2D, 33, 4B, D4,
1E0, 1FF, 2E6,
353, 37C, 385, 38A

(10, 16, 3, 9) 0.9921 0.9641

1, 112, 29A, 338,
283, 3C7, 27D,
389, 24B, 24C,
256, 2B5, 2EA,
33F, 3A4, 3F0

(10, 16, 3, 8) 0.9916 0.9756

18

2, 3A4, D7, 143,
1FA, 3EB, 3F0,
283, B9, C0, CD,
E3, 109, 131, 18E,
258

(10, 16, 3, 7) 0.9917 0.9790

1, AC, 261, 22D,
59, 34C, 3C5, CF,
C4, 107, 108, 1E9,
24A, 280, 28B, 29D

(10, 16, 3, 6) 0.9893 0.9655

1, 193, 277, A2,
160, 3CA, 33E, BF,
F8, 106, 118, 12B,
135, 14D, 1AC, 26C

(10, 16, 4, 10) 0.9375 0.9075

1, 3B1, 2BC, 156,
32F, 9B, 340, 35D,
E0, EF, 138, 1A6,
20A, 273, 2C5, 3DA

(10, 16, 4, 9) 0.9902 0.9792

1, 304, 3DF, FC,
86, E3, 28B, 295,
10A, 11D, 177,
1D0, 238, 26E,
3B2, 3E9

(10, 16, 4, 8) 0.9896 0.9705

1, 2EF, 3A3, 18C,
395, 1B6, 370,
244, 75, B8, 11F,
169, 1C2, 21A,
32E, 3DB

(10, 16, 4, 7) 0.9891 0.9711

1, E, 32, 3D, C4,
CB, F7, F8, 150,
15F, 163, 16C,
195, 19A, 1A6, 256

(10, 16, 4, 6) 0.9794 0.9627

