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Abstract

We present a very simple universally verifiable MPC protocol. The first component is
a threshold somewhat homomorphic cryptosystem that permits an arbitrary number of ad-
ditions (in the source group), followed by a single multiplication, followed by an arbitrary
number of additions in the target group. The second component is a black-box construction
of universally verifiable distributed encryption switching between any public key encryption
schemes supporting shared setup and key generation phases, as long as the schemes satisfy
some natural additive-homomorphic properties. This allows us to switch back from the
target group to the source group, and hence perform an arbitrary number of multiplica-
tions. The key generation algorithm of our prototypical cryptosystem, which is based upon
concurrent verifiable secret sharing, permits robust re-construction of powers of a shared
secret. We demonstrate the scalability of distribution switching as a viable approach to
secure vote tallying by implementing a private verifiable form of Instant Runoff Voting on
real Australian election data comprising 40,000 votes.

1 Introduction

We explore the design of efficient universally verifiable MPC protocols, motivated by applica-
tions to the counting of complex ballots. Universal verifiability means that the computation
should be verifiably correct, even to those who do not participate, and even if all parties involved
in the computation are misbehaving. This is particularly important in elections: we need the
correctness of the tally to be guaranteed, even if all the people in charge of running the election
are corrupted – or if all of their computing devices have been hacked.

We also require privacy as long as the number of trustees behaving honestly is above a
certain threshold. As trustees must be able to compute the election results (and therefore have
access to the votes), and in the absence of setup assumption (anonymous channel, tamper-proof
devices, etc.), this appears to be the best we can hope for.

Homomorphic encryption lends itself naturally to universally verifiable computation, because
the computation itself can be performed by anyone. The private key can be shared among
several trustees, who need only prove that they decrypted the final result correctly. For simple
elections in which tallying consists only of addition, efficient solutions exist based on additive-
homomorphic encryption [ADPQ09] [BBK+12]. We are interested in complex election schemes
in which more than a simple sum is needed. Our particular application is Instant Runoff Voting
(IRV), in which candidates are progressively eliminated until one has the majority of votes. For
this case, levelled homomorphic encryption would work, but would need to be parameterized
in advance for the maximum depth of multiplications that might possibly be needed (and pay
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an efficiency cost on that basis). In our setting, that would be the total number of candidates
(minus 2), which might be a lot more than the actual number of eliminations.

An alternative approach is to add universally verifiable proofs of correctness to an information-
theoretic MPC protocol [BDO14]. These naturally scale to arbitrary multiplications, with cost
proportional to the total number actually done. However, the structure of these protocols, based
on secret shared data, uses secure bidirectional channels between the input parties (e.g., the
voters) and the computing parties (e.g., the election trustees), which is a challenging constraint
for large scale applications.

Recently Catalano and Fiore [CF15] showed how to generalise earlier work on 2DNF formulae
[BGN05] to transform virtually any linearly homomorphic cryptosystem into one permitting the
computation of any degree-2 formula. Multiplication transforms two input ciphertexts from a
“level-1” space into an encryption of the product in the “level-2” space. In this level-2 space,
further homomorphic additions remain possible, at the cost of ciphertext expansion at each
step.

1.1 Summary of our contribution

We design a very simple universally verifiable MPC protocol based on two components.

1. A somewhat homomorphic encryption scheme with threshold key generation in the mali-
cious static adversary setting. It is similar to [CF15] in allowing arbitrary additions in a
source space, then one multiplication. However, additions in the target space can be per-
formed without expansion. Our threshold key generation protocol allows efficient proofs
of correct decryption.

2. A multiparty switching protocol that transforms a ciphertext from the target space, that is,
resulting from a homomorphic multiplication, into a ciphertext in the source space, hence
making it possible to perform more multiplications if needed. We show that this protocol
is universally verifiable in the setting of [SV15].

Since our scheme is additively homomorphic in the source and target spaces, we have enough to
perform arbitrary computation. Every step is universally verifiable. Our scheme only requires
computation in prime order groups using standard assumptions.

1.2 Comparison with related work on MPC

Our approach bears some resemblance with the encryption-switching approach of Couteau et
al. [CPP16], but has some significant differences. They switch between additively and multi-
plicatively homomorphic encryption schemes, while we switch between spaces in which we have
additively homomorphic encryption, with the possibility to perform a multiplication as part
of a switch. They have two switching protocols, between the additively and multiplicatively
homomorphic ciphertext spaces, while we only need a protocol to switch from our target space
back to our source space. Their protocols for secure computation are 2-party protocols and
highly asymmetric (assigning specific roles to each party), while our protocols are multi-party,
perfectly symmetric and universally verifiable.

Boneh, Goh and Nissim [BGN05] consider evaluation of 2DNF formulas on ciphertexts. The
paper mentions universally verifiable computation as an application, including in the election
context. Our paper essentially solves the question of making this efficient in a multi-authority
setting, by offering efficient threshold key operations. BGN assumes a single authority, or a
trusted dealer with secure erasure, or other more complicated solutions.
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Catalano and Fiore [CF15] describe boosting linearly homomorphic encryption to achieve
server aided two-party secure function evaluation on parallel inputs in the semi-honest setting.
We do not know if this approach can be generalised to the N -party setting, nor is it clear how
to remove the requirement of non-collusion by servers.

Damg̊ard et al. [DPSZ11] show how to bootstrap somewhat homomorphic encryption to
achieve pure multiparty computation via pre-processing. The focus of their scheme is on
batch/SIMD evaluation of inputs while minimising computational overhead and relies on non-
standard zero knowledge proofs. While our (online) protocols could in any case possibly utilise
such amortisation techniques, for example via pre-computation of fixed-based exponentiations,
we show in Appendix G that our scheme is already competitive in terms of total arithmetic
operations performed during the lifetime of the scheme. Additionally our evaluation algorithm
supports malicious case secure threshold key generation and uses only standard sigma protocols.

Three recent works address universally verifiable MPC. Their main bottleneck is key gen-
eration. Baum et al. [BDO14] rely on SPDZ which uses a somewhat homomorphic encryption
scheme that has n-out-of-n key generation in the covert adversary model, and therefore only
offers confidentiality in that model. We would be interested in having security in the traditional
malicious adversary setting.

Schoenmakers and Veeningen [SV15] rely on Damgaard-Jurik encryption, which supports
efficient threshold key generation, if an RSA modulus with unknown factorization is available,
bringing us back to the same difficulties of [BGN05].

We address these issues and offer an efficient solution that is compatible with the settings
of both papers.

The most closely related work is [CIL17], with new encryption schemes and switching pro-
tocols following [CPP16], but working in prime order groups (like we do), hence also supporting
threshold operations. They still combine additively and multiplicatively homomorphic schemes
(while we use a somewhat homomorphic approach). The main downside of their work is that
they rely on the hardness of DDH in very specific groups: “subgroups of the class group of
an order of a quadratic field of discriminant −p3”. They also need to work in subgroups of
unknown order, which makes ZK proofs more expensive.

Our protocol works in a more standard computational setting, with efficiency and compati-
bility advantages.

The tradeoff between the two would depend on the computation: in our IRV counting setting,
we have many additions, followed by a single multiplication, followed by many more additions,
repeatedly. For this kind of circuit our approach is more efficient than [CIL17]. However, a
computation with unbounded successive multiplicative homomorphic operations would be faster
with their method.

1.3 Counting IRV Ballots

In Instant runoff voting (IRV), each voter lists the candidates in their order of preference. At
each iteration, each ballot is credited towards its highest uneliminated candidate. The candidate
with the lowest tally is then eliminated (so each ballot is then credited to its next uneliminated
candidate). This terminates when one candidate has a strict majority.

Since the number of possible votes is more than c! (where c is the number of candidates),
this may be much larger than the number of votes actually cast. This introduces the possibility
of coercion by an attack often called the Italian attack: a coercer demands a certain pattern
of preferences, presumably with her favourite candidate first, and then checks to see whether
that pattern appears in the final tally. To thwart this attack, many works describe universally
verifiable IRV tallying without revealing individual ballots. Heather [Hea07] describes how
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to modify Prêt à Voter [Rya05] with re-encryption mixes to accommodate Single Transferable
vote via lazy decryption semantics. Goh and Golle [GG05] describe a primitive called an event-
driven private counter which allows private non-interactive tallying of ballots in a ranked voting
scheme. Ryan [Rya08] describe a method for modifying Prêt à Voter to accommodate ranked
voting, however as noted in [RT09] this construction is not receipt-free across the full space of
possible permutations. Benaloh et al. [BMN+09] describe a protocol for private tallying of Single
Transferable votes using interactive mixes to convert ballots between different representations
amenable to tallying.

However, these all use mix-nets [PIK94] during the private tallying phase, with a number
of schemes additionally utilising mix-net like techniques for secure ballot construction. Despite
their increasing usage, mix-net based tallying schemes remain heavy to deploy due to their
sequential behavior, and count among the most complex cryptographic protocols ever deployed.
Besides, even when mixes use strong zero knowledge-proof based verification, if a single mix
misbehaves then the entire mix-net halts until a replacement is found, leading to a protocol
which is inherently non-robust.

Ours is the first universally verifiable scheme for privacy-preserving IRV tallying without
mixnets.

1.3.1 Implementation

We implemented the single-authority version of our cryptosystem and switching protocol and
used it to count two real IRV elections from the Australian state of New South Wales. Each
election included more than 40,000 ballots. The first, involving 5 candidates and a single
elimination round, completed in 2 hours. The second, with 6 candidates and 4 elimination
rounds, took 15 hours. This does not include the proofs of correct switching, which would add
a constant factor. The details are in Section 7.1.1.

1.4 Detail of our contributions

We construct secure N -party encryption switching between any source and target cryptosystems
with some minimal homomorphic properties; in essence these are that encryption is additively
homomorphic on source and target plaintext spaces, and a ring structure exists on both of
these spaces. Our construction builds upon the mask-decrypt-unmask paradigm introduced by
[CPP16], specifically a blinding factor used to homomorphically blind the source plaintext, is
in parallel encrypted under the target scheme. Next, the players combine decryption shares of
the source ciphertext, recovering the blinded plaintext, which can then be re-encrypted in the
target scheme.

We present a new candidate cryptosystem with which to instantiate source and destina-
tion encryption schemes for the N -party encryption switching primitive. This scheme is based
upon groups with asymmetric pairings, for which the DDH problem is hard in each group. In
addition to achieving public verifiability, an advantage of using pairings in this setting is that
one-direction of encryption switching is essentially for free. While one might imagine using an
existing pairing-based homomorphic cryptosystem here, e.g. [BGN05], the lack of a practical
distributed key generation protocol for such cryptosystems flies in the face of the necessity for ab
initio calculations vital to ensuring the fairness and verifiability of the distributed platform upon
which secure vote-tallying will run. Therefore the construction of a pairing based homomorphic
cryptosystem on prime-order groups, for which a secure and robust key generation procedure
can be derived, is a central thrust of this work. To this purpose we propose the use of cryptosys-
tems derived from projecting pairings [GS08, Fre10]. As shown by [Fre10], projecting pairings
facilitate the construction of sub-group indistinguishability based cryptosystems comparable
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to [BGN05]. Such cryptosystems are readily constructed from vanilla pairings on prime-order
source and target groups. Herold et al. [HHH+14] show that such projecting pairings are read-
ily obtained from hidden matrix-rank based indistinguishability assumptions [EHK+13] on the
source group of symmetric pairings. The corresponding indistiguishability assumption increases
in difficulty, at least in the generic group model, as the rank increases [EHK+13]. We show
that this construction naturally extends to asymmetric pairings. In fact, the underlying indis-
tinguishability problem induced by this pairing on both source groups induces a generalisation
of the well-known XDH problem [Sco02].

Next we tackle the problem of constructing a distributed key generation procedure for this
protocol. While distributed key generation protocols for general public key-encryption are well-
established [Ped91, GJKR07, CGGI13], a critical obstacle to their adoption in our setting is the
requirement of robust re-construction of powers of a secret. Specifically our sub-group based
cryptosystem requires exponentiation of group elements by powers of a secret x, while all key-
generation protocols in the prior art [Ped91, GJKR07, CGGI13] facilitate only re-construction
of linear functions of x, permitted by verifiable secret sharing [Fel87]. A natural solution to
this problem would be the use of a multiplicatively homomorphic linear secret sharing scheme
[CB87]. On the other hand [CB87] shows that simple candidates for such a primitive fail.
The solution turns out to be to view the construction of the square of a secret x as a private
quadratic formula, in which the pieces of x are shared across all qualified parties derived by the
key-generation protocol. Specifically, we aim to construct a blinded version, i.e, x2 +b, in which
the blinding factor b is distributed across parties, in such a way that it can be cancelled out
from shares submitted by a qualified set. To perform the private construction of the blinded
square, we propose to use the Catalano-Fiore transformation [CF15], which enables depth-one
multiplications on any linearly homomorphic cryptosystem, such as El Gamal. A problem arises
with the natural choice of additive El Gamal as the base scheme with which to bootstrap the
computation of the square. This cryptosystem mandates that only secrets from a small space can
be safely decrypted, while the space over which x and x2 are derived is much larger. We are able
to solve this problem via splitting the individual secrets of qualified players into chunks. Thus
the private product of individual secrets becomes equivalent to a private product of polynomials,
crucially ones for which the coefficient space is quite small and therefore amenable to the discrete
log problem.

Another problem is how to construct the blinding factor so that no information is leaked
on x2 in the construction of x2 + b. We show that this is possible via direct verifiable secret
sharing of the chunks corresponding to b in polynomial form. As long as the chunk-size used
to derive b is sufficiently larger than the chunk-size used to derive x2, we may treat them as
distinct secrets to be jointly constructed by the qualified set. For this, and for constructing the
Catalano-Fiore encryption key, we may simply employ the key-generation protocol of Pedersen
[Ped91] or the later protocol by Gennaro et al. [GJKR07].

2 Background

We define the notion of a generic access structure for linear secret sharing schemes.

Definition 1 (Access Structure [Wat11]). Let S be a set of parties. A collection A ⊂ 2S is
monotone if ∀ B,C : if B ∈ A and B ⊆ C then C ∈ A. An access structure, respectively
monotone access structure, is a collection (respectively monotone collection) A of non-empty
subsets of 2S i.e., A ⊆ 2S\{∅}. The sets in A are called the authorised sets, and the sets not in
A are called the unauthorised sets.
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Definition 2 (Linear Secret-Sharing Scheme [Wat11]). A secret-sharing scheme Π over a set
of parties P is called linear over field Zp if

1. The shares of the parties form a vector of dimension at most l over Zp.

2. There exists a matrix M with ` rows and d columns called the share-generating matrix
for Π. There exists a function ρ which maps each row of the matrix to an associated
party. That is for i = 1, . . . , `, the value ρ(i) is the party associated with row i. When we
consider the column vector v = (s, r2, . . . , rd)

T , where s ∈ Zp is the secret to be shared,
and r2, . . . , rd ∈ Zp are randomly chosen, then Mv is the vector of ` shares of the secret
s according to Π. The share (Mv)i belongs to the party ρ(i).

It is proven in [Bei96] that every every linear secret-sharing scheme (LSSS) as defined above
satisfies the following property, called linear-reconstruction in [Wat11]. Suppose that Π is an
LSSS for the access structure A. Let V ∈ A be any authorised set, and let I ⊆ {1, . . . , `} be
defined as I = {i : ρ(i) ∈ V }. Then there exist constants {Λi,V ∈ Zp : i ∈ I} such that, if {si}
are valid shares of any secret s according to Π, then

∑
i∈I Λi,V ·si = s. Moreover these constants

{Λi,V } can be found in time polynomial in the dimensions of the share-generating matrix M .

T -Threshold Access Structure Of specific interest for our purposes is the T -party threshold
access structure, defined as AT -Th = {S : S ∈ 2{P1,...,Pn}, |S| ≥ T}, where T < n/2. Let M be
the linear secret-sharing scheme matrix corresponding to AT -Th. In that case there exists M
with row-dimension l = n and column-dimension d = T .

2.1 Non-Interactive Zero Knowledge

We recall the notion of a non-interactive zero knowledge proof system [BFM88]. Standard
techniques can be used to make such proofs non-malleable where necessary [DSDCO+01].

Definition 3 (Non-Interactive Zero Knowledge Proof [Gro10]). A non-interactive zero knowl-
edge proof system for a relation R is a tuple (G,P, V ) such that

G(1λ,m): a common reference string generator that takes as input the security parameter writ-
ten in unary and an intended statement size m and outputs a common reference string σ
of length Ω(λ).

P (σ, x, w): a prover algorithm that takes as input the common reference string σ, statement x
and witness w such that R(x,w) and outputs a proof ε.

V (σ, x, ε): the verifier algorithm that on input the common reference string σ, the statement x
and claimed proof, ε, outputs 1 or 0, indicating acceptance or rejection respectively.

Additionally the following properties should hold:

Completeness. For all PPT adversaries A and m < λc for some c > 0 we have

Pr[σ ← G(1λ,m); (x,w)← A(σ), ε← P (σ, x, w) : R(x,w)⇒ V (σ, x, ε) = 1] = 1

Soundness. For all PPT adversaries A and m < λc for some c > 0 we have Pr[σ ←
G(1λ,m); (x, ε)← A(σ) : x 6∈ Lm ∧ V (σ, x, ε) = 1] ≈ 0

Computational Zero Knowledge. For all non-uniform polynomial time stateful adversaries
A, i.e., adversaries which accepts an advice string dependent on the input length, there
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exists a polynomial time simulator S = (S1,S2) such that

Pr[σ ← G(1λ,m); (x,w)← A(σ); ε← P (σ, x, w) :

(x,w) ∈ Rm ∧ A(ε) = 1]

≈c
Pr[(σ, τ)← S1(1λ,m); (x,w)← A(σ); ε← S2(τ, x) :

(x,w) ∈ Rm ∧ A(ε) = 1]

2.2 Encryption Switching

In this section we define an N -party extension of the encryption switching protocols by Couteau
et al. [CPP16] as well as a definition of security following the simulation-based paradigm
introduced there-in. We will need the notion of twin-ciphertext pair [CPP16] which is augmented
with appropriate homomorphic properties on the respective ciphertext spaces.

Definition 4 (Twin-Ciphertext Pair [CPP16]). For i = {1, 2} let Πi be an encryption scheme
(Setupi,KeyGeni,Enci,Deci) with plaintext space Mi. A twin-ciphertext pair (c1, c2) is a pair of
ciphertexts satisfying:

1. c1 is an encryption of m1 ∈M1 under Π1.
2. c2 is an encryption of m2 ∈M2 under Π2.
3. m1 = m2 (which in turn belongs to M1 ∩M2).

Definition 5 (Distributed Encryption Switching). For i ∈ {1, 2} let Πi = (Setup,KeyGen,Enci,Deci)
be semantically secure cryptosystems with plaintext spaces (Mi,+,×) such that M = M1 ∩
M2 6= ∅. Suppose that the following homomorphic properties hold:

∀m,m1,m2 ∈Mi

Enci(m1; r1) ·i Enci(m2; r2) = Enci(m1 +m2; r1 + r2),

∀R ∈M (Enci(m; r))R = Enci(R×m;R · r)

Assume also the existence of Randi(·) which re-randomizes a ciphertext in Πi (for example,
these can be constructed via multiplication of input with a fresh encryption of zero using the
above homomorphisms).

A N -party distributed encryption switching protocol between Π1 and Π2, with respect to
access structure A, denoted Π1 
 Π2, is a tuple (Share, Switch) such that:

Share(pk, sk,A) Given input sk outputs a secret sharing (sk1, . . . , skN ), according to access struc-
ture A and updates pk if necessary.

Switchpar(pk, (sk1, . . . , skN ), c) is an interactive protocol which from a ciphertext c under the
source encryption scheme, jointly computes a twin ciphertext c′ of c under the destination
encryption scheme or outputs ⊥ (in case of incorrect execution of the protocol). Here
subscript par indicates the direction of the encryption switching.

Definition 6 (Correctness of Distributed Encryption Switching). A distributed encryption
switching scheme Π1 
 Π2 = (Share, Switch) is correct if both Π1 and Π2 are correct encryption
schemes, and for any pp← Setup(1κ), any keys (pk, sk)← KeyGen(pp), any key shares pk and
(sk1, . . . , , skN ) ← Share(pk, sk), any message m ∈ M1 ∩ M2 and any ci ← Enci(pki,m) for
i = 1, 2,

Dec2(sk, Switch1→2(pk, (sk1, . . . , skN ), c1)) = m,

Dec1(sk, Switch2→1(pk, (sk1, . . . , skN ), c2)) = m
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Experiment RealSwitchA
desp, A(1λ, 1N ) :

B ← A(1λ, 1N ) : B 6∈ A
(pk, sk)← Setup(1λ)

(sk1, . . . , skN )← Share(pk, sk)

α← AOB(pk,(ski)i∈B ,c)(pk, (ski)i∈B)

Output: α

Experiment IdealSwitchdesp, AA, (S1,S2)(1
λ, 1N ) :

B ← A(1λ, 1N ) : B 6∈ A
(pk, sk)← Setup(1λ)

(pk′, sk′1, . . . , sk
′
N )← S1(pk)

α← AS2(pk,(sk′i)i∈B ,c,c)(pk′, (sk′i)i∈B)

Output: α

Figure 1: Experiments used in distributed encryption switching.

Definition 7 (Security of Distributed Encryption Switching). Figure 1 shows two experiments
in which an adversary interacts with an N -party encryption switching scheme over access struc-
ture A. In the first experiment the adversary interacts with the real encryption switching protocol
on input ciphertext c. In the second experiment the adversary interacts with a simulator that
is given input (c, c), which is a twin-ciphertext pair. Let OV be an oracle which on input
(pk, (ski)Pi∈V , c), emulates the honest players in set V ⊆ {P1, . . . , PN}, i.e., provides the an-
swers Pi would send upon receiving Start when running the protocol Switch(pk, (sk1, . . . , skN ), c),
for each Pi in V .

An N -party distributed encryption switching scheme Π1 
 Π2 is (N,A)-simulation secure,
if for every PPT adversary A there exists a PPT simulator S = (S1,S2) such that the ensembles

{RealSwitchdesp, AA (1λ, 1N )}λ,N and {IdealSwitchdesp, AA, (S1,S2)(1
λ, 1N )}λ,N are computationally indis-

tinguishable.

2.3 Pairings on Prime-Order Groups

To build our one-time homomorphic cryptosystem of Section 3, we require the notion of pro-
jecting bilinear group generators [Fre10]. Our specific choice of generator will be a variant of
the polynomial-induced projecting generator introduced by Herold et al. [HHH+14], tailored for
the asymmetric pairing setting.

Definition 8 (Bilinear Group Generator [Fre10]). A bilinear group generator is an algorithm
G that takes as input a security parameter λ and outputs a description of five abelian groups
G,G1, H,H1, Gt with G1 < G and H1 < H. Assume that this description permits polynomial-
time group operations and random sampling in each group. The algorithm also outputs an
efficiently computable map e : G×H → Gt that satisfies:

Bilinearity. For all g1, g2 ∈ G and h1, h2 ∈ H,
e(g1g2, h1h2) = e(g1, h1)e(g1, h2)e(g2, h1)e(g2, h2).

Non-degeneracy. e(g, h) = 1 ∀h ∈ H ⇐⇒ g = 1
and e(g, h) = 1 ∀g ∈ G ⇐⇒ h = 1.

A bilinear group generator P is prime-order if G,G1, H,H1, Gt all have prime order p. Let
(p,G1,G2,Gt, ê)← P(1λ).

Definition 9 (Projecting Bilinear Group Generator [Fre10]). Let G be a bilinear group genera-
tor. Say that G is projecting if it also outputs a group G′t < Gt and three group homomorphisms
π1, π2, πt mapping G,H,Gt to themselves such that

1. Subgroups G1, H1, G
′
t are contained in the kernels of π1, π2 and πt respectively.
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2. e(π1(g), π2(h)) = πt(e(g, h)) for all g ∈ G, h ∈ H.

We propose a projecting bilinear group operator induced by tensor product, instead of
relying on the polynomial product previously proposed [HHH+14]. The polynomial solution
was designed for the symmetric pairing setting, but raises difficulties in the definition of the
projecting operator when moving to the asymmetric setting. Our tensor product based solution
offers an efficient alternative that makes it possible to have efficient ciphertext in the base
groups, by relying on the sXDH assumption.

Definition 10 (Tensor-Induced Projecting Bilinear Group Generator). Let P be prime-order
bilinear group generator and let (p,G1,G2,Gt, ê) ← P(1λ). Let G = Gl+1

1 , H = Gl+1
2 and

Gt = G(l+1)2

t . Choose generators g ∈R G1, h ∈R G2. In what follows define R(~y, i) to be the

vector ~y cyclically shifted right by i positions. Let ~a⊗~b be the tensor product of ~a and ~b.

1. Let ~x1 = (−s, 1, 0, . . . , 0),
~x2 = R(~x1, 1), . . . ,
~xl = R(~x1, l − 1) and
~x′1 = (−s′, 1, 0, . . . , 0),
~x′2 = R(~x′1, 1), . . . ,
~x′l = R(~x′1, l − 1) in Zl+1

p and
~y1 = ~x1 ⊗ ~x′1, . . . ,
~yl(i−1)+j = ~xi ⊗ ~x′j , . . . ,
~yl2 = ~xl ⊗ ~x′l in Z(l+1)2

p where s and s′ ∈R Zp.

2. Let G1 be the subgroup of G generated by {g~x1 , . . . , g~xl} and H1 be the subgroup of H gener-
ated by {h~x′1 , . . . , h~x′l}. Let G′t be the subgroup of Gt generated by {ê(g, h)~y1 , . . . , ê(g, h)~yl2}.

3. Define e : G×H → Gt by

e(g~a, h
~b) =: ê(g, h)~a⊗

~b

= (ê(ga0 , hb0), . . . ,

ê(gai , hbj ), . . . ,

ê(gal , hbl))

where ~a = (a0, . . . , al) and ~b = (b0, . . . , bl).

4. For g1 ∈ G,h ∈ H and gt ∈ Gt, define

π1(g) = g(1,s,...,sl)T π2(h) = h(1,s′,...,s′l)T

πt(gt) = g
((sis′j)li,j=0)T

t

which are elements in G1,G2 and Gt respectively.

5. Output (G,G1, H,H1, Gt, G
′
t, e) and (π1, π2, πt).

Definition 11 (l-Symmetric Cascade Assumption [EHK+13]). Let {Gλ}λ be an ensemble of
cyclic groups with prime-orders {Zp(λ)}λ where ∃c > 0 ∀λ |p(λ)| < λc. For fixed λ, let Zp = Zp(λ)
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and define the distribution of matrices over Z(l+1)×l
p :

SCl =:



−s 0 . . . 0 0
1 −s . . . 0 0
0 1 0 0

. . .
. . .

0 0 . . . 1 −s
0 0 . . . 0 1


: s ∈R Zp.

Then for all PPT adversaries A, the difference:

|Pr[1← A(G, g, gA, gA~w) : g ∈R G, A ∈ SCl, ~w ∈R Zlp]−
Pr[1← A(G, g, gA, g~u) : g ∈R G, A ∈ SCl, ~u ∈R Zl+1

p ]|

is a negligible function of λ.

Definition 12 (External l-Symmetric Cascade Assumption). Let D1, D2 and Dt be three en-
sembles of cyclic groups, such that for every λ ∈ N, if G1 = G1λ ∈ D1, G2 = G2λ ∈ D2 and
Gt = Gtλ ∈ Dt, there exists an efficiently computable pairing e(·, ·), such that e : G1×G2 → Gt.
The External l-Symmetric Cascade assumption is that the l-Symmetric Cascade assumption
holds in each of the ensembles D1 and D2.

Proposition 1. The Symmetric External Diffie-Hellman Assumption [Sco02] holds with respect
to group ensembles D1,D2, iff the External 1-Symmetric Cascade Assumption holds with respect
to D1,D2.

2.4 CF Encryption

We recall the cryptosystem of Catalano and Fiore [CF15] which is in fact a black-box transfor-
mation of virtually any linearly homomorphic cryptosystem into one that supports evaluation
of degree two formulae. For concreteness we will assume additive ElGamal encryption for the
base public key encryption scheme. Let (Keygen,Enc,Dec) be additive ElGamal on message
space (M,+). The Catalano-Fiore cryptosystem is as follows.

Keygen(1λ) Let (pk, sk)← Keygen(1λ).
Set (pk, sk)← pk.

Enc(pk,M) Choose b ∈RM.
Output C = (m− b,Enc(pk, b)).

Multiply(pk, C, C ′) Let C = (C0, C1) and C ′ = (C ′0, C
′
1) be inputs. Let α = Enc(pk, C0C

′
0) ·

(C1)C
′
0 · (C ′1)C0 .

Output (α,C1, C
′
1).

Dec(sk, C) Accept C = (α,C1, C
′
1) as input.

Let M ′ ← Dec(sk, α), b← Dec(sk, C1) and
b′ ← Dec(sk, C ′1) as input. Output M = M ′ + bb′.

We use non-interactive zero knowledge proofs of the following NP relations. Efficient con-
structions of these can be found in Appendix B. Let Πrange = (Grange, Prange, Vrange) be a non-
interactive zero knowledge proof for the relation Rrange = {(c, y)|∃ a, r : ci = Enc(y, a; r) ∧ a ∈
[0, 2λ − 1]}. Let Rbit ⊆ Rrange be the special case λ = 1 and Πbit be the corresponding proof
system. Let Πmul = (Gmul, Pmul, Vmul) be a non-interactive zero knowledge proof system for the
relation Rmul = {(c, c, c′, pk1, pk2)|c, c′ ∈ C1 ∧ ∃R ∈ M1 ∩M2, r, r

′ : c = Enc2(pk2, R; r) ∧ c′ =
Rand1(pk1, R⊗1 c; r

′)}. For 1 ≤ j ≤ N let σj be the common reference string belonging to Pj .
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3 Reusable Commitments

Definition 13 (Commitment Scheme [DG03]). A commitment scheme πCOM consists of three
PPT algorithms (K, commitck, decommitck).

K(1λ): On input 1λ, the key generator outputs a public key ck. Associated to this are a message
space Mck, a commitment space Cck and two polynomial time algorithms commitck and
decommitck.

commitck(m, r) : On input m ∈ Mck choose at random a randomiser r. The output is (c, d)
where c ∈ Cck and d is some decommitment information.

decommitck(c, d) : If c 6∈ Cck or d is not a proper opening output ⊥. Otherwise, if c is constructed
as the output of commitck output m.

Definition 14 (Non-malleable Commitment Scheme [DG03]). Let K′ be a modified key gener-
ator which outputs a public key indistinguishable from the real key. Let A be a PPT adversary.
Let M be a message generator and D be distinguisher which receive as auxiliary input zM and
zD respectively. We require that for every such adversary A there exists a PPT simulator S so
that following ensembles are computationally indistinguishable.

{D(s, ~m, ~m′, zD) : ck ← K(1λ), (s, ~m)←M(ck, zM );

(~c, ~d)← commitck(~m);~c′ ← A(ck,~c,M, zM ); ~d′ ← A(~d);

~m′ ← decommitck(~c
′, ~d′)}λ,zM ,zD

≈c
{D(s, ~m, ~m′, zD) : (ck, sck)← K′(1λ); (s, ~m)←M(ck, zM );

~m′ ← S(ck, sck, t,M, zM )}λ,zM ,zD

4 One-time Multiplicatively Homomorphic Cryptosystem

In this section we describe a homomorphic cryptosystem which supports arbitrarily many addi-
tions on the message space, followed by one multiplication, followed by arbitrarily many addi-
tions. The basic idea is to combine Freeman’s template for generically converting pairing based
cryptosystems with composite order message space to prime order message space [Fre10] with
our tensor product-based projecting pairing. For efficiency reasons, we instantiate our construc-
tions with the External 1-Symmetric Cascade Assumption, but it is immediate to generalize
this to the l-Symmetric variant.

Setup(1λ) : Let P be the prime-order bilinear generator of Definition 8. Output pp = (p,G1,G2,Gt, ê)←
P(1λ).

KeyGen(pp) : Let G be the projecting bilinear generator of Def. 10. Let (G,G1, H,H1, Gt, G
′
t, e, π1, π2, πt)←

G(pp). In particular, let G2
1,G2

2 and G4
t be descriptions of G,H and Gt respectively, and

{g(−s,1)} and {h(−s′,1)} be descriptions of G1, H1 respectively. Choose g ∈R G,h ∈R
H, and output the public key pk = (G,G1, H,H1, Gt, e,g,h) and the secret key sk =
(π1, π2, πt) as described in Section 2.3.

Encsrc(pk,M) : Choose a, b at random in Zp. Let g1 = (g~x)a = (g−as, ga) and h1 = (h~x
′
)b =

(h−bs
′
, hb). Let C0 = gM · g1, C1 = hM · h1. Output the ciphertext (C0, C1) in G×H.

Enctgt(pk,M) : Choose a, b at random in Zp. Let g1 = (g~x)a = (g−as, ga) and h1 = (h~x
′
)b =

(h−bs
′
, hb). Output the ciphertext C = e(g,h)M · e(g,h1) · e(g1,h) in Gt.

11



Multiplysrc(pk, C, C
′) : The multiplication algorithm takes as input two ciphertexts C = (C0, C1)

and C ′ = (C ′0, C
′
1). Choose g1 ∈R G1 and h1 ∈R H1, as in the above routine. Output

C = e(C0, C
′
1) · e(g,h1) · e(g1,h), an element of Gt.

Addsrc(pk, C, C
′) : The algorithm accepts as inputs two ciphertexts C = (C0, C1) and C ′ =

(C ′0, C
′
1). Choose g1 ∈R G1 and h1 ∈R H1.

1. Let C ′′0 = C0 · C ′0 · g1.

2. Let C ′′1 = C1 · C ′1 · h1.

Output C ′′ = (C ′′0 , C
′′
1 ).

Addtgt(pk, C, C
′) : The algorithm accepts as inputs two ciphertexts C and C ′ in Gt. Choose

g1 ∈R G1 and h1 ∈R H1.

1. Let C ′′ = C · C ′ · e(g,h1) · e(g1,h).

Output C ′′.

Decsrc(sk, C) : Accept as input a ciphertext C = (C0, C1) inG×H. ComputeM ← logπ1(g)(π1(C0))
and M ′ ← logπ2(h)(π2(C1)). Output M if M = M ′ or ⊥ otherwise.

Dectgt(sk, C) : Accept as input a ciphertext C in Gt. Output M ← logπt(e(g,h))(πt(C)).

Lemma 2. Suppose that the External 1-Symmetric Cascade assumption, i.e., Symmetric Ex-
ternal Diffie Hellman assumption, holds with respect to the groups G1 and G2. Then the above
cryptosystem is semantically secure.

Proof. See Appendix A.

5 Distributed Key Generation Protocol for One-time Homo-
morphic Cryptosystem

In this section we describe a key generation protocol for the multiplicatively homomorphic
cryptosystem of Section 4. Traditional protocols for threshold key generation [Ped91, GJKR07]
would be a natural choice, except that they fail for the Dectgt algorithm, because the evaluation
of πt requires the sharing of a quadratic secret ss′, while the traditional protocols are defined
for linear terms only.

In order to overcome this difficulty, the idea of our protocol is for each party in the qualified
set to split their individual secrets into chunks over a small interval for which decryption in the
CF cryptosystem is feasible. By a suitable computation on encrypted chunks of the individual
secrets of the parties in the qualified set, the product the secrets s and s′ can be computed
as a list of encrypted chunks. To obscure the recovery of the square in totality, we introduce
a blinding factor, which is added to the square prior to decryption. This blinding factor is
produced in analogous fashion to the secret itself, namely it is contributed to by all parties
in the qualified set and can be recovered by a threshold number of them. Thus, after CF
decryption, a blinding of the square of the secret is revealed as a field element in the clear, while
the blinding factor is a distributed secret. By the linearity of exponentiation on group elements,
the application of the blinding factor can be cancelled out “on demand” by a threshold set
of qualified players, leading to a fully contained key generation protocol for our multiplicative
cryptosystem, this is explained in more detail in the proof of Theorem 3. Like the key generation
protocols of [Ped91, CGGI13, GJKR07], our protocol uses concurrent verifiable secret sharing
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to build a secret key but assumes as input shares of a transport key under which the main key
generation protocol runs. For the latter purpose one may use any of those schemes.

Let [·]y denote a CF encryption under key y. Let g1, g2, gvss, gpke ∈ G1 and h1, h2, hpke ∈ G2

be public. Let cA = 2λA and cB = 2λB be the chunk sizes of individual secrets and individual

blinding factors. One may set cA = p
1
4l · 2−

λ
2 and cB = p

1
2l where l is chosen so that discrete

logarithms are feasible in the range [0, N · p
1
2l ]. Appropriate sizes are given in Lemma 15,

Appendix C.
We recall the definitions of correctness, resilience and security of a distributed key generation

protocol [GJKR07].

Correctness :

• All subsets of T shares provided by honest players define the same unique secret key
sk.
• All honest parties have the same value of the public key pk, which is correct wrt sk.
• sk is uniformly distributed among a range {0, 1}λ, where λ is the security parameter.

Resilience : There is a procedure to reconstruct the secret key sk out of T or more shares,
which is resilient in the presence of malicious parties.

Security : No information can be learned on sk except for what is implied by the public key
pk.

Theorem 3. Protocol 1 is a distributed key generation protocol for the cryptosystem of Section
3 and that is correct, resilient and secure against an active adversary corrupting fewer than T
statically chosen players.

Proof.

Correctness It suffices to compute the projection πt of any element in Gt = G4
t which will

follow from the following elementary results concerning the correctness of γ, x, x′ and b shown
in Propositions 4 and 5 below. Any qualified set R ⊆ Q may compute πt(z1, z2, z3, z4) as follows

πt(z1,z2, z3, x4) = z1z
x
2z

x′
3 z

xx′
4 =

z1z
x
2z

x′
3 z

xx′+b
4

zb4

=
z1z

x
2z

x′
3 z

γ
4

zb4

=
z1z

∑
j∈R Λj,R(

∑
i∈Q sij)

2 z
∑
j∈R Λj,R(

∑
i∈Q s

′
ij)

3 zγ4

z
∑
j∈R Λj,R(

∑
i∈Q tij)

4

=
z1z

∑
j∈R Λj,Rxj

2 z
∑
j∈R Λj,Rx

′
j

3 zγ4

z
∑
j∈R Λj,Rbj

4

In particular this expression may be computed from individual shares xj , x
′
j and bj as the

product
z1

∏
j∈R(z

xj
2 )

Λj,R (z
x′j
3 )

Λj,Rzγ4∏
j∈R(z

bj
4 )

Λj,R
.

Resilience It is trivial to verify the correctness of any submitted share using (Ai, A
′
i, Bi, B

′
i)i∈Q,

according to Equation 2. Thus we have resilience against an arbitrary number of misbehaving
participants during the key reconstruction phase.
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Protocol 1– Part 1

Common Input : CF public key y. Generators gvss, gpke ∈ G1 and hpke ∈ G2.

Private Input : Pi holds a share ki of secret key k, corresponding to public key y.

1. Let si =
∑`−1

k=0 αikc
k
B, s

′
i =

∑`−1
k=0 α

′
ikc

k
B, ti =

∑2`−2
k=0 βikc

k
B where αik, α

′
ij ∈R

[0, 2λA − 1] and βik ∈R [0, 2λB − 1]. Pi creates vectors ~vi = (si, ri2, . . . , riT ), ~v′i =
(s′i, r

′
i2, . . . , r

′
iT ), ~wi = (ti, r

′′
i2, . . . , r

′′
iT ). Pi computes the share vectors ~si = M~vi, ~s

′
i =

M~v′i and ~ti = M ~wi. Let Vi = g~vivss, V
′
i = g

~v′i
vss,Wi = g ~wivss. Pi broadcasts the val-

ues {Vi, V ′i ,Wi}. Pi sends sij = ~si[j], s
′
ij = ~s′i[j], tij = ~ti[j] to each Pj via a private

channel, for 1 ≤ j ≤ N . Note that

g
sij
vss = V

M(j)
i , g

s′ij
vss = V ′i

M(j)
, g
tij
vss = W

M(j)
i (1)

2. Pi verifies that the shares received from Pj , i.e., sji, s
′
ji and tji are correct, by verifying

Equation 1. If any of these equations do not hold for the received values sji, s
′
ji and

tji, Pi broadcasts the message (Pi, complain, Pj).
3. For each broadcast message (Piα , complain, Pj), player Pj is disqualified if

(sjiα , s
′
jiα
, tjiα) are sent that do not satisfy Equation 1. Let Q be the set of con-

tinuing (i.e. non-disqualified) players.

4. Let Ai = g~vipke, Bi = g ~wipke, A
′
i = h

~v′i
pke, B

′
i = h~wipke, Ci = ([αi0]y, . . . , [αi(`−1)]y),

C ′i = ([α′i0]y, . . . , [α
′
i(`−1)]y), Di = ([βi0]y, . . . , [βi(2(`−1))]y) where ~vi, ~v

′
i, ~wi are sam-

pled as in Step 1. Let εi ← (Prange((Cik)k, cA), Prange((C ′ik)k, cA), Prange((Dik)k, cB),

Peq(Ai[1],
∏`−1
k=0[αik]

ckB
y ), Peq(A′i[1],

∏`−1
k=0[α′ik]

ckB
y ), Peq(Bi[1],

∏2(`−1)
k=0 [βik]

ckB
y )). Pi

broadcasts the values {Ai, A′i, Bi, B′i, Ci, C ′i, Di, εi}. Note that

g
sij
pke = A

M(j)
i , g

tij
pke = B

M(j)
i ,

h
s′ij
pke = A′i

M(j)
, h

tij
pke = B′i

M(j)
(2)

5. Pi verifies that for the values sent by every other Pj in Q, Equation 2 holds. If any of
these equations do not hold for the values sji, s

′
ji and tji, Pi broadcasts the message

(Pi, complain, Pj).
6. For each broadcast message (Piα , complain, Pj) or proofs satisfying
Vrange(σj , (Cj , C

′
j , Dj), εj) 6= 1 ∨ Veq(σj , (Aj , A

′
j , Bj), (Cj , C

′
j , Dj), εj) 6= 1 the

other players in Q reconstruct the values sj , tj , ~vj , ~wj , Aj , A
′
j , Bj , B

′
j , Cj , C

′
j , Dj .

7. For 0 ≤ k ≤ 2(` − 1), Pi computes ctk =
∑

i,j∈Q
∑

f+g=k CifC
′
jg +

∑
i∈QDik and

γk ← Dec(ki, ctk). Outputs γ =
∑2(`−1)

k=0 γkc
k
B.

Figure 2: Key gen protocol for one-time homomorphic cryptosystem.
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Protocol 1– Part 2
8) Pi computes their share of the secret as the sum of all shares received in Step 2

among continuing players, i.e., xi =
∑

j∈Q sji x
′
i =

∑
j∈Q s

′
ji and bi =

∑
j∈Q tji.

Pi computes vki = (gxivss, g
x′i
vss, g

bi
vss) and ypke =

∏
i∈QAi[1], zpke =

∏
i∈QA

′
i[1].

Pi sets g1 = (ypke, gpke) and h1 = (zpke, hpke). The public key is pk =
((g1, g2),g1, (h1, h2),h1, {[γk]y}k, {Vi, V ′i ,Wi}i∈Q). The secret is (x, x′, b, γ). Note that
x, x′ and b are distributed secrets while γ is held in entirety by each player in Q.

Figure 3: Key gen protocol for one-time homomorphic cryptosystem, Part 2.

Privacy We show the existence of a polynomial time simulator that interacts with the ideal
world CF key generation functionality and generates a distribution indistinguishable to that
produced by an actual run of the protocol by honest players. In the following the proof of
security proceeds in the ideal world CF key generation hybrid model.

We argue the simulation is good. First note that no adversary can distinguish a real common
reference string σN from the simulated common reference string σ̂N by the zero knowledge
property of Πrange and Πeq. We next note that steps 1-3 of the simulation are indistinguishable
from the corresponding steps run in the real protocol. to see this, first note that all parties
have access to the broadcast values Vi, V

′
i and Wi, thus it is impossible for a honest player not

to be included in the qualified set decided in Step 3, i.e, B ⊆ Q. On the other hand for player
Pj ∈ B ∩Q, the simulator receives at least T shares, namely those corresponding to the honest
players in Q, enabling recovery of sj , s

′
j and tj . Thus the simulator can compute sj , s

′
j and tj

for all players Pj ∈ Q.
Let A∗i , B

∗
i , A

′∗
i , B

′∗
i be the commitments broadcast in Step 4 of the real protocol and s∗ij ,s

′
ij
∗

and t∗ij be the shares of secrets s∗i , s
′
i
∗ and t∗i sent by Pi to Pj in Step 1, where Pi, Pj ∈ Q. In

that case we have that A∗i , B
∗
i , A

′∗
i , B

′∗
i are chosen uniformly at random in G1 ×G1 ×G2 ×G2

subject to the constraints that ypke =
∏
i∈QA

∗
i [1], zpke =

∏
i∈QB

∗
i [1], y′ =

∏
i∈QB

∗
i [1], z′ =∏

i∈QB
′
i
∗[1], i.e. the |Q|-wise product of first components is fixed to ypke, zpke, y

′, z′. Similarly

(s∗ij)Pj∈Q\{N}, (s′ij
∗)Pj∈Q\{N} and (t∗ij)Pj∈Q\{N} are sampled uniformly at random. On the other

hand, we have ÂN [1] = ypke ·
∏
i∈Q\{N}(Âi[1])−1, B̂N [1] = zpke ·

∏
i∈Q\{N}(B̂i[1])−1, Â′N [1] =

y′ ·
∏
i∈Q\{N}(A

′
i[1])−1, B̂′N [1] = z′ ·

∏
i∈Q\{N}(B

′
i[1])−1 and ÂN [j], B̂N [j], Â′N [j], B̂′N [j] : j > 1 are

chosen uniformly at random. Similarly, for Pi ∈ Q, the values Ĉi, Ĉ
′
i, D̂i, ε̂i are indistinguishable

from C∗i , C
′
i
∗, D∗i , ε

∗
i . For Pi ∈ Q\{N} this follows because the simulator performs the same steps

as in the real protocol, while the semantic security of CF encryption implies that the adversary
cannot distinguish the encryptions of zero ĈN , Ĉ ′N and D̂N = [γ −

∑
i∈Q\{N} si

∑
j∈Q\{N} s

′
j −∑

j∈Q\{N} tj ]y from the real values C∗N , C ′N
∗ and D∗N respectively. Now trapdoor τN enables

the zero knowledge simulator S2 to compute fake proofs ε̂N on the values ĈN , Ĉ ′N and D̂N ,
without the adversary noticing.

Finally the simulator participates in distributed CF encryption for the honest players. This
is a perfect simulation of the real protocol because it has access to the ideal functionality for
CF key share generation (which exists assuming that protocol is secure).

Proposition 4. The values x =
∑

i∈Q si, x
′ =

∑
i∈Q s

′
i and b =

∑
i∈Q ti are distributed secrets

according to the threshold access structure.

Proof. It is clear that the set Q is well-defined as it is a function of only publically available
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Simulator for Protocol 1
Input (ypke, zpke), {[γk]y}k.

• Assume PN is honest.
• Let B be the set of corrupted players.

1. Let (σ̂N , τN )← S1(1λ).
2. Perform Steps 1-3 on behalf of honest parties.
3. Compute si, s

′
i and ti for all Pi ∈ Q\{N}. Choose sNi, s

′
Ni and tNi at random

in Zp for i ∈ Q ∩B. Choose y′ ∈R G1, z
′ ∈R G2.

4. Compute {Âi, B̂i, Â′i, B̂′i, Ĉi, Ĉ ′i, D̂i, ε̂i} as in the real protocol for i ∈ Q\{N}.
Let ÂN [1] = ypke · (

∏
i∈Q\{N}Ai[1])−1, B̂N [1] = y′ · (

∏
i∈Q\{N} B̂i[1])−1, Â′N [1] =

zpke · (
∏
i∈Q\{N} Â

′
i[1])−1, B̂′N [1] = z′ · (

∏
i∈Q\{N} B̂

′
i[1])−1. Let ÂN [j] =

(ÂN [1]/
∏
i∈Q∩B g

sNi·Λi,B
pke )Λ−1

j,B , Â′N [j] = (Â′N [1]/
∏
i∈Q∩B h

s′Ni·Λi,B
pke )Λ−1

j,B , B̂N [j] =

(B̂N [1]/
∏
i∈Q∩B g

tNi·Λi,B
pke )Λ−1

j,B , B̂′N [j] = (B̂′N [1]/
∏
i∈Q∩B h

tNi·Λi,B
pke )Λ−1

j,B for j > 1.

Let ĈN = ([0]y, . . . , [0]y), Ĉ
′
N = ([0]y, . . . , [0]y), D̂N = (D̂N0, . . . , D̂N(2`−2))

where D̂Nk = [γk]y −
∑

i,j∈Q\{N}
∑

f+g=k CifC
′
jg −

∑
i∈Q\{N}Dik. Let ε̂N ←

S2(τN , ĈN , Ĉ
′
N , D̂N , ÂN , B̂N ). Broadcast {Âi, B̂i, Â′i, B̂′i, Ĉi, Ĉ ′i, D̂i, ε̂i} for i ∈ B.

5. Check that Equation 2 holds and that published proofs are valid on behalf of
Pi ∈ B. If (sji, s

′
ji, tji) does not satisfy this equation for some Pj , broadcast

(Pi, complain, Pj).
6. For every player Pj for which a valid complaint (Piα , complain, Pj) was made, the

simulator reconstructs sj , s
′
j , tj , Aj , A

′
j , Bj , B

′
j , Cj , C

′
j , Dj accordingly.

7. The simulator runs distributed CF decryption on behalf of Pi ∈ B.

Figure 4: Simulator for the key generation protocol for one-time homomorphic cryptosystem.

information. We have that for any setR ⊆ Q of T shares, si =
∑

j∈R Λj,R·sij , s′i =
∑

j∈R Λj,R·s′ij
and ti =

∑
j∈r Λj,R · tij in Zp. Hence x =

∑
i∈Q si =

∑
i∈Q(

∑
j∈R Λj,R · sij) =

∑
j∈R Λj,R ·

(
∑

i∈Q sij) =
∑

j∈R Λj,R · xj , i.e. x can be publically re-constructed from any set of T shares.
By a similar argument x′ and b can be publically re-constructed from any set of T shares.

Proposition 5. The values γ, x, x′ and b computed in Step 6 satisfy the relation γ = xx′+ b.

Proof. By the correctness of CF decryption, we have γ =
∑2(`−1)

k=0 γkc
k
B =

∑2(`−1)
k=0

∑
i,j∈Q∑

f+g=k αifα
′
jgc

k
B +

∑
i∈Q βikc

k
B =

∑
i,j∈Q

∑2(`−1)
k=0

∑
f+g=k αifα

′
jgc

f+g
B +

∑
i∈Q

∑2(`−1)
k=0 βikc

k
B

= (
∑

i∈Q
∑(`−1)

f=0 αifc
f
B) · (

∑
j∈Q

∑(`−1)
g=0 α′jgc

g
B) +

∑
i∈Q ti = (

∑
i∈Q si) · (

∑
j∈Q s

′
j) +

∑
i∈Q ti

= xx′ + b.

6 Distributed Encryption Switching

In this section we describe a protocol for universally verifiable switching between source and
target encryption schemes using only the additive homomorphism on the ciphertext spaces.
The protocol and simulator are in Figures 5 and 6. The essential idea is to for each party
to contribute an equivalent encryption of a blinding factor under both cryptosystems together
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with a zero knowledge proof of correctness. In the source space the blinding factors are homo-
morphically added to the input ciphertext and the result decrypted under a robust threshold
decryption scheme. To this plaintext, the blinding factors under the target encryption scheme
are homomorphically subtracted, the result is an encryption of the input message under the
target cryptosystem.

In order to blind the ciphertexts without increasing the size of the messages to be decrypted
(remember that it requires a DL extraction), we propose to apply the blinding using a xor-sum,
rather than the more natural operations over the integers. Specifically, we assume an ideal
functionality for bit-wise sum, FSUM with the following behaviour:

• On input (setup, 1λ) initialises D ← ∅, t← 0.
• On input (send, C), if t < N , sets D ← D ∪ {C}, t ← t + 1, if t = N , output Cs which is

an encryption of the bit-wise sum of all decrypted ciphertexts contained in D.

The details of the protocol realising this functionality are in Appendix C. This protocol requires
a number of decryption operations that is proportional to the size of the messages to be blinded.

If the ciphertexts are known to be small, the xor-sum can be avoided and we can simply rely
on the additive homomorphism of the encryption scheme, like we did for key generation. This
provides statistical blinding, and comes with the benefit of being a completely non interactive
process.

Our definition of universally verifiable secure computation is derived from [SV15] and given
in Appendix F. It formalises the idea that either a threshold of honest participants produces a
true answer, or the output fails verification.

Protocol πSWITCH

Common Input : c = Enc1(pk,m) : m ∈ M and πCOM be a non-malleable commitment
scheme with key ck. Threshold t.

Private Input : Pi holds a share of the secret key, ski

Player Pi

1. Choose ui ∈R Zp and publish δi = comck(ui) using randomiser ri.
2. Publish C ′i = Enc1(pk, ui) and Ci = Enc2(pk, ui) and εi ← (Peq(δi, C

′
i),Peq(C ′i, Ci)).

3. If at least t of the εi pass verification, let C ′ =
∏λ
j=1 c

′
ij⊗2j−1 and C =

∏λ
j=1 cij⊗2j−1

where (c′ij)
λ
j=1 ← πSUM(C ′1, . . . , C

′
N ) and (cij)

λ
j=1 ← πSUM(C1, . . . , CN ).

Otherwise output ⊥.
4. Let d← c · C ′, di ← dski , ξi ← ΣCD(d, di, pk, vki).
5. If at least t pass verification for both εi and ξi, let m′ ←

∏T
i=1 di and output c =

Enc∗2(m′) · C−1
.

Otherwise output ⊥.

Figure 5: Protocol πSWITCH.

Theorem 6. Protocol πSWITCH securely computes universally verifiable encryption switching in
the FSUM-hybrid model against statically chosen adversaries if πCOM is a secure non-malleable
commitment scheme and Peq is a secure NIZK proof system.
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Simulator for πSWITCH

Input : (pk1, c, c), threshold t.

• Let B be the set of corrupted players. Assume |N\B| > t.

1. Let ck ← K′(1λ). Pass (setup, 1λ) to FSUM.
2. Let (σ̂N , τN )← S1(1λ).
3. Perform Steps 1–3 on behalf of honest players N\B except that (send, C ′i) and

(send, Ci) are passed to FSUM.
4. Let C ′N = Enc1(0) and CN = Enc2(0). Pass (send, C ′N ) and (send, CN ) to FSUM and

let C ′ and C be the output.
5. Perform Steps 4–5 on behalf of the honest players except that ξi are simulated, i.e.,

let d← c ·C ′, di ← dski , ξi ← Σ.sim(d, di, pk, vki), m̂←
∏T
i=1 di and ĉ = Enc∗2(m̂) ·C−1

.
Output ⊥ if ĉ 6= c.

Figure 6: Simulator for protocol πSWITCH.

Proof. There are two simulators, depending on whether an (honest) threshold passes verifica-
tions.

Case 1: at least t pass verification. We may assume that all players in B commit to
values {ui}i∈B which are unrelated to the set {uj}j∈B since otherwise A finds a pair of message
vectors ~m, ~m′ satisfying ~m[i] = ui, ~m

′[j] = uj for which the event D(s, ~m, ~m′, zD) = 1 occurs
with noticeably greater probability in the real protocol than the simulated. By the soundness
of Peq it holds that Dec(sk1, C

′
i) = Dec(sk2, Ci) for all i 6= N or the simulation aborts. Thus

in the real protocol the values C ′ and C satisfy the relation C ′ − C ′N ≡ C − CN . Therefore
we need to show that in the simulation PN produces C ′N and CN which satisfy this and are
indistinguishable from the corresponding values produced in the real protocol. This follows
from the semantic security of Enc1 and Enc2 and the fact that in the simulation C ′ and C are
explicitly constructed as the bit-wise sum of C ′1, . . . , C

′
N−1 and C1, . . . , CN−1 which contain

identical values. Finally, the soundness of ΣCD implies that the simulation succeeds except with
negligible probability.

Case 2: fewer than t pass verification. Then the adversary may learn the output and
may not pass it on to the result party. It can choose random blinding factors and use the
commitment simulators and ZK simulators to simulate the honest participants perfectly.

Given that the switch is the only operation of our protocols that requires the use secret
information (i.e., decryption keys), and that this operation is verifiable, we obtain a universally
verifiable MPC protocol: addition and multiplication are publicly performed using our encryp-
tion scheme, and the verifiable switch offers the possibility to repeat these operations as often
as needed.

7 Tallying IRV Ballots

In this section we describe how to use the primitives described in the earlier part of this work,
to construct a secure distributed protocol for tallying encrypted ballots according to the in-
stant run-off algorithm. Given that ballots are input to the tallying protocol in encrypted
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form and that we only reveal the computed tallies of first preference votes after each round of
the IRV algorithm, the main challenge is to ensure that the privacy of ballots is maintained
between tallying rounds. We will use distributed encrypted switching on the cryptosystems
Πsrc = (Setup,KeyGen,Encsrc,Decsrc) and Πtgt = (Setup,KeyGen,Enctgt,Dectgt) of Section 3.
Suppose that Πtgt → Πsrc is a distributed encryption switching protocol, where Encsrc is used
to encrypt plaintext votes. In that case we can use the one-time multiplicative homomorphism
to compute the necessary product computations on ballots for the first two rounds of tally-
ing. This takes ballots from the ciphertext space of Πsrc to the ciphertext space of Πtgt, for
which addition, but not multiplication, is possible. To compute the product computations cor-
responding to further rounds of tallying, the election trustees will come together and perform
a distributed switch on the ballots, will take them back to the ciphertext space of Πsrc, and for
which product computations are again possible. In this way, for every round of tallying after
the first, distributed encryption switching can be used to ensure that the computation can be
used to determine the first preference vote for a continuing candidate on each ballot.

7.1 Protocol Details

Ballot representation. Assume c candidates and M voters. Assume that an IRV ballot
allows expression of up to k preferences, where k ≤ c is a constant specific to the election. For
the purpose of homomorphic tallying, we will assume a special “preference-order” ballot. Let
µn : {1, . . . , k} → {1, . . . , c} be an (injective) function representing the preferences of voter n.
The ballot used for tallying, Bn, will be an encryption of the indicator vectors eµn(1), . . . , eµn(k).
The indicator vector eµn(j) is encrypted as a tuple of c ciphertexts, vj . Thus Bn is simply a list
of c-tuples of ciphertexts of length k, i.e., Bn = (v1, . . . ,vk). Figure 9 shows the representation
we employ for tallying.

Updating of ballots Recall that in an IRV election, after each phase of tallying, if a
candidate is not elected, then the candidate with fewest votes is eliminated. The ballot repre-
sentation described in the previous paragraph permits a particularly convenient method for this
purpose, while still allowing further preferences to be counted. Specifically, a candidate may
be eliminated from ballot Bn simply by striking out the corresponding column in the matrix of
preferences. Since each elimination is made as a function of publically verifiable totals, there
is no ambiguity as to the representation of any ballot at any stage of tallying. An important
feature of this representation is that the sequence of accesses ever made by Protocol 2 is deriv-
able from the sequence of intermediate tallies it produces until termination. Input obliviousness
follows. Figure 10 shows a preference-order ballot after a candidate has been eliminated.

Tallying first-preference votes Let Bn = (v1, . . . ,vk) be a ballot. Let SC be the set of
continuing candidates. Define ΣSC

(vi) to be the homomorphic sum of the entries of the ith

preference vector over continuing candidates. Clearly ΣSC
(vi) is an encryption of 1 iff the ith

preference is for a continuing candidate, and an encryption of 0 otherwise. Let C �src C
′ =

Encsrc(pk,MM ′) : M = Decsrc(sk, C) and M ′ = Decsrc(sk, C
′). We have that, after l ≤ k rounds

of tallying the encrypted product

π
(l)
j :=

�src
1≤j′≤j (Enc∗1(1)− ΣSC

(vj′)) : j ≤ l

is an encryption of 0 iff at least one of the first j preferences is for a continuing candidate, and
an encryption of 1 otherwise. By assumption, after l − 1 rounds of tallying, there is at least
one j ≤ l such that the jth preference is for a continuing candidate.1 Therefore after l rounds

1For example, the use of a “stop” candidate by [Hea07] remedies the case that a ballot is exhausted prematurely.
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of tallying, the homomorphic dot product
∑l

j=1 vj �src πj is simply an encryption of the first
preference for a continuing candidate, in indicator format. The protocol is shown in Figure 7.

Theorem 7. Let εIS be the maximal distinguishing advantage of adversary A in the ideal switch-
ing experiment. Then Protocol 2 securely realises universally verifiable IRV tallying against
statically chosen adversaries except with error probability at most

(
k
2

)
· εIS.

Proof. Our proof proceeds by a hybrid argument following Claim 8. Define H
(l)
I to be the exper-

iment in which on the lth round of tallying during the first I invocations of the for loop on line 8

the adversary instead interacts with B2 on inputs pk, (ski)i∈B,π
(l)
j ,π

′
j
(l) and with the ideal de-

cryption functionality, FDEC, on line 17. Note thatH
(l)
l is identical toH

(l+1)
1 , in which all encryp-

tion switching during the first l rounds of tallying is generated from the simulator who is given
access to key shares of honest parties and public intermediate products. Thus, given Claim 8,
we may conclude the proof by noting that the maximal distinguishing advantage between real

and simulated protocols is AdvA(λ) = |Pr[A(H
(1)
1 ) = 1] − Pr[A(H

(k)
k ) = 1]|. In particular,

it follows that ε ≤
∑k

l=1 |Pr[A(H
(l−1)
1 ) = 1] − Pr[A(H

(l)
1 ) = 1]| ≤

∑k
l=1

∑l
I=1 |Pr[A(H

(l)
I−1) =

1]− Pr[A(H
(l)
I ) = 1]| ≤

(
k
2

)
· εIS.

Claim 8. In the FDEC-hybrid model for any PPT adversary A who distinguishes between H
(l)
I−1

and H
(l)
I with probability ε, there exists an adversary who distinguishes between real and ideal

switching with probability εIS := ε.

Proof. This is immediate from the perfect emulation of honest by parties by OB.

7.1.1 Implementation

A proof-of-concept implementation of the IRV counting protocol was made in Python 2.7 using
the PPAT library2 for group operations, based on a BN curve [BN06] with a prime modulus
of 256 bits. Ballots were represented as per Figure 9. The implementation did not include the
construction or checking of proofs, and ran as a single party. It would be straightforward to
include multiple parties with the addition of the appropriate communication code.

The implementation was tested using elections data for the districts of Albury and Auburn
for the New South Wales Legislative Assembly election in 2015.3 The implementation encrypted
each of the entries in the ballot matrix prior to commencing the count, to simulate the receipt
of encrypted ballots. To improve performance both the parts of the code for ballot encryption,
and the running of the protocol in Figure 7, were made to run using multiple threads.

The experiments were performed on an Intel i7-6770HQ with 4 cores (8 threads) and 32GB
RAM. The results are shown in Table 1, with timings given in seconds. The election for Albury
was settled after just one round, and took just under two hours. The election for Auburn took 4
rounds and completed in a little over 15 hours. In both cases the intermediate and final results
were compared with the official results to ensure accuracy of our counting algorithm.

8 Conclusion

We have devised a very simple universally verifiable MPC protocol based on combining an effi-
cient distributed key generation, a somewhat homomorphic cryptosystem in which one multipli-

2https://github.com/ecuvelier/PPAT
3From http://pastvtr.elections.nsw.gov.au/SGE2015/la-home.htm
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Protocol 2

Common Input : Ballots B1, . . . , BM in encrypted preference-order representation.

Private Input : ski ← Share(pk, sk,AT -Th) : ski = (αi, βi).

Public Output : All intermediate tallies of all candidates until termination with a candi-
date who wins a majority.

Player Pi :

1: SC ← {1, . . . , c}, bELECT ← False, λ← 1
2: while not bELECT do
3: vTALLY ← Enc∗tgt(0), . . . ,Enc∗tgt(0)︸ ︷︷ ︸

|SC |

. Tally first preference votes.

4: for 1 ≤ n ≤M do
5: Let (v1 . . . ,vk)← Bn|SC . Compute first preference vote for voter n.
6: π1 ← Enc∗src(1)
7: vFP ← v1 �src π1

8: for 2 ≤ j ≤ λ do
9: π′j ← πj−1 �src (Enc∗src(1)	src ΣSC

(vj−1))
10: πj ← Switchtgt→src(pk,π

′
j , ski)

11: v′j ← vj �src πj
12: vFP ← vFP ⊕tgt v′j
13: end for . Add first preference vote of voter n to running tally.
14: vTALLY ← vTALLY + vFP

15: end for
16: λ← λ+ 1 . Decrypt running tally.
17: (n1, . . . , nc)← Dectgt(αi,vTALLY)
18: j∗ ← argmaxj∈SC (nj)

19: if nj∗ > bM2 c or λ > k then
20: bELECT ← True . Declare winner.
21: Broadcast (elect, cj∗)
22: return
23: else
24: j∗ ← argminj∈SC (nj) . Eliminate candidate with fewest votes.
25: Broadcast (eliminate, cj∗)
26: SC ← SC\{j∗}
27: end if
28: end while

Figure 7: Tallying IRV ballots with distributed encryption switching.
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Simulator for Protocol 2
Input : All intermediate tallies until termination and products π

(l)
j ,π

′
j
(l).

• Let B be the set of parties corrupted by A.
• Let B1,B2 be the algorithms associated with ideal switching played against A.
• Compute (pk′, sk1, . . . , skN )← B1(pk).
• Perform all steps of the protocol on behalf of the honest parties except:

1. On the jth invocation of line 10 run B2 on inputs pk, (ski)i∈B,π
′
j
(l),π

(l)
j .

2. In place of line 17 run (n1, . . . , n|SC |)← FDEC(sk1, . . . , skN ,vTALLY).

Figure 8: Simulator for Protocol 7.

preference\ candi-
date

1 2 3 4 5 6

1 0 0 1 0 0 0

2 0 0 0 0 1 0

3 1 0 0 0 0 0

Figure 9: Suppose c = 6 and k = 3. Preference-order ballot right.

preference\ candi-
date

1 2 3 4 5 6

1 0 0 × 0 0 0

2 0 0 × 0 1 0

3 1 0 × 0 0 0

Figure 10: Preference-order ballot after elimination of candidate 3.

District

Albury Auburn

No. Ballots 46347 43738

No. Candidates 5 6

Ballot Encryption Time 3069s 3936s

No. Rounds 1 4

Count Time 6979s 54637s

Table 1: Results for Sample IRV Counts
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cation comes almost for free, and a switching protocol that allows a return to the cryptosystem
from which more multiplications can be performed.
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A One-time Multiplicatively Homomorphic Cryptosystem

In this section we describe a generalisation of the homomorphic cryptosystem from Section 2
which supports arbitrarily many additions on the message space, followed by one multiplication,
followed by arbitrarily many additions. The purpose of this appendix is to detail the case for
general l, from which the cryptosystem in Section 2 may be seen as the special case l = 1.

Setup(1λ) : Let P be the prime-order bilinear generator of Definition 8. Output pp = (p,G1,G2,Gt, ê)←
P(1λ).

KeyGen(pp) : Let G be the tensor-induced projecting bilinear generator of Definition 10. Let

(G,G1, H,H1, Gt, G
′
t, e, π1, π2, πt) ← G(pp). In particular, let Gl+1

1 ,Gl+1
2 and G(l+1)2

t be
descriptions of G,H and Gt respectively, and {g~x1 , . . . , g~xl} and {h~x′l , . . . , h~x′l} be de-
scriptions of G1, H1 respectively. Choose g ∈R G,h ∈R H, and output the public key
pk = (G,G1, H,H1, Gt, e,g,h) and the secret key sk = (π1, π2, πt) as described in Section
2.3.

Encsrc(pk,M) : Choose (ai)1≤i≤l and (bi)1≤i≤l at random in Zp. Let g1 =
∏l
j=1(g~xj )aj =

(g−a1s, ga1−a2s, . . . , gal−1−als, gal) and h1 =
∏l
j=1(h~x

′
j )bj = (h−b1s

′
, hb1−b2s

′
, . . . , hbl−1−bls′ , hbl).

Let C0 = gM · g1, C1 = hM · h1. Output the ciphertext (C0, C1) in G×H.

Enctgt(pk,M) : Choose (ai)1≤i≤l and (bi)1≤i≤l at random in Zp. Let g1 =
∏l
j=1(g~xj )aj =

(g−a1s, ga1−a2s, . . . , gal−1−als, gal) and h1 =
∏l
j=1(h~x

′
j )bj = (h−b1s

′
, hb1−b2s

′
, . . . , hbl−1−bls′ , hbl).

Output the ciphertext C = e(g,h)M · e(g,h1) · e(g1,h) in Gt.

Multiplysrc(pk, C, C
′) : The multiplication algorithm takes as input two ciphertexts C = (C0, C1)

and C ′ = (C ′0, C
′
1). Choose g1 ∈R G1 and h1 ∈R H1, as in the above routine. Output

C = e(C0, C
′
1) · e(g,h1) · e(g1,h), an element of Gt.
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Addsrc(pk, C, C
′) : The algorithm accepts as inputs two ciphertexts C = (C0, C1) and C ′ =

(C ′0, C
′
1). Choose g1 ∈R G1 and h1 ∈R H1.

1. Let C ′′0 = C0 · C ′0 · g1.

2. Let C ′′1 = C1 · C ′1 · h1.

Output C ′′ = (C ′′0 , C
′′
1 ).

Addtgt(pk, C, C
′) : The algorithm accepts as inputs two ciphertexts C and C ′ in Gt. Choose

g1 ∈R G1 and h1 ∈R H1.

1. Let C ′′ = C · C ′ · e(g,h1) · e(g1,h).

Output C ′′.

Decsrc(sk, C) : Accept as input a ciphertext C = (C0, C1) inG×H. ComputeM ← logπ1(g)(π1(C0))
and M ′ ← logπ2(h)(π2(C1)). Output M if M = M ′ or ⊥ otherwise.

Dectgt(sk, C) : Accept as input a ciphertext C in Gt. Output M ← logπt(e(g,h))(πt(C)).

Proof of Lemma 2 Suppose that the External l-Symmetric Cascade assumption holds
with respect to the groups G1 and G2. Then the above cryptosystem is semantically secure.

Proof. We prove this via a series of games, of which the indistinguishability is proven in the
next 3 Propositions.

Game H1: Exactly the same as above but modify the encryption routine as follows.

Encrypt(pk,M) : Choose (ui)1≤i≤l+1 and (bi)1≤i≤l+1 at random in Zp. Let C0 = gM ·
(gu1 , . . . , gul+1), C1 = hM · (h−b1s

′
, hb1−b2s

′
, hbl−1−bls′ , hbl). Output the ciphertext

(C0, C1) in G×H.

Game H2: Exactly the same as H1 but modify the encryption routine as follows.

Encrypt(pk,M) : Choose (ui)1≤i≤l+1 and (u′i)1≤i≤l+1 at random in Zp. Let C0 = gM ·
(gu1 , . . . , gul+1), C1 = hM · (hu′1 , . . . , hu

′
l+1). Output the ciphertext (C0, C1) in G×H.

Proposition 9. Suppose there exists a PPT adversary A that distinguishes the real IND-CPA
game and H1 with probability ε1. Then we can construct a PPT adversary B that breaks the
l-Symmetric Cascade assumption in G1 with advantage ε1.

Proof. On input (G, g, gA, g~v), attacker B performs the following steps. Write gA = g~x1‖ . . . ‖g~xl .
Set G1 = {g~x1 , . . . , g~xl}. Send pk to A. On receipt of (M0,M1), choose β ∈R {0, 1}. Let
CT = (C1, C2), where C0 = gMβ · g~v, C1 = hMβ · h1 : h1 ∈r H1. Send CT to A. Output

the bit that A outputs. Clearly Pr[1 ← B(G1, g, (g
~x1 , . . . , g~xl), g

∑l
j=1 aj~xj )] = Pr[1 ← A(H0)],

while Pr[1 ← B(G1, g, (g
~x1 , . . . , g~xl), g(u1,...,ul+1)T )] = Pr[1 ← A(H1)]. Thus AdvB = |Pr[1 ←

A(H0)]− Pr[1← A(H1)]| = AdvA = ε1.

Proposition 10. Suppose there exists a PPT adversary A that distinguishes H1 and H2 with
probability ε2. Then we can construct a PPT adversary B that breaks the l-Symmetric Cascade
assumption in G2 with advantage ε2.
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Proof. On input (G2, h, h
A, h~v

′
), attacker B performs the following steps. Write hA = h~x

′
1‖ . . . ‖h~x′l .

Set H1 = {h~x′1 , . . . , h~x′l}. Send pk to A. On receipt of (M0,M1), choose β ∈R {0, 1}. Let
CT = (C1, C2), where C0 = gMβ · (gu1 , . . . , gul+1) : u1, . . . , ul+1 ∈R Zp, C1 = hMβ · h~v′ . Send

CT to A. Output the bit that A outputs. Clearly Pr[1← B(G2, h, (h
~x′1 , . . . , h~x

′
l), h

∑l
j=1 bj~x

′
j )] =

Pr[1 ← A(H1)], while Pr[1 ← B(G2, h, (h
~x′1 , . . . , h~x

′
l), h(u′1,...,u

′
l+1)T )] = Pr[1 ← A(H2)]. Thus

AdvB = |Pr[1← A(H1)]− Pr[1← A(H2)]| = AdvA = ε2.

Proposition 11. Any PPT adversary A has negligible advantage in winning the modified IND-
CPA game H2.

Proof. This follows from the fact that the challenge CT = (C0, C1) carries no information about
the challenge Mβ.

Combining the above propositions, we have that any IND-CPA adversary has advantage at
most ε1 + ε2 against the above cryptosystem. Therefore if the External l-Symmetric Cascade
assumption holds, ε1 and ε2 are negligible, thus semantic security of the cryptosystem follows.

B NIZKs

In this section we present non-interactive zero knowledge proofs for the relations described in
Section 5. For convenience our presentation of these is unified - our proofs assume inputs under
the verifiable commitment scheme of [GOS06] while known techniques can be used to interchange
between commitments under this scheme and ciphertexts under the other cryptosystems in this
paper [CM99].

Definition 15 (Decision Linear Assumption [BBS04]). Let g, u, v, h be generators in G. For
adversary A define

AdvDLIN
A :=

|Pr[A(u, v, h, ua, vb, ha+b) = true : u, v, h ∈R G, a, b ∈R Zp]−
Pr[A(u, v, h, ua, vb, y) = true : u, v, h, y ∈R G, a, b ∈R Zp]|

Then for all PPT adversaries A we have AdvDLIN
A is a negligible function of λ.

Decision Linear Commitments [GOS06] We present the homomorphic commitment scheme
of [GOS06] which is secure if the Decision Linear assumption holds. We require a slight twist
on this scheme, which is that parameters will consist of pairs of elements from a group G for
which a symmetric bilinear map e : G × G → GT exists. The reason for this modification will
become apparent when present the NIZK proof systems themselves.

Setup :
Let (p,G, e, g) ← G(1λ). Let g ∈R G2. Let x, y → Z∗p. Let f = gx,h = gy. Let
pk = (p,G,GT , e,g, f ,h). Let sk = (pk, x, y).

Perfectly hiding key generation Khide :

1. u,v ∈R G2. Let w = u1/xv1/y.
2. Return ck = (pk,u,v,w).

Perfectly binding key generation Kbind :

1. u,v,w ∈R G2.
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2. Return ck = (pk,u,v,w).

Commitment :
To commit to message m ∈ Zp do

1. r, s← Zp
2. Return c = (c1, c2, c3) = com(m; r, s) = (umf r,vmhs,wmgr+s).

Trapdoor opening :
Given a commitment c = com(m; r, s) under a perfectly hiding key, we have c = com(m′; r−
(m′ −m)x, s− (m′ −m)y). Thus we can create a perfectly hiding commitment and open
it to any value we wish if we have the trapdoor key (x, y).

B.1 Plaintext Equivalence Proof [AF07]

Proof

Common Reference String : σ = (f ,g,h, pk1, pk2) where pk1 = (u1,v1,w1), pk2 = (u2,v2,w2)←
Kbind(1λ, f ,g,h).

Statement : c, c′ are commitments to m under pk1 and pk2.

Prover’s Input : (m, r, s, r′, s′) so that c1 = (f rum1 ,h
svm1 ,g

r+swm
1 ), c2 = (f r

′
um2 ,h

s′vm2 ,g
r′+s′wm

2 ).

Proof :

π1 = gr−r
′

π2 = (u−1
1 u2)m

π3 = (v−1
1 v2)m

π4 = (w−1
1 w2)m

Send π = (π1, π2, π3, π4) to the verifier.

Verifier : Check that

e(f , π1) = e(g, c11c
−1
22 π2)

e(h, π1π3c13c
−1
23 c3) = e(g, c11c

−1
22 π4)

B.2 Range Proof

We describe an adaption of the well-known range proof by bit decomposition of the input
adapted to the decision linear commitments setting.

Proof

Common Reference String : σ = (f ,g,h, pk) where pk = (u,v,w)← Kbind(1λ, f ,g,h). Let
[m]j be the jth bit of integer m.

Statement : c is a commitment to m under (u,v,w) and m ∈ [0, 2λ − 1].

Prover’s Input : m, r, s so that c = (f rum,hsvm,gr+swm).
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Proof : For 0 ≤ j < λ let

cj = (f rju[m]j ,hsjv[m]j ,gr+sw[m]j )

π1j = (u2[m]j−1f rj )rj

π2j = (v2[m]j−1hsj )sj

π3j = (w2[m]j−1g(rj+sj))(rj+sj)

Let π′ = gr−
∑λ−1
j=0 2j ·rj .

Send (cj , π1j , π2j , π3j)0≤j<λ, and π′.

Verifier : For 0 ≤ j < λ check that

e(f , π1j) = e(c1j , c1ju
−1)

e(h, π2j) = e(c2j , c2jv
−1)

e(g, π3j) = e(c3j , c3jw
−1)

e(f , π′) = e(g, c1 ·
λ−1∏
j=0

(c1j)
2j )

e(h, c3 ·
λ−1∏
j=0

(c3j)
2j · π′−1) = e(g, c2 ·

λ−1∏
j=0

(c2j)
2j )

Theorem 12. The above range proof is perfectly complete, perfectly sound and is computational
zero knowledge if the Decision Linear assumption holds. The proof consists of 2 + 12dlog2me
group elements.

Completeness It is straightforward to check that the verification equations hold if the prover
is honest.

Zero Knowledge Under the decision linear assumption, the common reference string σ may
be simulated so that (u,v,w) form a linear tuple, i.e., where u ∈ Zp,v ∈ Zp,w =
u1/xv1/y. The simulator sets f = gx,h = gy : x, y ∈r Zp and outputs (σ, τ) where
σ = (f ,h,g,u,v,w) and τ = (x, y). The simulator chooses rj , sj ∈ Zp and computes cj =
(c1j , c2j , c3j) = (f rj ,hsj ,grj+sj ). It sets π1j = (c2

1j · f−rj · u−1)rj , π2j = (c2
2j · h−sj · v−1)sj

and π3j = (c2
3j ·g−(rj+sj) ·w−1)(rj+sj). It sets π′ = (c1 ·(

∏λ−1
j=0 (c1j)

2j )−1)1/x. By inspection,
π1j , π2j , π3j and π′ are distributed identically as in the real protocol with respect to σ and
(cj)j so computational zero knowledge follows.

Soundness There exists rj and sj so that cj = com(mj ; rj , sj) for some mj . By the perfect
binding property of the commitment scheme, these are all unique. Then valid π1j implies

that e(f , π1j) = e(u,u)mj(mj−1)e(f ,urj(2m−1))e(f , f r
2
j ). If u 6∈ span(f), it follows that

mj(mj − 1) = 0, thus mj = 0 or mj = 1. Similarly valid π2j and v 6∈ span(h), and
valid π3j and w 6∈ span(g) imply the same result. On the other hand the perfect binding
instantiation of the commitment scheme implies that (u,v,w) is a non-linear tuple, so
one of u 6∈ span(f),v 6∈ span(h), or w 6∈ span(g) holds. It follows that mj = 0∨mj = 1 for
0 ≤ j < λ. The existence of valid π′ implies that r′ and s′ exist satisfying the equations

π′ = gr
′
, c1 = f r

′+
∑λ−1
j=0 2jrj , c2 = hs

′+
∑λ−1
j=0 2jsj , c3 ·

∏λ−1
j=0 (c3j)

2j · π′−1 = gs
′
. This implies

c3 = wmgr
′+s′ : m =

∑λ−1
j=0 mj2

j . Hence m ∈ [0, 2λ − 1].
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Protocol πCOND ([ST04])

Common Input : Let [x], [y] denote encryptions with x ∈ {−1, 1} ⊆ M and y ∈M.

Private Input : Player Pi holds a share of the secret key, ski.

Let x0 = x and y0 = y.

1. Player Pi takes [xi−1] and [yi−1] as input and broadcasts a commitment 〈〈si〉〉 with
si ∈R {−1, 1}. Then Pi computes [xi] = [xi−1] ⊗ si ⊕ [0] and [yi] = [yi−1] ⊗ si ⊕
[0] together with εi ← Pmul(〈〈si〉〉, [xi−1], [xi]),Pmul(〈〈si〉〉, [yi−1], [yi]). If Pi fails to
complete this step it is discarded immediately.

2. The parties jointly decrypt [xn] to obtain xn. If decryption fails because the number of
correct shares is insufficient, the entire protocol is aborted. If decryption fails because
xn 6∈ {−1, 1} each party Pi is required to broadcast a proof that si ∈ {−1, 1}. Parties
failing to do so are are discarded, and the protocol is restarted. Given xn and [yn]
and encryption [xnyn] is computed publicly.

Figure 11: Protocol πCOND computing the conditional gate.

C Distributed Key Generation Sub-Protocols

C.1 Conditional Gate

Schoenmakers et al. [ST04] describe a protocol by which a certain multiplication gate may be
distributed across N parties with shares of an additively homomorphic threshold cryptosystem.
The first input to the gate is from a dichotomous (two-valued) domain while the second input
is unrestricted. Let FCOND be the ideal functionality with the following behaviour.

• On input [x] and [y] returns an encryption of [xy] if x ∈ {−1,= 1} and ⊥ otherwise.

Notation: In this section we use ⊕, ⊗ and 	 to mean homomorphic addition, multiplication
and subtraction respectively.

For properly formed ciphertexts [x] and [y] let [x] ? [y] denote the output of FCOND([x], [y]).
It is shown in [ST04] that players may compute an encryption of xor-sum of bit-valued inputs
x and y according to the following sequence of transformations [x′] ← 2 ⊗ [x] 	 [1] : x′ =
2x− 1, [x′y]← [x′] ? [y], [x⊕ y]← [x]	 [x′y]. The protocol is given in Figure 12. This sequence
forms the basis for our protocol in Section C.3 which computes the private xor-sum of a number
of encrypted inputs.

Theorem 1 [ST04] states that for all input pairs ([x], [y]) : x ∈ {−1, 1} and any PPT
adversary A corrupting at most T players in an execution of the above protocol, there exists
a simulator S that interacts with the ideal world functionality computing the conditional gate,
FCOND, and outputs a transcript which is computationally indistinguishable from that obtained
by execution in the real world. This simulator is described in Figure 15.

C.2 Private Sum Modulo Two

Theorem 13. Protocol πSUM securely computes encryption switching in the FCOND-hybrid model
against statically chosen adversaries if Pbit is a secure NIZK proof system.
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Protocol πSUM

Common Input : [u1], . . . , [un] under Enc1 and ui ∈ {0, 1}λ for 1 ≤ i ≤ n.

Private Input : Pi holds ui and randomness ri of [ui] and share of secret key, ski

Player Pi

1. Let ui =
∑λ−1

j=0 uij2
j where uij ∈ {0, 1}. Broadcast cij = [uij ] under randomness r′ij

and εij ← Pbit(cij).
2. Let C0 = . . . = Cλ−1 = Enc∗1(0).
3. If any of the εij do not pass verification output ⊥. Otherwise, for 1 ≤ k ≤ N , for

0 ≤ j < λ, let:

(a) c′kj = 2⊗ ckj 	 Enc∗1(1)
(b) c′′kj = πCOND(ski, c

′
kj , Cj)

(c) Cj = ckj 	 c′′kj
4. Output ~C = (C0, . . . , Cλ−1).

Figure 12: Protocol πSUM.

Simulator for πSUM

Input : ([u1], . . . , [uN ], ~C = (C̃0, . . . , C̃λ−1)

• Let B be the set of corrupted players.

1. Let (σ̂n, τN )← S1(1λ)
2. Perform Steps 1–3 on behalf of honest players Pi : i ∈ B\{N} except that c′′kj is

computed as FCOND(c′kj , Cj).
3. For 0 ≤ j < λ

(a) Let C̃ ′j = 2⊗ C̃j 	 Enc∗1(1), C̃ ′′j = FCOND(C̃ ′j , Cj).

(b) Publish cNj = C̃j 	 C̃ ′′j and εNj ← S2(τN , cNj).
(c) Let c′Nj = 2⊗ cNj 	 Enc∗1(1).
(d) Let c′′Nj be the output of FCOND(c′Nj , Cj).

Figure 13: Simulator for protocol πSUM.
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Protocol πDEC

Common Input : C under Enc1.
Private Input : Pi holds a share of secret key, ski

Player Pi :

1. Publishes Ci ← Cski .
2. Outputs m←

∏N
i=1Ci.

Figure 14: Protocol πDEC.

Simulator for πDEC

Input : C,m

• Let PN be honest.

1. Perform the above steps for honest parties except PN .
2. PN publishes CN ← µ/

∏N−1
i=1 Ci.

Figure 15: Simulator for protocol πDEC.

Proof. Let (c∗ij , ε
∗
ij , C

∗
j , c
′
ij
∗, c′′ij

∗)1≤i≤N be the output of the adversary interacting with the honest

players in the real protocol conditional on the event C∗j = C̃j . Then by the assumption that at
most T players are corrupted, c′′ij

∗ is a an encryption of the conditional product of the plaintexts
contained in c′ij

∗ and C∗j for j 6= N . Moreover, by the soundness of the zero knowledge proof
for Rbit, ciphertext c∗ij is a an encryption of u∗ij where u∗ij ∈ {0, 1}. Let u′ij

∗ = 2 ∗ u∗ij − 1.

Now the relations Cj = ckj 	 c′′kj and Cj =
∑k

i=1 u
∗
ij

∏k
l=1(−1)ku′lj

∗ hold at the kth invocation

of Step 3c. This holds by inspection for k < N . For k = N this follows since cNj = C̃j 	 C̃ ′′j
implies cNj = Cj 	C ′′j where C ′′j = C ′j ? C̃j : C ′j = 2⊗Cj − Enc∗1(1), exploiting the fact that Cj

and C̃j are known to be bit encryptions. Next cNj = Cj 	 C ′′j implies Cj = cNj 	 C ′j ? C̃j and

hence that Cj = cNj 	 c′′Nj . Also Cj = [u∗Nj ] − [(2 ∗ u∗Nj − 1)
∑N−1

i=1 u∗ij
∏N−1
l=i+1(−1)N−1u′lj

∗] =

[u∗Nj − u′Nj
∗∑N−1

i=1 u∗ij
∏N−1
l=i+1(−1)N−1u′lj

∗] = [
∑N

i=1 u
∗
ij

∏N
l=i+1(−1)Nu′lj

∗]. A hybrid argument
thus implies that if the adversary could distinguish the simulated view, using the simulated
expression for cNj in place of the real, they could break the semantic security of Enc1 which by
assumption is impossible.

C.3 Decryption Protocol

Lemma 14. Protocol πDEC unconditionally computes encryption switching against statically
chosen adversaries.

Proof. Since we are in the static adversarial model we may assume without loss of generality
some player, e.g., player N is honest. Then PN ’s output, CN , in the simulation satisfies µ =
(
∏N−1
i=1 Ci) · CN =

∏N
i=1Ci which is identically distributed to that in the real protocol. The
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proof follows.

D Parameter Selection for Distributed Key Generation

The following theorem characterises the range of parameters under which key generation may
proceed securely.

Lemma 15. Suppose that 2 log2N + log2 ` + 2λA + λ < λB. Then for each k the distribution
of γk produced in Step 7 is statistically independent of the contributions by the honest players
to the kth chunk of xx′, i.e., (xx′ − [xx′ mod ck+1

B ])/ckB, except with error at most 2−λ.

Proof. Let SD(·, ·) denote the statistical (i.e., total-variation) distance between random vari-
ables. Let C ⊂ Q be the set of players corrupted by the adversary. For fixed k, let aij =∑

f+g=k αifα
′
jg and bi = βik. Thus γk =

∑
i,j∈Q

∑
f+g=k αifα

′
jg +

∑
i∈Q βik =

∑
i,j∈Q aij +∑

i∈Q bi =
∑

i,j∈Q\C aij +
∑

(i,j)∈C×Q∪Q×C aij +
∑

i∈Q\C bi+
∑

i∈C bi = X+X+Y +Y . Clearly

|X| ≤ (|Q| − T )2 · ` · 22λA . On the other hand, Y
d
≈ N ((|Q| − T ) · 2λb−1, (|Q| − T ) · 22λB

12 ). Then
SD(X,X + Y ) ≥ 1− 2−λ holds when

((|Q| − T )2 · ` · 22λA · 2λ)2 ≤ (|Q| − T ) · 22λB

12

⇔ (|Q| − T )3 · `2 · 24λA · 22λ ≤ 22λB

12

⇐ N3 · `2 · 24λA · 22λ ≤ 22λB . (3)

By non-malleability of Πrange the random variables X and Y are independent of X and Y , so
SD(X,X + X + Y + Y ) ≥ SD(X,X + Y ) ≥ 1 − 2−λ. Taking logarithms of both sides of
Equation 3 and multiplying by one-half yields the result.

E Proving Correct Decryption

Protocol πSWITCH uses a proof of correct decryption, which follows from the solution proposed
in [SV15] for instance.

Protocol πCD ([SV15])
Input : The tuple {(d, di, v, vi; si) | di ← dsi}.
Announcement : Σ.ann(d, di, v, vi; si) := u ∈R [0, 2log2 N+λ]; a = du; b =

vui ; return (a, b;u)
Response : Σ.res(d, di, v, vi; a, b;u, c) := r := u+ csi; return r

Verification : Σ.ver(d, di, v, vi; a, b; c; r) := dr
?
= a(di)

c ∧ vr ?
= b(vi)

c

Extractor : Σ.ext(d, di, v, vi; a, b; c; c
′; r; r′) := return (r − r′)/(c− c′)

Simulator : Σ.sim(d, di, v, vi; c) := r ∈R [0, 2log2 N+λ]; return (dr(di)
−c, vr(vi)

−c; c; r)

F Definition of Universally Verifiable secure computation

The following ideal model for universally verifiable encryption switching is derived from [SV15],
Process 5. A protocol is defined to implement verifiable secure function evaluation if, for every
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Ideal party for verifiable encryption switching
Compute encryption switching for R with corrupted parties B; V learns encryption in
target group.
Common Input: (pk1, c, c), threshold t.
for i ∈ N\B do

ski := recv(Pi)
end for . Honest inputs.
{ski}i∈B := recv(S) . Corrupted inputs.
if |B| ≥ t then

Send ri to S for all i. . Threshold corrupt. . Computation phase.
E = Enctgt(m)

end if
if R /∈ B then . honest R; adversary learns encryption, may block result.

send(E,S)
if |N\B| < t and recvS =⊥ then

send(⊥,R).
end if

else . Corrupted R. Adversary learns output, may block result to V.
send(m,S); s = recvS
if s =⊥ then

R :=⊥
elseR = Enctgt(m).
end if . Proof phase.
if V /∈ C then send(R,V).

end if

Figure 16: Ideal party for verifiable πSWITCH.

Ours (8c(k2 − k)M + 6kcN)× opExpDH + (128N2 + 32N)× opExpCF
[DPSZ11] 7c(k2 − k)M(N × opAAdd + 2× opAMult)

Table 2: Cost comparison to [DPSZ11].

probabilistic polytime real-world adversary A, there exists a probabilistic polytime ideal-world
adversary SA s.t., for all inputs I; all sets of corrupted parties B and all auxiliary input a, the
adversary’s view of the real execution is computationally indistinguishable from the simulated
ideal execution. The ideal model assumes a receiving party R, who may be every member of
the public.

G Cost Comparison to [DPSZ11]

Table 2 compares the total arithmetic operations used in our scheme to [DPSZ11]. Given the
pairing ê : G1 ×G2 → Gt let opExpDH be a Diffie-Hellman exponentiation in G1. Let opExpCF
be a Catalano-Fiore exponentiation. Let opAAdd and opAMult be addition and multiplication
operations respectively in the algebra Aq = Zq[X]/Φm(X). Assume secret sharing threshold
T = N/2 and chunk parameter ` = 8.
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