Bandwidth-Hard Functions: Reductions and Lower Bounds

Jeremiah Blocki
Department of Computer Science, Purdue University
jblocki@purdue.edu

Peiyuan Liu
Department of Computer Science, Purdue University
1iu2039@purdue. edu

Ling Ren
Department of Computer Science, University of Illinois at Urbana-Champaign
renling@illinois.edu

Samson Zhou
Computer Science Department, Carnegie Mellon University
samsonzhou@gmail.com

May 4, 2022

Abstract

Memory Hard Functions (MHFs) have been proposed as an answer to the growing inequality between
the computational speed of general purpose CPUs and Application Specific Integrated Circuits (ASICs).
MHF's have seen widespread applications including password hashing, key stretching and proofs of work.
Several metrics have been proposed to quantify the “memory hardness” of a function. Cumulative
memory complexity (CMC) [AS15] (or amortized Area x Time complexity [ABH17]) attempts to quantify
the cost to acquire/build the hardware to evaluate the function — after normalizing the time it takes to
evaluate the function repeatedly at a given rate. By contrast, bandwidth hardness [RD17] attempts to
quantify the energy costs of evaluating this function — which in turn is largely dominated by the number
of cache misses. Ideally, a good MHF would be both bandwidth hard and have high cumulative memory
complexity. While the cumulative memory complexity of leading MHF candidates is well understood,
little is known about the bandwidth hardness of many prominent MHF candidates.

Our contributions are as follows: First, we provide the first reduction proving that, in the parallel
random oracle model, the bandwidth hardness of a Data-Independent Memory Hard Function (iMHF)
is described by the red-blue pebbling cost of the directed acyclic graph (DAG) associated with that
iMHF. Second, we show that the goals of designing an MHF with high CMC/bandwidth hardness are
well aligned. In particular, we prove that any function (data-independent or not) with high CMC also
has relatively high bandwidth costs. Third, we analyze the bandwidth hardness of several prominent
iMHF candidates such as Argon2i [BDK15], winner of the password hashing competition, aATSample
and DRSample [ABH17] — the first practical iMHF with essentially asymptotically optimal CMC. We
prove that in the parallel random oracle model each iMHF's are maximally bandwidth hard. Fourth, we
analyze the bandwidth hardness of a prominent dAMHF called scrypt. We prove the first unconditional
tight lower bound on the energy cost of scrypt in the parallel random oracle model. Finally, we show
that the problem of finding the minimum cost red-blue pebbling of a directed acyclic graph is NP-hard.

1 Introduction

Memory Hard Functions (MHFs) [Per09, ABMWO5] are a crucial building block in the design of password
hashing functions, moderately hard key-derivation functions and egalitarian proofs of work [DN92, Bac02].
For example, in password hashing we would like to ensure that it is prohibitively expensive for an offline
attacker to evaluate the function millions or billions of times to check each password in a large cracking
dictionary. The development of improved Application Specific Integrated Circuits (ASICs) or Field Pro-
grammable Gate Arrays (FPGAs) for computing cryptographic hash functions such as SHA256 makes this
goal increasingly challenging. For example, the Antminer S9, an ASIC Bitcoin [Nak08] miner, is able to
compute SHA256 hashes at a rate of 13.6 trillion hashes per second with energy consumption of only 1274
Joules per second (Watts). By contrast, the energy needed to compute SHA256 13.6 trillion times on a stan-
dard CPU would be about six orders of magnitude higher! In fact, Blocki et al. [BHZ18] recently argued that
non-memory-hard key derivation functions (e.g., PBKDF2-SHA256 and BCRYPT) cannot provide sufficient
protection against a rational (economically motivated) offline attacker without introducing unacceptably
long authentication delays.

MHFs are based on the observation that memory costs (e.g., latency, bandwidth, energy consumption)
tend to be equitable across different architectures. Thus, to develop an “egalitarian” function we want
to design a function where evaluation costs are dominated by memory costs. Two of the most prominent
approaches to measure the “evaluation cost” of MHFs are memory hardness [Per09, AS15] and bandwidth
hardness [RD17]. Memory hardness [Per09] seeks to quantify construction costs i.e., the cost to build/obtain
the hardware necessary to compute the MHF. By contrast, bandwidth hardness [RD17] seeks to quantify
the energy costs per evaluation i.e., the cost of running the hardware. Ideally, one would hope to design an
MHF that is both bandwidth hard and memory hard.

Broadly speaking there are two types of MHFs: data-dependent memory hard functions (AMHFs) and
data-independent memory hard functions (iMHFs). As the name suggests an iMHF induces a memory
access pattern that is independent of the sensitive input (e.g., password), which makes them naturally re-
sistant to certain side channel attacks e.g., cache-timing [Ber05]. Meanwhile, while dMHF's with high mem-
ory/bandwidth hardness are potentially easier to construct [AB16, ACPT17], they are also more vulnerable
to side channel attacks. Argon2 [BDK16], winner of the recently completed Password Hashing Competi-
tion [PHC15], includes a data-independent mode of operation (Argon2i), a data-dependent mode (Argon2d)
and a hybrid mode (Argon2id).

To a large extent, most of the recent cryptanalysis of MHF candidates has focused on memory hardness.
In particular, cumulative memory complexity (CMC) [AS15] and the closely related metric amortized area-
time complezity (aAT) [AB16, ABH17] aim to approximate the cost of constructing enough chips to evaluate
the function T times per year. For example, if evaluating the function one time requires us to lock up
1GB of DRAM for 1 second then, at minimum, an attacker would need to buy roughly 32 (1GB) DRAM
chips to evaluate the function a billion times per year. Alwen et al. [ACPT17] showed that the dMHF
scrypt [Per09] has aAT complexity that scales quadratically with the running time parameter n i.e., the
function has maximal CMC Q(n?) By contrast, Alwen and Blocki [AB16, AB17] showed that any iMHF

n2loglogn
logn

attacks against Password Hashing Competition [PHC15] (PHC) winner Argon2i [BDK16] along with other
candidate MHFs such as balloon hashing [BCS16]. Blocki and Zhou [BZ17] showed that Argon2i has CMC
at most O (n1'767) and at least Q (n1'75). Alwen et al. [ABP17] also gave a theoretical construction of an

has cumulative memory complexity at most O () and they exhibited even stronger amortization

iMHF with CMC at least ("—2), which is essentially optimal in an asymptotic sense. More recently, Alwen

logn
et al. [ABH17] designed two practical iIMHFs called DRSample and aATSample with the same asymptotic
complexity.
By contrast, the notion of bandwidth-hardness was only introduced recently [RD17] with the intention
of lower bounding the energy required to evaluate the function'. Ren and Devadas [RD17] observed that
metrics such as CMC or aAT do not provide an accurate picture of energy consumption. For example,

n contrast to [AB17], we use energy cost to refer to bandwidth cost.

certain types of memory consume very little energy when idle, but cache misses are costly because we must
retrieve data from RAM. Memory Bound Functions [ABMWO05] are functions whose computation always
requires a large number of cache-misses regardless of computation time. Bandwidth hardness [RD17] relaxes
this notion by requiring that any attacker who evaluates the function must either 1) incur a large number
of expensive cache misses, or 2) must perform a larger (e.g., super-linear) amount of computation.

Ren and Devadas proposed to cryptanalyze an iMHF using a variant of the red-blue pebbling game in
which red-moves (representing computation performed using data in cache) have a smaller cost ¢, than blue-
moves ¢, (representing data movements to/from memory) [RD17]. Ren and Devadas also proved that the bit
reversal graph [LT82], which forms the core of iMHF candidate Catena-BRG [FLW13], is maximally band-
width hard in the sense that any red-blue pebbling has cost Q(n-¢p). However, Ren and Devadas [RD17] did
not prove that any attacker in the parallel random oracle model (pROM) can be viewed as a red-blue pebbling
so it was not clear whether or not a graph (e.g., Catena-BRG [FLW13]) with high red-blue pebbling cost is
necessarily bandwidth hard in the pROM model. Similarly, Ren and Devadas [RD17] showed that scrypt
is bandwidth hard under a restrictive assumption about the cache-architecture adopted by the attacker i.e.,
data from RAM can only be retrieved in large chunks. Prior to our work nothing was known about the
bandwidth hardness of key MHF candidates such as PHC winner Argon2i [PHC15, BDK16], DRSample and
aATSample [ABH17].

Our Contributions. We formalize the notion of bandwidth hardness in the parallel random oracle model
and show that the bandwidth hardness of an iMHF is indeed captured by the red-blue pebbling game. This
does for bandwidth hardness what Alwen and Serbinenko [AS15] did for CMC when they showed that the
CMC of an iMHF is captured by the parallel black pebbling game. In particular, to determine whether a
candidate iMHF is sufficiently bandwidth-hard it suffices to analyze the red-blue pebbling costs associated
with the corresponding directed-acyclic graph G.

Second, we demonstrate that CMC lower bounds can be used to directly lower bound energy costs.
Intuitively, an attacker running in time t will pay computation costs at least t - ¢, where ¢, denotes the
energy cost of each random oracle query, and must incur energy cost at least (% — m) ¢p transfering data
between cache/RAM. Here, m denotes the number of w bit words that can be stored in cache ¢, denotes
the energy costs associated with transfering a w-bit word between cache/RAM — we typically expect that

m < n and ¢, > ¢.. Based on this observation we can show that the energy costs of any attacker with
cache size m are at least (\/cbcr -CMC/w — ¢ - m). The result also demonstrates that the goals of

high CMC and high bandwidth hardness are well aligned. For example, Alwen et al. [ACPT17] show that
scrypt has CMC at least Q(n? - w) in the parallel random oracle model where the random oracle output
is a w-bit word. Combined with our result this implies that scrypt has energy cost at least Q(cbcrn)
whenever m = o(n). Ren and Devadas [RD17] had previously shown that scrypt has energy cost at least
Q(nep) whenever m = o(n) under a somewhat restrictive assumption about the cache-architecture. While
the Q (cbcrn) lower bound on scrypt is not tight, it is interesting in that it is unconditional and follows
directly from the observation that CMC at least Q(n? - w).

Third, we establish the first unconditionally tight lower bound on the energy cost of scrypt. In particular,
we show that in the parallel random oracle model, any algorithm evaluating scrypt has energy cost Q(n-c),
by modifying and extending ideas from the reduction of Alwen et al. [ACPT17]. By contrast, the conditional
lower bound of [RD17] makes a restrictive assumption about the cache-architecture so that prior results of
Alwen et al. [ACP*17] can be used as a blackbox.

Fourth, we introduce a new technique to lower-bound the red-blue pebbling cost of a DAG and we use
this new technical hammer to lower-bound the reb-blue pebbling cost of several important iMHF candidates
including: Argon2iB (the current version of PHC winner Argon2i [BDK16]), Argon2iA (an older version of
Argon2, which is similar to balloon hashing [BCS16]), DRSample and aATSample. For each of these functions
we show that if m = O (n'~¢) then then any pROM attacker with cache-size m-w bits (m words) must incur
energy cost at least min{Q (n - ¢) ,w(n - ¢.)} where the specific w(n - ¢,) cost term can vary depending on m
and the particular iMHF. In an asymptotic sense, we can say that the functions are maximally bandwidth
hard as the w(n - ¢,) cost term will eventually dominate as n grows large so that our lower bound becomes

Q(n-cp). We prove even stronger lower bound for aATSample. In particular, aATSample is maximally
bandwidth hard as long as m = O (n/logn) i.e., any pROM attacker with cache-size m must incur energy
cost at least min{Q2 (n - cp),w(n-c.)}.

Interestingly, DRSample and aATSample have asymptotically higher CMC as well, which is consistent with
our observation that the goals of designing a MHF with high CMC is well aligned with the goal of designing
an maximally bandwidth hard function. On the other hand Argon2iA and Argon2iB are still maximally
bandwith hard even though their CMC is lower than aATSample or DRSample. Thus, bandwidth-hardness
does not necessarily imply high CMC.

While we prove that DRSample, aATSample , Argon2iA and Argon2iB are all maximally bandwidth hard
in an asymptotic sense, it would be nice to gain a more precise understanding of the constant factors in
these bounds. To this end it would be useful to develop an efficient algorithm to find the minimum cost
red-blue pebbling of any DAG G. However, our final result is a negative one. In Appendix D we show that
it is NP-Hard to compute the minimum cost red-blue pebbling of a general DAG G. This result does not
definitively rule out efficient algorithms to compute (or approximate) the minimum cost red-blue pebbling
of specific graphs such as DRSample, aATSample or Argon2iB though any such algorithm would have to be
targetted to the specific graph structure.

1.1 Graph Pebbling and iMHF's

An iMHF fq g is defined by a labeling game over a DAG G and a random oracle H : {0,1}* — {0,1}*. In
particular, the label £, of an intermediate node v is computed as ¢, = H (v, Loy ,Evindeg) where v1, ..., Vindeg
are the parents of node v in G. The output of the function is the label of the final sink node. Before we
provide an overview of our technical results it is necessary to first (informally) introduce the black pebbling

game and the red-blue pebbling game.

Black Pebbling. Given a directed acyclic graph (DAG) G = (V, E), the goal of the (parallel) black peb-
bling game is to place pebbles on all sink nodes of G (not necessarily simultaneously). The game is played
in rounds and we use P; C V to denote the set of currently pebbled nodes on round ¢. Initially all nodes are
unpebbled, Py = @), and in each round 7 > 1 we may only include v € P; if all of v’s parents were pebbled
in the previous configuration (parents(v) C P;_1) or if v was already pebbled in the last round (v € P,_4).
More formally, a pebbling sequence Py, ..., P, C V is a legal partial pebbling of G if for all pebbling rounds
1 < t we have UUEPi\Pi—l parents(v) C P;_;. If we additionally have V C Uigt P; (i.e., all nodes are pebbled
at some point), we simply say that the pebbling sequence is a legal pebbling of G. In the sequential pebbling
game we can place at most one new pebble on the graph in any round (i.e., we additionally require that
|P;\P;_1] < 1 for each round i < t), but in the parallel pebbling game no such restriction applies. The space
cost of the pebbling is defined to be max; |P;|, which intuitively corresponds to minimizing the maximum
space required during computation of the associated function, and relates to the space-complexity of the
black-pebbling game. Gilbert et al. [GLT79] studied the space-complexity of the black-pebbling game and
showed that this problem is PSPACE — Complete by reducing from the truly quantified boolean formula
(TQBF) problem. Given a legal black pebbling Pi,..., P; of a DAG G, we define the cumulative cost to
be |Pi|+ ...+ |P. Then we define II..(G) (resp. 1/.(G)) as the minimum cumulative cost of any legal
sequential (resp. parallel) black pebbling of G.

Pebbling Reduction in the pROM Model. Alwen and Serbinenko [AS15] show that under the parallel
random oracle model (pROM) of computation, the cryptanalysis of an iMHF, under the amortized time-space
metric, can be approximately reduced to the cumulative cost of a pebbling strategy. The result is significant
in that it allows future cryptanalysis of IMHF candidates to focus on understanding the (parallel) black peb-
bling costs of the underlying DAG. In particular, a lower bound on the aAT complexity of the best pebbling
for a DAG G immediately yields a lower bound on the aAT complexity of any pPROM attacker evaluating the
function fg . Intuitively, this means that if G has sufficiently high (parallel) black pebbling cost then it
will be expensive for the attacker to obtain enough hardware to compute the function fg m millions/billions

of times per second e.g., an offline password cracking adversary.

Red-Blue Pebbling. Given a DAG G = (V, E), the goal of the red-blue pebbling game [HK81] is again
to place pebbles on all sink nodes of G' (not necessarily simultaneously) from a starting configuration that
contains no pebbles on any nodes. The game is again played in rounds, with each node possibly containing
a blue pebble or a red pebble at each time step. Informally, at each time step, for any node v we can
swap between a red pebble at v and a blue pebble at v (and vice versa). Each swap is called a blue
move, and while there is no limit to the number of blue moves at a single time step, they each have an
associated cost ¢p. Simultaneously, we may place a red pebble at a node v if all of v’s parents contained
red pebbles in the previous configuration. This manner of placing a new red pebble is a red move and
each occurrence incurs cost ¢,.. We are allowed to have at most m (cache-size) red-pebbles on the graph at
any point in time. In a sequential red-blue pebbling we are allowed to place at most one new red pebble
on the graph during each round, while no such constraint applies to a parallel red-blue pebbling. Finally,
there is a parameter m that denotes a threshold on the number of nodes that can contain red pebbles
at each time step. The total cost of the red-blue pebbling is the sum of the costs induced by the blue
moves and the red moves. We define rbpeb! (G, m) (resp. rbpeb(G,m)) to be the minimum cost of any
legal parallel (resp. sequential) red-blue pebbling of G that places at most m red-pebbles on the graph
at any point in time. We will focus on lower bounding rbpeb”(G7 m) since this also lower bounds the
sequential pebbling cost i.e., rbpeb(G,m) > rbpeb”(G7 m). In contrast to black pebbling it will turn out

that the difference between sequential/parallel red-blue pebbling costs are minimal i.e., we can show that
rbpeb(G, m) > rbpeb!l(G,m) > rbpeb(G, 2m).

1.2 Overview of Our Results

Proving that the Red-Blue Pebbling Game Captures Bandwidth Hardness of iMHFs. We
consider the variant of the red-blue pebble game proposed by Ren and Devadas [RD17] in which red moves
have cost ¢, and blue moves have cost ¢, — note that if ¢, = 0 then we recover the traditional goal
of minimizing the number of cache misses. Ren and Devadas [RD17] proposed the adoption of red-blue
pebbling to model the bandwidth-complexity of iMHF's, with the idea that red moves correspond to hash
computations and blue moves correspond to (more expensive) swaps between cache and memory. However,
they did not prove any connection between red-blue pebbling costs and the actual bandwidth-costs of a
pROM attacker.

Our contributions are two-fold. First, we formalize the notion of energy cost of a function fg g in the
parallel random oracle model. Second, we prove that ecost (fg) the energy cost of fa g is closely related
to red-blue pebbling costs. In particular, we prove that any pPROM machine computing fe g with cache-size
muw-bits has energy costs Q(rbpeb|| (G,9m)). This resolves an open question of [RD17], and shows that future
cryptanalysis of the bandwidth hardness of IMHF candidates can focus on the red-blue pebbling cost of the
underlying DAG G.

Theorem 1.1. (Informal, see Theorem 3.3.) fa. u has energy cost at least ecost (fa, g, mw) € Q (rbpeb“(G, 9m)>.

While Theorem 3.3 is similar to a result of Alwen and Serbinenko who showed that the cumulative
memory complexity of fg g is captured by the black pebbling game [AS15], we stress that there are several
unique challenges in our reduction. Essentially, the pebbling reduction of [AS15] extracts a black pebbling
from the execution trace of a pPROM attacker by examining the random oracle queries made during each
round i.e., each new pebble that is placed on the graph during round ¢ corresponds directly to a random
oracle query that was made during the previous round. To complete the argument Alwen and Serbinenko
then use a compression argument to relate the number of pebbles on the graph to the size of the pROM
attacker’s state during each round. In our setting we need to additionally determine which pebbles are red
and blue during each round and we need to relate the number of blue moves to the number of bits transfered
to/from memory. However, in the red-blue pebbling model only red moves correspond to random oracle
queries. Intuitively, we expect that blue moves correspond to labels that are transferred to/from memory,

but an attacker may encode each of these labels in an unexpected way (e.g., encryption). Thus, even if we
can observe the data values being transferred to/from memory we stress that we cannot directly infer which
labels are being transferred making it difficult to extract a legal red-blue pebbling from the execution trace.

We overcome this difficulty by allowing the red-blue pebbling to use a little bit of extra memory (e.g., if
the pROM attacker has m-w bits of cache then the red-blue pebbling is allowed to use 9m red-pebbles) and by
introducing the notion of a red-blue extension pebbling of a legal (partial) black pebbling P = (Py,..., P).
In particular, we will show that we show that we can partition time into intervals into intervals (¢ =
0,t1], (t1,ta], ... (tk—1,tx = t] in such a way that 1) the pROM attacker transfers at least mw bits between
cache/memory during each interval (¢;, ¢;11], 2) our red-blue extension pebbling uses at most 9m red pebbles
and, on average, makes at most O (m) blue moves during each interval (¢;,¢;41]. Thus, the pROM attacker
incurs cost at least Q(km - ¢p) transfering data between cache and memory while the red-blue extension
pebbling has cost at most O (kmcp) for blue moves.

To partition time into intervals we introduce a set QueryFirst(z,y) that intuitively corresponds to the
data-labels that appear first as input to a random oracle query during the time interval [z, y] before the label
appears as the output of some random oracle query during the time interval (z,y]. We then define ¢; to
be the minimum pebbling round such that there exists 1 < j; < ¢; such that QueryFirst(j1,¢1) has size
at least 3m. Similarly, once t; < ... < t;_1 have been defined we can define ¢; > t;_; to be the minimum
pebbling round such that there exists t;_1 < j; < t; s.t. QueryFirst(j;,¢;) has size at least 3m. At the
beginning of each interval (¢;,¢;41] our red-blue extension pebbling will place red pebbles on all nodes in
the set QueryFirst(t;,¢;+1) (i.e., to “load” these values into cache). We can argue that there are at most
4m pebbles in this set QueryFirst(t;,¢;+1). Thus, we can accomplish this initial step legally since the
extension pebbling is allowed to use up to 9m > 4m red-pebbles. Once we have red pebbles placed on all of
these nodes the extension pebbling is able to finish this interval without changing any other blue nodes into
red-nodes (i.e., zero cache misses). In particular, during the remainder of the interval we will simply assign
every newly pebbled node to have the color red. To ensure that we don’t use too many red pebbles during
each intermediate round ¢; < j < ¢;41 we can discard our red pebble on node v if this pebble will never be
needed to repebble any of v’s parents during the current time interval or if v will be (re)pebbled before any
of its parents (if we need node v for a future interval (¢;/,t;41] with ¢’ > ¢ then we can convert node v to a
blue pebble and “charge” this cost to the future time interval). Thus, we can upper bound the total number
of red pebbles as m + |QueryFirst(t;,t;11)| + max, <j<¢,,, |QueryFirst(j,t;11)| < m + 4m + 4m = 9Im.
Intuitively, |QueryFirst(¢;,t;11)| < 4m accounts for red-pebbles added at the beginning of the interval,
|QueryFirst(j,t;+1)| < 4m upper bounds the number of additional red-pebbles that need to be kept around
and m upper bounds the number of new red-pebbles placed on the graph in each round. Finally, at the end
of the interval we can use at most O(m) blue moves to free cache by converting any of our current 9m red
pebbles to blue pebbles i.e., if these pebbles will be required for future time intervals.

To prove that the pROM attacker must transfer at least mw bits from memory during each interval we
rely on an extractor argument. In particular, let 7; encode the messages transferred to/from cache during
the interval (¢;,t;1+1]. Our extractor will extract 3m labels (without querying the random oracle at these
points) by simulating the pPROM attacker starting with a hint. The labels we will extract correspond to the
nodes in the set QueryFirst(jii1,ti+1) > 3m where ji11 € (t;,t;41]. The hint consists of 7; along with
other information such as the current state of the cache (at most mw bits), indices of the labels that we
want to extract (at most |QueryFirst(¢;,t;11))|logn < 4mlogn bits to encode), and the index of the first
query in which each label appears as input to a random oracle query (at most 4m log ¢ bits to encode where
g is an upper bound on number of queries made by the attacker). Since a random oracle is incompressible,
the extractor’s hint must have length at least 3mw if we expect the extractor to output at least 3m labels
(i.e., at least 3m distinct random oracle outputs of length w assuming there are no hash collisions) without
querying the random oracle at these points so it follows that |y;| > m - w.

On the Bandwidth Hardness of Important iMHF Candidates. In Section 5, we provide lower
bounds on the bandwidth hardness of several important iMHF candidates including Argon2iA, Argon2iB [BDK16],
aATSample and DRSample [ABH17]. We use Argon2iA to refer to v1.1 and we use Argon2iB to refer to ver-

sions v1.2+ 2. Thus, Argon2iB (the current version of Argon2i) is particularly important to cryptanalyze as
it won the password hashing competition and is being considered for standardization by the Cryptography
Form Research Group (CFRG) of the IRTF [BDKJ16].aATSample and DRSample are important to study as
they are the first practical IMHF candidate with nearly asymptotically optimal cmc?®.

For context we observe that there is always red-blue pebbling strategy that makes at most O (n) blue
moves and at most O (n) red moves for a total cost of at most O (nc, + nc,.). In particular, the naive pebbling
strategy simply pebbles nodes in topological order immediately converting red nodes to blue nodes whenever
we need to free up cache and converting blue nodes back to red nodes only when needed. This naive strategy
works for any cache size m as long as m is larger than the indegree of the graph — if m is smaller than the
indegree then there is no legal red-blue pebbling. If m > n then cache is large enough to store all labels
there is a naive red-blue pebbling strategy that makes at most O (n) red-moves and 0 blue moves. For the
families of graphs generated by aATSample and DRSample [ABH17] we show the following;:

Theorem 1.2. Let G be a graph generated by aATSample. Then there exists constants C,C’" > 0 so that for
all m < o

logn’

rbpeb! (G, m) > €’ - min(n - ¢, (nlogn)ec,),
holds with high probability.

Our lower bound for DRSample requires the slightly stronger (but still realistic) assumption that m < C’'n”
for some constant p < 1 as opposed to the slightly weaker assumption that m < lngn in Theorem 1.2.0n

the positive side the red cost term Q(n3/2-#/2)¢, from Theorem 1.3 is an improvement over Theorem 1.2.
We typically expect that n3/2=#/2¢, > ne;, in which the lower bound from Theorem 1.3 is simply Q(n - cp).
Because the first n/2 nodes from aATSample form a copy of DRSample the same asymptotic lower bound
applies when m < C'n”.

Theorem 1.3. Let G be a graph generated by DRSample or aATSample and 0 < p < 1. Then there exists
constants C,C" > 0 so that for all m < C'nP, with high probability,

rbpeb”(G,m) > C - min (n < ep,m3/2P/2 c,«))

Our lower bounds for Argon2iA and Argon2iB are comparable to DRSample. In fact, the red cost term
is slightly better than in Theorem 1.3 particularly when m is small. For example, if € = 0.9 then m = n'/1°
(unrealistically small in practice) and the red-cost term in Theorem 1.4 is n**¢c, = n'%r . By contrast, if
m = n%? in Theorem 1.3 the red-cost term is just n'%c,.

Theorem 1.4. Let G be a random Argon2iB (resp. Argon2iA) graph . Then there exists constants C,C" > 0
s0 that for any 0 < € < 1 and for all m < C'n'~¢, with high probability,

rbpeb (G, m) > C - min(ncy, n'*ec,).

At a technical level our template to establish each of these lower bounds is similar. We show that the graph
is “well dispersed.” Essentially, if our block size is b, then we show that for every interval I = [¢, j] C [n/2,n]
of Q(n/b) nodes in the second half and almost every block B of b consecutive nodes in the first half [n/2]

2The specification of Argon2i has changed several times, but the only changes that affect are analysis are changes that
affect the underlying DAG G. A change to the edge distribution was introduced in v1.2 where a non-uniform indexing was
introduced. We use Argon2iB to refer to the version that is currently being considered for standardization by the Cryptography
Form Research Group (CFRG) of the IRTF[BDKJ16].

3 Prior work [ABP17] gave a theoretical construction of an iMHF with (%) (matching DRSample and aATSample),

but to the best of our knowledge no implementation exists. By contrast, DRSample can be easily implemented by modifying
the source code for Argon2iB and these modifications do not adversely impact performance [ABH17]. Any iMHF fo g has

cmc at most cme (fa,) € O (m> so cmc (DRSample) € Q ("2'“’> and cmc (aATSample) € Q ("2'“’> [ABH17] are

logn logn logn

essentially tight.

there is an edge from some node in the second half of B to some node in I *. We then consider the pebbling
interval [t;, t;] beginning at the time ¢; during which a pebble is first placed on node 7 and ending at the time
t; during which a pebble is first placed on node j. If block B initially contains no red-pebble and there is an
edge from the scond half of B to I then either 1) we will need to make a blue move to place a red-pebble on
block B or 2) we will need to make at least b/2 red-moves to repebble all of the nodes in the first half of B. If
the cache size is m € o (n/b) then most of these Q(n/b) blocks will begin with no pebbles in cache. Because
the graph is “well dispersed” we will need to place a red pebble on at least one node from almost every
block. Thus, during the interval [¢;,¢;], it is either the case that 1) we make (n/b) blue moves, or 2) we
make (n) red moves. The total cost can be lower bounded by summing over all (n/2)/|I| such time intervals.

On the Relationship between Bandwidth Complexity and Cumulative Memory Complexity.
We show that bandwidth complexity and cumulative memory complexity are intricately related concepts. If
rbpebH (G, m) is the minimum energy cost of any legal parallel reb-blue pebbling of G with cache size m and
II.. is the cumulative complexity of sequential black pebbling, then

Theorem 1.5.

rbpebl (G, m) > mtin <2cb (Hcct(G)

- 2m> + cﬁ) €N (Cp - Cp HCC(G)> ,
where m is the cache size, t is the number of steps in the pebbling, cp is the cost of a blue move and c, is the
cost of a red move.

Theorem 1.5 demonstrates that the goals of designing an MHF with high cumulative complexity and
high bandwidth complexity are well aligned. In fact, we use Theorem 1.5 to show that a family {G,}2,
of constant indegree DAGs constructed by Schnitger [Sch83] has high energy costs because the sequential
black pebbling cost is I..(G,) € Q(n?) [AdRNV16]. In particular, the optimal red-blue pebbling must
either make ¢t = ny/c¢p/c, red-moves or the pebbling strategy will use at least (n./c,c; — 2m) blue moves.
As an intermediate step to proving Theorem 1.5 we show that rbpeb“(G, m) > rbpeb(G,2m). This result is
interesting as it suggests that an attacker will not be able to dramatically decrease energy costs by exploiting
parallelism. By contrast, for any constant indegree DAG G it is known that the parallel cumulative pebbling

cost is at most HQC(G) €0 (m) [AB16] while it is known that ..(G,) € Q(n?) for the constant

logn
indegree DAGs constructed by Schnitger [Sch83].
We also prove a similar theorem that directly relates ecost and cmc. In particular, we show that

ecost (fa,m) € Q (y/cbc,.cmc (fa.m) — cbm))

Crucially, this bound applies to any MHF not just for iMHFs. For iMHF's we could use our pebbling reduction
to relate ecost (fg i) to rbpebl (G) and we could use [AS15] to relate cme (fg.x) to Hee(G), but no such
pebbling reduction is known for dAMHFs. Combining our result with a result of Alwen et al. [ACPT17] we
obtain the following lower bound for scrypt: ecost (scrypt) € Q2 (cbcrn). While we later obtain a tighter
lower bound ecost (scrypt) € 2 (n - ¢), the previous result is interesting because it follow immediately from
the cumulative memory complexity of scrypt without additional analysis.

On the Bandwidth Hardness of scrypt. In Section 6, we provide a tight lower bound on the bandwidth
hardness of scrypt [Per09] eliminating a restrictive assumption required in the lower bound of Ren and
Devadas [RD17]. Our pebbling analysis only applies to iIMHFs so we are unable to apply pebbling arguments
to lower bound the energy cost of dMHFs such as scrypt. In particular, Theorem 1.6 shows that any
algorithm in the parallel random oracle model making at most ¢ < 2“/20 queries to the random oracle
H :{0,1}* — {0,1}* and computing scrypt correctly with probability at least ¢ has energy cost Q(ency).

4For DRSample it suffices to show that this property holds for sufficiently many blocks B.

Theorem 1.6. Whenever 4logn < w, q < 2w/?0, 1= cp > ¢y, and € > 2(exp (—%) + %n32_“’ +qn?2 v +

m

2-mw/5) the following statement holds in the parallel random oracle model:

ncy

ecost, (scrypt,,,m - w) > 1

DO ™

Ren and Devadas [RD17] prove that the energy cost of scrypt is Q(ncpy) under a restrictive constraint

that an adversary must fetch w bits at a time. Under such a restrictive assumption the extractor argument
from Alwen et al. [ACPT17] can be used as a black box without any modification. In particular, the only
way for an adversary to obtain a label is to either recompute the label without accessing memory at all or
load at least w bits of data (one full label) from memory. In our unrestricted setting the attacker has no such
restriction and transfers arbitrary bits of data from/to memory at a time e.g., the attacker could choose to
only transfer \/w bits from memory in an attempt to minimize bandwidth costs. Proving the lower bound
Q(ncp) without this constraint is challenging as we cannot simply use the results in Alwen et al. [ACPT17]
as a black box. We give the first tight unconditional lower bound on the bandwidth hardness of scrypt in
the parallel random oracle model i.e., without the restrictive constraint that an adversary must fetch w bits
at a time.
On the Computational Complexity of Minimum Cost Red-Blue Pebbling. While we can establish
asymptotic lower bounds on the energy cost of important iMHF candidates, one would ideally want to find
the precise energy cost for each function. In particular, given a graph G and a cache parameter m we
would like to compute rbpebH (G, m) precisely. However, we show in Appendix D that, unfortunately, exactly
computing the red-blue pebbling cost of a DAG G is NP — Hard, even under realistic assumptions about ¢
and c;:

Theorem 1.7 (Informal). Even for ¢, > 10000c¢,, the problem of determining the red-blue pebbling cost of
a directed acyclic graph G is NP — Hard.

A result of Demaine and Liu [DL17, Liul7] implies that it is PSPACE hard to compute rbpebH(G, m)
when ¢, = 0 (computation is free)®. However, we stress that in practice we have ¢, > 0 (computation may
be cheap, but it is not free). Furthermore, if we ensure that ¢, > 0 and ¢;,/¢, < poly(n) the decision problem
rbpebH = “s rbpeb“(G,m) < k” is in NP® so, unless NP = PSPACE, the decision problem is fundamentally
different when computation is not free. While the decision problem rbpebH is important for the cryptanalysis
of MHFs to the best of our knowledge nothing was known about the complexity of this problem prior to our
paper.

Gilbert et al. [GLT79] previously showed that the following decision problem was PSPACE complete:
Given a DAG G decide if there is a legal black pebbling with space complexity at most m i.e., during
every pebbling round there are at most m pebbles on the graph. Gilbert et al. showed that the minimum
space black pebbling problem was PSPACE — Hard by reduction from the Truly Quantified Boolean Formula
(TQBF) problem. Observing that any 3 — SAT instance ¢ with n variables is also a TQBF instance (albeit
with no V quantifiers) their reduction allows us to transform ¢ into a DAG G,. The graph G, has the
property that it can be pebbled with at most m = 3n + 3 black pebbles if and only if ¢ is satisfiable. In
Appendix D we detail a gadget to append to G to create a graph Hy so that rbpeb”(H) =z if pisa

satisfiable assignment, but rbpeb! (Hy) > x1 if ¢ is not a satisfiable assignment.

2 Preliminaries

We use [n] to denote the set {1,2,...,n} and [a,b] = {a,a +1,...,b} where a,b € N with a < b. Similarly,
we use (a, b] to denote the set [a,b] — {a}.

5In particular, rbpeb” (G,m) =0 if and only if there is a legal black pebbling of G using at most m black pebbles where the
latter decision problem is PSPACE complete [GLT79].

6In particular, if ¢, > 0 and ¢,/c, = poly(n) we are guarnateed that the optimal red-blue pebbling runs in time at most
poly(n). Thus, yes instances of our decision problem admits a polynomial size witness.

We assume a given directed acyclic graph (DAG) G = (V, E) is labeled in topological order and when G
has size n we will use V' = [n] to denote the set of vertices. E C {(i,5) : 1 <14 < j < n} denotes the set
of all directed edges in G. We say a node v € V has indegree § = indeg(v) if there exist § incoming edges
§ = |(V x {v}) N E|. We say that G has indegree § = indeg(G) if the maximum indegree of any node of G
is 4. A node with indegree 0 is called a source node and a node with no outgoing edges is called a sink. We
use parentsg(v) = {u € V : (u,v) € E} to denote the parents of a node v € V and similarly for a set S C V,
we define parents(S) = {u € V : (u,v) € E,v € S}. In general, we use ancestors (v) = |J;, parentsi(v) to
denote the set of all ancestors of v — here, parents?,(v) = parents; (parents,(v)) denotes the grandparents
of v and parentsigl(v) = parentsg (parentsg(v)). When G is clear from context we will simply write parents
(resp. ancestors). We denote the set of all sinks of G with sinks(G) = {v € V : #(v,u) € E}, the nodes with
no incoming edges.

We often consider the set of all DAGs of equal size G,, = {G = (V,E) : |V|=n} and often will bound
the maximum indegree G, 5 = {G € G,, : indeg(G) < d}. For directed path p = (v1,v2,...,v,) in G, its
length is the number of nodes it traverses, length(p) := 2z (as opposed to the number of edges). We say the
depth d = depth(G) of DAG G is the length of the longest directed path in G.

An iMHF can be specified by a DAG G and a random oracle H as in the next definition.

Definition 2.1. Given a directed acyclic graph G = (V = [n], E) with a set of sink nodes sinks(G) and a
random oracle function H : £* — ¢ over an alphabet &, we define the labeling of graph G as labg g : ¥* —
3*. We omit the subscripts G, H when the dependency on the graph G and hash function H is clear. In
particular, given an input x the (H,x) labeling of G is defined recursively by

H(v,x), indeg(v) =0
IabH,w(v) = .
H (v,labg z(v1),...,labg +(vq)), indeg(v) >0,
where vy, ...,vq are the parents of v in G, according to some predetermined lexicographical order. It will
also be convenient to use prelab(v) = (v,laby ,(v1),...,labm »(vq)) to denote the prelabel of node v i.e., the

random oracle query whose output is labp 5 (v). We define

fa,u(x) = {labg +(5) } sesinks(G)-
If there is a single sink node sg then fo m(x) = laby 5(sq).

We will often consider graphs obtained from other graphs by removing subsets of nodes. Thus if S C V,
then let G — S be the DAG obtained from G by removing nodes S and incident edges.

Given a directed acyclic graph (DAG) G = (V, E) the goal of the red-blue pebbling game is to place
pebbles on all sink nodes of G (not necessarily simultaneously).

Let RB = ((Bo, Ro), (B1,R1),...,(Bi, Ry)) (resp. RB!) denote the set of all sequential (resp. parallel)
red-blue pebblings of a DAG G. The game is played in rounds and we use B; C V (resp. R; C V) to
denote the set of nodes with blue pebbles (resp. red pebbles) in round . Initially, no nodes contain pebbles,
so that By U Ry = 0. The goal is to eventually place a red-pebble on every node in V (not-necessarily
simultaneously) so we require that V' C J, R;. We also require that in every round i > 0 we have (1)
parents (Rz \ (Ri—l @] Bi—l)) - Ri—h (2) Bi \ Bi—l - Ri_1 and (3) |R1| <m during every time step 7.

We let RBI (G, m) be the set of all valid parallel red-blue pebblings of G with a cache-size of m pebbles.
Intuitively, in each round ¢ > 1 we may place a red pebble on a node v € V if either parents(v) C R;_; all of
v’s parents contain red pebbles in the previous configuration (called a red move) or v contained a blue pebble
in the previous round (called a blue move). On the other hand, we may place a blue pebble at v € P; (also
called a blue move) if v contained a red pebble in the previous round. Blue moves represent data transfer
to/from memory and are more expensive than red-moves (computation).

We say that a pebbling ((Bo, Ro), (B1, R1),. .., (B, Rt)) is sequential if |R; \ R;—1| < 1for all 0 < i <t,
while for a parallel pebbling we make no such restriction. Note that RB C RBI since any sequential pebbling
is a legal parallel pebbling.

Formally we define a legal (partial) red-blue pebbling as below:

10

Definition 2.2. A pebbling ((Bo, Ro), (B1,R1),...,(Bt, Rt)) is a legal partial red-blue pebbling of G with a
cache size of m pebbles if for all 0 < i <t we have: (1) |R;| < m, (2) parents (R; \ (Ri—1 UB;—1)) C R;_1,
(8) B\ Bi—1 C Ri_1, (4) Bo =Ry =10, (5) (for sequential pebbling only) |R; \ R;—1| < 1. Furthermore, the
pebbling is also complete (i.e. a legal red-blue pebbling of G) if (6) sinks(G) C U!_ | R;.

Let #BM,; and #RM,; denote the number of blue moves and the number of red moves, respectively,
during round i.” Formally,

#BM; = |{v e R;\ Ri—1 : parents(v) & Ri—1}| + |B; \ Bi—1]
#RM,; = ‘RZ \ Rifl‘ — |{1} € R; \ R,_1 : parents(v) §Z Ri,1}|

Given cost parameters ¢, and ¢, we define the energy cost of a red-blue pebbling (R, B) = ((R1, B1), ..., (R, Bt))
to be

t
rbpebl (R, B)) =~ cy#:BM; + ¢, #RM,; .
=1

Generally, we assume ¢, is much larger than c¢,.. Finally, we define

rbpeb!l (G, m) = min rbpeb! (R, B))
(R,B)eRBI(G,m)

to be the cost of the optimal red-blue pebbling of G with maximum cache-size of m red pebbles.

2.1 Depth-Robustness

Definition 2.3 (Block Depth-Robustness). Given a node v, let N(v,b) = {v—b+1,...,v} denote a segment
of b consecutive nodes ending at v. Similarly, given a set S CV, let N(S,b) = UpesN(v,b). We say that a
DAG G is (e,d,b)-block-depth-robust if for every set S CV of size |S| < e, we have depth(G — N(S,b)) > d.
If b =1, we simply say G is (e, d)-depth-robust and if G is not (e, d)-depth-robust, we say that G is (e, d)-
depth-reducible.

Note that when b > 1, (e, d,b)-block-depth robustness is a strictly stronger notion than (e, d)-depth-
robustness since for any set S with |S| < e it follows that N(S,1) C N(S,b). Hence, (e,d,b > 1)-block
depth robustness implies (e, d)-depth robustness. On the other hand, (e, d)-depth robustness only implies
(e/b,d,b)-block depth robustness.

The cumulative memory complexity of an iMHF is very closely related to the notion of depth-robustness [AB16,

ABP17, ABH17, BZ17]. In particular, we know that HEC(G) > ed [ABP17] for any (e, d)-depth-robust DAG
and that HMC(G) €O (en +n-v dn) for any graph that is not (e, d)-depth robust [AB16]. We will show

that HQC(G) can be used to lower bound rbpeb! (G, m), thus depth-robustness can also be a useful tool in
bandwidth hardness. For DAGS that contain edges (i,7 + 1) for each ¢ < n (all of the DAGs we consider)
one can occasionally use block depth robustness to prove tighter bounds e.g., [ABH17, BZ17].

3 Modeling Energy Complexity as Red-Blue Pebbling

In this section we show that the energy cost of the function fg g is characterized by the reb-blue pebbling
cost rbpeb”(G,m) in the parallel random oracle model just as Alwen and Serbinenko [AS15] showed that
cumulative memory complexity can be characterized by the black pebbling game. Similar to [AS15] our
reduction uses Lemma 3.1 as a core building block. In particular, if the energy cost is significantly smaller
than rbpeb!! (G,9m) for a pROM attacker with m-w bits of cache then we can build an extractor that receives

"In some cases we may have v € B;_1 and parents(v) C R;_1 so that we could place a red pebble on node v using either a
red move or a blue move. In such cases we will assume that this is accomplished by a red move, since blue moves will be more
expensive.

11

a small hint and predicts the random oracle output on a larger set of indices contradicting Lemma 3.1. One
of the unique challenges we face when designing our extractor is that it is not obvious how to relate messages
between cache and main memory to specific blue pebbling moves. By contrast, a black pebbling move always
corresponds to a specific random oracle query.

Lemma 3.1. [DKW11b] Let HINT be a set of hints that can be given, B be a series of random bits and A
be an algorithm that receives as input some hint hint € HINT and can adaptively query B at specific indices.
Let WIN 4 nint denote the event that A, given hint € HINT as input, eventually outputs a subset of k indices
i1,...,10 that were not previously queried as well as the corresponding values Bli1], ..., Blix] of each bit then

[HINT|

Pr [Fhint € HINT. WIN gnine] < — 1

where the randomness is taken over the selection of B.

3.1 Memory and Cache in the Parallel Random Oracle Model

Before we present our reduction it is first necessary to give a formal definition of energy costs in the pROM
model.

We define a state of an algorithm AX() to be the tuple (0,€), where o contains the contents of the
cache and has size at most mw bits, and £ contains the contents of the memory. We consider a pROM
attacker AP () with cache size m - w who is given oracle access to a random oracle H : {0,1}* — {0,1}%.
In particular, the cache is large enough to store m labels. An execution of A7) on input z proceeds in
rounds as follows. Initially, the state at time 0 is (09, &y) where &, is empty and oy encodes the initial input
2. At the beginning of round ¢ the attacker is given the initial state (;—1,&;—1) as well as the answers A;_;
to any random oracle queries that were asked at the end of the last round. The algorithm A”() may then
perform arbitrary computation and/or transfer data between memory and cache. The round ends when the
attacker outputs a new state (o;,&;) along with a batch of queries Q; = {q¢}, g3, ..., q,ii}. Since the attacker
only has cache-size m - w we only allow the attacker to make at most |Q;| < m queries during a single
step (otherwise the attacker won’t even have room to store all of the responses). In particular, we require
that |o;| + k;w < mw where k; = |Q;| denotes the number of random oracle answers given to A?() at the
beginning of round i. Similarly, we require that for all rounds i we have Z;c:l ’qﬂ < mw (we must have
enough room in cache to store the random oracle queries).

We allow the attacker to specify arbitrary functions Fy, F5, F3 and Fj; to model communication between
cache and memory and subsequent state updates during each round so long as the specification of each
function is independent of the random oracle H (e.g., we cannot query the random oracle in between rounds).
In particular, the function Fy (0;_1, A;_1) = 7} is used to specify the first message we will send to memory
during round ¢ — in the event that We don’t send any message to memory we define Fy (o1, A;—1) = L.
Similarly, the function Fy(&;_1,7}) = s} specifies the response from memory (or L if there is no response).

1 1
Once r}, s}, ...,/ 7" s77! have been defined we set
Jj_ 1 .1 j—1 -1
Ti_F1<0-i717Az 17,855,775 r)
Jj—1 -1 J
(51 1,7 za zv"'vri 7Si 7ri)

We terminate when r/ = L or when s/ = L.

We let R; = {r},r2, ..., rf"} denote the sequence of messages sent from cache to memory during round @
and we let

;= {317 17...,sfi} denote the responses sent from memory back to the cache. Finally, the round

ends When the attacker uses the function F3 (&1, R;, Si) = & to output a new state & for memory and
Fy (0;—1, R;, S;) to output a new state o; for cache and a new batch @; of at most m random oracle queries.
At this point A¥() outputs the next state (0;,&;) along with the next batch of queries Q;

12

Crucially, the functions F5 and F3, which are used to generate response from main memory and update
the state of main memory at the end of the round, do not have access to o;_1 (the state of cache) or A;_;
(the answers to random oracle queries). In particular, any information about o;_; (cache-state) and A;_;
(most recent answers to random oracle queries) that main memory receives must be communicated through
one of the messages in the set R;. Similarly, the functions F} and Fj are used to generate the requests sent
from cache to main memory, to update the state of cache o; at the end of the round and to output the
next batch @Q; of random oracle queries. Crucially these functions do not have access to &_; (the state of
memory). Thus, any information about &;_; must be communicated through one of the responses in the set
S;.

Dziembowski et al. [DKW11a] also addresses communication between two parties, Agpmaqu (€.g., a space-
bounded virus) and Ap;g, over a bounded channel. However, both parties in this model can query the random
oracle. This is a crucial difference, since one of the parties in our model, the main memory, is strictly forbid-
den from querying the random oracle to avoid trivialization of the problem (e.g., the attacker can perform
all computation in RAM with no blue moves).

Execution Trace. We define the execution trace of the algorithm AX() by the sequence of cache states,
memory states, messages passed between cache and memory, and queries made to the random oracle H.
Formally, the execution trace is Tracea g m(zr) = {(04,&, Ri, Si, Qi)}._,, where the trace Tracea g u(z)
is dependent on the algorithm AY(), random oracle H, internal randomness R, and input value z. Given

S; = {s},s2,...,s"} we define NBits(S;) = Eff’zl (|rf| + |s§|) to denote the total number of bits transferred

199

between cache and memory during round ¢. Then we say the cost of the execution trace is

t

cost(Trace s g i (x)) = E (crki -I—NBits(SZ-)Cb) .
w
i=1

Intuitively, the ¢, term is the cost of each random oracle query we make to the random oracle H and k; is
the number of queries at round i. The ¢, term results from the messages passed between cache and memory
— here ¢, denotes the cost of transferring w bits between cache and memory.

We now formally define the energy cost of computing a function based on its execution trace.

Definition 3.2. Given constants ¢, and c,, the energy cost ecost of a function fq u is defined by

ecosty (fa,m,m-w) = I}‘}inE [cost(Trace 4,k u(xz))],
T
where the expected cost is taken over the selection of the random oracle H, and the minimum of the expected
cost is taken over all valid inputs x and all algorithms A with cache size m -w bits making at most q queries
that compute fo m(x) correctly with probability at least €.

3.2 Red-Blue Extension Pebbling

We are now ready to prove our main result in this section. Theorem 3.3 lower bounds the energy cost
ecosty (fa,m, m - w) of the function fo g with cache size m - w using rbpeb“(G7 9m) the red-blue pebbling
cost of the DAG G with 9m red pebbles.

Theorem 3.3. For any DAG G with n nodes and any .Azq(,;) making at most ¢ < 2%/29 queries that compute
fa m(x) correctly with proability at least € > 0, then for 20logn < w,

1
ecosty.c (fa,m,m - w) > (166 — g 2mw/5 _ q;—u) rbpeb“(G79m).

Given a DAG G and a legal (partial) black pebbling P = (Py, ..., P;) with |P,4; \ P;| < m we say that a
(partial) red-blue pebbling ((B1, R1), ..., (B, Re)) is a (m, k)-extension of P if for all i € [¢t] we have |R;| <m

13

and we can find a small set D; C V(G) such that |D;| < k and R; U B; = P, U D; . We let RBExt(P,m, k)
denote the set of all possible (m, k)-extensions of P. Observed that if P € PI(G) is a complete black
pebbling of G then RBExt(P,m, k) C RB! (G, m) as any (m, k)-extension of P will be complete. To prove
Theorem 3.3 we extract a legal partial black pebbling P = (Py,..., P;) from the execution trace of AX ON
and then use P to build a legal (9m, 8m)-extension pebbling ((By, R1),..., (B, Rt)) € RBExt(P,9m,8m)
which may use up to 9m = (m+8m) red-pebbles. We then show how to upper bound the cost of the extension
pebbling and lower bound the energy cost of the attacker A in the random oracle model.

Step 1: We start by using Ag,(j,) to extract a legal (partial) black pebbling following Alwen and Ser-
binenko [AS15]. Given an execution trace Trace 4 g m(z) we say that node v € V is an output at time 7+ 1 if

prelaby (v) € Q; i.e., if v has parents v1, ..., vq and the random oracle query (v, labgr . (v1), ..., labm 2 (va))
is submitted at the end of round i. Similarly, if prelaby ,(v) € Q; where node v has parents v, ..., vy then
we say that nodes vy, ..., vq are inputs at time ¢ i.e., the values labg ,(v1), ..., labm »(v4) can all be extracted

from the random oracle query prelaby , (v) € Q; submitted at the end of round i. For a non-sink node v let
next(i,v) = 1 if v appears as an input at time ¢ or if for some round j > i node v appears as an input at time
j and for all intermediate rounds 7 < 7' < j node v does not appear as an output during round j’; otherwise
we set next(i,v) = 0 i.e., if v never appears as an input in any future round j > 7 or if the next time node
v appears it appears as an output before node v will appear as an input. If v is a sink node then we will
set next(i,v) = 1 if and only if v is an output at time ¢. Now, given an execution trace Trace4 g rr(x), the
corresponding black pebbling BlackPebble! (Traces r u(z)) = Po,. .., P; is defined by setting Py = @) and
P; = {v : next(i,v) = 1} for each round 1 < ¢ < t. Intuitively, at each time j, P; contains all nodes v
whose label will appear as input to a future random oracle query before the label appears as the output of
a random oracle query. We first observe that |Pi41 \ P;| < |Q;| because if v € P;y1 \ P; then v must have
appeared as an output during round i + 1 since next(i,v) = 0 but next(i + 1,v) = 1. As we previously
observed we only allow the attacker to make at most |Q;] < m queries during a single step because the
attacker algorithm ,A{ig,;) only has cache-size m - w and must have room to store all of the responses in cache.
Thus, |P;y1 \ Pi| < m for all rounds ¢ < ¢. Similarly, for all rounds i we have the total size of all queries
Zle 5| is at most mw because it must have enough room in cache to store the random oracle queries.
Thus, |parents(P;11 \ P;)| < m for all rounds ¢ < ¢.

Alwen and Serbineneko [AS15] showed that the black pebbling constructed this way is a legal partial black
pebbling with probability at least 1 — /2% where q is the total number of random oracle queries. Intuitively,
the only way for the extracted partial pebbling to not be legal is if a label appears out of order i.e., some
node v appears as an input before it ever appears as an output. But this means that the random oracle query
prelaby ,(v) was never submitted. Thus, labp,,(z) can still be viewed as a uniformly random w-bit string
and the probability of guessing it is at most 27*. The result then follows by a union bound over all ¢ random
oracle queries. We also observe that as long as for each node v the label laby ,(v) appears as a random
oracle output at some point in time that the extracted pebbling will be complete. Note that if the extracted
pebbling is legal, but incomplete then for some sink node v the query prelab Hm(v) is never submitted and
the attacker will guess the correct output with probability at most 27* since the output contains labg ;(v)
which can still be viewed as a uniformly random w bit string. Thus, we will get a complete/legal pebbling
with probability at least € — q/2% — 1/2% where ¢ is probability attacker computes function correctly.

Theorem 3.4. [AS15] The pebbling extracted from an execution trace (Py, ..., P;) = BlackPebble® (Trace4 r m (7))
is a legal partial black pebbling with probability at least 1 — 5%, where w is the label size and q is the number of

queries made by Traces r m. Furthermore, if for every node v € V' the corresponding label labgy ,(v) appears
as an output of the random oracle H at some point in the execution trace then the pebbling is also complete
i.e., BlackPebble! (Traces r () € PI(G). If A makes at most |¢;| < m random oracle queries in each

round of the execution trace then in each pebbling round |Piyq \ Pi| < m.
Formally, given P and an interval [¢1,t2] we let

ta 7

QueryFirst(ty,12) = U parents (Piy1 \ F5) \ U (Pj\ Pj-1)

i=t Jj=t1+1

14

Intuitively, we can think of parents(P;1; \ P;) as the set of inputs at time ¢ and P; \ P;_; as the outputs at
time j so that QueryFirst(¢;,t2) denotes the vertices v whose data-labels will appear as an input during
rounds [t1,ts] before the data-label appears as an output during the interval (¢1,t2]. We will later see how
we can extract the labels laby . (v) for each node v € QueryFirst(t,t;) by simulating the attacker AX()
starting from round ¢;. As an edge case notice that if a node v appears as an input at time ¢; and also as
an output at time ¢; that v will still be in the set QueryFirst(¢1,t2) — this is intended as our extractor
begins simulation after v has appeared as an output and we will still be able to extract labg 4, (v).
We present a few properties about QueryFirst that we will use in the rest of the proof.

Lemma 3.5. Assume that P = (Py, ..., P;) is a legal partial black pebbling of G then V0 <z <y < z <,

Yy

QueryFirst(y, z) \ QueryFirst(z, z) C U (P \ Pi—1).
i=x+1

Proof. Consider a node v € QueryFirst(y, z) \ QueryFirst(z,z). Since v € QueryFirst(y, z) there
exists some round ¢ € [y, 2] such that v € (parents (P \ P)\ U;:yﬂ (P \ Pj_1)>). However, since

v € QueryFirst(z,z) for any ¢ € [z,z] we also have v ¢ (parents (P \ Pi)\ (U;zw+1 (P; \Pj_l))>

Therefore, v € J_, ;1 (Pj \ Pj-1).

Step 2: We partition the pebbling rounds [t] into sub time-intervals (to = 0, t1], (t1,t2], . .. recursively as
follows. Let ¢; be the minimum pebbling round such that there exists j < ¢; such that |QueryFirst(j,t1)| >
3m. As a special case, if |QueryFirst(i, j)| < 3m for all i < j < ¢ (i.e., no such intervals exist), then set
t; = t and output (tg,t1]. In this case, there is a red-blue extension pebbling in RBExt(P,9m,8m) that
requires 0 blue moves and at most), |P; \ Pj_1| red-moves.

Once t; < ... < t;_1 have been defined we inductively define ¢; > t;_; to be the minimum round such
that there exists t;_1 < j < t; such that |QueryFirst(j,¢;)| > 3m — if no such ¢; exists then we set ¢; = t.

Step 3: We will show that there is an extension pebbling that makes at most 4m blue moves during
each interval (except for the first one where it needs 0 blue moves). In particular, we set k = 8m and we
will define an extension pebbling (B*, R*) € RBExt(P,9m, k) by dividing the cache into two sets of size
4m and one size of m denoted as R RI®*" and RI®", respectively. We will set R; = RI®' U Rinter U R,
and show that R; U B; D P,; gives a legal red-blue pebbling and then bound its cost.

We set RI"™ = {} at the start of each time interval (¢;,¢;11] and for each j € (t; + 1,¢;41] we have

Rij"ter = (Rij"fel' U (P; \Pj,l)) N QueryFirst(j,t;41).

Intuitively, Rij”ter stores all of the red-pebbles we have computed during the interval (¢; 4+ 1, j] that are later
needed in the interval [j,¢;+1]. Thus, any node that is pebbled during rounds (¢; + 1,j] and subsequently
needed in round [j,¢;41] must be in Rij”te', which we will keep in cache. Note that Rij“ter does not include
the nodes that are computed at the start time ¢; + 1 and we set R = {}. This is because the nodes
we compute at time ¢; + 1 that are later needed in [t; + 1,¢;41] are in QueryFirst(¢; + 1,¢,41), and such
nodes are stored in R = QueryFirst(¢; + 1,¢;41) for j € (t;,ti+1] as we will define below. This yields

j
the following invariant.

Invariant 1. For any j € (t;,ti41),
j .
QueryFirst(j + 1,t,41) N (Pi\ Pi_1) C R

i=t;+2

To maintain legality across all time steps, we add a few rules about red and blue moves:

15

(1) We convert a pebbled node v from blue to red if node v is in QueryFirst(¢; +1,¢;41). That is for any
J € (ti, tix1], we define legal = QueryFirst(¢; + 1,¢41).

(2) We set R} = (P;\ Pj_1) \ (R U legal) to be the nodes that are newly output at time j but not
already in cache. This ensures that all nodes that are output at time j are pebbled even if this node
won’t be used as an input during the current time interval. A sink node may never appear as an
input in any round, but as long as the black pebbling is complete we can guarantee that our red-blue
extension pebbling is also complete i.e., every sink node is pebbled eventually. Finally, observe that in
our case we will have |Rge""| <|Pj\ Pj_1] < m.

(3) Given a node v € R; \ B; such that v is in QueryFirst(t; +1,t,41) for some later interval (¢, t;41]
with ¢/ > ¢ we use a blue move to ensure that v € B, 1. We never remove blue pebbles so v can be
converted back to a red node when required for the future interval (¢;/,¢;41]. (Note that a node may
have both a red pebble and a blue pebble at the same time.) In this case, for accounting purposes, it
will be helpful to “charge” the cost ¢ of this blue move to the future interval (¢, t;/1]. More formally,
we can set

BjJrl = B] @] {’U S Rj : 32’ .s.t. (] < ti/ ANV € QueryFirst(ti/ + 1,t1‘/+1)>} .

We show the following bound on the size of QueryFirst(j, t;+1). We remark that as long as the extracted
pebbling P is legal both of the conditions |parents(Pj+1 \ P;)| < m and |Pj41 \ Pj| < m will be satisfied.
Intuitively, we can have at most m nodes appear as an output in each round since we only have space for
m labels in cache. Similarly, we can have at most m nodes appear as input during each round for the same
reason.

Lemma 3.6. Assume that P = (Py,..., P;) is a legal partial black pebbling of G and that |Pj41\ Pj| < m
and |parents(Pj11 \ P;j)| < m for all round j <t then Vj € (t;,ti11], |QueryFirst(j,t;11)| < 4m.

Proof. By the definition of QueryFirst, QueryFirst(j, ¢;11) C QueryFirst(j,t;11—1)Uparents (P, 41\ Pi,.,)
for j € (t;,ti+1), and QueryFirst(j, t;41) C parents (Py,,, 41\ P4,) for j = t;11. Due to our choice of t;1,
QueryFirst(j,t;11 — 1) < 3m. Since parents (P,,,, 41 \ P;,.,) < m i.e., parallelism is bounded by cache size
the lemma then follows. O

Lemma 3.7. |Rij”te'| < 4m.

Proof. Observe that Rij"te' C QueryFirst(j,t;41) since elements are only kept in Rij!1ter if they are needed
for some later pebbling round. |QueryFirst(j,t;11)| < 4m by Lemma 3.6. O

Also note that for any j € (¢;,¢;41], |legal| = |QueryFirst(t; + 1,2;11)| < 4m and |R}*"| C |P;\ Pj_1| <
m. So the extension red-blue pebbling we constructed stores at most 9m labels in cache at any time.

Lemma 3.8. Assume that P = (Py,. .., P;) is a legal partial black pebbling of G and that |Pj11 \ P;| <m for
all round j < t then the extension pebbling (B*, R*) € RBExt(P,9m,8m) is a legal partial red-blue pebbling.
Furthermore, if P € PI(G) is a complete black pebbling then (B*, R*) € RB”(G, 9m) is also complete.

Proof. Let R* = (Ry, ..., Ry) where R; = R U RI* U R"" and B* = (B4,..., B;) be defined as above.
For any time interval (¢;,%;41] and any j € (;,¢;11], first observe parents(P;1 \ P;) € QueryFirst(j,t;11).
We now prove QueryFirst(j,t,+1) C R;. Note that any node in QueryFirst(j,t;11) must either be in
QueryFirst(¢; + 1,¢,11) or have been pebbled at some point during time steps (¢;, j]. In the former case,
the node would be in legal, and in the latter case, the node would be in R™". Thus, parents(Pj11 \ P;) C
QueryFirst(j,t;11) C R;.

Next we prove Rji1 \ (R; UB;) C Pj1\ Pj. According to the definition of RIM™e, R';ga' and Rj*", for

j € (ti,tiy1) during which R7% = R we have Rj1\ (R;UB;) C (RIS UR™MSY URSE) \ (RIMer U R1e U

16

RS C (Rinter U RIS \ (R U RY) C Pyyq \ Pj. For j = ti41 at which R, = {}, note Ry,,,+1 =

i1 YR i+
legal -
Ry® L UREY L C QueryFirst(tiy1 +1,tiy2) U(Pryy+1 \tit1) C Pryy 1 and Py, C Ry, UBy,,,. Thus,

tit1+1

Rti+1+1 \ (Rti+1 U Bti+1) c Pti+1+1 \Pti+1'
Therefore, parents (Rj41 \ (R; U B;)) C parents(Pj11\P;) € QueryFirst(j,t;11) C R;. Also, Invariant 1

guarantees that Bj11 \ B; C Rj, i.e., any newly pebbled blue node at time j + 1 is a red node at time j.

Therefore, {R;, B;} is a legal partial red-blue pebbling. Furthermore, if P is a complete black pebbling,

then for any node v € V' there exists a round j such that v € P; \ Pj_1. Recall that RI® is defined to be

(P;\ Pj_1) \ (R U R¥) indicating that P; \ Pj_; C R1®" U RiMe U RS%! = R;. Therefore, V C UL, R;

and (B*, R*) is complete (i.e. legal red-blue pebbling).

i+1 i+1°

O

We now bound the cost of the above extension pebbling. For any time j € (t;,¢;+1], since we never

discard necessary red pebbles from Rij"ter and R7* only contain unecessary nodes that are newly outputted

at time j, the only cache-misses we incur come from legal = R'teigjll, at most 4m. We “charge” double for

every cache-miss to account for the previous blue move that initially placed a blue pebble on a node. This
way, we can also charge the cost of placing new blue pebbles to future rounds. Therefore, the above extension
pebbling has cost at most

8m6b+ Z Cy |Pj\Pj_1|.

JE(tistita]

Step 4: To complete the proof, we show that during each interval any algorithm A must pay red-blue
cost at least mcy + 354, 1:,,) O |5 \ Pj—1]- Roughly speaking, we will set up an extractor that extracts 3m
random oracle labels (i.e., 3mw truly random bits) by simulating A during this time interval. The extractor
needs a hint of size mw + w(#words;) bits where #words; is the total amount of data (words) A transfers
to/from cache. If #words; < m then we will arrive at a contradiction as we compressed a random string of
length 3mw — contradicting Lemma 3.1. Thus, .4 must pay blue cost at least mc, during each interval, and
by construction of P = BlackPebble! (Traces g m(x)) the red cost is at least > 1¢r [Py \ Pja. We
detail this step in the next section.

JE(tistiy1

3.3 Extractor

We now use a compression argument to relate the cost of an execution trace to cost of the red-blue extension
pebbling. That is, an extractor with access to the attacking strategy, the state of the cache, and a few select
hints can successfully predict a large number of random bits, contradicting Lemma 3.1. The hints we give
the extractor will dictate the location of the random bits, and ensure these bits remain “random” (that is,
not queried by the extractor). Figure 1 illustrates this setup. In particular, the extractor will use a hint to
simulate A7) but this hint does not include the current state of memory &,;. Instead, the hint will encode
the messages that the attacker expects to receive from main memory which allows us to simulate the attacker
without storing the entire (large) state &;.

RO Pairs: Extractor
(z, H(x))

. :

oy o

z :

s B

§ 8

§ Attacker A Attacker A o

Fig. 1: Using the attacker to create an extractor that tries to predict 3m distinct outputs of random oracle
H().

17

Let to = 0,t1,...,t, =t denote the time intervals specified above. Intuitively, we expect that the evalu-
ation algorithm needs to transfer at least mw bits to/from cache during each interval (¢;_1,t;] (potentially
excluding the last interval (¢,_1,t, = t]). Let BadTrace denote the event that we extracted a legal (partial)
black pebbling BlackPebble! (Traces r u(x)) = Py, ..., P, but that for some i < y we did not transfer mw
bits to/from cache during the interval (¢;_1,t;] i.e., for some i < y we have

ti fi/
S Y (Il +Ishl) < mw

i'=t;_1+1 j=1

The following lemma shows that the event BadTrace occurs with negligible probability so the attacker must
transfer at least mw bits between cache and memory. Intuitively, if the event BadTrace occurs then we can
define an extractor which extracts at least 3m random oracle outputs using a hint of length at most 13mw/5.
By Lemma 3.1 it immediately follows that Pr[BadTrace] < 2-(3~13/5m%_Note that in the edge case where
y = 1 the event BadTrace automatically does not occur. In this edge case we have QueryFirst(i,j) < 3m
for all i < j <t and we also have |P;| < |QueryFirst(i,t) U (P; \ P,—1)| < 4m for each round ¢ < ¢t. Thus,
we can define an extension pebbling with 0 blue moves by setting R; = P; and B; = {} for each round i.

Lemma 3.9. If ¢ < 2/2° and 20logn < w then Pr[BadTrace] < 2-2mw/5 yhere q upper bounds the total
number of random oracle queries made in the execution trace, n is the number of nodes in the underlying
DAG, and the probability is taken over the random coins of A and the selection of the random oracle H.

Proof. Suppose, by way of contradiction, that for interval (¢;,¢; 1] with ¢ + 1 < y, an attacker transfers less
than mw bits between cache and memory. We first note that, by definition of ¢; and ¢;1, we can find some
index j between t; and ¢, such that |QueryFirst(j, ¢;+1)| > 3m and by Lemma 3.6 |QueryFirst(j, t;11)| <
4m. We define an extractor that can predict 3m labels given access to the attacker’s algorithm, the random
oracle, and a small set of hints to help the extractor. Recall that for a non-sink node v with parents vy, ..., vq
we have

labg . (v) = H (prelaby ,(v)) where prelaby . (v) = (v,laby . (v1),. .., labmy 2 (va)) -

Thus for nodes y # 2, the prelabels prelaby ,(y) # prelaby ,(z) are different. Thus, the values of labs . (y)
and laby ,(z) correspond to different inputs to H. That is, there are no input collisions and so the adversary
must separately determine the hash outputs for each of the 3m inputs, which correspond to 3mw truly
random bits in total.

The hint given to help the extractor consists of five components:

(1) The set QueryFirst(j,¢;+1) is given as a hint to denote the indices that form the string that the
extractor will ultimately predict. Since |QueryFirst(j,t;1+1)| < 4m, this component of the hint is at
most 4m logn bits.

(2) For each v € QueryFirst(j,¢;11), the index of the first query that appears in which lab(v) is needed as
input. This component of the hint tells the extractor the queries that require the prediction of random
strings, and has size at most 4m log ¢ bits, where ¢ = >, _, k; is the total number of queries made by
the attacker.

(3) For each v € QueryFirst(j,¢;+1), the index of the first query when lab(v) might be compromised.
Observe that if the extractor successfully predicts a random string lab(v) = H(prelab(v)) at a location
prelab(v), but then the query prelab(v) is later queried by the attacker, the extractor will need to
avoid submitting the query prelab(v) if we still want to claim credit for predicting the string lab(v)!
To avoid this, we give the extractor a hint of the queries that would compromise the randomness of
the desired locations i.e., (y, z) for the next query with ¢¥ = lab(v). Since there are at most ¢ queries
we can encode each pair (7, y) using at most log ¢ bits, and there are at most 4m such pairs. Thus, this
component of the hint tells the extractor the locations of the random strings to be predicted, and has
size at most 4m log q bits.

18

(4) The cache state o;_1 given to AP at time j is given as a hint to the extractor along with the answers
Aj_1 to the random oracle queries ();j_; asked at the end of round j — 1. This allows the extractor
to simulate the attacker beginning at time step j. Since the cache has size m, each containing w-bit
words, and A;_; is additionally stored in cache the size of this component of the hint is at most
loj—1] + kj_1w < mw bits where k;_1 = |Q;_1| denotes the number of random oracle queries asked at
the end of round j — 1.

(5) Messages between the cache and memory during time steps [j,¢;41] are also given as a hint to the
extractor to simulate the attacker beginning at time step j. By assumption, the attacker transfers less
than mw bits between cache and memory, so the size of this component of the hint is at most mw bits
in total.

Since ¢ < 2*/20 and 20logn < w, then the total size, in bits, of the hint is at most
13
4dmlogn + 4mlogq + 4mlog q + mw + mw < 5 mw.

However, |QueryFirst(j,t;11)| > 3m, so the extractor successfully predicts the output of 3m hash outputs,

each of size w, given a hint of size at most 15—3mu) bits. By Lemma 3.1, such an extractor can succeed with
proability at most 2-2™/% and, it immediately follows that Pr[BadTrace] < 2—2™m%/5, O

We now justify the correctness of Theorem 3.3.

Proof of Theorem 3.3:
Consider an pROM algorithm A which computes fg g(z) correctly with probability at least € using at
most mw bits of cache and making at most g random oracle queries. Let

Tracea,r,u(2) = {(04,&, Ri, Si, Qi) iy
be a randomly sampled execution trace, let P = BlackPebble! (Trace 4 r m (7)) be the corresponding ex-post
facto (partial) black pebbling and let (B*, R*) be the corresponding red-blue (9m,8m)-extension of P. We
first note that in the special case that |QueryFirst(i, j)| < 3m for all i < j < ¢, we have |QueryFirst(i, t)| <
3m and we also have |P;| < |QueryFirst(i,¢) U (P; \ Pi—1)| < 4m for all rounds ¢ < ¢. In this case we can
simply set R; = P; and B; = {} since the entire set fits in cache, and the red-blue pebbling (B*, R*) has 0
blue moves. In this special case it follows that

cost(Traceq r,u(z)) > Zcr|Qj| > ZCT|P]‘ \ Pj_1| > rbpebl/(R*, B¥)) .
J J

Here, the second inequality follows from the observation that |Q;| > |P; \ Pj_1| during each round j so the
total red cost of the execution trace is at least 3 ; ¢, |Q;] > 3=, v [Py \ Pj—1| = 32, ¢ [R; \ Rj—1]. Otherwise,
we can define the sequence tg = 0,%1,...,t, = t such that for all 1 < ¢ < y we can find j € (t;_1,¢;] such
that |QueryFirst(j,¢;)] > 3m and y > 2. Assuming the event BadTrace does not occur then for all i < y:

t b
Z Z (‘7"“ + |Sf/|) > mw .

i'=t;_1+1j=1

In particular, the execution trace transfers at least m (w-bit) blocks between cache and memory in between
rounds t;_1 and t; at cost ¢, per w-bit block. Since this occurs for each i < y the total cost incurred
transfering data to/from cache is at least (y — 1)mcp. On the other hand the total number of blue moves in
our pebbling is upper bounded by

y
< 22 |QueryFirst(t;—1 + 1,¢;)| < 8ym ,
i=1

y
2 U QueryFirst(t;_; + 1,¢t;)
i=1

19

since we make at most |QueryFirst(¢;—; + 1,¢;)| blue moves at the begining of each each time interval
(ti—1 + 1,t;] (converting blue pebbles to red pebbles) and never place a blue pebble on a node unless it is
in QueryFirst(t;_; + 1,¢;) for some future interval — once we place a blue pebble on a node it is never
removed. Thus, in this case we have

Y ti Y ti
rbpebl (R, B*)) <8ym -y + > Y clQi| <16(y—Dm-cr +16) > Q]

i=1 j=t;_1+1 i=1 j=t;_1+1

and
Y t;

cost(Trace g p.u(z)) > (y—1)m-cp + Z Z crlQj > rbpeb!l (R*, B*))/16 .
=1 j=t;_1+1
Note that P and (B*, R*) are both legal/complete with probability at least € — ¢/2¥ — 2=%. Thus,
with probability at least € — ¢/2% — 27 we have rbpeb! ((R*, B*)) > rbpebl/(G,9m). By Lemma 3.9, the
event BadTrace occurs with with probability at most 272"%/5 Tt follows that, with probability at least
€ — q/2w _ 9w _ 2—2mw/5, that

cost(Trace s g m(z)) > rbpeb!! (G, 9m) /16 .

Recall that ecosty (fa,m,m - w) = ming , Elcost(Trace 4, g g (x)] where the expectation is taken over the
selection of the random oracle H and the minimum is taken over all algorithms that compute fq u(z)
correctly with probability at least e. In particular, we have

boeb!

rbpeb" (G, 9m) > (€

1
G £ _gremu/s _ 4T) rbpeb! (G, 9m) .

eCOStq75(fG,H7 mw) > (e — q/2w _9Tw _ Q*Qmw/5) 16 QT

a

4 Relating Memory Hardness and Bandwidth Hardness

In this section, we show that any function with high cumulative memory complexity also has high energy
costs. Namely,
Reminder of Theorem 1.5.

11
rbpeb”(G,m) > mtin <2cb (Cct(@ — 2m> + cﬁ) e (Ch Cp- HCC(G)) ,

where m is the cache size, t is the number of steps in the pebbling, ¢y is the cost of a blue move and c, is the
cost of a red move.

We also show that this connection can be exploited to design a maximally bandwidth hard iMHF. Thus,
the goals of designing an MHF with high cumulative memory complexity/bandwidth hardness are well
aligned.

Lemma 4.1. rbpeb”(G,m) > miny (20b (M - m) + tcr> .

Proof. For any red-blue pebbling P of DAG G, let R; be the set of red pebbles at time step ¢ and let B; be
the set of blue pebbles at time step i. Setting D; = B; U R; we remark that (Dq,...,D;) is a valid black

pebbling of G. Thus, by the optimality of HHC(G),

t t t
l.(G) <Y IR UBi| <) R+) |Bi| < tmax|Bi| +tm

i=1 i=1 i=1

20

Rearranging terms we have

nl.(a
max|By| > t()
1

In the optimal red-blue pebbling, each blue pebble must eventually be converted back to a red pebble,

or else it should be discarded. Additionally, without loss of generality, we can assume that during each step
we make at least one red move. Otherwise, we could combine consecutive steps into one single step. Thus,

.G
rbpeb”(G,m) > 2 ‘Uﬁlei’ cp +te, > 2m?X|Bi|Cb +te, > 2 (t() —m | ¢+ te,

Il
> mtin (2 (Hcct(G) — m) cp + tcr>

L]
Corollary 4.2. For an (e,d)-depth robust graph G,
n - cd
rbpeb" (G, m) > min 2 - ome +te,) .
Proof. An (e, d)-depth robust DAG G has ed < HEC(G) [ABP17]. O

We show that there exists a similar relationship between sequential black pebbling cost and sequential
red-blue pebbling cost.

Theorem 4.3. I(C
rbpeb(G) > 2¢; <Mt() - m> + ¢t

where m is the cache size, t is the number of steps in the pebbling, cp is the cost of a blue move and ¢, is the
cost of a red move.

Proof. Given a sequential black pebbling Pi,..., P; of G, let B; be the set of blue pebbles at time step q.

Then
I..(G))
——-m],

x| B > max((2] - m) > (7

where the last step results from a simple averaging argument over all ¢ steps. Finally, each item in B; requires
cost ¢, to load into cache and another cost ¢, to be stored in memory (if the item is not ever retrieved from
memory, it would not be in B; for an optimal pebbling). O

Theorem 1.5 can also be related to parallel pebbling through the following lemma:
Lemma 4.4. rbpeb(G,2m) < rbpeb”(G,m) < rbpeb(G, m).

Proof. rbpeb! (G, m) < rbpeb(G,m) follows immediately from definition.® Now consider rbpeb(G, 2m) and
rbpebH (G, m). Any parallel pebbling with cache size m can be performed by a sequential pebbling with cache
size 2m. Note that at any step, a parallel pebbling with cache size m can have at most m labels stored and
m new pebbles placed in each step. Thus, a sequential pebbling with cache size 2m can emulate this by
retaining the stored labels while adding the new pebbles one by one. O

8To see that rbpeb” (G, m) and rbpeb(G, m) are not identically equivalent quantities, consider the complete directed bipartite
graph K, m with m sources A and m sink nodes B(m is also the cache size). In the parallel model we can finish in two steps
with zero blue moves: Rg = (), R1 = A, R2 = B. In the sequential pebble game we would have to keep pebbles on A while we
begin placing pebbles on B one by one. Each time we place a red-pebble on a node y € B we need to evict some node z € A
by converting z into a blue node (and then bring it back into the cache-later).

21

Combining Theorem 4.3 and Lemma 4.4 yields Theorem 1.5.
Alwen and Blocki [AB16] show HHC(G) =0 (m) for any graph G with constant indegree.

logn
Moreover, there exists a family of DAGs {G, }°; with constant indegree with IL..(G,) € Q(n?) [Sch83,
AdRNV16].
We now show a relationship similar to Theorem 1.5 between the energy cost and cumulative memory
cost [AS15] of an execution trace, where the cumulative memory cost of an execution trace is defined as:

cmc(Traceq p.u(z)) = Z o],
where a; encodes the state of the attacker at round . Similarly,

cmcye(fa,m) = min cme(Traceq g m(x)),
A,R,x
where the minimum is taken over all .4 making at most ¢ random oracle queries that compute fg g correctly
with probability at least e. While there is no notion of a cache in their pPROM model, we could trivially
set a; = (04,&). We note that for ecosty ¢ (fe, i) minimum is taken over all A making at most ¢ random
oracle queries that compute fg g correctly with probability at least e and having cache size at most mw
bits, which means that the set of attackers we consider is even more restrictive. We emphasize that A can
be an arbitrary pROM algorithm, so that the following result also applies to dMHF's such as scrypt.

Theorem 4.5. For any execution trace Tracea g g (x) of an algorithm A with cache size mw bits

cmc(Trace s r,u(z))

cost(Traceq p,u(z)) > (— m) ¢y + tep,

tw

where m is the cache size, t is the number of steps, ¢ is the cost of a blue move and c, is the cost of a red
move.

Proof. Recall that the energy cost of an execution trace Traces g m(z) = {(0s, &, Ri, Si, Qi) }_, is defined
as

t
cost(Tracea,nn(2) = 3 (erlQil + 2 (il +1i]))

=1
€

cmc(Trace
> max ——c¢p + tep > ((.A,R,H(.T))
(]

d — m) cp + tey
w tw

The second step above follows from the observation that for all j we have |£;| < 25:1 (|R;| + |Si|), and
the third step follows from the observation that

t
cmc(Traceq g m(x)) — mtw = Z (loi| + 1&]) — mtw < tmax || .
3
i=1

O

Let z = cmc(Traceq g m(z)) and define f(t) = (& —m)c, + te,. We observe that the function f is

tw

minimized when we set ¢t = , /2-"2- to balance out the terms tc, and Zc. In particular, for any ¢t > 1 we

have f(t) > 2\/Cmc(TraceA’R’H(m))'c’"'c” —mcp. It follows that for any trace Trace g u(z) we have

w

T " Cp - Cr
cost(Trace 4 n i (x)) € 9 (\/cmc(racea,r,u(z)) ¢y c _me>

w

22

Alwen et al. [ACP*17] show that cmc, .(scrypt) € Q(en?-w) for any ¢ > 0 and € > 27%/24277/20+1 35]ong
as 4n*q < 2¥/2. More specifically, they show that for some constant C' > 0, any input = and any attacker A
making at most ¢ < 2%/2~2n~* queries and evaluating scrypt(z) correctly with probability at least e (over
A’s random coins and the selection of the random oracle) that cmc(Trace 4 g () > Cn?w with probability
at least ¢ —27%/2 —277/20+1 (gver A’s random coins and the selection of the random oracle). It follows that

240 - .
cost(Trace 4, u(x)) > 1/ N e mep > ny/CpCr — Mcy
w

with probability at least e —27%/2 —277/20+1 (gver A’s random coins and the selection of the random oracle).
We remark that the actual bound from Alwen et al. [ACP*17] is slightly tighter, but also more complicated
to state. We opted to use the above bounds to simplify presentation.

Corollary 4.6. There exists a constant C > 0 such that for any m < n and any 0 < ¢ < 2%/272n=* and
£ 2—w/2 =+ 2—n/20+1
2)

ecosty (scrypt,m - w) > C - ny/cp - ¢, — mcy.

While this lower bound for scrypt is not tight, it is interesting in that it follows in a black box matter
and highlights the connection between cumulative memory complexity and bandwidth hardness. We prove
a tighter unconditional lower bound for scrypt in Section 6, showing that ecost, ((scrypt) € Q (n - ¢). The
proof of the tighter lower bound is substantially more involved.

5 Bandwidth Hardness of Candidate iMHF's

In this section, we provide lower bounds on the bandwidth hardness on the family of graphs generated by
Argon2i [BDK15], aATSample, and DRSample [ABH17]. Given a DAG G = (|n], E), a target set T C [n] and
red/blue subsets B, R C [n] with |R| < m we let rbpeb/ (G,m, T, B, R) denote the red-blue cost to place red
pebbles on a target set T starting from an initial red-blue pebbling configuration B, R.

5.1 Analysis Framework

We follow a similar strategy for each candidate construction by defining a target set T; = ((i — 1)/, icf], and
analyzing the structure of the DAG to lower bound the following quantity for that DAG:

i B’| ¢y, + |ancestorsq_p_p (T}
REcigiriem (21T e-r-p(T)] &)

We show in Theorem 5.2 that this quantity suffices to lower bound the bandwidth hardness. Intuitively, we
can think of B (resp. R) as the initial set of blue (resp. red) pebbles on the graph when we start to pebble
the target interval T; and B’ C B as the set of blue pebbles that will be converted to red pebbles to help
pebble the target interval T;. If a node v is in ancestorsg_ gr—p/(T;) then this node will need to be repebbled
(at cost ¢,.) before we can finish pebbling T;. We will use Lemma 5.1 to help prove Theorem 5.2.

Lemma 5.1. VT, B, R C [n] such that |R| < m we have

rbpeb! (G, m, T, B, R) > Inin (|B| ¢y + |ancestorsg_r_p/(T)| c.),

where ¢y, is the cost of a blue move and ¢, is the cost of a red move.

Proof. Let P = (Bg, Ro),(B1,R1)...,(Bt, Ry) denote a legal red-blue pebbling sequence given starting
configuration By = {v € B : 3j < tw € R;} (e.g., By is the subset of all blue pebbles in B that we will
use at some point during the pebbling) and Ry = R. By construction of By the pebbling contains at least
By blue moves at cost |Bg|¢p. Similarly, we remark that we must place a red-pebble on all of the nodes in

23

ancestorsg_g—p/(T) at some point. Thus, we have at least |ancestorsg_gr—_p/(T)| ¢, red-moves. It follows
that
rbpebl (G, m, T, B, R) > Inin (|B'| ey + |ancestorsg_r_p/(T)| ;) -

O

Theorem 5.2. Let G = ([n], E) be any DAG such that (j,j + 1) € E for each j < n, let ¢ be a positive
integer and let T; = ((i — 1)l + 1, icl],

L%]

bpebl (G, m) > i B torse_p—p (T3)| cr) -
rbpeb" (G, m) > 1 R,B/g[(irjlll)riz]:|R|§m(| | ey + |ancestorsg_g—p/ (T3)|)

2y

?

To prove Theorem 5.2, consider an optimal red-blue pebbling and let ¢; denote the first time we place a
pebble on node icf. For each i, we use Lemma 5.1 to lower bound the red-blue cost incurred between steps
ti_1 + 1 and t;. See Appendix B for more details.

As expected, if m = n then we have red-blue cost at most rbpebH(G7 m) < ne, for any graph G. Thus,
we require some upper bound on m to establish lower-bounds for red-blue pebbling cost.

5.2 Underlying DAGs

We now describe each of the underlying DAGs whose energy complexity we analyze.
The underlying graph for Argon2iB [BDK16] has a directed path of length n nodes. Each node ¢ has

parents ¢ — 1 and r(i) = ’VZ (1 —]’\‘,—22)—‘, where N > n (in the implementation of Argon2iB we have N = 232)

and z is chosen uniformly at random from [N]. See Algorithm 3 in Appendix A for a more formal description.

While Argon2iA (v1.1) is an outdated version of the password hash function it is still worthwhile to study
for several reasons. First, the uniform edge distribution is a natural one which has been adopted by other
iMHF constructions [BCS16]. Second, it is possible that this older version of Argon2i may have seen some
adoption. Each node ¢ in Argon2iA has two parents: ¢ — 1 and r(i) = 4 (1 — %), where N = 232 and z is
chosen uniformly at random from [N]. Thus, the parents in Argon2iA are slightly less biased towards closer
nodes than in Argon2iB. See Algorithm 4 in Appendix A for a more formal description.

DRSample is a family of graphs G,, with H!C(G) €N (%) with high probability for any G € G,,. Like
Argon2i and Argon2iB, the underlying graph for DRSample has a directed path of length n nodes. Each
node ¢ has parents ¢ — 1 and (i), but the distribution for r(¢) differs greatly from Argon2i and Argon2iB.
Roughly speaking, DRSample samples an index j uniformly at random from [1,log], an index k uniformly
at random from [1,27], and sets r(i) =i — k. See Algorithm 1 in Appendix A for a more formal description.

A close relative to DRSample, aATSample [ABH17] is also a family of graphs G,, with IIl.(G) € Q (n?)

logn

with high probability for any G € G,,. aATSample modifies DRSample by starting with a copy of DRSample
on n/2 nodes and appending another directed path with § nodes that strategically connects to the first half
of the graph so that the resulting cummulative pebbling complexity is high. The construction is parametrized
by a constant ¢ > 0 which specifies how nodes from the second half of the graph connect to nodes in the
first half of the graph. See Algorithm 2 in Appendix A for a more formal description.

5.3 Argon2i

Let G be a random Argon2iB graph generated. A key property that we will use is for any j < i — 1 we
have Pr[r(i) = j] > 5~ and the selection of r(i) is independent for each node 4. Similarly, for Argon2iA we
have Pr[r(i) = j] > . This will be sufficient to lower bound the red-blue pebbling cost of Argon2iA and
Argon2iB.

Lemma 5.3. Let G be a random Argon2iB (resp. Argon2iA) graph with n nodes then for any 1 < j <
i — 1< n we have Pr[r(i) = j] > 5 (resp. Pr[r(i) = j] > 1).

= 3n

24

The proof of Lemma 5.3 is implicit in [BZ17]. For completeness we include the proof in the appendix Ap-
pendix B.3.

Lemma 5.4. Let m < Cn'~¢ for some constants C >0 and 0 < e <1. Let i > % and let T = [i,i + { — 1]
be an interval of length £ > 1500n'~¢. Then a graph G generated by Argon2iB or Argon2iA satisfies the
following with high probability:

(|B’| ¢p + |ancestorsg_r_p:(T)| ¢;) > min (C’n1 Cp, —cr> .

min
R,B'C[i—1]:|R|<m. 24

Proof. We first consider casework on the size of B’. If |[B’| > Cn'~¢, then the claim trivially holds as we have
|B|cp, > Cn'=¢ - cp. Otherwise, we have |B’| < Cn'~¢, in which case |[RU B’| < |R| + |B'| < m + Cn'~¢ <
2Cn'~¢ since |R| < m. We then lower bound |ancestorsg_gr_p/(T)| ;.
Partition the nodes in G into 3 intervals Iy, I, ... where I; = [(j — 1)k +1, jk] of k consecutive nodes for
a parameter k = 1%~ For each interval I; we let L; = [(j — 1)k + [k/2] +1, k] (resp. Fj = [(j—1)k+1, (j —
1)k + [k/2]] denote the last half (resp. first half) of this interval. Now for each j € T define the random
variable X; = 1 if for some ¢/ < g we have r(j) € Ly and for all prior nodes i < j' < j in the interval T" we
have r(j") ¢ E;; otherwise X; = 0. Intuitively, X; = 1 if the edge r(j) is connected to (the second half of) a
new interval. Let By = {¢' : |I;; N (B'UR)| > 1} be the set of intervals that contain some node in B’ U R
and let X =3 7 X Observe that there are at least X — |By| —m > X —2Cn'~¢ intervals I;; such that
(1) the interval I;s contains no node in B’UR i.e., I;; N (B’UR) = {}, and (2) there is an edge (r(j), j) with
j € T and r(j) € Ly. For each such interval I;; the entire interval Fj, is contained in ancestorsg_pr_p/ (1)
because the graph G contains all directed edges of the form (i,7 + 1) for i < n.
Thus,
o k
|ancestorsg_p_p/ (T)| > (X —2Cn'~°) 5 -
We now argue that X > min{ 7, 550} with high probability. To see this observe that if X;+...+X; 1 < g
then there at least ;- of the intervals I1,...T1 2 are still “uncovered” and for each uncovered interval I;; we
have

, [Fi| K
P Fy] > —
() € Fl2 50 2
for Argon2iB and for Argon2iA we have
. |Fy | k
P Fy] > > .
() e el 2 E0 >
Thus, for Argon2iA we have
n k n 1
= > o >
Pr X, 1‘X+ +X“-41J—2nx4k—24
and for Argon2iB we have
k n 1
P[X»:l‘Xi X <7}>7 no_ 2
" L T e R T Y

Since f+ =3Cn'~¢ < % we have min{ ., %} =1

Concentration bounds imply that, except with negligible probability, we have _jer X; >3Cn'~c. To
formalize the concentration bounds we can define new random variables Y; = 1iff X; = 1lor Xi+.. .+ X1 >
15+ Observe that X > - ifand only if Y =}, Vi > 4 so it suffices to upper bound Pr[Y < f]. We can
apply concentration bounds to upper bound Pr[Y" < 4] (e.g., see Generalized Hoeffding Inequality [ACP*17,
Claim 7)) because Pr[Y; = 1| (Y;,...,Y;_1) = (yi,...,yj—1)] = o for all prior outcomes y;, ..., y;—1 € {0,1}.
It follows that (whp) X —2Cn'~¢ > Cn'~¢ and

torsq_r_p/(T)| > Cnt~¢ = = — .
lancestorsg_r—p/(T)| > Cn 2 94

25

Reminder of Theorem 1.4. Let G be a random Argon2iB (resp. Argon2iA) graph . Then there exists
constants C,C" > 0 so that for any 0 < € < 1 and for all m < C'n'~¢, with high probability,

rbpeb! (G, m) > C - min(ney, n'*ec,.).

Proof of Theorem 1.4: Set £ = 150C"n'~¢ so that 7 = Qn°). Applying Lemma 5.4 to each of the
disjoint % intervals in the second half of graph G, the theorem follows from Theorem 5.2. a

5.4 DRSample

For DRSample [ABH17] we rely on Lemma 5.5 to establish our main lower bound on the red-blue pebbling
cost.

Lemma 5.5. Suppose m = O (n”) for some constant 0 < p < 1 and i > 5. Let T = [i,i +{ — 1] be an
interval of length £ > 16m/(1 — p). Then a graph generated by DRSample satisfies the following with high
probability:

1-— 1-—
Rg[i—nll]i:lllngm B/Iél[iiril] (|B’| ey + |ancestorsg_r_p/(T)| ¢;) > min <(8p)£cb, ((16p)€) ”ESZECT>

Using Lemma 5.5, whose proof appears in Appendix B.2, we have:
Reminder of Theorem 1.3. Let G be a graph generated by DRSample or aATSample and 0 < p < 1.

Then there exists constants C,C’" > 0 so that for all m < C'nP, with high probability,

rbpeb! (G, m) > C - min (n <y, 322 c,.))

Proof of Theorem 1.3: Applying Lemma 5.5 to each of the disjoint g, intervals in the second half of
graph G and observing that ¢ = O (n*), it follows from Theorem 5.2 that the cost is lower bounded by the

- (1—p)Lcy, n _ (1=p)lcy n n __ 3/2—p/2
minimum of === x & = Q(nc,) and % 2 x & =0Q(n)

rbpeb! (G, m) > min (Q(n)cb, Q(nS/z_p/Q)cr) .
a

We also give an alternate bound for DRSample when the cache has size m = O (n”/logn) forany 0 < p < 1
in Appendix B.2 — see Theorem B.2. On the positive side the alternate bound applies when m is larger, but
the cost terms in the lower bound are slightly weaker i.c., rbpeb! (G, m) > min (Q2(n/logn)cy, n?/(mlogn))).
We remark that we cannot hope to optain meaningful lower bounds for m = w(n/logn). In particular, Blocki
et al. [? | gave a sequential black pebbling strategy for DRSample which uses space at most Cn/log N and
time at most n. Thus, if m > Cn/log N this pebbling corresponds to red-blue pebbling strategy that uses
no blue pebbles and has cost nc,.

5.5 aATSample

The first n/2 nodes in a aATSample DAG [ABH17] form a copy of DRSample. Thus, our lower bounds from
Section 5.4 also apply to aATSample. For aATSample we can prove an additional lower bound which applies

n
logn

to establish our additional lower bound in Theorem 1.2.

even when m = O by utilizing the structure of the last n/2 nodes. Specifically, we rely on Lemma 5.6

26

Lemma 5.6. Let i > 4 and T = [i,i + { — 1] be an interval of length { = -—. Then for any parameters

logn *
c>1andm< a graph generated by aATSample(n, ¢) satisfies the following property:

_n
16¢clogn

n n
i B’ t —r—p' (T >min (| ——¢p, =
R,B’g[?illl]l:|R|§m (IB'| ep + |ancestorsg_r—p/(T)| ¢;;) > min (16010gncb’ 86,«)

We now use Lemma 5.6, whose proof appears in Appendix B.1.

Reminder of Theorem 1.2. Let G be a graph generated by aATSample. Then there exists constants
C,C" > 0 so that for all m < £

logn’

rbpeb! (G, m) > €’ - min(n - ¢, (nlogn)ec,),

holds with high probability.

Proof of Theorem 1.2: Applying Lemma 5.6 to each of the disjoint logn intervals in the second half of
graph G, the theorem follows from Theorem 5.2. O

6 Bandwidth Hardness of scrypt

In this section, we prove an unconditional tight lower bound on the bandwidth hardness of a data-dependent
MHF called scrypt [Per09], by analyzing the energy cost of its core subroutine ROMix (see Definition 6.1)
in the parallel random oracle model. Specifically, we prove Theorem 1.6.

Reminder of Theorem 1.6. Whenever 4logn < w, ¢ < 2w/?0, 1= Cp > ¢p, and € > 2(exp (—%) +

m

332w 4 gn22=w 4 2=mw/5) the following statement holds in the parallel random oracle model:
) q g D

ecost, ((scrypt,,,m - w) >

The ROMix construction is shown in Definition 6.1. We abuse notation slightly and refer to this function
as scrypt(X).

Definition 6.1. [ACP" 17] For a hash function H : {0,1}* — {0,1}*, input x € {0,1}*, and parameter
n €N, scrypt? computes values Xo, X1, ..., Xn_1, Y0, Y1, ..., Yy, and outputs Y, as follows:

[] Xo =x. X1 = H(Xi_l) fOT"i =].,...,’I‘L* 1.
L] YO = H(Xn—l) }/l = H(}/i—l @X}/i71 mod n) fOT 1= 1, ey T

To bound the expected energy cost of scrypt,,, we study the energy cost of each single execution trace
running by an adversary algorithm to compute scrypt,,. Unlike previous sections, we consider a deterministic
adversary algorithm Agr where the adversary algorithm’s internal randomness R is fixed in Apg to simplify
the proof. Given an input x and a random oracle H, we define the execution trace determined by Ag, H, and
x to be Tracea,, u(z) = Trace s g u(z). This simplification is without loss of generality because we quantify
over all random coins R and inputs z. In particular, for any algorithm A, input x and any R such that Ag
computes scrypt,, correctly with probability € > 0 (over the choice of random oracle H), we can argue that
cost (Trace 4,1 (z)) = Q (min{cyn, nc, /m}), except with probability € — pu(w) for some negligible function
-

We first make a couple basic observations about the energy cost of computing scrypt. The natural
sequential evaluation algorithm runs in time 2n and incurs at least n(1 — m/n) = ©(n) cache misses in
expectation. Thus, the total cost is O (nc, + ncp). Similarly, we can define an evaluation algorithm that
avoids storing labels in RAM memory entirely (i.e., to avoid cache misses). Instead the algorithm stores
O (m) labels Xos Xn/m> Xan/m, -+ > Xn in cache. To compute Y; we must recalculate Xy, ,, which can be

27

accomplished using ©(n/m) sequential calls to the random oracle (red moves). The total cost of computing
scrypt,, in this way (without cache) would be © ((n?/m)c,) in expectation. Notice that as the ratio n/m
increases the cost of the cache-free evaluation algorithm quickly exceeds the cost of the naive evaluation
algorithm.

In our analysis we will assume that ;- - c. > ¢,. Theorem 6.2, our main result in this section, shows
that if n/(4m) > ¢p/c, then any algorithm in the parallel random oracle model has energy cost at least
Q (ne, + nep) ie., scrypt is maximally memory hard. If n/m < ¢,/c, then an attacker would prefer to
use the cache free evaluation algorithm and scrypt is not maximally bandwidth hard for these parameter
settings. However, in practice we would expect that our condition n/(4m) > ¢/c, holds e.g., ¢ /¢, = 250
[RD17], n = 220 m = 2'°. We make several other reasonable assumptions about the parameters n,w and g
(#attacker random oracle queries) in our analysis i.e., we assume 4logn < w, ¢ < 2w/20,

Theorem 6.2. For any input v € {0,1}" and n > 2, if {~ - ¢, > ¢ and Al(z,n) outputs Y, =
scrypt (x,n) correctly with probability at least €, taken over the choice of the random oracle H, then
with probability (over the choice of H) at least € — exp (—%) — %n32_“’ — qn22=w — 27mw/5 e have

cost (Trace 4, (z)) > % .

Theorem 1.6 is a corollary that can be derived directly from Theorem 6.2, since ecosty ((scrypt,,, m-w) >
(6 — exp (—%) — %n32_“’ —qn?27" — 2_mw/5) -HE > §- 5%, where we assume € > 2(exp (—%) + %n32_“’ +
qn?2~"4+27"w/5) Theorem 1.6 implies that any algorithm A that always computes scrypt’ (z,n) correctly
has expected energy cost at least E [cost(Traces, m(r))] > %3, where Ag(x) := A(x; R) and the expectation
is taken over the selection of A’s random coins R. Similarly, an algorithm that only computes the answer
correctly half of the time has expected energy cost at least IE [cost(Trace, m(z))] > %3

We start the proof with considering the ways an attacker might hope to compute scrypt (z,n). We ex-
pect that any algorithm that computes the output Y;, correctly must first compute the labels X1, ..., X,,_1, Yo,
Y1,...,Y, in order i.e., if j > i we expect that X; (resp. Y;) will appear as the output of a random oracle
query before X; (resp. Y;) and we expect that all X;’s appear before any Y;. However, if the attacker is
lucky some of the labels might appear out of order and we will not be able to lower bound the attacker’s
cost e.g., if Y; happens to be the output of some random oracle query before Y;_; appears for the first time.
We introduce two bad events “Collision” and “Wrong Order” to analyze (and upper bound) the probability
that the attacker gets lucky.

Notation: We define S = |H|, where H is the set of all possible random oracles H. We will use a
superscript H on a label to indicate that the label is generated by Af. We may omit the superscript H
when it is clear which random oracle H is used to generate this label. Also for simplicity, we abuse notation
slightly and refer to Ag as A, and Trace, m(x) as Trace4 m(x).

Collision. For each 0 < ¢ < n, we define the set COLLISION; C # such that a random oracle H €
COLLISION; if and only if there are collisions among the labels Xo, X1,7 ..., Xt TH TiH as input queries
to H. (Denote TkH = Y,ﬂl & XH forall 1 <k <iand T = X7 |.) According to the definition,

H
Y1, modn

we have COLLISIONy C COLLISION; C --- C COLLISION,,.

Wrong Order. For each 0 < i < n, we define the set WRONGORDER; C H such that a random oracle
H € WRONGORDER,; if and only if there exists & < i such that ka_IH = YkH &) X{,{H appears as an input
k

query to H earlier than or in the same round of 7). According to the definition, we have WRONGORDER, C
WRONGORDER; C - - - C WRONGORDER,,.

Alwen et al. [ACP17] proved the following two results about the size of the sets COLLISION,, and
WRONGORDER,,, which will be useful for our analysis.

mod n

Lemma 6.3. [ACP" 17, Claim 15] |[COLLISION,| < S - 3n327v,

28

Lemma 6.4. [ACP" 17, Claim 18] |WRONGORDER,, \ COLLISION,| < S - gqn?2~v.

To prove Theorem 6.2, we will show that the energy cost of an execution trace in which A correctly
outputs scrypt (z,n) is at least “t with a high probability over the choice of the random oracle H. Before
we further describe the proof, it will be helpful to introduce a special way to sample a random oracle H

uniformly at random.

Sampling H. Intuitively, an easy way to construct a random oracle H is randomly choosing one from the
set ‘H of all random oracles. To prove our main result, it will be helpful to think of H as being sampled in a
different (but equivalent) way as suggested by Alwen et al. [ACPT17]. In particular, Alwen et al. [ACPT17]
iteratively define a sequence Hy, Hy, ... of random oracles and proved that each individual H; (when viewed
alone) can be viewed as a uniformly random from H. Specifically, we define Hy, ..., H,, as follows:

(1) Choose oracle Hy uniformly at random.
(2) Choose challenges cq, ..., ¢,, uniformly at random in {0,1,...,n — 1}.
(3) Construct Hy, ..., H,, in order. For i < n:

(a) If H; € COLLISION,, let H;11 = H;.

H; .
(b) If H; ¢ COLLISION;, let H; 1, = H; except that H, i(T") = LYiTJ + cip1 = YiHlﬂ, where
" =Y o X,

mod e and the superscript H; shows the value is generated using random
—1
oracle H;. For simplicity of presentation we will assume that n is a power of 2 so that we can

avoid rounding issues.

Note that if H; ¢ COLLISION; U WRONGORDER, for all ¢ < m, then Trace 4 m, (x) is identical to Trace 4 m,(x)
until the time when T} first appears as a query to the random oracle. Alwen et al. [ACPT17] gave a simple
inductive proof of this claim. While our notion of an execution trace is slightly different (due to the presence
of a cache) we remark that the exact same argument carries over. This observation will be useful later.

To evaluate the energy cost of an entire execution trace Trace 4 g (x), we divide it into n partial execution
traces and lower bound the (expected) energy cost of each partial execution trace. See explanation below.

Partial Trace. The following notion of a partial trace will be useful in our security proof. Given a trace
Trace s, u(z) = {(05,&;, R;, S5, Qj)}z‘:l and a label index i # n, we use t; to denote the first round in which
T, =v" o Xy
oracles H causel that T;41 is first queried before T; (or that T; is never queried in which case t; = 00), which
allows us to define the partial trace Trace 4 m:(x) = {(0},&;, R;, S;, QJ)};ZT;I as the execution trace between
rounds ¢; and ¢,y for t;41 > t;. When t; < t;41 # oo for each i < n (which is true for H ¢ WRONGORDER,,)
we have

mod n dPPears as a query to random oracle H. Lemma 6.4 prove that only a few random

n—1
cost(Traceq, g (z)) > Z cost(Traceq, i i(x)) -

i=0
Lucky Partial Trace. We say that the partial trace Trace4 () is “lucky” if cost(Trace m i(x)) < .
We remark that cost(Traces m ;(x)) > (tit1 — t;)cr as there is at least one query to the random oracle in
each round. Similarly, if Zﬁ;ﬁl NBits(S;) > w/4 bits are transferred between memory and cache during
Trace s, g ;(x) then we have cost(Trace 4 g g(x)) > cp/4. Thus if Trace s g ;(z) is “lucky”, then at most w/4
bits are transferred between memory and cache while ¢;,1 —¢; < ﬁ' Next, we will use concentration bounds
along with an extractor argument to show that for almost all random oracles, at least 7 of the partial traces
in the entire trace are not lucky. Then total energy cost of such a trace is at least
ncy

n ¢
t(T > t(T) > L. e
cost(Traceq, g (z)) > Z cost(Trace 4, m,i(x)) > 1 4 16

i:Lizl

29

To analyze the energy cost of a partial trace Trace s g (), we define B; C [n] be the set of indices k of
the labels X}, that appear “out of thin air” during the following simulation:

(1) Give a random oracle H; € H which is chosen uniformly at random in advance. H; is chosen using
Hy,cq, ..., c; as we describe in the paragraph of “Sampling H” above.

(2) Define n random oracles H;y1,0, Hit1,1, -, Hit1,n—1. For each j < n, let H;y1 ; = H; except that

H;)
Hiq (T = LY—J +j= YiHZ“. Intuitively, H;41 ; is “programmed” to ensure that X is required

n
to compute the next label. Consider ¢; to be the initial round. For each j < n, the extractor simulates
in parallel the process of running A with random oracle H;1 ; by running 4 with random oracle H;
H;
and replacing the output of query T/ (i.e. ;%) with LY |+7.

n

(3) Note that H;4q ; (for j < n) only differ from H; at the query T;. Since ¢; is the first round that T;
is queried, the execution traces of H;yq ; (for all j < n) till the round ¢; are the same, as well as the
initial states at ¢;.

(4) Stop simulating Afi+15 when at least one of the cases below happens:
(a) X is first queried.
(b) Tﬁﬁ“’j is first queried. (In this case, X, can be obtained by computing X; = ﬂiﬁ“’j QY1)

(c) The algorithm transfers more than % bits between cache and memory.

(5) Note that the total rounds in simulating A”i+17 (for any j < n) is no larger than ¢;11 —¢;. (¢; and
t;+1 here means the t; and ¢;;1 defined in the execution trace of AH”U.)

If (during the above) simulation, the label X appears as an input to a random oracle query before it
appears as output, then k € B;. We can use an extractor argument to upper bound the size of |B;|. In
particular, our extractor will be given a hint of size |B;| (2 logn +logg+ 1+ “z’) + mw and for each node
v € B; our extractor will output the pair (X,_1, H(X,_1) = X,) without ever querying the random oracle
at X,_1. If | B;| > 8m for most of the traces, then we obtain a contradiction as any extractor should succeed
with probability at most 2~ |BilwHlBil(2logntloggti+g)+muw 1.

To accomplish this task, we will give the extractor a hint that includes the initial state of A (necessary
for simulation), the set B; and for each v € B; the challenge j, s.t. X, appears out of thin air during
execution of Afi+15v (as well as the index of the relevant query where X, appears out of thin air). The hint
also includes an encoding of the messages passed between cache and memory during each relevant execution
AHi+1.5v . In more detail, the hint given to help the extractor consists of the following components:

(1) The set B; is given as a hint to denote the indices that form the string that the extractor will ultimately
predict. This component of the hint is | B;|logn bits.

(2) For each v € B;, the challenge j, for which label X, appears out of thin air in the execution trace of
Ao . Tracea r.H, ;, 4(x). If there are multiple values of j, for which X, appears out of thin air
we break ties by selecting the challenge j, for which the label X,, appears out of thin air in the earliest
round. This component of the hint is at most |B;|logn bits.

(3) For each X, v € B;, the index of the first query z, in which X, appears out of thin air in the execution
trace of AHisv ie. Traceq g, i(¢). This component of the hint allows the extractor to extract the
random string X,,, and has size at most |B;|log ¢ bits, where ¢ is the total number of queries made by
the attacker.

(4) For each X, v € B;, when running Afi+13v the extractor needs one bit indicating whether X, first
appears as a query by itself or as part of the query Tﬁ? biv = X, @ YiHi“’j“ In the latter case the
extractor needs to obtain X, by computing X, = Tizi1+1"j" @ Y;H”””. The size of this component of

the hint is at most | B;| in total.

30

(5) The cache state at ¢; is given as a hint to the extractor to simulate the attacker beginning at time step
t;. Since the cache has size m, each containing w-bit words, the size of this component of the hint is
at most mw bits.

(6) For each v € B;, the hint includes the messages passed between cache and memory during rounds
[ti,ti+1) of execution trace of AHijo where 7, was the index of the challenge for which X, appears out
of thin air. Since we have restricted our attention to execution traces in which the attacker transfers less
than 7 bits between cache and memory when computing a challenge, then the size of this component

of the hint is at most % bits in total.
The total size, in bits, of the hint is at most

B;|lw w
|B;|logn + |B;i|logn + | B;|log ¢ + | B;| + mw + % = |B;| (210gn+logq+ 1+ Z) + mw
To know in which cases |B;| < 8m, we first consider the cases of |B;| > 8m. The first case is H; €
COLLISION; U WRONGORDER,;. The second case is that the extractor successfully predict 8m labels. We
define the set of random oracles in this case to be PREDICTABLE. Then we have |B;| < 8m for all H; ¢
COLLISION; U WRONGORDER; U PREDICTABLE. The set PREDICTABLE is formally defined below.

Predictable. We define a set PREDICTABLE containing all random oracles H for which there exists a hint
with length |B;| (2 logn+logg+ 1+ 'f) + mw such that |B;| > 8m, i.e. the extractor can correctly output
at least 8m labels among Xi, ..., X,,—1 using this hint without querying them.

Lemma 6.5. [PREDICTABLE| < & -27"w/5,

Proof. Since the number of bits we want to predict is 8mw, the size of the hint is |B;|(2logn +logq+ 1 +
7) + muw, using Lemma 3.1 we can bound the size of PREDICTABLE:

|PREDICTABLE| <S. 2—|Bi|w+(\Bi\(210gn+10gq+1+’4i)+mw) <S. 2—8'm'w+(8m~(2‘%+;—‘(’)+1+%)+7er) <S- 2—m,w/5.

The second inequality holds under our assumption that 4logn < w, g < 2w/20, O

Lemma 6.6 says that the probability that our partial execution trace is “unlucky” is at least % This
holds even if we condition on any Hg,cq,...,c; choice of prior challenges so long as H; is not in our bad set
of random oracles (H; ¢ COLLISION; UWRONGORDER; UPREDICTABLE) — these conditional probabilities allow
us to apply concentration bounds in the next step of the proof.

Lemma 6.6. For any i < n, any Hy,c1,...,¢; s.t. H; ¢ COLLISION; U WRONGORDER; U PREDICTABLE,

tit1—1
n .
Pr|tip1—t; > 167777, V Et NBltS(Sj) > w/4 Hy,c1,...,¢| >
J=tq

1
27

where the probability is taken over the choice of ¢;41 € {0,...,n — 1} and 2521:1 NBits(S;) > w/4 means
more than w/4 bits are transferred between cache and memory between rounds [t;,tiy1).

Proof. Since H; is constructed using Ho, c1, ..., ¢;, the probability of ¢;11 —; > 15— under the condition of
Hy,cq,...,c; is equivalent to the probability under the condition of H;.

Given our randomly sampled challenge j € {0,...,n — 1}, we let t;,;, := minyep,u<;j{j — v} denote the
time cost of computing X, given only the labels X, for each v € B. Then for any H; ¢ COLLISION; U
WRONGORDER, U PREDICTABLE, either Y%} "' NBits(S;) > w/4 or t;11 —t; > tmin. We will show that for all

J=ti
Hy,cq,...,c; such that H; ¢ COLLISION; U WRONGORDER; U PREDICTABLE, we have

n 1
Pr [tmm 2 Tom ‘ H07cla"'aci:| 25

31

where the probability is taken over the selection of ¢; 1. We conclude that Pr[t; 1 —t; >
’LU/4 ‘ Ho, Cly.eny Ci] Z %

Note that |B;| < 8m for all H; ¢ COLLISION; U WRONGORDER; U PREDICTABLE, so we can bound the
probability as Pr [¢

16m

min 2 Toe ‘Ho,cl, G| = Pr [tmm > SBAD ‘ Hy,cq, ...,ci] We denote the elements
in B; to be by, ..., b‘Bi‘, where by < --- < bg,|. Given the labels that appear as inputs to the random oracle
before appearing as outputs, we partition the label indices into |B;| + 1 intervals: [0,b1),[b1,b2), ..., [bB,|, 7).
Let by = 0,b;5,;4+1 = n. Then for each challenge index c¢ in the interval [bg,bry1) for 0 < & < [By,

if m > br4+1 — bg, then the attacker can compute any challenge X, using time less than m;
otherwise, the attacker needs ¢ — by, > m time to compute challenge X, for ¢ € [bk + m, bk+1).
This means, for each interval [bg, bgt1) (k= 0,1, ...,|B;|), there are max (07 bp+1 — b — m challenges
that need at least m time to compute. Therefore, we have:
Pr |:tm7.n = 16 ‘ HOacla "~aci:| Z Pr |: min W HOacla "'acz:|
Sy max (0,bess = b = e) Sk (ke = b =) m— 0= (1Bil 4+ 1) g
_ k=0) 2(|B;[+1) N k=0 2([B:[+1) _ i 2(0B:[+1) :1
n - n n 2
Since for each case of tpin > 15, either t;11 —t; > tyip or Zt”l NBits(S;) > w/4, we have
Pr |:ti+1 t; > 16m V Etprl NBitS(Sj) > w/4 ‘ Hy,cq, ..., 1:| >Pr|t [min = ﬁ ‘ Hy, c1, ...,Ci] > % O]

Indicator L;. For i < n, let L; € {0,1} be an indicator random variable for the " partial execution
trace Trace g ;(z). In particular, we set L; = 1 if Trace s m(x) is not “lucky” given random oracle H; or
H; € COLLISION; UWRONGORDER; UPREDICTABLE; otherwise L; = 0. Next, we will first bound the probability
of L; = 1 for each i < n, and then use concentration bounds to show that > ., 'L; > 2 is true for most
random oracles.
Lemma 6.7. For anyi<mn, Pr[L; =1| Lo,...,Li—1] > %
Proof. Consider an random oracle H; constructed uniformly at random using Hy, c1, ..., ¢;.

If H,’ S COLLISIDNi U WRONGORDERi U PREDICTABLE, Pr [Lz =1 ‘ LO7 ...7Li_1] =Pr [Lz = 1] =1.

If H; ¢ COLLISION; U WRONGORDER; U PREDICTABLE, L; = 0 means Trace4 g ;(z) is a lucky partial trace;
L; =1 means Trace4 g () is not “lucky”. Note that if TraceA mi(x) is “lucky” then at most w/4 bits are
transferred between memory and cache while ¢;,1 —t; < 4C . Also, we assume 4 - ¢ > ¢p at the beginning
of this section. Then by Lemma 6.6 we can bound the probablhty of L; =1 as below:

tip1—1
Pr [Lz =1 ‘ H(),Cl,...,Ci] > Pr tiv1 —t; > 46717 \Y Z NBitS(Sj) > w/4 Ho,Ch...,Ci
" Jj=t:

tiy1—

> Pr tiv1 — t; ZW\/ Z NBltS >'LU/4 Ho,Cl,...,Ci >

| —

Define Hionsistent as the set of all {Hg, ¢y,...,¢;} consistent with Lo, ..., L;—1. Then we have:

Pr [Lz =1 ‘ LQ7 ...7Li_1] Z min Pr [Lz =1 ‘ Ho,Cl, ~-~7Ci] Z
{Ho,c1,...,¢; }EH consistent

N | =

Next, we will use concentration bounds to show that Z?;Ol L;, > % is true for most random oracles.

32

Vit T NBits(S;) >

Lemma 6.8.

Pr

Si< ;j <o (-2)

where the probability is taken over the choice of random oracle H with an arbitrary fized input X .

Proof. Lemma 6.7 proves that Pr[L; = 1| L, ..., L;—1] > 3 for any i < n. Noting that the random variables
Ly, ..., L,,—1 are not independent, we define independent Bernoulli random variables Ly, ..., L), _; with Pr[L] =

1] = & Then Pr(L] = 1] < Pr[L;=1| Lo,.., Li1] for all i < n. Thus, we have Pr [S02) L; < 2] <

Pr |00 L < %} Using Chernoff bound we have:

n—1 n—1 n—1
YL < Z] < Pr lZL; <E lZL;
=0

1=0 i=0

Pr

: Z] <o (1),

O

Denote E be the set of random oracles such that Z?:_Ol L; > %, SUCCESS be the set of random oracles such
that Trace 4 () outputs Y,, correctly for H € SUCCESS. Note that |E;| < S-exp (—%), and [SUCCESS| > Se.
Then F£4 N SUCCESS N COLLISION,, N WRONGORDER,, N PREDICTABLE is the set of random oracles such that for
each H € E; N SUCCESS N COLLISION,, N WRONGORDER,, N PREDICTABLE, there are at least 3 of the partial
execution traces in the entire trace each of which costs no less than % energy, and thus cost(Trace 4,z (7)) >
Zi:Lizl cost(Traceq mi(x)) > § - 3 = 52.

In the end, we only need to bound the probability of H € E; N SUCCESS N COLLISION,, N WRONGORDER,, N
PREDICTABLE to finish the proof of Theorem 6.2.

Note that E1 NSUCCESSMNCOLLISION, NWRONGORDER,, NPREDICTABLE > |SUCCESS| — |E‘ — |CULLISIONn| —
|WRONGORDER,, | — [PREDICTABLE| > S-(e—exp (—2%)—2n327%—gn?2-*—2-"%/5)_ Since H is chosen uniformly
at random, we have:

Pr [H € E; N SUCCESS N COLLISION,, N WRONGORDER,, N PREDICTABLE]
>€ — exp (—E> — §7132*1“ —gn?2~w —g—mw/5,
8 2
This completes the proof of Theorem 6.2.

Acknowledgements

The authors would like to thank Daniel Wichs for helpful discussion and anonymous reviewers for important
comments that improved the presentation of the paper. The research was supported in part by the National
Science Foundation under NSF Awards #1704587 and #1649515 and #1755708 and #2047272 and by a gift
from Protocol Labs. The views expressed in this paper are those of the authors and do not necessarily reflect
those of the National Science Foundation or Protocol Labs.

References

[AB16] Joél Alwen and Jeremiah Blocki. Efficiently computing data-independent memory-hard func-
tions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815
of LNCS, pages 241-271. Springer, Heidelberg, August 2016. 1, 1.2, 2.1, 4

[AB17] Joél Alwen and Jeremiah Blocki. Towards practical attacks on argon2i and balloon hashing. In
Security and Privacy (EuroS&P), 2017 IEEE European Symposium on, pages 142-157. IEEE,
2017. 1

33

[ABH17] Joél Alwen, Jeremiah Blocki, and Ben Harsha. Practical graphs for optimal side-channel re-
sistant memory-hard functions. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 17, pages 1001-1017. ACM Press, October / November 2017.
(document), 1, 1.2, 3, 2.1, 5, 5.2, 5.4, 5.5, 1, 2

[ABMWO05] Martin Abadi, Michael Burrows, Mark S. Manasse, and Ted Wobber. Moderately hard, memory-
bound functions. ACM Trans. Internet Techn., 5(2):299-327, 2005. 1

[ABP17] Joél Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust graphs and their cumula-
tive memory complexity. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part III, volume 10212 of LNCS, pages 3-32. Springer, Heidelberg, April / May
2017. 1,3, 2.1, 4

[ACPT17] Joél Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro. Scrypt is
maximally memory-hard. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part III, volume 10212 of LNCS, pages 33-62. Springer, Heidelberg, April / May
2017. 1, 1.2, 1.2, 4, 5.3, 6.1, 6, 6.3, 6.4, 6, 6, B.2

[AARNV16] Joél Alwen, Susanna F. de Rezende, Jakob Nordstrm, and Marc Vinyals. Cumulative space in
black-white pebbling and resolution. In Proceedings of the 2016 ACM Conference on Innovations
in Theoretical Computer Science, 9-11 January 2017, Berkeley, California USA, 2016. 1.2, 4

[AS15] Joél Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard func-
tions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 595-603.
ACM Press, June 2015. (document), 1, 1.1, 1.2, 1.2, 3, 3.2, 3.4, 4

[Bac02] Adam Back. Hashcash-a denial of service counter-measure, 2002. 1

[BCS16] Dan Boneh, Henry Corrigan-Gibbs, and Stuart E. Schechter. Balloon hashing: A memory-
hard function providing provable protection against sequential attacks. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASTACRYPT 2016, Part I, volume 10031 of LNCS, pages 220-248.
Springer, Heidelberg, December 2016. 1, 5.2

[BDK15] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Fast and tradeoff-resilient memory-
hard functions for cryptocurrencies and password hashing. TACR Cryptology ePrint Archive,
2015:430, 2015. (document), 5, 3, 4

[BDK16] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: New generation of memory-
hard functions for password hashing and other applications. In IFEFE Furopean Symposium
on Security and Privacy, EuroSE&P 2016, Saarbriicken, Germany, March 21-24, 2016, pages
292-302, 2016. 1, 1.2, 5.2

[BDKJ16] Alex Biryukov, Daniel Dinu, Dmitry Khovratovich, and Simon Josefsson. The memory-hard
argon?2 password hash and proof-of-work function, March 2016. 1.2, 2

[Ber05] Daniel J. Bernstein. Cache-timing attacks on aes, 2005. 1

[BHZ18] Jeremiah Blocki, Ben Harsha, and Samson Zhou. On the economics of offline password cracking.
In IEEE Symposium on Security and Privacy, SP, pages 3553, 2018. 1

[BZ17] Jeremiah Blocki and Samson Zhou. On the depth-robustness and cumulative pebbling cost of
Argon2i. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS,
pages 445-465. Springer, Heidelberg, November 2017. 1, 2.1, 5.3

[DKW11la] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. Key-evolution schemes resilient to
space-bounded leakage. In Advances in Cryptology - CRYPTO - 31st Annual Cryptology Con-
ference, Proceedings, pages 335-353, 2011. 3.1

34

[DKW11b)]

[DL17]

[DN92]

[FLW13]

[GLT79]

[HKS1]

[Liul?7)

[LT82]

[Nakos]
[Per09]

[PHC15]
[RD17]
[Sch83]

[Tov84]

Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time computable self-erasing
functions. In Theory of Cryptography - 8th Theory of Cryptography Conference, TCC Proceed-
mngs, pages 125-143, 2011. 3.1

Erik D. Demaine and Quanquan C. Liu. Inapproximability of the standard pebble game and
hard to pebble graphs. In Algorithms and Data Structures - 15th International Symposium,
WADS 2017, St. John’s, NL, Canada, July 31 - August 2, 2017, Proceedings, pages 313-324,
2017. 1.2

Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Advances in
Cryptology - CRYPTO, 12th Annual International Cryptology Conference, Proceedings, pages
139-147, 1992. 1

Christian Forler, Stefan Lucks, and Jakob Wenzel. Catena: A memory-consuming password
scrambler. Cryptology ePrint Archive, Report 2013/525, 2013. http://eprint.iacr.org/
2013/525. 1

John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The pebbling problem is com-
plete in polynomial space. In Proceedings of the 11h Annual ACM Symposium on Theory of
Computing (STOC), pages 237-248, 1979. 1.1, 1.2, 5, C, C, C.1, C.1, D

Jia-Wei Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In Proceedings
of the 13th Annual ACM Symposium on Theory of Computing, May 11-13, 1981, Milwaukee,
Wisconsin, USA, pages 326-333, 1981. 1.1

Quanquan Liu. Red-blue and standard pebble games: Complexity and applications in the
sequential and parallel models. Master’s thesis, Massachusetts Institute of Technology, Feburary
2017. 1.2, D

Thomas Lengauer and Robert E. Tarjan. Asymptotically tight bounds on time-space trade-offs
in a pebble game. J. ACM, 29(4):1087-1130, October 1982. 1

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. 1

Colin Percival. Stronger key derivation via sequential memory-hard functions. BSDCan, 2009.
1,1.2,6

Password hashing competition, 2013-2015. 1

Ling Ren and Srinivas Devadas. Bandwidth hard functions for ASIC resistance. In Yael Kalai
and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 466—492. Springer,
Heidelberg, November 2017. (document), 1, 1.2, 1.2, 1.2, 6

Georg Schnitger. On depth-reduction and grates. In 24th Annual Symposium on Foundations
of Computer Science, pages 323-328, 1983. 1.2, 4

Craig A. Tovey. A simplified np-complete satisfiability problem. Discrete Applied Mathematics,
8(1):85-89, 1984. D

A Specification of Candidate iMHF's

In this section we give provide detailed descriptions of the iMHF's analyzed in the main body of the paper.
DRSample is described in Algorithm 1, aATSample is described in Algorithm 2, Argon2iB is described in
Algorithm 3 and Argon2iA is described in Algorithm 4. The aATSample construction in Algorithm 2 uses
DRSample (Algorithm 1) as a building block. Intuitively, the subgraph induced by the first n/2 nodes form
a DRSample graph with n/2 nodes and the following n/2 nodes form a path with additional parents selected
from DRSample.

35

http://eprint.iacr.org/2013/525
http://eprint.iacr.org/2013/525

Algorithm 1: An algorithm for sampling depth-robust graphs. [ABH17]
Function DRSample(n € N>3):

V=[]

= {(1,2)}

for v € [3,n] and i € [2] do // Populate edges
| E:=EU{(v,GetParentDRS(v,))} // Get i parent
end

return G := (V, E).

Function GetParentDRS (v,7):

if i =1 then
wi=1—1
else
g« [1, |logy(v)| + 1] // Get random range size.
g:= min(v729/) // Don’t make edges too long.
r«[max(g/2,2),g] // Get random edge length.
end

return v — r

B Missing Proofs

Reminder of Theorem 5.2. Let G = ([n], E) be any DAG such that (j,j+1) € E for each j < n, let ¢
be a positive integer and let T; = ((i — 1)el + 1,icf],

,_
&k

rbpeb! (G, B’ ancestorsqg_pn_p' (T;)| ¢,) .
P m) S e (|1B'[ep + | c—r-p'(Ti)| cr)

I
_

Proof of Theorem 5.2: (Sketch) Repeatedly invoke Lemma 5.1. Consider an optimal red-blue pebbling
and let ¢; denote the first time we place a pebble on node icf. For each i the red-blue cost incurred between
steps t;—1 + 1 and t; starting from some red-blue configuration B; R;. . is at least

i—17 i—1

rbpeb” (G,m,T;, By, ,, Ry,)

> 1 B/ t —R—B’ E T
> B’gl[ﬁl—nl)cé]“ | ¢y + |ancestorsg_r_p: (T})| c/)

> i B’| ¢y + |ancestorsq_p_p/ (T)
S AL e-r-p(T)l &)

To complete the proof we observe that

L&)
rbpeb! (G, m) > Z rbpeb! (G, m, Ty, Bi,_,, Ri,_,) -
i=1

B.1 aATSample

Reminder of Lemma 5.6. Leti > % and T = [i,i + £ — 1] be an interval of length { = . Then

logn

for any parameters ¢ > 1 and m < a graph generated by aATSample(n,c) satisfies the following

—_n
16clogn

36

Algorithm 2: An algorithm for sampling a high aAT graph. [ABH17]

Function aATSample(n,c):

V = [n]

E:={(i,i+1) :ie[n—-1]}

for v € [3,n] and i € [2] do // Populate new edges of graph.
| E:=EU{(v, GetParent®(v,))} // Get i parent of node v
end

return G := (V, E).

Function GetParent®(v,7):
if i =1 then
‘ ui=1—1
end
else if v < n/2 then
u = GetParentDRS(v, 7) // First n/2 nodes form copy of DRSample

[¢]
=)
o

property:

(|B'| ey + |ancestorsg_r—p/(T)| ¢;) > min (nc ncr)

min b,
R,B'C[i—1]:|R|<m 16clogn ' 8

Proof of Lemma 5.6:

We first consider casework on the size of B’. If |B’| > Toclog
Otherwise, we have |B’| < Toelogn» i which case [R U B'| <
|ancestorsg— r—p/ (T')| ¢, under the assumption that [RU B'| < g

Partition the nodes [n/2] into g intervals [1,k], [k + 1,2k],... where & = 2clogn and ¢ > 1 is the
parameter used in Algorithm 2 (aATSample). Observe that for each interval [(v — 1)k + 1, vk| the graph G
contains an edge from some node = € [vk —k/2+ 1, vk] (the second half of the interval) to some node y € T
Let By = {v < g5 :[(v— l)k +1,vk]N(RUB’) # 0} denote the set of intervals which intersect with RU B’.
Clearly, |Bg| < |RU B'| < go1ogm- We claim that if v ¢ By, then every node in [(v — 1)k, vk — k/2] (first half
of the interval) is also in ancestorsg_pr—p/(T"). To see this observe that for each interval [(v — 1)k + 1, vk]
the graph G contains an edge from some node = € [vk — k/2 + 1,vk| to some node y € T and the entire
inverval [(v — 1)k + 1,vk] is disjoint from B’ U R. Thus, we have at least & (2 — |Bi|) = 2 nodes in
ancestorsg_r—p/ (T).

then we trivially have |B'|cy > 157167 Cb-

since |R| < m. We now lower bound

n
8c log n

d

B.2 DRSample

Reminder of Lemma 5.5. Suppose m = O (n”) for some constant 0 < p < 1 and i > %. Let

T = [i,i+ ¢ —1] be an interval of length £ > 16m/(1 — p). Then a graph generated by DRSample satisfies the

37

Algorithm 3: An algorithm for sampling depth-robust graphs. [BDK15]
Function Argon2iB(n € N>2):

V= [v]

= {(1,2)}

for v € [3,n] and i € [2] do // Populate edges
| E:=EU{(v,GetParent(v,i))} // Get i parent
end

return G := (V, E).

Function GetParent (v,i):

if i =1 then

| wi=14i—1

else
N =232 // Set sample range.
g+ [1, N] // Get random range length.
ri= [Z%—sz} // Set quadratic dependency.

end

return v — r

following with high probability:
1—p)t 1—p)\ |/
Rg[i—nll]i:?RISm B/Iél[iiril] (1B s + |ancestorsg— -z (T)] ¢;) 2 min ((8p) b ((16p>) 67}%&)

Proof of Lemma 5.5:

Let T = [i,i + {] where £ > 16m/(1 — p) for some constant 3 < p < 1 and let 7(j) denote the predecessor
of a node j in the graph (besides j — 1) i.e., 7(j) = GetParent(j,2). We first note that if [B'| > < for
the constant ¢ = 1%” then |B'|c;, > %, and we are immediately done. Otherwise, we let b = Ve and
for i < j < i+ 4, let X; be an indicator random variable for the event far(j), which we define to be the
event that |r(j) — r(k)| > b for all k € [i,5 — 1] and r(j) < i. Observe that if far(j) = 1 then either B’ U R
contains some node in the interval [r(j) — b, 7(j)] or these nodes will be contained in ancestorsg_g—p/(T).
In particular, if X = >, X; we have ancestorsg_p_p/(T) > (X —m — |B’]). It remains to lower bound
X. Observe that for any setting of r(i),...,r(j — 1) the set S = U;: [r(y) — b,7(y) + b] has size at most
(2b+1)(j — ¢) and thus Pr[r(j) € 5] is maximized when S = [i — (2b+ 1)(j — ¢),% — 1]. Hence,

Prfar(j)] = Pr[r(j) <i—(j —i)(20+1)]
>Pr[j—r(j) >+ —)(20+1)]
>Prlj—r(j) > (+ (0)(2b + 1)

> Pr j—r(j)>\/;7]

since j <i+/fand b= /5. In the last inequality we assume that n > 64¢ so that b > 1 and £+ £(20+1) <

38

Algorithm 4: An algorithm for sampling depth-robust graphs. [BDK15]
Function Argon2iA(n € N>o):

V= [v]

= {(1,2)}

for v € [3,n] and i € [2] do // Populate edges
| E:=EU{(v,GetParent(v,i))} // Get i parent
end

return G := (V, E).

Function GetParent (v,i):

if i =1 then

| wi=7i-1

else
N =232 // Set sample range.
g+ [1, N] // Get random range length.
ri= [%v] // Set linear dependency.

end

return v — r

40h = Yt

n
5. Hence,

_ log(j) —log v/nl
- log(j)

=1-(3-5) (mir)

- g —o(1) = Q(1).

Pr [far(j)]

>

N —

Let ¢ = % With high probability, X = Z;j:i Xj > cl. Setting ¢ > 4m/c, then with high probability, the
number of ancestors of T'in G — R — B’ is at least

(X —[R] = [B')b = (X —m —|B')b

).
4 640’

for |B'| < <. Thus, either |B’| > < or |ancestorsg_p_p/ (T)| > (%) gz 1t follows that
1 AN
Rg[i—nll]i:?mgm B'rg[iiriu (|B'| cp + |ancestorsg_r_p/(T)| ¢;) > min <620b, <C4> GZECT> .

We now give an alternate bound for DRSample when the cache has size O (n”/logn) for any 0 < p < 1.
It shows that either the pebbling has Q(n) blue moves or there are at least Q(ng_”) red moves. The alternate
bound is incomparable to our prior bound showing that any pebbling either has £2(n) blue moves or at least
Q(n3/2-37/2) red moves. In particular, we cannot minimize the number of blue moves without pay a steep
cost in the number of red moves.

v

a

Lemma B.1. Suppose m = Cn”/logn for some constants C > 0 and 0 < p < 1 and i > §. Let
T = [i,i 4+ £ — 1] be an interval of length £ = 100mlogn. Then a graph generated by DRSample satisfies the

following with high probability:

n
i i B ancestorsg_p_p/ (T > mi (— .)
Rg[ijrll]l:r\lR\gm Bgﬂfiu ([B' e+ a-n-p (T)|¢;) 2 min (mep, 24

39

Proof. Let T be an interval of length £. If |B’| > m then we immediately have |B’| ¢, > mcp,. Thus, in the
remainder of the proof we assume that |B’| < m so that |R U B’| < 2m. Partition nodes in G into intervals
I, Ip,... of length k = 12— = O (n'~?logn) where I; = [(j — 1)k +1,jk]. Let L; = [(j — 1)k + [k/2] +1, jk]
(resp. F; = [(j — 1)k +1,(j — 1)k + [k/2]]) denote the last (resp first) half of the nodes in I;. Now

for each j 6 T define the random variable X; = 1 if for some ¢ < g we have 7(j) € Ly and for all prior
nodes ¢ < j' < j in the interval T we have 7“(') & Ey; otherwise X; = 0. Intuitively, X; = 1 if the edge
r(j) is connected to (the second half of) a new interval. Let By, = {i’ : | N (B’ UR)| > 1} be the

set of intervals that contain some node in B’ U R and let X = > .7 X;. Observe that there are at least

— |Bg| —m > X — 2Cn'~¢ intervals I;; such that (1) the interval I;; contains no node in B’ U R i.e.,
I, N (B’UR) = {}, and (2) there is an edge (r(j),j) with j € T and r(j) € L. For each such interval I;
the entire interval F}, is contained in ancestorsg_g—p/(T') because the graph G contains all directed edges
of the form (i,¢+ 1) for i < n.

Thus,

k
|ancestorsg_g_p/(T)| > (X — 2m) 5 -

We now argue that X > min{ i ﬁ} with high probability. To see this observe that if Xy + ...+
X1 < 4% then there at least ;- of the intervals I,...1 2 are still “uncovered” and for each uncovered
interval IZ/ we have

k
Pr e Fy .
() Iz 2nlogn

Thus, we have
n 1

1< - > .
4k 2nlogn 4k = 810gn

Pr|X, _1‘X1+ X

Thus, in expectation we have E[X] > min{ f}, Slogn} We picked our parameters such that ;- = 3m and

m 4m. We can apply concentration bounds to argue that (whp) we have X 2 = 3m. To see this
we can introduce new random variables Y; such that Y; = 1 if either X; =1 or X1 —I— A X > g

By definition, we have } .., Y; > g if and only if ZjeTXj > 1z We also have Pr[Yj =11y, =
Yiyo - Y1 = yj_1] > @ for all prior outcomes y;,...,y;—1 € {0,1}. We can apply concentration

bounds to upper bound Pr[Y" < 7] (e.g., see Generalized Hoeffding Inequality [ACP*17, Claim 7]) because
Pr[V; =1 (Ys,...,Y-1) = Wi, ¥-1)] 2 g100m0 g for all prior outcomes y;,...,y;—1 € {0,1}. It follows

that (whp) X —2m > m and

k. n
t —r-p(T))>2m=-=—.
|ancestorsg_r—p/()|_m2 54

O

Theorem B.2. Let G be a graph generated by DRSample and 0 < p < 1. Then there exists a constant C > 0
so that for all m < Cn”/logn, it follows that

n2

rbpebll(G,m) > C - min(—— cr)

lo gn mlogn
with high probability.

Proof. Applying Lemma B.1 to each of the disjoint 7 = Wlogn intervals in the second half of graph G

and observing that £ = O (n”), it follows from Theorem 5.2 that
rbpeb! (G, m) > min(Q(n/ logn)cy, Q(n?/(mlogn))e,).
O

We remark that if m = o(n/logn) in Theorem B.2, e.g., m = n/(lognloglogn), then we have %2 = w(ne,)
and rbpebll(G,m) > C - min(g ey, w(ney)).

40

B.3 Argon2i Edge Distribution

Reminder of Lemma 5.3. Let G be a random Argon2iB (resp. Argon2iA) graph with n nodes then for
any 1 < j <i—1<n we have Pr[r(i) = j] > 5 (resp. Pr[r(i) =j] > 1).

Proof of Lemma 5.3: Let 1 < j <i—1<n be given. For Argon2iA the edge distribution for r(7) is
uniform over the set {1,...,i — 2} so for any j < i — 2 we have Pr[r(i) = j] = &5 > 1. In the Argon2iB
edge distribution to determine the value r(i) < ¢ — 1 for the directed edge (r(7),7) we have

i) =i = oo [i(1-55) € G-]

where N > n and the randomness is taken over the selection of x € [N]. Equivalently, r(i) = j whenever

N2 N2
(i—j+1)—>a*>(i—j)— .
7 1

The above probability is minimized when j = 1 and ¢ = n. Thus, it suffices to lower bound Pr[r(n) = 1] > ==.
Observe that

N —[Ny/(n—1)/n]

N
S N—-Ny/(n—-1)/n
- 3N
3 n
1
> — .
- 3n

C Background on the Gilbert et al. Black Pebbling Reduction

Gilbert et al. [GLT79] showed that the minimum space black pebbling problem was PSPACE — Hard by
reduction from the Truly Quantified Boolean Formula (TQBF) problem. They provide a construction from
any instance of TQBF to a DAG G'rgpr with pebbling number 3n+3 if and only if the instance is satisfiable,
where the pebbling number of a DAG G is minp_(p, . p,)epi max;<; ||, the number of pebbles necessary
to pebble G. For our purposes it will be sufficient to describe how their reduction map 3-SAT instance ¢ to
a DAG Gy (observe that a 3-SAT instance can be viewed as a TQBF instance in which all of the quantifiers
are existential).

An important gadget in their construction is the so-called pyramid DAG, whose key property is that any
legal pebbling of a k-pyramid requires at least k pebbles on the DAG at some point in time. A k-pyramid
consists of Z?zli nodes, including k sources and a unique sink node. Formally, a pyramid graph Aj has
nodes V.={v;; : 1<j<k1<i<k—j+1} with k sources v;; for ¢ < k and one sink node vy ;. The
edge set is defined as B = {(v; j,vij4+1) @ k> j > 1} U{(vij,vij41) @ 1 <j<k,i<k—j+1}. Weuse
both A and a triangle with the number & inside to denote a k-pyramid (see Figure 2 for an example of a
3-pyramid). The space complexity of Ay is exactly k.

41

>

ig. 2: A 3-Pyramid.

Fig. 3: A variable gadget G, with z; set to “true” (left figure) and x; set to “false” (right figure). The node
gi—1 actually belongs to G, ,. It is drawn here to illustrate how variable gadgets are connected.

Construction of Gy. Consider a 3-SAT formula ¢ with variables x1, ..., 2, and 3CNF clauses C, ..., C..
For each variable z;, there is a variable gadget G, and for each clause C}, there is a clause gadget G¢;.
Each clause gadget has a sink node p; that is connected to one of the source nodes in G¢, ,, and there is
a special source node py that is connected to one of the source nodes in G¢,. The variable gadget G, is
shown in Figure 3. This gadget in turn is constructed from three pyramid graphs As;11, As;+o and Ag;is.
The remaining nodes in G, are z;, x}, T}, T;, a;, b; and ¢;. While the node ¢; is a source node in G,,, it will
not be a source node in the final graph G, since we will add the edges (g;—1,¢;) for each i > 1 and (pm,, c1)
for 4 = 1. By contrast, the source nodes in the pyramids As;y1, As;y2 and Ag; s will remain source nodes
in the final graph G4. The graph G4 contains a unique sink node g, from the gadget G, .

For each clause C}, there exists a corresponding clause gadget that is a 3-pyramid with sink node p;, as

previously discussed. Suppose the three variables appearing in the clause are y; 1, y;.2, y;.3 € {®1,...,Tn, T1, . ..

and the three source nodes of the 3-pyramid are nodes vj1,v;2,v;3. Then we create incoming edges
(pj—1,vj1) and (y;1,v51) to vj1, incoming edges (y;1,vj,2) and (y;2,v;2) to v;2, and incoming edges
(yj,2,v5,3) and (y;,3,v53) to v;3. Note that we can only pebble the clause gadget C; if there exist pebbles
on nodes ¥, 1,¥;,2,Y;,3, corresponding to assignments for these variables. Finally for the final clause C., we
create an edge between p. and node gy of the variable gadget corresponding to x;.

Any instance of TQBF in which each quantifier is an existential quantifier requires at most a quadratic
number of pebbling moves. Specifically, we look at instances of 3-SAT, such as in Figure 4. In such a graph
representing an instance of 3-SAT, the sink node to be pebbled is g,. By design of the construction, any true
statement requires exactly three pebbles for each pyramid representing a clause. On the other hand, a false
clause requires four pebbles, so that false statements require more pebbles. Thus, by providing extraneous
additions to the construction which force the number of pebbling moves to be a known constant, we can
extract the pebbling number, given the space-time complexity. For more details, see the full description in
[GLT79).

42

,Tn}

C.1 Pebbling Strategy

Gilbert et al. [GLT79] show that the DAG Gy has pebbling number 3n + 3 if and only if ¢ is satisfiable. We
outline the pebbling strategy below as this will be important to build intuition for our modified construct.
We start of by placing a pebble on the sink nodes of every pyramid graph. The graph has 3n pyramid
graphs Aspys, Aspto, ..., Ay where Ag;iq1, Agiyo and Ag;ys are associated with the variable gadget Gy,.
We pebble the pyramid graphs in descending order of size i.e., we first place a pebble on the sink of Ag, 43
using space 3n + 3 and Zfﬁfsz sequential pebbling moves. We then discard all pebbles on As, 3 except
for the sink node and move on to pebble Ag, 5 etc... After the sink of each pyramid has been pebbled we
move each variable gadget to a true/false configuration as shown in Figure 3. We first slide a pebble from
the sink of Asz; 2 to node T;. Next if the variable z; is assigned to be true in the satisfying assignment we
slide a pebble from node z} to z;. On the other hand if x; is assigned to be false we instead slide a pebble
from node T to node T;. Assuming the boolean formula is satisfiable we can now walk all the way across
the clause gadgets to the node gy = p. without ever placing more than 3n + 3 pebbles on the graph.

Advancing a Pebble from ¢;_; to ¢;. We will maintain the invariant that when we reach node ¢;_1
with a pebble we will have 3n — 3i + 3 + 1 pebbles on the graph. The steps to move a pebble from ¢;_; (the
source in Gy,) to ¢; (the sink) depend on whether or not G, is in the true or false configuration. If we are in
the true configuration then we can place a pebble on T; (keeping the pebble on node T for the time being!)
and then we slide the pebble on node ¢;—; to node ¢; followed by nodes b;, a; and ¢;4+1. If instead we are
in the false configuration then we can start by sliding the pebble on node g;_; to node ¢; and then to node
b;. At this point we will need to pause to re-pebble node T, before we can place our pebble on node a;. To
place a pebble on node 7, we will need to re-pebble the pyramid Ag; 1. To ensure we have enough space we
can first discard all pebbles on G, except for nodes b; and z leaving us with a total of 3(n —4) + 2 pebbles
on Gy (including the 3 pebbles on G, for each j > 4). Since 3n + 3 — 3(n — i) — 2 = 3i + 1 we have just
enough available space to accomplish this task. Once we place a pebble on the sink of As; 1 we can slide
this pebble to node T} and then slide this pebble to a;. Now we can slide the pebble on z to z; and finally
shift our pebble from a; to ¢;. Once we place a pebble on node ¢; we can discard pebbles from every other
node in G, so that the total number of pebbles on the graph is 1 +3(n —4 — 1) (3 pebbles on G, for each
n > j > i) and our invariant is maintained.

C.2 Red-Blue Pebbling Strategy

Setting our cache size m = 3n + 3 we would like to claim that G4 also has higher red-blue pebbling cost
whenever ¢ is not satisfiable. Intuitively, a black pebbling which only uses 3n + 3 pebbles corresponds to a
red-blue pebbling strategy with no expensive blue moves i.e., 3n+3 red pebbles are sufficient. Unfortunately,
the claim is not true about the graph Gy. In particular, the optimal red-blue pebbling may not place each
variable gadget G, in a true or false configuration. In particular, instead of placed a variable gadget x; in the
false configuration x; it would be better to maintain red-pebbles on nodes x; and T;. Instead of discarding
a pebble on node T; we simply place a blue pebble on this node. This allows us to avoid re-pebbling the
pyramid As;y; later on when moving our pebble from node ¢;_; to ¢;. This strategy incurs two extra blue
moves (cost: 2¢p) but saves at least Zf”:’;lz red moves (cost: O(i%c,)). We address the issue by adding an
additional path gadget to form a new graph Hy. Intuitively, the path gadget forces us to pebble every node
in As;t1 twice. We can then prove that Hy has higher red-blue pebbling cost (with m = 3n + 4) whenever
¢ is not satisfiable. Intuitively, when ¢ is not satisfiable the pebbling will need to make at least 1 blue move
without reducing the number of red-moves (each node in As;y; still needs to be pebbled twice). If ¢ is
satisfiable a red-blue pebbling will essentially follow the same strategy for G4 to avoid any blue moves with
a few additional steps to pebble the path gadget.

Lemma C.1. [GLT79] The quantified Boolean formula

lelQZmQ e QnmnFn
is true if and only if the corresponding DAG Grgpr has pebbling number 3n + 3.

43

Fig. 4: Graph Grgpr for 3z1,x0, 23,24 s.t. (x1 V22 Vas) A (22 V23 VT1).

D NP-Hardness of the Red-Blue Pebbling Cost

In this section, we consider the computational complexity of computing rbpeb” (G, m), defining a decision
version below and showing it is NP — Hard.

The decision problem rbpebH is defined as follows:

Input: a DAG G on n nodes, parameter ¢y, ¢,-, and integers m, d > 0.
Output: Yes, if rbpeb“(G,m) < d; otherwise No.

We now show that it is NP — Hard to compute rbpeb! (G, m). Quanquan Liu [Liul7] observed that when
¢, = 0 the problem is PSPACE — Hard via a straightforward reduction from minimum space black pebbling.
As we observed previously, when ¢, /¢, € O (poly(n)) the decision problem is in NP and has a fundamentally
different structure. We show that even when the cost of red moves is significant, the problem remains
NP — Hard. We first reduce from a version of 3 — SAT in which each variable appears in exactly 4 clauses and
the negation of each variable also appears in exactly 4 clauses. Moreover, no consecutive 1= clauses share
the same variable (or negation). We show this version of 3 — SAT is NP — Hard in Theorem D.2, but first we
show that even if each variable and negation appear in exactly 4 clauses, determining whether a 3CNF is
satisfiable is NP — Hard.

Lemma D.1. Let ¢ be a SCNF formula with n variables and m = %n clauses such that each variable appears
in exactly 4 clauses and the negation of each variable also appears in exactly 4 clauses. Then determining

whether ¢ is satisfiable is NP — Hard.

Proof. [Tov84] shows that if ¢’ is a 3CNF formula with n variables such that each variable or its negation
appear in at most 4 clauses each and no clause contains the same literal multiple times, then determining
whether ¢’ is satisfiable is NP — Hard. We show that ¢’ can be transformed into a 3CNF formula ¢ so that
each variable and its negation appear in exactly 4 clauses each.

We first transform ¢’ so that each variable and its negation appear exactly 4 times. For each variable
z; that does not appear 4 times, we can force z; to appear 4 times by appending ¢’ with the clause

44

Sink

X3n—2

Py
P
agn41
Azn41
Py

Fig. 5: Path P that is used in Hy.

(x; V ptj V "pg;) for a new variable z,,; that has not previously appeared in ¢’. We can do this
until all n original variables and their negations appear exactly 4 times each. Now we may have some
variables x;, —x; for j > n that only appear once. We thus append further ¢’ by additional clauses with
variables zy, Tpi1,Tr1r2 that have not appeared in ¢’, but are set to true. Namely, we append ¢’ with
(.’L’j V x V ﬁxk)7 (CL‘j V xp V ﬁl‘k), (l‘j V xp V ﬁl‘k), (ﬁCL']‘ V xp V ﬁl‘k), (ﬁﬂ?j V g1 V ﬁl‘k+1)7 (ﬁxj V Zi41 V
“Tpy1)s (Thg1 V Ty V Tpp2), (Trg1 V Tppo V Tpg2), (Thg1 V Tig2 V TTkg2), ((Tpg1 V Tpgo V Tpg2).
Since we add at most 21n variables x; with j > n, then the total number of variables in the resulting ¢’ is
at most 22n and the total number of clauses is at most 64n. Note that these extra clauses are inherently
satisfiable, but do not affect the original clauses, so that resulting 3CNF formula is satisfiable if and only if
the original 3CNF formula is satisfiable. Since it is NP — Hard to determine whether ¢’ is satisfiable, then it
is also NP — Hard to determine whether ¢ is satisfiable. O

We now show that such a 3CNF formula can be written so that no consecutive {5z clauses share the
same variable (or negation).

45

Theorem D.2. Let ¢ be a 3CNF formula with n variables and ¢ = %n clauses such that each variable
appears in exactly 4 clauses and the negation of each variable also appears in exactly 4 clauses. Furthermore,
suppose that no consecutive 15z clauses share the same variable (or negation). Then determining whether ¢
is satisfiable is NP — Hard.

Proof. Let ¢' is a 3CNF formula with n variables such that each variable or its negation appear in at most

4 clauses each and no clause contains the same literal multiple times. We now reorder ¢’ to obtain a 3CNF

formula ¢ so that no consecutive 5= clauses share the same variable. We use a greedy strategy to construct

the first part of ¢. We arbitrarily picking a clause in ¢’ to be the first clause of ¢ and then repeatedly append

clauses in ¢’ that that do not share variables with any of the last {5z clauses, until this is no longer possible.
(8=1)n n

clauses, so there are at most r < = £ remaining

Then there are at most 4+ variables in the last 2 = 5

clauses in ¢’ that use ong50f these variables. e

For each remaining clause c;, we search for an interval of Zj clauses that do not intersect with ¢; and
insert ¢; in the middle of this interval. Such an interval must exist since there are at least 50 such disjoint
intervals and each of the 3 variables appearing in ¢; can intersect with at most 8 of these intervals. Thus ¢
has the desired form that each variable and its negation appear in exactly 4 clauses each and no consecutive
1oz clauses share the same variable (or negation). Moreover, ¢ is satisfiable if and only if ¢’ is satisfiable
by construction. Since it is NP — Hard to determine whether ¢’ is satisfiable, then it is also NP — Hard to
determine whether ¢ is satisfiable. O

We now use a 3CNF formula satisfying the form of Theorem D.2 to show that the problem rbpebl is
NP — Hard.

Theorem D.3. For ¢, > 10000¢,., the problem rbpebH is NP — Hard.

Gilbert et al.showed that the minimum space black pebbling problem was PSPACE — Hard by reduc-
tion from the Truly Quantified Boolean Formula (TQBF) problem. For more details about the Gilbert
et al. [GLT79] reduction, we refer an interested reader to Appendix C. We note that an instance ¢ of
3 — SAT with n variables and ¢ clauses is still a TQBF instance (albeit with no V quantifiers). Thus, given
an instance ¢ of 3 — SAT satisfying the conditions in Theorem D.2 with n variables and ¢ clauses, we can
create the corresponding DAG Gy, as described in the reduction of Gilbert et al. [GLT79]. The graph G
has the property that it can be pebbled with at most 3n + 3 black pebbles if and only if ¢ is satisfiable.

In particular, the optimal pebbling for G4 first uses 3n + 3 pebbles for As, 3 and then leaves three
pebbles on the corresponding existential quantifier for x,,, including a pebble at the node corresponding to
the value of z,, so that the sink node ¢, can eventually be pebbled. The optimal pebbling then uses 3n
additional pebbles for As, and determines the value of x,,_1, so that the total number of pebbles at any
point is still at most 3n + 3. This process continues so that pebbling G4 requires at least 3n + 3 pebbles
until there is a value for each variable and the sink node can be pebbled. On the other hand, if ¢ is not
satisfiable, then some variable must be “set” to both true and false, requiring an additional pebble. Hence
the pebbling requires at least 3n + 4 black pebbles.

In fact, if variable z; is “set” to both true and false, then the nodes in Agz;13 and the node T} need to be
pebbled twice in a legal black pebbling. For red-blue pebblings, we could potentially use an extra blue move
to store the sink of Ag;;3 rather than completely repebbling As; 3. Thus we create an extra gadget that
requires Asz; 3 and T, to be completely repebbled, so that the strategy of storing Z; and the sink of Ag;3
is useless.

We detail a gadget to append to G4 to create a graph Hy so that rbpeb|| (Hyp,m)
if ¢ is a satisfiable assignment, but rbpeb”(H¢, m) > d if ¢ is not satisfiable. The key goal of the additional
gadget is to ensure that we cannot significantly reduce the number of red moves (computation costs) by
including a few blue move. Moreover, by setting m > 3n + 4 to be large, then there is no restriction on the
number of red moves.

For DAG G corresponding to n variables, there exist unique k-pyramids for k = 4,...,3n 4+ 2,3n + 3.
Let A; be the i-pyramid and let «; be the vertex above the apex of pyramid A;. Let P; be a directed path

—d = 6n>+27n°4+61n+20+12¢
=d:= 5

46

with 3n vertices so that there exists an edge from the apex of Ag, 14—, to vertex i of Py, for each 1 <14 < 3n.
Thus P; requires all sinks of the pyramids to be pebbled. See Figure 5 for an example of P;.
We then connect the final vertex of P; to a directed path P, with

<(3n+2)2(3n+1) +1) N ((3n 1)2(31%2)

3n3 +9n? + 10n
2

+1>+...+(28+1)+(10+1):

vertices. Moreover, the first w vertices of P, each have an edge from separate vertices of Ag, 1,

starting with the vertices in the bottom layer and moving upwards. More specifically, let uq,...,us,4+1 be
the 3n + 1 vertices at the bottom layer of Ag, 11 and v1,...,v3,41 be the first 3n + 1 vertices of P». Then
there exist edges (u;,v;) for each ¢ € [3n+1]. Similarly, let y, ..., ys, be the 3n vertices at the next layer of
Aspy1 and 21, ..., 23, be the next 3n vertices of Py, following vs,+1. Then there exist edges (y;, z;) for each
i € [3n], and so forth until all vertices of Az, 1 have an outgoing edge to a separate vertex of P,. We also
create an edge to the following vertex from the vertex as,+1. This ensures that As, 1 must be completely
repebbled, so that any strategy of saving a pebble on a particular node of As, 1, such as its sink agzp41, is
useless.

The nex vertices of P, each have an edge from separate vertices of Ag,_o, starting with the
vertices in the bottom layer and moving upwards. We also create an edge to the following vertex from the
vertex ag,—o. We continue this process until all vertices from all pyramids of the form Ag;, 1 are connected
to P», as well as the vertices as;41. Finally, we connect P, to the same sink node as G4. Thus P, ensures
that all pyramids of the form As;;1 must be completely repebbled. See Figure 5 for an example of Ps.

Then by setting P to be the path P; concatenated with P», we have the following result:

3n—1)(3n—2
¢ Gnot)en—2)

Lemma D.4. P contains ezactly 3n+3+ Y., (w + 1) = W%;w vertices.

Let Hy = G4 U P and recall that P and G have the same sink node. We claim that Hy with capacity
3n + 4 will have a certain pebbling cost if and only if ¢ is satisfiable. Thus, if ¢ is satisfiable, the optimal
pebbling will correspond to the minimum space black pebbling and will require 0 blue moves. We first claim
that if ¢ is unsatisfiable, then Hy has pebbling number at least 3n + 5.

Lemma D.5. Hy has pebbling number 3n + 4 if and only if ¢ is satisfiable.

Proof. We first note that if ¢ is satisfiable, then Hy has pebbling number 3n + 3. Recall that there exists
a valid pebbling @ of G4 with pebbling number 3n 4 3 that begins with all 3n + 3 pebbles on the pyramid
graph Ags,, 3 at some point. When the apex of Ag, 3 is pebbled by @, we can begin pebbling P in the next
step. We keep a single pebble on path P and move the pebble forward along P; whenever the apex of the
next pyramid is pebbled. The pebbling strategy 2 must then pebble each of the pyramids As,y2,...,Ay in
that order, which allows us to completely pebble the path P; using at most 3n + 3 pebbles in total. We then
proceed with the pebbling strategy @, observing that the sink of G has two parents: a node representing
the variable x,, set to true and some other node, say 5. At some point () will pebble 8, at which point we
maintain pebbles on f and P. We then hold the pebble on S while we pebble P, which can be done using
3n + 3 additional pebbles. When the final node of P, is pebbled, we can use S to pebble the sink node of
G4, using 3n + 4 pebbles in total.

Suppose by way of contradiction, there exists an unsatisfiable ¢ such that each pebbling @ = {Q1, @2, ...}
of Hy has pebbling number at most 3n +4. By Lemma C.1, G¢ has pebbling number at least 3n + 4 if ¢ is
unsatisfiable. Thus there exists a time in which there are at least 3n+4 pebbles on Gy, i.e., |Q:NGy| > 3n+4.
Let t be the final time in the pebbling (), in which there at least 3n + 4 pebbles on G4. Moreover, we can
assume without loss of generality that the sink node of G is not pebbled at time ¢, since the pebbling will
not need any other pebbles in future steps, as the pebbling can terminate after pebbling the sink node. Since
G4 and P only intersect at the sink node and @, already has at least 3n 4 4 nodes at G4 and no pebble
on the sink node, then either @); contains at least 3n + 5 pebbles or P; has no pebbles on P, i.e., either
|Q¢| > 3n+5or G, NP = (. We have by assumption that |Q;| < 3n + 4, so it follows that there must be
no pebbles on P.

47

To pebble the sink node of Hy, we must completely pebble P after time ¢. Thus we must pebble a
pyramid graph As, 3 while holding a pebble on P, while requires 3n + 4 pebbles with no other pebbles on
G 4. However, because t is the final time in which @ has 3n + 4 pebbles on G, then @ can no longer pebble
the sink node of G, which is a contradiction. Hence, Hy has pebbling number 3n 4+ 4 if and only if ¢ is
satisfiable. O

Lemma D.6. If ¢ is satisfiable, then there exists a pebbling strategy of Hy with capacity 3n + 4 and cost at
most

(6n3 +27n2 + 101n + 20)
Cr.
2

Proof. The total number of nodes in Gy corresponding to variable assignments from the GLT construction
is

3n+3 2
In + 33n 4 12
6n + =,
D> i >
=4
since each existential quantifier gadget has six internal nodes in additional to the pyramids of size 4, ..., 3n+3.

This can be visualized in Figure 4 by the nodes on the left hand side, excluding the nodes ¢;. Additionally,
there are n nodes ¢;, six nodes for each of the ¢ clauses p; for 1 < i < ¢, and an additional node for
po. Moreover, it should be noted that since both z; and T; appear in 4 clauses, then regardless of the
configuration in Figure 3, 4n additional pebbles are required for G, either 4n pebbles on z; or 4n pebbles
on Z;. Thus the total number of nodes that must be pebbled in G is

3n+3 2 2
9 35 14 9 (0] 14
4n+6c+1+7n+ E i:w+60+4n:w7
= 2 2

where the last equality results from the fact that ¢ = %n.

By Lemma D.4, the number of nodes in the additional path P is MQHG"*G. Moreover, we can
completely re-pebble each of the pyramids Ag;11 a second time, as well as each as;41, to pebble P, requiring

an additional

"L ((3i4+2)(3i 4+ 1) 3n% +9n? + 10n
2 Y T T

i=1
steps. Namely, we walk a pebble down P so that the pebble is placed on each node of P for a single step.
Accordingly, we begin pebbling each pyramid so that its apex contains a pebble in the round before the

descendent of the apex in P contains a pebble.
Thus, the total number of steps required to pebble Hy is

N2+ 7n+14 3n3+92+16n+6 3n3+9In?+ 10n _ 6n3 + 27n% + 101n + 20
2 2 2 N 2 '

Finally, recall from Lemma C.1 that the GLT construction has pebbling number 3n + 3 for a satisfiable
instance of ¢. Since the nodes in P are ordered corresponding to the natural pebbling order in G, a single
additional pebble suffices for P. Thus, if the capacity of G4 is 3n+4, then all pebbling moves can be achieved
6n3+27n22+101n+20) e O

with red moves, so there exists a pebbling strategy with total cost is (

Lemma D.7. If ¢ is unsatisfiable, then the pebbling cost of Hy with capacity 3n + 4 is greater than

(6n3 +27n% + 101n + 20)
Cr.
2

Proof. If ¢ is unsatisfiable, then Hy has pebbling number at least 3n 4+ 5 by Lemma D.5. Thus if Hy has
capacity 3n + 4, then Hy any red-blue pebbling strategy must have a blue pebble at some point. Suppose

48

that our pebbling strategy makes k blue moves e.g., by placing blue pebbles on the top of 3i + 2 pyramids.
The only way such a strategy could be beneficial is if there is a large reduction in the number of red moves.
We observe that in the pebbling strategy from Lemma D.6 almost all nodes are pebbled only once with the
exception of (1) pyramids As;;1, which are each pebbled twice, and (2) the vertices corresponding x; and/or
X;.

This pebbling strategy incurs 4n extra red moves on vertices | J,., {z:,Z;}. We also remark that any
pebbling strategy will need to place a red pebble on every node at least once. Since blue moves are more
expensive the only reason to place a blue pebble on a node is if this allows us to reduce the number of
red moves. Suppose that our pebbling strategy places k' blue pebbles on pyramids As;+1 and k blue
pebbles on other nodes. We claim that the total cost of the red pebbling moves can be reduced by at most
105(8/3)(k + 2k' + 3)(4¢;) + K¢y

Suppose we place k' blue pebbles on pyramids Ag; 1. We can either keep blue pebbles on internal nodes
of the pyramids or on top of the pyramid As; ;. Each blue pebbble kept on some node of a pyramid Ag;41
can save an additional red move in the pebbling strategy, but it does not free up an any room for additional
red pebbles in cache because the honest pebbling strategy does not store red pebbles on this pyramid. Thus
the total cost of the red moves saved by the k' blue pebbles is at most &'cy,.

Suppose we place k blue pebbles on nodes that are not in pyramids As;;1. Then each blue pebble will not
save any red moves on the pyramids As; 11, but can save some of the 4n red moves on the nodes {x;,Z; }. For
each i € [n], we define the indicator variable Y; = 1 if and only if we reduced the red cost on variable gadget
i to anything below 4c,. Observe that if > ¥; > 105(8/3)(T'), then there would be some point in time ¢
where more than T variable gadgets have pebbles on both nodes x; and T;. Suppose by way of contradiction
that T > k + 2k’ + 3. Then we would have at least 4 pebbles on T — k' variable gadgets and at most &’
variable gadgets with only two pebbles, for a total of 3n+ (T'— k') — k' + 2 > 3n+ k + 5 pebbles (extra two
pebbles on path P and at least one on clause gadget). However, this contradict the fact that we have at
most 3n + 4 + k total pebbles (red and blue) at all times in the pebbling. Thus, we have T < k + 2k’ + 3,
so that > Y; < 105(8/3)(k + 2k’ 4 3) and the total cost of the red moves saved by the k blue pebbles is at
most 105(8/3)(k + 2k’ + 3)(4c,).

In summary, for k 4+ k' > 1, the total cost of blue moves is (k + k)¢, and the total number of saved red
moves is at most 105(8/3)(k + 2k’ + 3)(4¢,) + k'c,.. Thus for ¢, > 10000¢,., we have (k+ k')c, > 105(8/3)(k+
6n3+27n22+101n+20 Cr.

2k’ 4+ 3)(4c,) + K'c,.. Therefore, any pebbling strategy has a cost greater than (

O
Together, Lemma D.6 and Lemma D.7 imply Theorem D.3.
Reminder of Theorem D.3. For ¢, > 10000c,., the problem rbpebH 1s NP — Hard.
Proof of Theorem D.3: First, we remark that given a DAG H, with some capacity m, as well as a

complete pebbling strategy as the certificate, the certificate can be verified in polynomial time by checking
the validity of each step in the pebbling strategy. Thus, the computation of rbpeb“(H¢) is in NP.

We now reduce 3 — SAT to the computation of rbpeb”(H,ﬁ). Now, given an instance ¢ of 3 — SAT with
n variables, we construct the above DAG Hy. This procedure clearly takes polynomial time. Moreover, by
Lemma D.6, if ¢ is satisfiable, then the optimal pebbling cost of Hy with capacity 3n + 4 is exactly

(6n3 +27n2% 4+ 101n + 20) .
2 "

On the other hand, by Lemma D.7, if ¢ is unsatisfiable, then the pebbling cost of Hy with capacity 3n + 4
is greater than

<6n3 +27n2 + 101n + 20)
Cr.
2

Thus, the computation of rbpeb”(Hd,,m) distinguishes whether ¢ is satisfiable or not, for m > 3n + 4 and
d= 6”3+27”22+101”+20. Since 3 — SAT is NP — Hard, it follows that the rbpeb! (Hg,m) is NP — Hard. O

49

	Introduction
	Graph Pebbling and iMHFs
	Overview of Our Results

	Preliminaries
	Depth-Robustness

	Modeling Energy Complexity as Red-Blue Pebbling
	Memory and Cache in the Parallel Random Oracle Model
	Red-Blue Extension Pebbling
	Extractor

	Relating Memory Hardness and Bandwidth Hardness
	Bandwidth Hardness of Candidate iMHFs
	Analysis Framework
	Underlying DAGs
	Argon2i
	DRSample
	aATSample

	Bandwidth Hardness of scrypt
	Specification of Candidate iMHFs
	Missing Proofs
	aATSample
	DRSample
	Argon2i Edge Distribution

	Background on the Gilbert et al.Black Pebbling Reduction
	Pebbling Strategy
	Red-Blue Pebbling Strategy

	NP-Hardness of the Red-Blue Pebbling Cost

