
On Quantum Indifferentiability

Tore Vincent Carstens , Ehsan Ebrahimi, Gelo Noel Tabia, and Dominique Unruh

University of Tartu, Estonia

March 8, 2018

Abstract

We study the indifferentiability of classical constructions in the quantum setting, such as the
Sponge construction or Feistel networks. (But the approach easily generalizes to other construc-
tions, too.) We give evidence that, while those constructions are known to be indifferentiable
in the classical setting, they are not indifferentiable in the quantum setting. Our approach is
based on an quantum-information-theoreoretical conjecture.

1 Introduction

Indifferentiability [MRH04] is a security notion that allows us to compare the implementation of a
cryptosystem (called a “construction” in the following) to an ideal representation. For example, the
indifferentiability framework allows us to say that a certain hash function is indifferentiable from a
random oracle. This means that we can use this hash function in any setting in which a random
oracle can be used, without loss of security.1 In particular, showing indifferentiability of a specific
construction immediately implies a number of other security properties. (For example, if a hash
function is indifferentiable from a random oracle, we immediately get that it is one-way, collision-
resistant, a pseudo-random-function, etc.) Indifferentiability is most often applied in settings where
a larger primitive (say a hash function) is constructed from a smaller idealized primitive (say a
random oracle with short input/output as a block function).

Many classical constructions have been revisited based on the indifferentiability framework.
To name a few, the Luby-Rackoff construction (Feistel network) [LR88] that constructs a pseudo-
random permutation from pseudo-random functions has been studied based on the indifferentiability
framework in multiple research works [CHK+16, DKT16, DS16]. In [CDMP05], they revisited the
Merkle-Damgåd construction based on indifferentiability framework. They show that the plain
Merkle-Damgåd construction is differentiable from a random oracle, however, they modify the MD
construction to successfully obtain a positive result. The indifferentiability of the Sponge construc-
tion, that is used in the SHA-3 hash function [NIS14], has been shown in [BDPA08].

It is worth mentioning that at least in the case of SHA-3/the Sponge construction, all security
properties were derived from its indifferentiability. For example, we are not aware of any proof of the
collision-resistance of the Sponge construction that does not rely on first showing indifferentiability.2

1Within limitations. There are certain settings in which indifferentiability is not enough for this purpose. See
[RSS11]. In most settings, however, a construction that is indifferentiable from a random oracle is as good as a
random oracle.

2[CBH+17] shows the (quantum) collision-resistance of the Sponge construction in the case where the underlying
block function is a random function, but this does not apply to SHA-3 which uses an invertible random permutation
instead.

1

However, all of these results are in the classical setting. To the best of our knowledge, no results
are known in the quantum setting. Especially in the case of the Sponge construction, this is quite
problematic since no direct proofs of the security properties of the Sponge construction are known
(in the case of a random permutation as block function). That means, we do not even know whether
SHA-3 is post-quantum secure.

In this paper, we give some evidence why there is a lack of proofs of quantum indifferentiability.
Precisely, we show that under a certain quantum-information-theoreoretical assumption, perfectly
secure quantum indifferentiability is impossible in a wide variety of cases (including the Sponge
construction and Feistel networks). This holds even in the weaker setting where the construction is
accessed classically, and the adversary merely has superposition access to the underlying primitive
(e.g., the random oracle).

While our proofs are, at this point, still conditional on a conjecture, and limited to the case
of perfect indifferentiability, we conjecture that the indifferentiability will not hold generally. And
even if not, our results indicate that (and why!) it would be very difficult to build a quantum
indifferentiable construction, or to prove the post-quantum security of existing cryptosystems such
as SHA-3 using the indifferentiability framework.

Organization. In Section 2, we revisit the indifferentiability framework, introduce the quantum
indifferentiability framework (to the best of our knowledge, it has not been defined before), and
introduce our conjectures and theorems (with informal arguments why we believe in them). In
Section 4 we show our main (conditional) impossibility result. And in Section 5, we show how our
general result is applied concretely to the Sponge construction and Feistel networks (via a simple
counting argument).

2 Indifferentiability

Classical indifferentiability. We first revisit the classical indifferentiability framework [MRH04].
The purpose of that framework is to compare constructions T 1 with idealized counterparts T 2. In
[MRH04], constructions can be arbitrary interacting systems. For the purpose of this paper, it will
be easiest to consider a special case, namely where constructions are (stateful) oracles.3 We then
say that T 1 is quantum indifferentiable from T 2 iff – roughly – any attack that is possible on T 1

is also possible on T 2. This then implies that, if T 2 is ideal and thus without relevant attacks by
assumptions, also T 1 is without relevant attacks.

To make this more formal, we need to first introduce two types of “interfaces” to a construction,
the private and the public interface. In our view (where constructions are oracles), these simply
represent two types of queries, and we write T priv

1 for T 1 restricted to its private interface (i.e.,
ignoring all queries that are not of the private type), and T pub

1 for T 1 restricted to its public
interface. The idea behind private and public interfaces is that private interfaces model the access
the user of a construction has (e.g., input/output via an API), while the public interface represents
what access an adversary has (e.g., network communication, or, in our case, publicly available
random oracles).

Then, to the intuitive requirement that all attacks on T 1 are also possible on T 2, we require
that there is a simulator that mimics whatever happens in an attack on T 1. Here the simulator is
allows to access and modify interaction over the public interface, but not over the private interface.
This leads to the following definitions:

3That is, whenever a construction is queried with some value x, it returns some value y to the invoking party and
possibly updates its internal state.

2

Definition 1 (Classical indifferentiability) T 1 is classically indifferentiable from T 2 iff for any
polynomial-time distinguisher D, there exists a polynomial-time simulator Sim such that

|Pr[D(T priv1 , T pub1) = 1]− Pr[D(T priv2 ,Sim(T pub2)) = 1]|

is negligible.

Here D(T priv1 , T pub1) means an invocation of D with oracle access to T priv1 and T pub1 . (Note:
T priv

1 and T pub1 are restrictions of the same T 1, thus they share the same internal state.) Similarly,
Sim(T pub

2) is the simulator Sim with oracle access to T pub
2 . (And Sim() is itself used as an oracle for

D.)
Indifferentiability has the useful property that most security properties carry over from T 2 to T 1.

For example, if T 2 is a random function, then we know that T 2 is collision-resistant. Then, if T 1 is
indifferentiable from T 2, we know that T 2 is collision-resistant as well. (This is, for example, how
collision-resistance of the Sponge construction is proven in [BDPA08]: first the indifferentiability
of the Sponge construction is shown, and collision-resistance and many other properties follow for
free.)

One of the most common use cases for the indifferentiability framework is when the constructions
are stateless deterministic functions. For example, in the indifferentiabiltiy result for the Sponge
construction [BDPA08], we have: f : {0, 1}r+c → {0, 1}r+c is a random permutation. T 1 : {0, 1}∗ →
{0, 1}∗ is the Sponge construction itself, that is, when queried with m over the private interface, it
computes the hash ofm using the Sponge construction based on the block function f (which is given
as an oracle), and returns the hash. When queried on the public interface, T 1 forwards its query
to f . (This models the fact that the block function is publicly known.) T 2 : {0, 1}∗ → {0, 1}∗ is a
uniformly random function (the same function both on the private and public interface). [BDPA08]
then shows that T 1 is indifferentiable from T 2. In other words, the Sponge construction behaves
like a random oracle if the round function f is a random permutation.

Throughout this paper, we will only consider settings of this structure. That is, we always
assume:

Conditions 1.
• f represents some random function. We call f the primitive. (That is, f is chosen according to

some distribution, but after that initial sampling, f is stateless and deterministic. Typically,
f is a uniformly random function, uniformly random permutation, or ideal cipher.)

• T 1 depends deterministically on f . Namely, the interface T priv
1 implements some function C[f]

that depends only on f . (Typically, C[f] can be implemented efficiently given oracle access to
f but we do not require this. C[f] is the actual construction that we analyse, e.g., the Sponge
construction.) The interface T pub

1 implements f itself.
• T 2 is a random function. (In the same sense as f but typically with a different distribution.)

That is, both T priv
2 and T pub

2 give access to the same random function. (T 2 might be, e.g.,
a uniformly random function when we are trying to implement a random oracle. Or it might
be, e.g., an ideal cipher.)

Quantum indifferentiability. It is immediate how to translate the indifferentiability framework
to the quantum case. Instead of saying that constructions are classical oracles, they are quantum
oracles. (Formally, quantum oracles are superoperators with an input and a state register as input,
and an output and a state register as output. For stateless oracles, the state register is not used.)
Then, the definition is almost verbatim the same:

3

Definition 2 (Quantum indifferentiability) T 1 is quantum indifferentiable from T 2 iff for any
quantum-polynomial-time distinguisher D, there exists a quantum-polynomial-time simulator Sim
such that

|Pr[D(T priv1 , T pub1) = 1]− Pr[D(T priv2 ,Sim(T pub2)) = 1]| (1)

is negligible.
We say T 1 is perfectly quantum indifferentiable from T 2 if that difference is 0.

However, more interesting is the question what oracles the constructions T 1 and T 2 implement.
As before, we will look at the most common case where T 1 and T 2 are deterministic and stateless,
and T 1 is based on some primitive f , as in Conditions 1. But there are two possibilities how to
implement a function as a quantum oracle: We can allow classical queries, or superposition access.4

So, for each of the oracles in Conditions 1, we need to decide whether they can be queried classically
or in superposition. First, consider the primitive f . Since f represents a globally known function
(e.g., the block function of a hash function construction modeled as a random oracle), we have to
model the fact that an adversary can evaluate that function in superposition. (See [BDF+11] for
additional discussion on why random oracles should be modeled with superposition queries.) That
is, the interface T pub

1 should be f with superposition access. How about T priv
1 = C[f]? This is what

the user accesses, i.e., queries to T priv
1 = C[f] are the queries that would be performed by protocols

that use C[f] (e.g., some protocol that uses the Sponge construction to implement a MAC). So, if
we allow superposition queries here, indifferentiability will imply that T 1 is as secure as the ideal
construction T 2 even when used in protocols that evaluate C[f] in superposition. If we allow only
classical queries here, we get the weaker result that indifferentiability will imply that T 1 is as secure
as the ideal construction T 2 only when used in protocols that evaluate C[f] classically. It depends
on the intended use case which is preferred. Since we will give evidence that indifferentiability is
not achievable in many cases, we will use the weaker variable (with classical queries) as this yields
a stronger claim. Summarizing, we will assume the following throughout this paper:

Conditions 2.
• f represents some random function. We call f the primitive.
• The interface T priv

1 answers classical queries to some function C[f] that depends only on f .
The interface T pub

1 answers superposition queries to f .
• T 2 implements a random function H. That is, T priv

2 answers classical queries to H, and T pub
2

answers superposition queries to H.5

Then, if we say, e.g., the Sponge construction implements a random oracle, we mean that f is
a uniformly random permutation, C[f] is the sponge construction, and H is a uniformly random
function.

In the following, for added clarity, we will always write an overline over constructions that are
classical oracles, and no overline over constructions that allow superposition access. E.g., (1) would
be

|Pr[D(T priv1 , T pub1) = 1]− Pr[D(T priv2 ,Sim(T pub2)) = 1]|.

4An oracle implementing f with classical queries will measure its input register in the computational basis, resulting
in a value x, and then prepare its output register in the state |f(x)〉. An oracle implementing f with superposition
queries will apply the unitary Uf to a pair of registers, where Uf is defined by Uf |x, y〉 = |x, y ⊕ f(x)〉.

5Why does T pub
2 answer superposition queries? This is another design choice but if T pub

2 would answer only
classical queries, we would get a trivial impossibility even for simple cases like “f is indifferentiable from f ” because
the simulator would only get classical access but has to use it to answer superposition queries.

4

3 On the impossibility of quantum indifferentiability

In the previous section, we described the notion quantum indifferentiability. We will now explain
why quantum indifferentiability is probably impossible to achieve in many situations.

To explain this, assume T 1 is quantum indifferentiable from T 2. That means, for any distin-
guisher D, there is a simulator Sim such that:

Pr[D(T priv1 , T pub1) = 1] ≈ Pr[D(T priv2 ,Sim(T pub2)) = 1]. (2)

(≈ means negligible distance here.) Since T pub
1 is an oracle with superposition access, Sim(T pub2)

must be an oracle with superposition access, too. Now consider any query the distinguisher D
makes. That query can be a superposition between different queries, and T pub

1 will respond to
that query in superposition. In particular, T pub

1 will not collapse the superposition by entangling
it with its internal state (since T pub

1 is stateless). Since such a collapse of the superposition could
be detected by D, Sim(T pub2) also must not collapse the superposition. Thus Sim(T pub2) must not
entangle the query register with its internal state. But that means that Sim(T pub2) cannot keep any
information about the query (because that would entangle it with the query input if the query is
a superposition between different inputs). So, Sim(T pub2) will have a state that is independent of
the queries. That means that for any distinguisher, there is a stateless simulator Sim(T pub2) that
satisfies (2).

Now consider a classical distinguisher D, i.e., D makes only classical queries. Then we can take
the stateless simulator Sim(T pub2) and make it classical in the sense that Sim(T pub2) now measures
all queries before answering. Since D is classical, D cannot tell the difference, and (2) still holds.
A stateless simulator Sim(T pub2) that measures all its queries before answering is just a classical
oracle, thus Sim(T pub2) can be replaced by a classical stateless simulator Sim′(T pub2). (This classical
simulator will not necessarily be efficient since it has to simulate a quantum algorithm. But if
we do not require Sim′(T pub2) to be efficient, then Sim′(T pub2) can simply learn the function H by
performing exponentially many queries to T pub

2 , and then Sim′(T pub2) has a complete description of
Sim(T pub2) which allows Sim′(T pub2) to perform a simulation in exponential time.)

Summarizing, this argument indicates that the following conjecture holds:

Conjecture 1 If T 1 is quantum indifferentiable from T 2, then T 1 is classically indifferentiable
from T 2 with respect to stateless simulators in the following sense:

For any classical polynomial-time distinguisher D, there is a classical (not necessarily polynomial-
time!) stateless simulator Sim such that∣∣Pr[D(T priv1 , T pub1) = 1]− Pr[D(T priv2 ,Sim(T pub2)) = 1]

∣∣
is negligible.

Why is this conjecture important? Because it is in many cases quite simple to show the im-
possibility of classical indifferentiability with respect to stateless simulators. Namely, assume some
construction T 1 = C[f] such that f is picked from a set F of functions while C[f] (and thus also H)
is chosen from some other set H of functions. (E.g., in the case of the Sponge construction, F is
the set of functions {0, 1}r+c → {0, 1}r+c where r, c are two security parameters of the Sponge, and
H is the set of all functions {0, 1}∗ → {0, 1}∗.) Assume further that |F| � |H|. (This is clearly the
case for the Sponge construction.)

Assume that T 1 is classically indifferentiable from T 2 with respect to classical stateless simula-
tors. Consider a distinguisher D that simply queries T priv

1 at a random input x. This will return

5

y = C[f](x). Then the distinguisher performs a number of additional queries to T priv
1 = f to com-

pute C[f](x). If this yields the same value y, the distinguisher D outputs 1. In the real case (i.e.,
interacting with T priv

1 and T pub
1), the distinguisher always outputs 1. Now consider the stateless

simulator Sim. Since Sim is stateless, Sim will implement some function f ′ ∈ F. (That is deter-
mined after choosing the initial randomness of Sim.) Thus, when interacting with T priv

2 = H and
Sim(T pub

2) = f ′, the distinguisher D outputs 1 only if H(x) = C[f ′](x). But D has to output 1 with
overwhelming probability, so H(x) and C[f ′] must be equal almost everywhere. But if |F| � |H|,
then there are not enough functions f ′ so that C[f ′] can cover (up to a negligible number of errors)
most of H. Thus, for many choices of H, the simulator will be caught by D. That means, there
is no successful simulator for D. Hence T 1 is not classically indifferentiable from T 2 with respect
to classical stateless simulators, and hence, by Conjecture 1, T 1 is not quantumly indifferentiable
from T 2.

Notice that this argument was independent of how C[] was actually defined, so it means that there
is no C[] such that T 1 is quantum indifferentiable from T2. In the case of the Sponge construction,
not only does it show (conditional on Conjecture 1) that there the Sponge construction itself is not
indifferentiable from a random oracle, but that there is no other hash function construction that is
indifferentiable from a random oracle, either (assuming a small block function).

Of course, this was only a sketch illustrating the reasoning. In Section 5, we make this reasoning
precise for the Sponge construction and Feistel networks.

Unfortunately, while we believe that Conjecture 1 is very realistic given the argument we gave
before Conjecture 1, we were not able to prove this.

Instead, we present progress towards the goal of proving Conjecture 1: First, we show it only
for perfect indifferentiability. And second, our proof is still based on a (more elementary) quantum-
information-theoretical conjecture. Specifically, we show:

Theorem 1 Assume that Conjecture 2 holds.
If T 1 is perfectly quantum indifferentiable from T 2, then T 1 is classically indifferentiable from

T 2 with respect to stateless simulators (in the sense of Conjecture 1).

And we use the following conjecture in this theorem:

Conjecture 2 Consider N binary measurements described by projectors P1, . . . , PN , and a quantum
state |Ψ〉.

Assume that any t out of the N measurements commute on state |Ψ〉. That is, for any I with
|I| = t, if P ′1, . . . , P

′
t and P ′′1 , . . . , P

′′
t are the projectors {Pi}i∈I (possibly in different order), then

P ′t . . . P
′
1|Ψ〉 = P ′′t . . . P

′′
1 |Ψ〉.

Then there exist random variables X1, . . . , XN with a distribution D such that for any I =
{i1, . . . , it}, the joint distribution of the Xi1 , . . . , Xit is the distribution of the outcomes when we
measure |Ψ〉 with measurements Pi1 , . . . , Pit .

What does this conjecture mean, and why do we believe it? It says that whenever we have
a state where any t of out of a set of N measurements commute, then there is a joint classical
distribution that explains any t of those N measurements (a hidden variable theory).

In fact, a small variation of this conjecture is easy to prove: If we require that P ′t . . . P ′1|Ψ〉 =
P ′′t . . . P

′′
1 |Ψ〉 for all |Ψ〉 (not just one fixed |Ψ〉), then we know that the Pi commute pairwise and

thus jointly diagonalize. And then the joint distribution trivially exists.6

6Namely, the N -tuple (x1, . . . , xN) has probability ‖P (xN)
N . . . P

(x1)
1 |Ψ〉‖2 where P

(xi)
i := Pi if xi = 1, else P

(xi)
i :=

1− Pi.

6

The difference to our conjecture is that in our conjecture, we only assume that the Pi commute
on a specific state |Ψ〉, there might be other states where they do not commute.

In Section 4 we will show Theorem 1 for the special case where the primitive f is a function
with one-bit output.

Then, in subsection 4.1, we generalize this to arbitrary f by a simple reduction to the 1-bit case.
Finally, in Section 5, we show how Conjecture 1 implies the impossibility of showing the indif-

ferentiability of the Sponge construction and Feistel networks. (We stress that these impossibilities
are based on the input/output sizes of the construction and the primitive. Thus, they also imply
an analogous impossibility for any other construction that uses the a primitive of the same size.)
The counting technique we use is quite general and is likely to apply to any construction that is
length-extending. (In particular, this means that it is unlikely that we can use indifferentiability
for analyzing hash functions based on random block functions.)

4 Transforming indifferentiability simulator into a stateless one

Throughout this section, T 1 is a construction C[f] that uses a primitive function f : X → {0, 1} as a
building block. We consider T 2 to be a random oracle H (or ideal cipher H) with the same domain
and co-domain size as T 1. We refer to T 1 as “real case” and T 2 as “ideal case” in the following. A
quantum distinguisher D, that tries to differentiate C[f] from H, has classical access to C[f] (private
interface) and superposition access to f (public interface). The simulator that simulates f in the
ideal case, has a superposition access to H.

We show that there exists a class of quantum distinguishers that can force any quantum simulator
to fulfil some properties by applying some tests. At the end, we prove that perfect quantum
indifferentiability implies classical indifferentiability with a stateless classical simulator. Recall that
by a stateless classical simulator we mean a classical simulator that chooses a function f : X → {0, 1}
before receiving any query from the distinguisher. Then, it answers to a query on input x by f(x).

By a “one-sided” distinguisher, we mean a distinguisher that outputs 1 with probability 1 while
interacting with C[f] and f (the real case). The following lemma shows that for the finite class of
distinguishers, the perfect quantum indifferentiability implies the existence of a simulator that is
perfect for any distinguisher inside the class.

Lemma 1 Let D be a finite class of “one-sided” distinguisher that make a polynomial number of
queries. If the construction T 1 is perfectly quantum indifferentiable from the construction T 2, then
there exists a simulator Sim such that for any D ∈ D,

|Pr[D(T priv1 , T pub1) = 1]− Pr[D(T priv2 ,Sim(T pub2)) = 1]| = 0.

Proof. Let D∗ be a distinguisher that picks an uniformly random element from D and runs it. Con-
sidering T 1 is perfectly quantum indifferentiable from T 2, there exists Sim∗ such that |Pr[D∗(T priv1 , T pub1) =

1]− Pr[D∗(T priv2 ,Sim∗(T pub2)) = 1]| = 0. Assume that there exists D ∈ D such that

|Pr[D(T priv1 , T pub1) = 1]− Pr[D(T priv2 ,Sim∗(T pub2)) = 1]| > 0.

Since D is a class of one-sided distinguishers, we can conclude

|Pr[D∗(T priv1 , T pub1) = 1]− Pr[D∗(T priv2 ,Sim∗(T pub2)) = 1]| > 0,

which is a contradiction. �

7

This section is dedicated to the proof the following theorem. In our proof, we assume that the
implemented primitive f has a one-bit output and then afterwards we generalize the result to a
construction C[f] that uses a primitive with n-bit output.

Theorem 2 If two construction C[f] and H are perfectly quantum indifferentiable then for any
classical “one-sided” distinguisher Dcl (cl stands for classical), there exists a stateless simulator Simsl

(sl stands for stateless) such that

|Pr[Dcl(C[f], f) = 1]− Pr[Dcl(H, Simsl(H)) = 1]|

is negligible.

The remainder of this section is dedicated to the proof of Theorem 2.

Notations. S is the internal register (state) of the simulator, X,Y are input/output registers
for querying the simulator (that are provided by the distinguishers), A is an ancillary wire and |Φ〉
is the initial state of the simulator. The notation [q] denotes the set {1, . . . , q}.

Definition 3 For a given simulator Sim, and for a given algorithm D querying the simulator, let
ρSim,DS :=

∑
j λj |Ψj〉〈Ψj |, where λi > 0 and {|Ψj〉}j is an orthonormal set of vectors, denotes the

state of the S-register of Sim after running D. Let V D,Sim := {|Ψj〉}j (i.e., V D,Sim is defined such
that the state of Sim after running D is a mixture of pure states in V D,Sim).

Definition 4 We define D to be a specific finite class of “one-sided” distinguishers such that any
distinguisher in D makes at most q + 2 queries to the public interface of the construction. For
readability, we specify the distinguishers in the class (members of D) throughout the proof wher-
ever we need them. We prefix each such declaration with “Distinguisher in D:”. Note that all the
distinguishers are independent of the simulator, so D could in principle be defined at this point.

Definition 5 Let V Sim
i :=

⋃
D V

D,Sim where the union ranges over all D ∈ D that makes i queries
(i.e., V Sim

i is defined such that the state of Sim after i queries is a mixture of pure states in V Sim
i).

We omit Sim from V Sim
q wherever Sim is clear. Note that V0 = {|Φ〉} where |Φ〉 is the initial state

of the simulator.

We start with a classical one-sided distinguisher Dcl that makes at most q − 1 queries.

Distinguishers in D: Dcl ∈ D.

Property 1 The simulator is perfect for the class of distinguishers D, that is, the simulator is a
perfect simulator for any D ∈ D.

Claim 1 There exists a simulator Sim1 that has Property 1.

Proof. Since D is a finite class of one-sided distinguishers, the existence of Sim1 follows from
Lemma 1. �

Property 2 The simulator is an unitary transformation, i.e., its operation in the i-th query is
given by an unitary U (i) that may depend on the primitive that is queried by the simulator and it is
applied to the registers X,Y, S.

Claim 2 There exists a simulator Sim2 that has the properties 1 and 2.

8

Proof. Let Sim2 be a purification of Sim1. It is clear that it fulfils the properties 1 and 2. �

Property 3 For any i ∈ [q] and x ∈ X, there exists an unitary U (i)
x such that for any |Ψ〉 ∈ Vi−1,

y ∈ Y :
U (i)|x, y,Ψ〉 = |x〉 ⊗ U (i)

x |y,Ψ〉,

where U (i) is the unitary from Property 2.

Claim 3 Sim2 fulfils Property 3.

Proof. Fix some i ∈ [q]. By definition of V Sim2
i−1 for any |Ψ〉 ∈ V Sim2

i−1 , there exists an (i − 1)-query
distinguisher D(i−1) ∈ D such that |Ψ〉 ∈ V Sim2,D(i−1)

. Let D(i)
1 (D(i−1)) be an i-query distinguisher

that runs D(i−1), queries the public interface of the construction T for uniformly random inputs
x, y, and measures the wire X by the projective measurement Πx = {Pyes, I − Pyes} in which
Pyes := |x〉〈x| as follows:

X : |x〉 /

T pub
Πx

Y : |y〉

Finally, D(i)
1 (D(i−1)) outputs 1 if the measurement result is “yes”, otherwise it outputs 0.

Note that in the real case the output of the circuit above is |x, y⊕f(x)〉XY for any x, y. Then the
projective measurement Πx on the register A will output “yes” with probability 1. Thus, D(i)

1 (D(i−1))
is a one-sided distinguisher.

Distinguishers in D: For any i ∈ [q] and any (i−1)-query distinguisher D(i−1) ∈ D, D(i)
1 (D(i−1)) ∈

D. (It may seem this rule (and others below) may make D infinite. However,it will be clear at the
end of the proof that D is finite.)

We depict the circuit in the ideal case where the state of the simulator is ρSim2,D(i−1)

S :=∑
j λj |Ψj〉〈Ψj | where λj > 0 and |Ψ1〉 := |Ψ〉 after running D(i−1). (For simplicity we omit

Sim2,D(i−1) and S from ρSim2,D(i−1)

S .)

X : |x〉 /

U (i)

Πx

Y : |y〉
S : ρ /

Since the simulator Sim2 is perfect for D, the output of the measurement has to be “yes” with
probability 1 in the ideal case, too. We show that the measurement Πx outputs “no” (or “yes”) with
probability 0 (or 1) even if the inner state of the simulator is |Ψ〉 in the circuit above:

0 = Pr[“no” ← Π : state ρ] =
∑
j

λj Pr[“no” ← Π : state |Ψj〉],

and since for any j, λj > 0 then Pr[“no” ← Π : state |Ψ〉] = 0. So far we have proven that for
any input x ∈ X, y ∈ Y and |Ψ〉 ∈ Vi−1, the measurement Πx in the circuit above returns “yes”
with probability 1. Now we prove the existence of the unitary U

(i)
x for any x. Fix an arbitrary

x ∈ X. Let us assume that B := {|b,Ψj〉}b,j is an orthonormal basis for Y ⊗ spanVi−1 . Since U (i)

is an unitary operation, then it transforms the orthonormal set {|x, yb,Ψj〉}b,j to an orthonormal
set {|x, y′b,Ψ′j〉}b,j (i.e, we assume that for any b and j, U (i)|x, yb,Ψj〉 = |x, y′b,Ψ′j〉). We define U (i)

x

9

to be the unitary that for any j and b, it maps |yb,Ψj〉 to |y′b,Ψ′j〉 and it is arbitrary for the vectors

that are not in Y ⊗ spanVi−1. Since Y ⊗ Vi−1 ⊆ Y ⊗ spanVi−1, then there exists an unitary U (i)
x

such that for any y ∈ Y and |Ψ〉 ∈ Vi−1, U (i)(|x, y,Ψ〉XY S) = |x〉⊗U (i)
x |y,Ψ〉. Because x was chosen

arbitrarily, we can conclude for any x ∈ X, there exists an unitary U (i)
x such that for any y ∈ Y and

|Ψ〉 ∈ Vi−1, U (i)(|x, y,Ψ〉XY S) = |x〉 ⊗ U (i)
x |y,Ψ〉.

�

Property 4 For any i ∈ [q] and |Ψ〉 ∈ Vi−1, there exists |Ψ′〉 such that

∀x : U (i)
x (|+〉Y ⊗ |Ψ〉S) = |+〉Y ⊗ |Ψ′〉S ,

where U (i)
x is the unitary from Property 3.

Claim 4 Sim2 fulfils Property 4.

Proof. Fix some i ∈ [q]. By definition of V Sim2

(i−1) for any |Ψ〉 ∈ V Sim2
i−1 , there exists an (i − 1)-query

distinguisher D(i−1) ∈ D such that |Ψ〉 ∈ V Sim2,D(i−1)

i−1 . Let D(i)
2 (D(i−1)) be an i-query distinguisher

that runs D(i−1), then it prepares an ancillary wire A and queries the public interface of the
construction T , and measures the A,X wires by the projective measurement Π1 = {Pyes, I − Pyes}
in which Pyes := |Φ+〉〈Φ+| (where |Φ+〉 = 1

2n/2

∑
x∈{0,1}n |x〉〈x|) and the Y wire by the projective

measurement Π2 = {Pyes, I − Pyes} in which Pyes := |+〉〈+| is as follows:

A : |0〉 / H •
Π1

X : |0〉 /

T pub
Y :|+〉 Π2

(In the circuit above, the Hadamard operation H is applied to each wire.) Finally, it outputs 1, if
both measurements return “yes”, otherwise, it outputs 0.

It is easy to see that in the real case the output of the circuit is |Φ+〉AX ⊗ |+〉Y and therefore
both measurements return “yes” with probability 1. Thus, D(i)

2 (D(i−1)) is a one-sided distinguisher.

Distinguishers in D: For any i ∈ [q] and any (i−1)-query distinguisher D(i−1) ∈ D, D(i)
2 (D(i−1)) ∈

D.

We depict the circuit above in the ideal case with Sim2. The state of the simulator is ρ =∑
i λi|Ψi〉〈Ψi| where |Ψ1〉 = |Ψ〉 and λi > 0.

A : |0〉 / H •
Π1

X : |0〉 /

U (i)Y :|+〉 Π2

S : ρ /

Since the simulator Sim2 is perfect for the class D, both measurements return “yes” with probability
1 in the ideal case as well. We show that both measurements return “yes” even if the state of the
simulator is |Ψ〉:

0 = Pr[“no” ← Π1 ∨ “no” ← Π2 : state ρ] =
∑
i

λi Pr[“no” ← Π1 ∨ “no” ← Π2 : state |Ψi〉],

10

and since λi > 0 for any i, then

∀i, Pr[“no” ← Π1 ∨ “no” ← Π2 : state |Ψi〉] = 0.

This proves that
Pr[“yes” ← Π1 ∧ “yes” ← Π2 : state |Ψ〉] = 1.

Since the operation is unitary there exists a pure state |Ψ′〉 such that the circuit above, when the
inner state of the simulator is |Ψ〉, outputs |Φ+〉AX ⊗ |+〉Y ⊗ |Ψ′〉S in the ideal case. Let for any
x ∈ X, Πx := {Pyes, I −Pyes} be a projective measurement where Pyes = |x〉〈x|. It is clear that the
output of the following two circuits are the same for any Πx.

|0〉 / H • Πx |0〉 / H • Πx

|0〉 /

U (i)

|0〉 /

U (i)|+〉 |+〉
|Ψ〉 / |Ψ〉 /

Considering the right circuit, we can write:

2−n/2|x〉A|x〉X |+〉Y |Ψ′〉S = 2−n/2|x〉U (i)|x,+,Ψ〉 = 2−n/2|x〉|x〉 ⊗ U (i)
x |+〉|Ψ〉,

where the second equality holds because of the Claim 3 and therefore U (i)
x |+〉|Ψ〉 = |+〉Y |Ψ′〉S . �

Property 5 For any i ∈ [q] and |Ψ〉 ∈ Vi−1, ∀x : U
(i)
x (|+〉Y |Ψ〉S) = |+〉 ⊗ |Ψ〉.

Claim 5 There exists a simulator Sim3 that has properties 1, 2, 3, and 5.

Proof. Fix an i ∈ [q]. From Claim 4 and the linearity of U (i)
x , it follows that for any |α〉 ∈ spanV Sim2

i−1 ,
there exists |Ψ′〉 such that for any x, U (i)

x |+〉|α〉 = |+〉|Ψ′〉. Let {|ej〉(i−1)}j be an orthonormal basis
of spanV Sim2

i−1 . Then for any x and j we can write U (i)
x |+〉|ej〉(i−1) = |+〉|e′j〉(i), where {|e′j〉(i)}j is

some other orthonormal set (since U (i)
x is an unitary operation and preserves the orthogonality).

Let E(i) be a unitary such that maps |e′j〉(i) to |ej〉(i−1) for any j (if span{|e′j〉(i)}j is not the whole
space, then E(i) can be defined arbitrarily for the rest of the vectors). For any i ∈ [q], we define
F (i) := E(1) . . . E(i) and let F (0) := I. Let Sim3 be a simulator that answers to the i-th query with
the unitary:

U (i)
new|x, y,Ψ〉 := (I ⊗ I ⊗ F (i))U (i)(I ⊗ I ⊗ F (i−1)†)|x, y,Ψ〉.

The following circuit depicts Sim3.

X : /

U (1) U (2) U (3)

· · ·

Y : · · ·

S : / F (1) F (1)† F (2) F (2)† F (3) · · ·

Note that Sim3 is a perfect simulator for the class of D (fulfils Property 1), because the Sim3’s
answers to the distinguishers queries are indistinguishable from the Sim2’s answers (because the
only difference between Sim3 and Sim2 is the application of an unitary transformation to the inner
state register followed by its inverse). It is clear that Sim3 fulfils Property 2 by its construction.

11

By definition of Sim3, for any |Ψ〉 ∈ V Sim3
i−1 we can write |Ψ〉 = F (i−1)|Φ〉 for some |Φ〉 ∈ V Sim2

i−1 .
Let |Φ〉 =

∑
j αj |ej〉(i−1). We show that Sim3 has Property 3. We claim that for any i ∈ [q] and

x ∈ X, there exists a unitary U (i)
x,new such that for any |Ψ〉 ∈ V Sim3

i−1 , y ∈ Y :

U (i)
new|x, y,Ψ〉 = |x〉 ⊗ U (i)

x,new|y,Ψ〉.

U (i)
new|x, y,Ψ〉 = (I ⊗ I ⊗ F (i))U (i)(I ⊗ I ⊗ F (i−1)†)|x, y,Ψ〉

= (I ⊗ I ⊗ F (i))U (i)(I ⊗ I ⊗ F (i−1)†)|x〉|y〉F (i−1)|Φ〉
= (I ⊗ I ⊗ F (i))U (i)|x〉|y〉|Φ〉

(Claim 3) = (I ⊗ I ⊗ F (i))(|x〉 ⊗ U (i)
x |y〉|Φ〉)

= |x〉 ⊗ (I ⊗ F (i))U (i)
x |y〉|Φ〉

= |x〉 ⊗ (I ⊗ F (i))U (i)
x (I ⊗ F (i−1)†)|y〉|Ψ〉.

We define U (i)
x,new := (I ⊗ F (i))U

(i)
x (I ⊗ F (i−1)†) and this finishes the proof of our claim. Finally,

we show that Sim3 fulfils Property 5. We claim that for any i ∈ [q], |Ψ〉 ∈ V Sim3
i−1 , and x ∈ X:

U
(i)
x,new(|+〉|Ψ〉) = |+〉|Ψ〉.

U (i)
x,new(|+〉|Ψ〉) = (I ⊗ F (i))U (i)

x (I ⊗ F (i−1)†)(|+〉|Ψ〉)

= (I ⊗ F (i))U (i)
x (I ⊗ F (i−1)†)(|+〉F (i−1)|Φ〉)

= (I ⊗ F (i))U (i)
x (|+〉|Φ〉)

= (I ⊗ F (i))U (i)
x (|+〉

∑
j

αj |ej〉(i−1))

= (I ⊗ F (i))
∑
j

αjU
(i)
x |+〉|ej〉(i−1)

= (I ⊗ F (i))
∑
j

αj |+〉|e′j〉(i)

=
∑
j

αj(I ⊗ F (i−1)E(i))|+〉|e′j〉(i)

=
∑
j

αj(I ⊗ F (i−1))|+〉|ej〉(i−1)

= |+〉F (i−1)
∑
j

αj |ej〉(i−1) = |+〉F (i−1)|Φ〉 = |+〉|Ψ〉.

�

For simplicity, we omit “new” from U
(i)
new and U (i)

x,new for the rest of the paper.

Claim 6 For any i ∈ [q], V Sim3
i−1 ⊆ V

Sim3
i .

Proof. Since Sim3 has Property 5, U (i)|0〉X |+〉Y |Ψ〉 is the identity for all |Ψ〉 ∈ V Sim3
i−1 . LetD(i−1) ∈ D

be a distinguisher that makes i − 1 queries. Thus, we get every state in V Sim3
i using an i-query

distinguisher D(i)
3 (D(i−1)) that runs the distinguisher D(i−1) and then additionally queries with

X,Y = |0〉|+〉. Finally, the distinguisher outputs 1. Thus, it is a one-sided distinguisher.

12

Distinguishers in D: For any i ∈ [q] and any (i − 1)-query distinguisher D(i−1) ∈ D, the distin-
guisher D(i)

3 (D(i−1)) (described above) is in D.

For all (i− 1)-query distinguishers D(i−1) ∈ D, we can write V Sim3,D(i−1)
= V Sim3,D(i)

3 (D(i−1)) and
hence:

V Sim3
i−1 =

⋃
D(i−1)∈D

V Sim3,D(i−1)

=
⋃

D(i−1)∈D

V Sim3,D(i)
3 (D(i−1)) ⊆ V Sim3

i .

�

Property 6 For any i ∈ [q] and |Ψ〉 ∈ Vi−1, and any x, U (i)
x |1〉Y |Ψ〉 = (X ⊗ IS)U

(i)
x |0〉Y |Ψ〉. Here

X is the bit-flip operator (Pauli X matrix).

Claim 7 Sim3 fulfils Property 6.

Proof. Fix some i ∈ [q]. By definition of V Sim3
i−1 , for any |Ψ〉 ∈ V Sim3

i−1 there exists an (i − 1)-query

distinguisher D(i−1) ∈ D such that |Ψ〉 ∈ V Sim3,D(i−1)

i−1 . Let D(i)
4 (D(i−1)) be an i-query distinguisher

that runs D(i−1), prepares an ancillary wire Aq, queries the public interface of the construction
for uniformly random x, and measures the outputs wire Y by the projective measurement Π :=
{Pyes, I − Pyes} where Pyes = |+〉〈+| as follows:

X : |x〉 /
T pub

Y :|+〉 • • Π

Aq : |0〉

Finally, it outputs 1 if the measurement returns “yes”, otherwise it outputs 0. We depict the circuit
in the real case.

X : |x〉 /
Uf

Y :|+〉 • • Π

Aq : |0〉
A simple calculation shows that the output of the circuit above is |x, f(x)〉XAq ⊗ |+〉Y (before the
measurement) for any x and the measurement returns “yes” on the wire Aq with probability 1. Thus,
D(i)

4 (D(i−1)) is a one-sided distinguisher.

Distinguishers in D: For any i ∈ [q] and any (i − 1)-query distinguisher D(i−1) ∈ D, the distin-
guisher D(i)

4 (D(i−1)) (described above) is in D.

Since the simulator is perfect for the class D, the measurement will output “yes” with probability
1 in the ideal case as well. We depict the circuit in the ideal case where ρ :=

∑
j λj |Ψj〉〈Ψj | is the

inner state of Sim3 after running the distinguisher D(i−1).

Aq : |0〉

Y :|+〉 •
U

(i)
x

• Π

S : ρ / ,

Similar to Claim 3, we can conclude that the measurement returns “yes” even if the state of the
simulator is |Ψ〉.

13

To prove the claim, we analyse the output of the following circuit.

Aq : |0〉

Y :|+〉 •
U

(i)
x

• Π

S :|Ψ〉 /

where the measurement on the wireAq is the computational basis measurement. We write U (i)
x |0〉|Ψ〉 =

|0〉|Ψ00〉+ |1〉|Ψ01〉 and U (i)
x |1〉|Ψ〉 = |0〉|Ψ10〉+ |1〉|Ψ11〉 for some non-normalized states |Ψbb′〉. Then,

the output of the circuit before the measurements is

1√
2

(
|0〉|0〉|Ψ00〉+ |1〉|1〉|Ψ01〉+ |1〉|0〉|Ψ10〉+ |0〉|1〉|Ψ11〉

)
.

We show that |Ψ00〉 = |Ψ11〉 and |Ψ10〉 = |Ψ01〉. The measurement on the wire Y returns |+〉 with
probability 1. If the computational basis measurement never outputs 0 or 1, then we can conclude
|Ψ00〉 = |Ψ11〉 = 0 or |Ψ10〉 = |Ψ01〉 = 1, respectively. Otherwise, we would get the equations

|0〉|Ψ00〉+ |1〉|Ψ11〉 = |+〉|Ψ′〉 and |1〉|Ψ01〉+ |0〉|Ψ10〉 = |+〉|Ψ′′〉,

for some states |Ψ′〉 and |Ψ′′〉. We apply the operations 〈0| ⊗ I and 〈1| ⊗ I to the two sides of the
equations above to conclude |Ψ00〉 = 1√

2
|Ψ′〉 = |Ψ11〉 and |Ψ10〉 = 1√

2
|Ψ′′〉 = |Ψ01〉. Therefore,

U (i)
x |0〉|Ψ〉 = |0〉|Ψ00〉+ |1〉|Ψ01〉

= |0〉|Ψ11〉+ |1〉|Ψ10〉
= (X ⊗ I)U (i)

x |1〉|Ψ〉.

�

Property 7 For any i ∈ [q], |Ψ〉 ∈ Vi−1 and x, there are non-normalized |Ψx0〉, |Ψx1〉 such that:

U (i)
x |b〉|Ψ〉 = |b〉|Ψx0〉+ |b̄〉|Ψx1〉 and |Ψx0〉+ |Ψx1〉 = |Ψ〉.

Claim 8 Sim3 has Property 7.

Proof. It is clear that we can write U
(i)
x |0〉|Ψ〉 = |0〉|Ψx0〉 + |1〉|Ψx1〉 for some non-normalized

|Ψx0〉, |Ψx1〉. Since Sim3 has Property 6, we can write U (i)
x |1〉|Ψ〉 = |1〉|Ψx0〉 + |0〉|Ψx1〉. We prove

that |Ψx0〉+ |Ψx1〉 = |Ψ〉.

U (i)
x |+〉|Ψ〉 =

1√
2

(
U (i)
x |0〉|Ψ〉+ U (i)

x |1〉|Ψ〉
)

=
1√
2

(
|0〉|Ψx0〉+ |1〉|Ψx1〉+ |1〉|Ψx0〉+ |0〉|Ψx1〉

)
= |+〉

(
|Ψx0〉+ |Ψx1〉

)
On the other hand, by Property 5 U (i)

x |+〉|Ψ〉 = |+〉|Ψ〉 and therefore |Ψx0〉+ |Ψx1〉 = |Ψ〉. �

Property 8 For any i ∈ [q], x ∈ X, and |Ψ〉 ∈ Vi−1, the states |Ψx0〉 and |Ψx1〉 from Property 7 are
orthogonal. In addition, for any x there exists a projector P (i)

x such that for any |Ψ〉 ∈ spanVi−1,

we can write U (i)
x : |b〉|Ψ〉 7→ |b〉P (i)

x |Ψ〉+ |1− b〉P (i)
x |Ψ〉 where P (i)

x := I − P (i)
x .

14

Claim 9 Sim3 has Property 8.

Proof. Fix i ∈ [q] and |Ψ〉 ∈ Vi−1. By the definition of Vi−1, there exists an (i−1)-query distinguisher
D(i−1) ∈ D such that |Ψ〉 ∈ V D(i−1)

. Let the state of the simulator after running D(i−1) be ρ :=∑
i λi|Ψi〉〈Ψi| where |Ψ1〉 := |Ψ〉 and λi > 0 (this is possible by the definition of V D

(i−1)
). Let

D(i+1)
5 (D(i−1)) be a distinguisher that runs D(i−1) and queries the public interface of the construction

on the same uniformly random input x in the i-th and (i+1)-th query, and then measures the output
wire Y as depicted in the following circuit.

X : |x〉 /

T pub
a |x〉 /

T pub
a

Y : |0〉 |0〉

y1 y2

Finally, the distinguisher outputs 1 if y1 = y2 and 0 otherwise. It is clear that in the real case, the
distinguisher returns 1 with probability 1. Thus, D(i+1)

5 (D(i−1)) is a one-sided distinguisher.

Distinguishers in D: For any i ∈ [q] and any (i − 1)-query distinguisher D(i−1) ∈ D, the distin-
guisher D(i+1)

5 (D(i−1)) (described above) is in D.

We depict the circuit above in the ideal case:

X : |x〉 /

U (i)

a |x〉 /

U (i+1)

a

Y : |0〉 |0〉

S : ρ /

y1 y2

Since Sim3 is a perfect simulator for the class D, then in the circuit above y1 = y2 with probability
1. We show that Pr[y1 = y2] = 1 even if the inner state of the simulator is |Ψ〉:

0 = Pr[y1 6= y2 : state ρ] =
∑
i

λi Pr[y1 6= y2 : state |Ψi〉]. (3)

Since ∀i, λi > 0 and |Ψ1〉 = |Ψ〉, then we can conclude Pr[y1 6= y2 : |Ψ〉] = 0. We analyse the
circuit above assuming the inner state of the simulator is |Ψ〉. Notice that if y1 is measured to be
some b ∈ {0, 1} then the inner state after running the first part of the circuit is |Ψxb〉

‖|Ψxb〉‖ by Property 7.
If Pr[y1 = 0] = 0 or Pr[y1 = 1] = 0, then |Ψx0〉 = 0 or |Ψx1〉 = 0, respectively, and |Ψx0〉, |Ψx1〉 are
orthogonal. So let us assume that Pr[y1 = 0] > 0 and Pr[y1 = 1] > 0. We claim that the second
part of the circuit can distinguish the states |Ψx0〉

‖|Ψx0〉‖ and |Ψx1〉
‖|Ψx1〉‖ perfectly and therefore they are

orthogonal. (Note that when y1 is not known, the state of the simulator after the first query can
be either one of |Ψx0〉

‖|Ψx0〉‖ or |Ψx1〉
‖|Ψx1〉‖ .) So we need to show, that for each b ∈ {0, 1} in the case of the

input |Ψxb〉
‖|Ψxb〉‖ to the second part of the circuit the result of the y2-measurement will always be b.

X : |x〉 /

U (i+1)

a

Y : |0〉

S :
|Ψxb〉
‖|Ψxb〉‖

/

y2 = b

15

In other words, we show that the probability of measuring b in the circuit above is 1. Suppose
for a contradiction this was not the case, and it was possible to measure 1− b with some probability
ε, then

Pr[y1 = b ∧ y2 = 1− b] = Pr[y1 = b] · Pr[y2 = 1− b|y1 = b] > 0.

Here the first factor is > 0 by assumption, and the second factor is precisely = ε. By (3), it cannot
happen that different values b and 1− b are measured for y1 and y2. Therefore, the second part of
the circuit can distinguish the states |Ψx0〉

‖|Ψx0〉‖ and
|Ψx1〉
‖|Ψx1〉‖ perfectly and therefore they are orthogonal.

Finally, we prove the existence of the projector P (i)
x . We define Vxb := span {|Ψxb〉}|Ψ〉∈Vi−1

. We
show that for any |Ψ〉, |Ψ′〉 ∈ Vi−1 with |Ψ〉 6= |Ψ′〉, 〈Ψxb,Ψ

′
xb̄
〉 = 0 (|Ψxb〉 and |Ψ′xb̄〉 are orthogonal).

Since for any |Ψ〉 ∈ Vi−1 the measurement in the circuit above returns b with probability 1 and
using Property 3, we can write

U (i+1)|x, 0,Ψxb〉
‖|Ψxb〉‖

= |x〉|b〉|Φ〉 and
U (i+1)|x, 0,Ψ′

xb̄
〉

‖|Ψ′
xb̄
〉‖

= |x〉|b̄〉|Φ′〉,

for some states |Φ〉 and |Φ′〉. Now it is clear that 〈Ψxb,Ψ
′
xb̄
〉 = 0 since a unitary transformation

preserves the Hilbert space inner product. We define P (i)
x to be the projector onto the Hilbert space

Vx0. Note that the definition of P (i)
x does not depend on the choice of |Ψ〉 ∈ Vi−1. Since for any x

and |Ψ〉 ∈ Vi−1, P
(i)
x |Ψx0〉 = |Ψx0〉 and P (i)

x |Ψx1〉 = |Ψx1〉, we can write

U (i)
x |b〉|Ψ〉 = |b〉|Ψx0〉+ |b̄〉|Ψx1〉 = |b〉P (i)

x |Ψ〉+ |b̄〉P (i)
x |Ψ〉. (4)

And finally, the result holds for any |Ψ〉 ∈ spanVi−1 by the linearity of U (i)
x and P (i)

x . �

Property 9 For any i ∈ [q], |Ψ〉 ∈ spanVi−1, and x ∈ X, P (i)
x |Ψ〉 = P

(i+1)
x |Ψ〉, where P (i)

x and
P

(i+1)
x are the projectors from Property 8.

Claim 10 Sim3 fulfils Property 9.

Proof. Fix some i ∈ [q] and |Ψ〉 ∈ Vi−1(not spanVi−1). By definition of V Sim3
i−1 , for any |Ψ〉 ∈ V Sim3

i−1

there exists an (i − 1)-query distinguisher D(i−1) ∈ D such that |Ψ〉 ∈ V Sim3,D(i−1)
. Let the state

of the simulator after running D(i−1) be ρ :=
∑

j λj |Ψj〉〈Ψj | where |Ψ1〉 := |Ψ〉 and λj > 0 (this is

possible by the definition of V D
(i−1)

). Let D(i)
6 (D(i−1)) be a distinguisher that runs the distinguisher

D(i−1), then queries the public interface of the construction (the i-th query) for uniformly random
input x, then measures the output register in the computational basis, and finally it outputs 1. It
is clear that D(i)

6 (D(i−1)) is a one-sided distinguisher.

Distinguishers in D: For any i ∈ [q] and any (i − 1)-query distinguisher D(i−1) ∈ D, the distin-
guisher D(i)

6 (D(i−1)) (described above) is in D.

Note that we need the distinguisher D(i)
6 (Di−1) to show that for any x ∈ X and |Ψ〉 ∈ Vi−1,

P
(i)
x |Ψ〉 and P (i)

x |Ψ〉 ∈ Vi where P (i)
x is defined in Claim 9. We depict the circuit corresponding to

i-th query of D(i)
6 (Di−1) in the ideal case.

X : |x〉 /

U (i)Y : |0〉

S : ρ /

y′

16

Let My := I ⊗ |y〉〈y| ⊗ I and Pro(|Φ〉) := |Φ〉〈Φ|. We can calculate the inner state of the
simulator after running D(i)

6 (Di−1):

ρSim3,D(i)
6 (Di−1) = trX,Y

∑
x,y,j

λj
|X|

MyU
(i)
(
|x〉〈x| ⊗ |0〉〈0| ⊗ |Ψj〉〈Ψj |

)
U (i)†M †y

(Claim 9) = trX,Y
∑
x,y,j

λj
|X|

MyPro
(
|x, 0〉 ⊗ P (i)

x |Ψj〉+ |x, 1〉 ⊗ P (i)
x |Ψj〉

)
M †y

= trX,Y
∑
x,j

λj
|X|

(
Pro

(
|x, 0〉 ⊗ P (i)

x |Ψj〉) + Pro
(
|x, 1〉 ⊗ P (i)

x |Ψj〉
)

=
∑
x,j

λj
|X|

(
Pro

(
P (i)
x |Ψj〉

)
+ Pro

(
P

(i)
x |Ψj〉

))
Therefore,

P
(i)
x |Ψ〉, P (i)

x |Ψ〉 ∈ sup ρSim3,D(i)
6 (Di−1) = spanV

Sim3,D(i)
6 (Di−1)

i ⊆ spanV Sim3
i . (5)

We use the distinguisher D(i+1)
5 (D(i−1)) described in the proof of Claim 9. Recall that the outputs

of the measurements of D(i+1)
5 (D(i−1)) are the same with probability 1 even if the inner state of the

simulator is |Ψ〉 (i.e., Pr[y1 = y2] = 1). We analyse the measurement outputs of the distinguisher
D(i+1)

5 (D(i−1)). We have the following three cases for the first measurement outcome:

1. 0 < Pr[y1 = 0] < 1. Recall that Pr[y2 = 0|y1 = 0] = 1 and Pr[y2 = 1|y1 = 1] = 1. The state
just before measuring y1 is U (i)|x〉|0〉|Ψ〉. We can write U (i)|x〉|0〉|Ψ〉 = |x〉 ⊗

(
|0〉P (i)

x |Ψ〉 +

|1〉P (i)
x |Ψ〉

)
by Claim 9. When the first measurement output is 0 (y1 = 0), the input to the

(i+ 1)-query will be |x〉|0〉P (i)
x |Ψ〉. And since P (i)

x |Ψ〉 ∈ spanVi and Sim3 has Property 8, the
state before measuring y2 is (in the y1 = 0 case):

U (i+1)|x〉|0〉P (i)
x |Ψ〉 = |x〉 ⊗

(
|0〉P (i+1)

x P (i)
x |Ψ〉+ |1〉P (i+1)

x P (i)
x |Ψ〉

)
.

Since in this case Pr[y2 = 0] = 1, then we can conclude P
(i+1)
x P

(i)
x |Ψ〉 = 0 and hence

P
(i+1)
x P

(i)
x |Ψ〉 = P

(i)
x |Ψ〉. Similarly, we can show P

(i+1)
x P

(i)
x |Ψ〉 = 0, when y1 = 1. Therefore,

we can conclude

P (i+1)
x |Ψ〉 = P (i+1)

x P (i)
x |Ψ〉+ P (i+1)

x P
(i)
x |Ψ〉 = P (i)

x |Ψ〉. (6)

2. If Pr[y1 = 0] = 1 then P (i)
x |Ψ〉 = 0 = P

(i+1)
x P

(i)
x |Ψ〉 and since Pr[y2 = 1] = 1 and similar to

the previous case, we can deduce 6.

3. If Pr[y1 = 1] = 0 then P (i)
x |Ψ〉 = 0 = P

(i+1)
x P

(i)
x |Ψ〉 and since Pr[y2 = 1] = 1 and similar to

the first case, we can deduce 6.

Thus we have shown that Property 9 holds for any |Ψ〉 ∈ Vi−1. And finally, the result holds for any
|Ψ〉 ∈ spanVi−1 by the linearity of P (i)

x and P (i+1)
x . �

17

Property 10 For any i ∈ [q−2], |Ψ〉 ∈ Vi−1 and x, x′, P
(i+2)
x P

(i+1)
x′ P

(i)
x |Ψ〉 = 0 and P (i+2)

x P
(i+1)
x′ P

(i)
x |Ψ〉 =

0.

Claim 11 Sim3 fulfils Property 10.

Proof. Fix some i ∈ [q−2]. By definition of V Sim3
i−1 , for any |Ψ〉 ∈ V Sim3

i−1 there exists an (i−1)-query
distinguisher D(i−1) ∈ D such that |Ψ〉 ∈ V Sim3,D(i−1)

. Let the state of the simulator after running
D(i−1) be ρ =

∑
i λi|Ψi〉〈Ψi| with |Ψ〉 = |Ψ1〉 and λ1 > 0. Let D(i+2)

7 (Di−1) be a distinguisher that
runs D(i−1) and does the following steps, respectively:

1. Run D(i−1)

2. Pick uniformly at random x, x′ from X. Query |x〉X |0〉Y to the public interface of the con-
struction (i-th query). Then measures the output register and gets some bit b.

3. Query |x′〉X |0〉Y to the public interface of the construction ((i + 1)-th query). Measure the
output register and gets some bit b′.

4. Query |x〉X |0〉Y to the public interface of the construction ((i+ 2)-th query) and measure the
output register to get some bit b′′.

5. It outputs 1 if b = b′′, and 0 otherwise.

In the real case, b = b′′ with probability 1. Thus, D(i+2)
7 (Di−1) is a one-sided distinguisher.

Distinguishers in D: For any i ∈ [q − 2] and any (i − 1)-query distinguisher D(i−1) ∈ D, the
distinguisher Di+2

7 (Di−1) (described above) is in D.

We analyse the test in the ideal case. Since Sim3 is a perfect simulator for D, then b = b′′ with
probability 1 in the ideal case as well when the state of the simulator is ρ after running Di−1. Using
similar argument as in Claim 9, we can conclude that Pr[b = b′′] = 1 even if the state of the simulator
is |Ψ〉. Therefore, we assume that the inner state of the simulator is |Ψ〉 in the following analyses.

Since Sim3 has Property 8, the output state of the i-th query is |x〉X |0〉Y P (i)
x |Ψ〉S+|x〉X |1〉Y P (i)

x |Ψ〉S .
Depending on the distribution of the result of the measurements, there are the following cases.
Case 1. If 0 < Pr[b = 0] < 1. Now if b = 0 then the input to the (i+1)-th query is |x′〉⊗|0〉⊗P (i)

x |Ψ〉
and since P (i)

x |Ψ〉 ∈ spanV Sim3
i (this is shown using the distinguisher D6 in Claim 10) and the

linearity of U (i+1), the output of the (i+ 1)-th query is

|x′〉X |0〉Y P (i+1)
x′ P (i)

x |Ψ〉S + |x′〉X |1〉Y P (i+1)
x′ P (i)

x |Ψ〉S .

Now we write two cases based on the distribution of the bit b′:

• If Pr[b′ = 0] = 0, we can deduce P (i+1)
x P

(i)
x′ |Ψ〉S = 0 and consequently P (i+2)

x P
(i+1)
x′ P

(i)
x |Ψ〉 = 0.

• Otherwise, with non-zero probability the input to the (i+1)-th query is |x′〉|0〉P (i+1)
x P

(i)
x′ |Ψ〉S .

Since P (i+1)
x P

(i)
x′ |Ψ〉S ∈ spanVi+1 (it is shown using the distinguisher D(i+1)

6 in Claim 10) the
linearity of U (i+2) and Property 8, the output of the (i+ 2)-th query is

|x′〉X |0〉Y P (i+2)
x P

(i+1)
x′ P (i)

x |Ψ〉S + |x′〉X |1〉Y P (i+2)
x P

(i+1)
x′ P (i)

x |Ψ〉S .

Since b = b′′ with probability 1, then P (i+2)
x P

(i+1)
x′ P

(i)
x |Ψ〉 = 0.

18

Now if b = 1 then the input to the (i+1)-th query is |x′〉⊗|0〉⊗P (i)
x |Ψ〉 and since P (i)

x |Ψ〉 ∈ spanV Sim3
i

(this is shown using the distinguisher D(i)
6 in Claim 10) the output of the (i+ 1)-th query is

|x′〉X |0〉Y P (i+1)
x′ P

(i)
x |Ψ〉S + |x′〉X |1〉Y P (i+1)

x′ P
(i)
x |Ψ〉S .

Now there are two cases based on the distribution of the bit b′:

• If Pr[b′ = 0] = 0, then we can deduce P (i+1)
x P

(i)
x′ |Ψ〉S = 0 and consequently P (i+2)

x P
(i+1)
x′ P

(i)
x |Ψ〉 =

0.

• Otherwise, with non-zero probability the input to the (i+ 2)-th query is |x〉|0〉P (i+1)
x′ P

(i)
x |Ψ〉S .

Since P (i+1)
x P

(i)
x′ |Ψ〉S ∈ spanVi+1 (it is shown using the distinguisher D(i+1)

6 in Claim 10), the
linearity of U (i+2) and Property 8, the output of the (i+ 2)-th query is

|x〉X |0〉Y P (i+2)
x P

(i+1)
x′ P

(i)
x |Ψ〉S + |x〉X |1〉Y P (i+2)

x P
(i+1)
x′ P

(i)
x |Ψ〉S .

Since b = b′′ with probability 1, then P (i+2)
x P

(i+1)
x′ P

(i)
x |Ψ〉 = 0.

Case 2. If Pr[b = 0] = 1 then P (i)
x |Ψ〉S = 0 and consequently P (i+2)

x P
(i+1)
x′ P

(i)
x |Ψ〉 = 0. Analogous

to Case 1, we can also deduce P (i+2)
x P

(i+1)
x′ P

(i)
x |Ψ〉 = 0.

Case 3. If Pr[b = 1] = 0 then P (i)
x |Ψ〉S = 0 and consequently P (i+2)

x P
(i+1)
x′ P

(i)
x |Ψ〉 = 0. Analogous

to Case 1, we can also conclude P (i+2)
x P

(i+1)
x′ P

(i)
x |Ψ〉 = 0. �

Lemma 2 Let P and Q be rank-one projectors over a two dimensional Hilbert space H such that
for any |Ψ〉 ∈ H, Q̄PQ|Ψ〉 = 0 and QPQ̄|Ψ〉 = 0. Then, P and Q commute on H, i.e, ∀ |Ψ〉 ∈
H, PQ|Ψ〉 = QP |Ψ〉.

Proof. There exists some normalized vectors |α〉 and |β〉 such that P = |α〉〈α| and Q = |β〉〈β|. By
the Gram-Schmidt process, we can obtain two orthonormal bases {|α〉, |ᾱ〉} and {|β〉, |β̄〉} for H. If
|Ψ〉 = 0, then PQ|Ψ〉 = QP |Ψ〉. We show the lemma for any |Ψ〉 6= 0. From Q̄PQ|Ψ〉 = 0 and
QPQ̄|Ψ〉 = 0, we can write, respectively,

|β̄〉〈β̄|α〉〈α|β〉〈β|Ψ〉 = 0 and |β〉〈β|α〉〈α|β̄〉〈β̄|Ψ〉 = 0.

Thus, one of 〈β̄|α〉, 〈α|β〉 or 〈β|Ψ〉 is zero and one of 〈β|α〉, 〈α|β̄〉 or 〈β̄|Ψ〉 is zero. Since 〈β|Ψ〉 and
〈β̄|Ψ〉 can not be zero simultaneously, one of the following cases has to occur:

1. If 〈α|β〉 = 〈β|α〉 = 0, then PQ|Ψ〉 = QP |Ψ〉 = 0

2. If 〈β̄|α〉 = 〈α|β̄〉 = 0, then PQ̄ = Q̄P = 0. Hence,

PQ = P (I − Q̄) = P − PQ̄ = P − Q̄P = (I − Q̄)P = QP.

�

Property 11 For any i ∈ [q − 2], |Ψ〉 ∈ Vi−1, x, x′: P
(i+1)
x′ P

(i)
x |Ψ〉 = P

(i+1)
x P

(i)
x′ |Ψ〉.

Claim 12 Sim3 fulfils Property 11.

19

Proof. By Claim 11, for any i ∈ [q − 2], |Ψ〉 ∈ V Sim3
i−1 , x, x′ ∈ X:

P
(i+2)
x P

(i+1)
x′ P (i)

x |Ψ〉 = 0 and P (i+2)
x P

(i+1)
x′ P

(i)
x |Ψ〉 = 0.

Since we show in the proof of Property 9 that for any x ∈ X and |Ψ〉 ∈ Vi−1, P
(i)
x |Ψ〉, P (i)

x |Ψ〉 ∈
spanVi and using Claim 10, we can rewrite the equation above as

P
(i+2)
x P

(i+2)
x′ P (i)

x |Ψ〉 = 0 and P (i+2)
x P

(i+2)
x′ P

(i)
x |Ψ〉 = 0.

And by Claim 6 and Claim 10, for any x ∈ X and |Ψ〉 ∈ V Sim3
i−1 : P (i)

x |Ψ〉 = P
(i+1)
x |Ψ〉 = P

(i+2)
x |Ψ〉,

therefore we can rewrite the equations above as

P̄ (i+2)
x P

(i+2)
x′ P (i+2)

x |Ψ〉 = 0 and P (i+2)
x P

(i+2)
x′ P̄ (i+2)

x |Ψ〉 = 0.

For simplicity, we use the abbreviation Q := P
(i+2)
x and P := P

(i+2)
x′ . Now using Jordan’s

Lemma [Jor75], that says two orthogonal projectors are simultaneously block diagonalizable, we
can write

P =


P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
0 0 · · · Pn

 , Q =


Q1 0 · · · 0
0 Q2 · · · 0
...

...
. . .

...
0 0 · · · Qn

 , |Ψ〉 =


Ψ1

Ψ2
...

Ψn

 ,

where Pi and Qi are 1-by-1 matrices or rank-one 2-by-2 matrices. (We assume Ψi is 1-dimension
vector when Pi andQi are 1-by-1 matrices and otherwise Ψi is 2-dimension vector.) Since PQP |Ψ〉 =
0 and PQP |Ψ〉 = 0, we have for any i ∈ [n], PiQiPi|Ψi〉 = 0 and PiQiPi|Ψi〉 = 0. We show that
for any i ∈ [n], PiQi|Ψi〉 = QiPi|Ψi〉. The non-trivial case is when they are 2-by-2 matrices and it
follows by Lemma 2 since they are rank-one and QiPiQi|Ψi〉 = 0 and QiPiQi|Ψi〉 = 0. We have
proven:

∀ |Ψ〉 ∈ V Sim3
i−1 : P (i+2)

x P
(i+2)
x′ |Ψ〉 = P

(i+2)
x′ P (i+2)

x |Ψ〉.

By Claim 6, Claim 10, for any x ∈ X and |Ψ〉 ∈ V Sim3
i−1 , P (i+2)

x |Ψ〉 = P
(i)
x |Ψ〉, therefore

P (i+2)
x P

(i)
x′ |Ψ〉 = P

(i+2)
x′ P (i)

x |Ψ〉,

and since for any x ∈ X, P (i)
x |Ψ〉 ∈ spanVi and using Claim 10 we can write

P (i+1)
x P

(i)
x′ |Ψ〉 = P

(i+1)
x′ P (i)

x |Ψ〉.

�

Corollary 1 For any |Ψ〉 ∈ spanV Sim3
q−2 , x, x′: P (q−1)

x′ P
(q−1)
x |Ψ〉 = P

(q−1)
x P

(q−1)
x′ |Ψ〉.

Proof. By Claim 10 and Claim 12, it is clear that for any |Ψ〉 ∈ V Sim3
q−2 , x, x′: P (q−1)

x′ P
(q−1)
x |Ψ〉 =

P
(q−1)
x P

(q−1)
x′ |Ψ〉. The result follows by the linearity of P (q−1)

x .
�

Corollary 2 For any x1, x2, . . . , xq−1 ∈ X,

P (q−1)
x1 P (q−1)

x2 . . . P (q−1)
xq−1

|Φ〉 = P
(q−1)
π(x1) P

(q−1)
π(x2) . . . P

(q−1)
π(xq−1)|Φ〉,

where π is a permutation on the set {x1, . . . , xq−1}.

20

Proof. It is easy to show that any permutation π, the sequence π(x1)π(x2) . . . π(xq−1) can be pro-
duced from the sequence x1 . . . xq−1 only using the pairwise commutativity property of the elements
of {x1, . . . , xq−1}. This can be shown by induction. First, we commute xj := π(x1) to the begin-
ning of the sequence x1 . . . xq−1 and then use the induction hypothesis to the rest of the sequence.
By Claim 10 and Equation 5, we can deduce that for any x1, x2, . . . , xq−3 ∈ X and j ≤ q − 3,
P

(q−1)
x1 P

(q−1)
x2 . . . P

(q−1)
xj |Φ〉 ∈ spanVj+1. Since for j ≤ q − 3, spanVj+1 ⊆ spanVq−2, then the

corollary holds using the pairwise commutativity property proved in 1 and the argument above.
�

Due to the commutativity property proved in the corollary above 2, we can use the Conjecture 2
(with q − 1 instead of t) in the following theorem.

Definition 6 Let Simsl be a classical simulator that samples a bit-string b1b2 . . . bN according to the
distribution D defined in Conjecture 2. Then upon receiving the i-th classical query, it outputs the
bit bi as the answer.

Claim 13 The simulator Simsl is perfect for Dcl.

Proof. The distinguisher Dcl makes at most q − 1 classical queries and the distribution DI is the
marginal of D for every I of size q − 1, therefore Simsl is indistinguishable from Sim3 for Dcl. The
result follows since Sim3 is a perfect simulator for Dcl.

�

From the definitions of the distinguishers in the lines above, it is clear that D is finite-size.

4.1 Generalization to n-bit primitives

Let F : [2m] → [2n] be a function. We define the function f : [2m] × [n] → {0, 1} as f(x, i) =
F (x)i where F (x)i is the i-th bit of F (x). Note that every construction C[F] can be implemented
by f where every query, let say on input x, to F can be answered by n queries to f on inputs
(x, 1), . . . , (x, n), i.e, it can be answered by f(x, 1)‖ . . . ‖f(x, n). We call the above implementation
of C[F] by f , the construction C′[f].

Theorem 3 If C[F] and H are perfectly quantum indifferentiable, then C′[f] and H are perfectly
quantum indifferentiable.

Proof. Fix a quantum distinguisher D that wants to differentiate C′[f] from H. We show that there
exists a simulator Sim such that:

|Pr[D(C′[f], f) = 1]− Pr[D(H, Sim(H)) = 1]| = 0. (7)

Let D′ be a quantum distinguisher that runs D and answers to its queries as follows:

• For any classical query of D to C′[f], it forwards the query to its oracle and then forwards
back the answer to D.

• For any quantum query of D, using registers XIY to f , it prepares n − 1 ancillary wires
Y1, . . . , Yn−1 containing |+〉, then it applies the unitary CySh that maps |i, y, y1, . . . , yn−1〉 to
|i, y1, . . . , yi−1, y, yi−1, . . . yn−1〉, it queries F , undoes the unitary CySh, and then measures

21

the Y1, . . . , Yn−1 in {|+〉, |−〉} (all the measurement outcomes are |+〉 with probability 1), it
sends back XIY to D. The following circuit shows how D′ handles D’s queries.

X |x〉

F

I |i〉

CySh CySh†

Y |y〉

Y1 |+〉 |+〉〈+|
...

...
...

Yn−1 |+〉 |+〉〈+|

• Finally, it returns the output of D.

Note that it is clear that Pr[D′(C[F], F) = 1] = Pr[D(C′[f], f) = 1]. By perfect quantum in-
differentiability of C[F] and H, there exists a simulator Sim′ such that Pr[D′(C[F], F) = 1] =
Pr[D′(H, Sim′(H)) = 1]. Now, we show that there exists a simulator Sim such that Pr[D′(H, Sim′(H)) =
1] = Pr[D(H, Sim(H)) = 1]. Let Sim be a simulator such that for any quantum query of D, using
registers XIY to f , it prepares n − 1 ancillary wires Y1, . . . , Yn−1 containing |+〉, then it applies
the unitary CySh, it queries Sim′, undoes the unitary CySh, and then measures the Y1, . . . , Yn−1

in {|+〉, |−〉} (all the measurement outcomes are |+〉 with probability 1), it sends back XIY to D.
Therefore,

Pr[D(C′[f], f) = 1] = Pr[D(H, Sim(H)) = 1].

�

In the following, we write the generalization of the main result of the previous section, Theorem 2.

Theorem 4 If two construction C[F] and H are perfectly quantum indifferentiable then for any
classical ”one-sided” distinguisher Dcl (cl stands for classical), there exists a stateless simulator
Simsl (sl stands for stateless) such that

|Pr[Dcl(C′[f], f) = 1]− Pr[Dcl(H, Simsl(H)) = 1]| = 0.

Proof. If two construction C[F] and H are perfectly quantum indifferentiable then by Theorem 3,
the construction C′[f] and H are perfectly quantum indifferentiable and consequently by Theorem 2,
we can conclude for any classical distinguisher Dcl, there exists a stateless simulator Simsl such that

|Pr[Dcl(C′[f], f) = 1]− Pr[Dcl(H, Simsl(H)) = 1]| = 0.

�

5 Quantum indifferentiability of constructions

In this section, we construct a classical distinguisher that can differentiate the real case from the
ideal case if we only consider a stateless simulator.

Construction of Dcl. The distinguisherDcl that wants to distinguish (C′[f], f) from (H,Simsl(H))
picks a random element x from the domain. Then it evaluates C′[f](x) without querying x to the

22

public interface of the construction and only using queries to f (this is possible since the construc-
tion has been built from f). We call this value y. Then it queries x to the public interface of the
construction to get C′[f](x). Finally, it outputs 1 if y = C′[f](x) and 0 otherwise. It is clear that
in the real case, when Dcl interacts with (C′[f], f), the output of Dcl is 1 with probability 1. In the
following lemma, we calculate an upper bound for the probability of outputting 1 in the ideal case.

Lemma 3 Let H and F be some family of functions from X → Y . Fh is a subset of F that depends
on h. Then,

Pr[h(x) = f(x) : h
$←− H, ∀f ∈ Fh, x

$←− X] ≤ |F|
|H|

(d · |X|d · |Y |d) + (1− d

|X|
),

for any integer d ≤ |X|.

Proof. Let Bf
d := {h : |{x;h(x) 6= f(x)}| ≤ d}. Then,

|Bf
d | =

d∑
i=0

(
|X|
i

)
(|Y | − 1)i ≤ d · |X|d · |Y |d.

Pr[h(x) = f(x) : h
$←− H, ∀f ∈ Fh, x

$←− X]

= Pr[h(x) = f(x) ∧ h ∈ Bf
d : h

$←− H, ∀f ∈ Fh, x
$←− X]

+ Pr[h(x) = f(x) ∧ h /∈ Bf
d : h

$←− H, ∀f ∈ Fh, x
$←− X]

= Pr[h(x) = f(x) : h
$←− H,∀f ∈ Fh, x

$←− X | h ∈ Bf
d] · Pr[h ∈ Bf

d : h
$←− H,∀f ∈ Fh]

+ Pr[h(x) = f(x) : h
$←− H,∀f ∈ Fh, x

$←− X | h /∈ Bf
d] · Pr[h /∈ Bf

d : h
$←− H,∀f ∈ Fh]

≤ 1 ·
|F||Bf

d |
|H|

+ (1− d

|X|
) · 1

≤ |F|
|H|

(d · |X|d · |Y |d) + (1− d

|X|
)

�

5.1 Application of the attack

We use the classical distinguisher Dcl and the Lemma 3 to show that the sponge and Feistel con-
structions are not perfectly quantum indifferentiable.

Sponge Construction. The classical indifferentiability of the sponge construction has been
studied in [BDPA08]. They prove that the sponge construction, SP(F) : Zr∗2 → Z∞2 , where F :
{0, 1}r+c → {0, 1}r×{0, 1}c is a random transformation or a random permutation, is indifferentiable
from a random oracle. We recall the definition of the sponge construction to show that it is not
perfectly quantum indifferentiable from a random oracle.

Definition 7 The sponge construction SP(F) has two phases. The absorbing phase absorbs the
input and the squeezing phase returns the output with desired size.

1. Absorbing phase. On the input (M1, . . . ,Mk) where eachMi is of size r bits: (For simplicity,
we assume that the input size is a multiple of r.)
Let SPab1 := F (M1‖0c). For i = 2, . . . , k: compute SPabi := F (SPabi−1⊕Mi‖0c). Return SPabk .

23

2. Squeezing phase. Assume that the desired output size is Mout bits. Let SPsq1 := F (SPabk).
For j = 2, . . . , dMout/re: compute SPsqj := F (SPsqj−1). Return the first r bits of SPsqj , for
j = 1, . . . , dMout/re. (the extra bits will be discarded.)

Let consider SP(F) : Zrk2 → Zrk
′

2 for some integers k, k′, where F : {0, 1}r+c → {0, 1}r ×{0, 1}c
is a random transformation. Let H be the set of all functions from Zrk2 → Zrk

′
2 and F be the set of

all possible constructions SP(F) : Zrk2 → Zrk
′

2 when F is a random function. Then,

|H| = (2k
′r)2kr(= |Y ||X|) and |F| = (2r+c)2r+c

.

According to the application of the sponge construction, log |X|
log |Y | can be ≤ 1 or ≥ 1. Let first assume

log |X|
log |Y | ≥ 1. We use the bound in Lemma 3 assuming d = |X|

δ where δ = 4 log |X|
log |Y | = 4k

k′ . Since δ ≥ 4,

|X|d|Y |d

|H|
=
|Y |

log |X|
log |Y | d|Y |d

|Y ||X|
≤ |Y |

|X|
4 |Y |

|X|
4

|Y ||X|
≤ 1

|Y |
|X|
2

,

and we can get the upper bound

(
2krk′r

4kr
)(

(2r+c)2r+c

(2rk′)2rk−1) + (1− k′

4k
).

Therefore,

ε := |Pr[Dcl(SP[F], F) = 1]− Pr[Dcl(H,Simsl) = 1]| ≥ 1−
(k′2rk(2r+c)2(r+c)

4k(2rk′)2rk−1 + (1− k′

4k
)
)
.

In order to obtain a lower bound for B, we assume the following bounds:
(a) log(k′) ≤ (r + c) · 2r+c
(b) rk ≤ (r + c) · 2r+c
(c) r + c+ log(r + c) + 4 ≤ rk
Then looking at the first summand:

k′2rk(2r+c)2(r+c)

4k(2rk′)2rk−1 ≤ k′ · 2rk · 2(r+c)·2r+c

22rk−1 =
2log k′ · 2rk · 22r+c+log(r+c)

22rk−1

(∗)
≤ 22r+c+log(r+c) · 22r+c+log(r+c) · 22r+c+log(r+c)

22rk−1

≤ 22r+c+log(r+c)+2

22rk−2+2rk−2

(∗∗)
≤ 22rk−2

22rk−2 · 22rk−2 =
1

22rk−2

where (∗) uses (a), (b), and (∗∗) uses (c).Therefore,

ε ≥ 1−
(1

22rk−2 + (1− k′

4k
)
)
≥ k′

4k
− 1

22rk−2 .

When log |X|
log |Y | ≤ 1, then by defining δ := 4 we can have the bound:

ε ≥ 1−
(1

22rk−2 + (1− 1

4
)
)
≥ 1

4
− 1

22rk−2 .

Feistel Networks. In [DS16], they prove an 8-round Feistel network is indifferentiable from a
random permutation where the underlying functions are random oracles. The definition of a r-round
Feistel construction is presented in the following.

24

Definition 8 Let f1, . . . , fr : {0, 1}n → {0, 1}n be some functions. FS[fi]
r
i=1 : {0, 1}2n → {0, 1}2n

is a permutation such that for any L0, R0 ∈ {0, 1}n,

FS[fi]
r
i=1(L0, R0) = (Lr, Rr),

where (Lr, Rr) is calculated by the sequence Li = Ri−1 and Ri = fi(Ri−1)⊕ Li−1 for i = 1, · · · , r.

Let F be the set of all possible c-round Feistel networks and H be number of all permutations
on {0, 1}2n. Then,

|H| = (22n)! and |F| = 2nc2
n
.

Using the bound in Lemma 3 ,

ε := |Pr[Dcl(SP[F], F) = 1]− Pr[Dcl(H,Simsl) = 1]| ≥ 1− (
d2nc2

n
24dn

(22n)!
+ (1− 1

22n
)d)

Assuming d = |X|
8 , n ≥ 3 and c ≤ 2n − n:

d2nc2
n
24dn

(22n)!
+ (1− d

22n
) ≤ 222n−3

2nc2
n
2n22n−1

(22n)!
+ 7/8

≤ 222n−3
2nc2

n
2n22n−1

(22n)2ne−n2n
+ 7/8

≤ 1

(22n−2)22n
· 222n−3

en

2n(22n−2)22n
· 2nc2

n

(22n−2)22n
· 2n22n−1

(22n−2)22n
+ 7/8

≤ 1

(22n−2)22n
+ 7/8 ≤ 1/232 + 7/8 ≤ 15/16

Therefore,
ε := |Pr[Dcl(SP[F], F) = 1]− Pr[Dcl(H,Simsl) = 1]| ≥ 1/16.

The same counting argument can be applied to other constructions [CDMP05, DSSL16, ABD+13,
DSST17].

Acknowledgments. Carstens, Ebrahimi, Tabia and Unruh were supported by institutional re-
search funding IUT2-1 of the Estonian Ministry of Education and Research. Carstens, Ebrahimi,
and Unruh were supported by the Estonian Centre of Exellence in IT (EXCITE) funded by ERDF.
Carstens and Unruh were supported by the US Air Force AOARD grant "Verification of Quantum
Cryptography" (FA2386-17-1-4022).

References

[ABD+13] Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and John P. Stein-
berger. On the indifferentiability of key-alternating ciphers. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042
of Lecture Notes in Computer Science, pages 531–550. Springer, 2013.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun

25

Wang, editors, Advances in Cryptology - ASIACRYPT 2011 - 17th International Con-
ference on the Theory and Application of Cryptology and Information Security, Seoul,
South Korea, December 4-8, 2011. Proceedings, volume 7073 of Lecture Notes in Com-
puter Science, pages 41–69. Springer, 2011.

[BDPA08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the indiffer-
entiability of the sponge construction. In EUROCRYPT 2008, volume 4965 of Lecture
Notes in Computer Science, pages 181–197. Springer, 2008.

[CBH+17] Jan Czajkowski, Leon Groot Bruinderink, Andreas Hülsing, Christian Schaffner, and
Dominique Unruh. Post-quantum security of the sponge construction. IACR Cryptology
ePrint Archive, 2017:771, 2017.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-
damgård revisited: How to construct a hash function. In Victor Shoup, editor, Ad-
vances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 14-18, 2005, Proceedings, volume 3621
of Lecture Notes in Computer Science, pages 430–448. Springer, 2005.

[CHK+16] Jean-Sébastien Coron, Thomas Holenstein, Robin Künzler, Jacques Patarin, Yannick
Seurin, and Stefano Tessaro. How to build an ideal cipher: The indifferentiability of the
feistel construction. J. Cryptology, 29(1):61–114, 2016.

[DKT16] Dana Dachman-Soled, Jonathan Katz, and Aishwarya Thiruvengadam. 10-round feistel
is indifferentiable from an ideal cipher. In Fischlin and Coron [FC16], pages 649–678.

[DS16] Yuanxi Dai and John P. Steinberger. Indifferentiability of 8-round feistel networks. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part I, volume 9814 of Lecture Notes in Computer
Science, pages 95–120. Springer, 2016.

[DSSL16] Yevgeniy Dodis, Martijn Stam, John P. Steinberger, and Tianren Liu. Indifferentiability
of confusion-diffusion networks. In Fischlin and Coron [FC16], pages 679–704.

[DSST17] Yuanxi Dai, Yannick Seurin, John P. Steinberger, and Aishwarya Thiruvengadam. In-
differentiability of iterated even-mansour ciphers with non-idealized key-schedules: Five
rounds are necessary and sufficient. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III, volume
10403 of Lecture Notes in Computer Science, pages 524–555. Springer, 2017.

[FC16] Marc Fischlin and Jean-Sébastien Coron, editors. Advances in Cryptology - EURO-
CRYPT 2016 - 35th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II,
volume 9666 of Lecture Notes in Computer Science. Springer, 2016.

[Jor75] C. Jordan. In Bulletin de la S. M. F., pages 3,103, 1875.

[LR88] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM J. Comput., 17(2):373–386, 1988.

26

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impos-
sibility results on reductions, and applications to the random oracle methodology. In
Moni Naor, editor, Theory of Cryptography, First Theory of Cryptography Conference,
TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings, volume 2951 of
Lecture Notes in Computer Science, pages 21–39. Springer, 2004.

[NIS14] NIST. SHA-3 standard: Permutation-based hash and extendable-output functions.
Draft FIPS 202, 2014. Available at http://csrc.nist.gov/publications/drafts/
fips-202/fips_202_draft.pdf.

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with composi-
tion: Limitations of the indifferentiability framework. In Kenneth G. Paterson, editor,
Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May
15-19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer Science, pages
487–506. Springer, 2011.

27

http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf

	Introduction
	Indifferentiability
	On the impossibility of quantum indifferentiability
	Transforming indifferentiability simulator into a stateless one
	Generalization to n-bit primitives

	Quantum indifferentiability of constructions
	Application of the attack

