
Perfectly Secure Oblivious RAM with Sublinear
Bandwidth Overhead

Michael Raskin1 and Mark Simkin2

1 Technical University of Munich, raskin@mccme.ru
2 Aarhus University, simkin@cs.au.dk

Abstract. Oblivious RAM (ORAM) has established itself as a funda-
mental cryptographic building block. Understanding which bandwidth
overheads are possible under which assumptions has been the topic of a
vast amount of previous works. In this work, we focus on perfectly se-
cure ORAM and we present the first construction with sublinear band-
width overhead in the worst-case. All prior constructions with perfect
security require linear communication overhead in the worst-case and
only achieve sublinear bandwidth overheads in the amortized sense. We
present a fundamentally new approach for construction ORAM and our
results significantly advance our understanding of what is possible with
perfect security.
Our main construction, Lookahead ORAM, is perfectly secure, has a

worst-case bandwidth overhead of O
(√

N
)

, and a total storage cost of

O(N) on the server-side, where n is the maximum number of stored data
elements. In terms of concrete server-side storage costs, our construction
has the smallest storage overhead among all perfectly and statistically
secure ORAMs and is only a factor 3 worse than the most storage efficient
computationally secure ORAM. Assuming a client-side position map, our
construction is the first, among all ORAMs with worst-case sublinear
overhead, that allows for a O (1) online bandwidth overhead without
server-side computation. Along the way, we construct a conceptually
extremely simple statistically secure ORAM with a worst-case bandwidth

overhead of O
(√

N logN
log logN

)
, which may be of independent interest.

1 Introduction

More and more sensitive data is stored online. A basic attempt to keep data
private while storing it online on an untrusted server is to simply encrypt each
data entry. Unfortunately, this is not always sufficient. For instance, Islam et.
al. [IKK12] showed that by observing the access patterns induced by encrypted
search queries over an encrypted database, an honest-but-curious server storing
the database, could learn significant amounts of information about the queries’
contents. A more viable approach is to not only encrypt the data, but also hide
the access patterns. Oblivious RAM (ORAM) is a cryptographic primitive that
allows a client to do exactly this, at the cost of some bandwidth and storage
overhead. It enables a client to outsource his data to an untrusted server inside

of an ORAM data structure, and then read and write to his dataset without
revealing the position that was accessed or the operation that was performed.

Goldreich and Ostrovsky [Gol87, GO96] first introduced the notion of ORAM,
presented the first constructions thereof, and proved the first lower bound of
Ω(log n) on the bandwidth overhead for a certain type of constructions, where
n the maximum number of data elements stored in the data structure. Boyle
and Naor [BN16] revisit this lower bound proof and highlight that it only holds
for statistically secure ORAMS that behave in a “balls-and-bins” fashion. The
same lower bound without these restriction was recently proven by Larsen and
Nielsen [LN18].

Understanding which upper bounds can be achieved in which setting has been
the topic of numerous works [OS97, GMOT11, SCSL11, DMN11, SSS12, SvS+13,
CNS18, PPRY18, AKL+18]. Most commonly, these works measure bandwidth
overhead in one of two ways. Either they consider the worst-case overhead, mean-
ing the largest overhead any one operation on the ORAM data structure can in-
cur, or they consider the amortized overhead, meaning the average overhead per
operation in a longer sequence of operations. The best known upper bound for
worst-case bandwidth overhead is due to Stefanov et al. [SvS+13], who present a
statistically secure construction with O

(
log2N

)
overhead3. The best known up-

per bound for amortized bandwidth overhead is due to Asharov et al. [AKL+18],
who present a computationally secure construction with bandwidth overhead
of O (logN), which matches the lower. The first perfectly secure ORAM con-
struction is due to Damg̊ard et al. [DMN11] and has an amortized bandwidth
overhead of O

(
log3N

)
and a multiplicative storage overhead of O(logN). This

was recently improved upon by Chan et al. [CNS18], who present a perfectly
secure construction with the same amortized bandwidth overhead and a storage
overhead of O (1). In the multi-server setting, where the ORAM data struc-
ture is distributed among several non-colluding servers, Chan et al. [CKN+18]
present a perfectly secure construction with worst-case bandwidth overhead of
O
(
log2N

)
. Since all existing perfectly secure single-server constructions require

linear worst-case bandwidth overhead, we pose the natural question:

Can we construct a perfectly secure single-server ORAM with sublinear
worst-case bandwidth overhead?

We believe this is an important theoretical question. It is well known that
randomization and computational assumptions are powerful tools in algorithm
and protocol design. It is a common theme in research to investigate the power
of these tools for specific problems by understanding the upper bounds that
we can achieve with and without them. In this work we make a significant
step towards understanding what ORAM bandwidth overhead can be achieved
in the worst-case with perfect security and without relying on randomization4

3 For a larger data block size of O
(
log2N

)
they even achieve an overhead of O(logN)

data blocks.
4 Our main construction is using randomness exclusively for the sake of security, but

not for efficiency. We believe this is unavoidable.

2

or computational assumptions. See [CNS18] for a further discussion about the
importance of perfectly secure ORAM.

1.1 Our Contribution

We present the first construction of perfectly secure Oblivious RAM with sublin-
ear worst-case bandwidth overhead and, furthermore, we also make the following
contributions:

Novel approach to constructing ORAM. We present a fundamentally new
approach for constructing ORAM. Somewhat surprisingly, and despite the large
amount of research interest that ORAM has received, all existing constructions
are based on a handful of conceptually different approaches. We believe it is of
theoretical and practical interest to explore new ways to construct this primitive.
In this work, we present two new constructions.

Our first construction is conceptually extremely simple. It is statistically se-
cure, meaning that even a computationally unbounded adversary cannot break
the obliviousness guarantees and all operations on the data structure succeed
with an overwhelming probability. It has a worst-case bandwidth overhead of

O
(√

N c+log t+logN
log (c+log t+logN)

)
, where N is the maximum number of data blocks to

be stored, t is an upper bound on the number of accesses, and c is the correctness
parameter that provides an upper bound of 2−c on the failure probability. To
the best of our knowledge, it is one of the conceptually simplest known ORAM
constructions to date. The underlying logic is easy to implement and the proof of
security is straightforward. Our main construction, called Lookahead ORAM, is
loosely based on our first construction. It has a worst-case bandwidth overhead

of O
(√

N
)

and is perfectly secure, in the sense that every operation on the

ORAM data structure succeeds with probability 1 and obliviousness is guaran-
teed against an unbounded adversary. The hidden constants behind the big-O
notation are small and our construction is significantly faster in the worst-case
than the fastest perfectly secure single-server ORAM construction of Chan et
al. [CNS18] in the amortized case for any practical parameter range. For in-
stance, for N = 220 our construction has a worst-case bandwidth overhead of
less than 7 000 data blocks, whereas their construction has a amortized band-
width overhead of around 160 000 data blocks5.

Small concrete storage overhead. Assuming a client-side position map,
Lookahead ORAM has the smallest concrete storage overhead among all ex-
isting ORAM constructions with sublinear worst-case bandwidth overhead. Our
construction only incurs an additive server-side storage overhead of

√
2N data

5 Our estimate of Chan et al.’s construction is computed by instantiating it with
Batcher’s Bitonic sort [Bat68] and a hidden constant of 1. For our construction we
took the concrete parameters one obtains assuming a server-side position map.

3

ORAM Client storage Server Bandwidth Online Section
persistent temporary storage overhead overhead

Matrix O(N) O(1) ≈ 18N + N logN
2

O
(√

N logN
)

– 3

Matrix O(1) O(1) ≈ 142N + 2N logN O
(√

N logN
)

– 5

Lookahead O(N) O
(√

N
)

N + 2
√
N O

(√
N

)
O(1) 4

Lookahead O(1) O
(√

N
)

6N + 12
√
N O

(√
N

)
– 5

Lookahead O(1) O(1) 6N + 12
√
N O

(√
N log

√
N

)
– 5.1

Fig. 1. Overview of the different parameter settings for Matrix and Lookahead ORAM.
For Matrix ORAM we crudely estimate the parameters for c = 20 and t = 15. All
overheads are stated in data blocks and assume block size Θ(logN). Asymptotically line
3 with a client-side storage of O(N) makes little sense. From a practical perspective,
however, the O (1) online overhead is a powerful feature and the concrete client-side
storage is significantly smaller than the concrete amount of data stored on the server-
side. The asymptotical behaviour also improves in case of faster growth of block size.

blocks. A small storage overhead is particularly beneficial in outsourced stor-
age settings where data owners have to pay their storage provider for the stor-
age they consume. At the cost of a slightly increased total server-side storage,
namely 6N + 12

√
N , we can reduce the client-side storage of Lookahead ORAM

to O(1). In this case, our construction has the smallest storage overhead among
all statistically and perfectly secure ORAMs and is only a multiplicative fac-
tor of around 3 larger than the most storage efficient computationally secure
ORAMs [GMOT11] with sublinear worst-case bandwidth overhead. For a more
detailed discussion of the concrete server-side storage costs of Lookahead ORAM
see Section 4.5 and Section 5. Lookahead ORAM, by default, requires the client

to have a temporary client-side storage of O
(√

N
)

during each access. We show

how to reduce the temporary client-side storage to O(1) at the cost of increas-

ing the worst-case bandwidth overhead to O
(√

N log
√
N
)

in Section 5.1. We

illustrate the different parameter options and their efficiency in Figure 1.

Constant online bandwidth overhead. One approach to circumvent the
Ω (logN) lower bound on the bandwidth overhead was introduced by Boneh
et al. [BMP11] and then improved upon in [DSS14, RFK+15]. Their main idea
was to split the total bandwidth overhead into two parts. The first part, the
so called online overhead, is the amount of data that needs to be transmitted
between the client and the server to retrieve a desired data element obliviously.
The second part, the offline overhead, is the amount of data that needs to be
transmitted between the two parties to ensure obliviousness of future accesses.
One can think of the offline overhead as background work that, usually, moves
around encrypted data elements in the ORAM data structure to ensure the
desired obliviousness guarantees. Splitting the total bandwidth overhead this
way and then minimizing the online overhead has practical advantages. It allows

4

the client to efficiently retrieve data from the server without much latency during
bursts of requests and then do the background work during quieter phases.

In [BMP11], Boneh et al. presented a computationally secure construction,
for a primitive, which is strongly related to ORAM and has O(logN) online and

O
(√

N logN
)
6 worst-case overhead. In [DSS14, RFK+15] this idea of splitting

the total overhead has been further refined, and computationally secure con-
structions that achieve an online bandwidth overhead of O (1) are presented.
However, these constructions require some server-side computation during the
online phase, which renders these solutions not applicable for “raw” storage
providers that do not support these ORAM constructions explicitly. That is, our
construction works in combination with arbitrary storage providers like Dropbox
or Google Drive, whereas the constructions from [DSS14, RFK+15] only work
with storage providers that explicitly implement their given scheme.

If the client stores the position map and a small client-side storage that can
hold up to

√
2N data blocks locally, then Lookahead ORAM allows the client

to obliviously retrieve arbitrary many elements from the ORAM data structure
with no bandwidth overhead in the online phase and no server-side computation
in the online or offline phase. That is, in the online phase, the client can directly
download the desired elements from the server. Our construction is the first to
provide such a feature among all computationally, statistically, and perfectly
secure ORAMs with sublinear worst-case bandwidth overhead.

To provide a better feeling for how expensive it is to store the stash and the
position map locally, consider a 1GB database with a block size of 1KB. To be
able to make use of our online overhead feature, the client would need to store a
roughly 2MB stash and a 8MB position map locally. As mentioned before, if the
client chooses to not use the minimizing online overhead feature, it can reduce
its persistent storage to O(1).

Implementation and Evaluation. Even though the main focus of this paper
is the theoretical feasibility of perfectly secure ORAM with sublinear worst-case
bandwidth overhead, we also provide a implementation of Lookahead ORAM for
the sake of completeness. A description of our implementation and our perfor-
mance benchmarks, can be found in Section 6.

Attack on [GMSS16]. We identify a flaw in the ORAM construction of [GMSS16]
and outline an attack that breaks the claimed obliviousness guarantees in Sec-
tion A. We have contacted the authors and they have acknowledged our attack.

6 This worst-case complexity is slightly different from the original paper. The paper
has a superlinear worst-case overhead due to an expensive reshuffling phase, but
when splitting shuffling over

√
N accesses, one can achieve the stated complexity

5

1.2 Other Related Work

A vast amount of works have contributed to our current understanding of ORAM.
In this section we merely provide a high-level overview of the works that are di-
rectly related to our work.

In order to achieve practical efficiency and overcome the Ω (logN) lower
bound, several works have looked at different refinements of the classical ORAM
notion in the client server model. Path-PIR [MBC14] uses server-side compu-
tations to achieve a practically very small, yet still poly-logarithmic bandwidth
overhead. In [AKST14], Apon et al. formally define the notion of Verifiable
Oblivious Storage, which generalizes the notion of ORAM by allowing the server
to perform computations, and show that the ORAM lower bound does not ap-
ply to their setting by providing a scheme with constant overhead per access
based on Fully Homomorphic Encryption. In [DDF+16] a scheme, called Onion
ORAM, is presented that breaks the lower bound, but only relies on additively
homomorphic encryption. In this work we will only focus on the classical notion
of ORAM that does not allow server-side computation.

Demertzis et al. [DPP18] present a computationally secure ORAM construc-
tion with worst-case bandwidth overhead O

(
N1/3

)
and perfect correctness. Sev-

eral recent works cite Demertzis et al. and claim that their construction is per-
fectly secure. This is not correct and this claim is not made by the authors of
that paper either. Their construction is a modification of the square-root ORAM
construction and requires the client to store a random permutation, which repre-
sents the position map. This position map can only be stored succinctly by using
a pseudorandom function. Therefore, their construction is either only computa-
tionally secure, or requires linear client-side storage, or requires linear bandwidth
overhead.

Lastly, a work by Gordon et al. [GMSS16] presents an ORAM construction
that may seem superficially similar to ours. However, our work significantly
differs from theirs in terms of performance guarantees we achieve, underlying
ideas we present, and security we obtain. Their construction, called Matrix-
ORAM, arranges the data elements in a fixed number of rows. The size of each
row linearly depends on the size of the total database and each row has its
own stash. Accesses to their data structure are performed in a conceptually and
concretely different manner to ours. The authors claim a logarithmic bandwidth
overhead. In contrast, our main construction has a rectangular shape 7, and has

a bandwidth overhead of O
(√

N
)

.

We discovered a flaw in their construction and present a concrete attack on
their scheme. This flaw is discussed in detail in Section A.

2 Preliminaries

On a high level, the ORAM security definition assumes a honest-but-curious
server and says that for any two data access sequences, the corresponding access

7 One may even say they look matrix shaped

6

sequences to the ORAM data structure should be indistinguishable. The security
definition is taken almost verbatim from [SSS12].

Definition 1. (Security Definition) Let

((op1, a1, data1) , . . . , (opM , aM , dataM))

be a data request sequence of length M , where each opi is either a read(ai) or a
write(ai, data) operation. Let oram(−→y) denote the (possibly randomized) sequence
of accesses to the remote storage given the sequence of data requests −→y . An
ORAM construction is said to be secure if for any two data request sequences
−→y and −→z of the same length, their access patterns oram(−→y) and oram(−→z) are
computationally indistinguishable and the construction is correct in the sense
that it returns on input −→y data that is consistent with −→y with probability at
least 1− 2−c. We call c the correctness parameter.

Position Map All known ORAM schemes need to maintain a position map
of size O (N) that keeps track of the ordering of elements inside the ORAM
data structure on the server. For the sake of simplicity we will assume that the
client stores the full position map locally. From a practical point of view, this
seems to be a reasonable assumption in many client-server settings. For example,
the position map of a 1GB database containing 1KB blocks is only around 8MB
large. From a theoretical point of view, to reduce the client’s persistent storage to
O(1), both of our constructions can be combined with the well-known approach
of recursively storing the position map in a sequence of smaller ORAMs, which
was first introduced in [SCSL11]. Recursively storing the position map on the
server increases the number of round-trips per access to O (logN), but it does
not change the asymptotic bandwidth overheads of our constructions. We explain
how to combine our main construction with the recursive approach in detail in
Section 5.

Block Size If we want to use the recursive ORAM approach mentioned above
to store the position map on the server-side, then the data blocks need to be
Ω (logN) large. In the setting, where the client stores the position map locally,
we do not make any assumptions about the data block size. However, for the
construction to be useful, the data blocks on the server should in total be larger
than the position map that the client stores locally.

Integrity The ORAM security definition assumes the server to be honest-but-
curious. Similar to previous works [SvS+13], our construction can, at the cost of
giving up perfect for computational security, be extended to prevent tampering
of an actively malicious server by using a Merkle Tree on top of our ORAM data
structures.

7

3 A Simple Matrix Bucket ORAM

In this section, we will present a very simple oblivious RAM construction with
reasonable efficiency and a simple proof of security. To the best of our knowledge
this is one of the, arguably, simplest ORAM constructions known to date. Apart
from being interesting on its own, it will also serve a stepping stone towards our
main construction by introducing some of the ideas behind our main approach.

Initially we are given an array A of length N of data elements. To initialize
our scheme, we create a empty

√
N ×
√
N matrix C, in which each matrix cell is

a bucket of size w. We randomly (and independently) assign each element from
A to a bucket in C. Once all elements from A are distributed among buckets in
C, we encrypt each bucket separately, and store the matrix on the server. For
the sake of simplicity, we assume that the client stores a position map σ that
maps indices of elements from A to columns of C locally.

Init(A)

1 C ← initBucketMatrix()

2 σ ← initPosMap()

3 for ` = 1 . . . N do
4 (i, j)← pickRandBucket()

5 C[i, j].put(A [`] ‖`)
6 σ (`) = j

7 C ← encryptBuckets(C)

Access(`, x)

1 c← readColumn(C, σ(`))
2 (i, j)← pickRandBucket()

3 r ← readRow(C, i)
4 rdec ← decrypt(r)
5 cdec ← decrypt(c)
6 data← popData(`, cdec)
7 putData(x‖`, rdec, j)
8 σ(`) = j
9 c∗ ← encrypt(cdec)

10 r∗ ← encrypt(rdec)
11 writeBack(c∗, r∗)
12 return data

Fig. 2. Pseudocode of simple Matrix ORAM construction

To obliviously access some element with index ` in A, we need to access
column σ(`) in C. In addition, we need to pick a uniformly random bucket
(i, j) in the matrix and obtain row i. We find the element with index ` in the
retrieved column and perform our desired operation (read or write). We then
remove element ` from its current bucket, put it into bucket (i, j), re-encrypt
all retrieved buckets, and write back the retrieved row and column. Lastly, we
update the position map to point to the new column that stores `, i.e., set
σ(`) = j. The pseudocode implementing this construction is given in Figure 2

3.1 Security

We prove the following theorem

8

Theorem 1. Let E = (gen, encrypt, decrypt) be an IND-CPA secure encryption
scheme. Then the construction in Figure 2 is a statistically secure ORAM scheme

with O
(√

N c+log t+logN
log (c+log t+logN)

)
bandwidth overhead and a total storage cost of

O(N logN) data blocks, where N is the number of data elements, c the correct-
ness parameter, and t is the upper bound on the number of accesses.

Proof. The key idea of why the proposed scheme is oblivious stems from the basic
observation that every column intersects with every row. Intuitively, this means
that if we obliviously write an element into some uniformly random position in
a row, then, from an adversarial point of view, every column is equally likely a
potential candidate for reading that element in a future access. In our scheme,
whenever we read an element through a column access, we move it to a new
uniformly random bucket and, in particular, a new uniformly random column,
through a row access. Importantly, the movement of each element is completely
independent of the access history and the other elements residing in the matrix.
From these observations it is straightforward to see that the proposed scheme is
oblivious.

What remains to show is the relation between the bucket size and the cor-
rectness parameter, i.e. we want to pick our buckets sufficiently large such that a
bucket overflows with negligible (in the correctness parameter) probability. To-
wards this goal, we make an observation that simplifies our analysis. Let ExpN,t

move

be the experiment of first throwing N balls into N buckets once and then pick-
ing up a random ball from a random bucket and moving it to a new random
bucket t times. This experiment expresses the actual movement of data during t
many accesses in our oblivious ram construction. Let ExpNthrow be the experiment
of throwing N balls into N initially empty buckets of capacity w. Let Load>w

i

denote the event that bucket with index i at some point in time has more than
w many elements in it and Load>w the event that this happens to any of the
buckets. We will analyze the probability of the event of one bucket overflowing in
ExpNthrow and use the following lemma to put ExpNthrow and ExpN,t

move into relation.

Lemma 1. Let t > 0, then

Pr[Load>w
i |Exp

N,t
move] ≤ t · Pr[Load>w

i |Exp
N
throw]

Proof. Given N balls and N bins, there are NN different possibilities to dis-
tribute the balls among the bins. Let us call each way to distribute the balls a
constellation. Let X be one arbitrary but fixed constellation among them and,
since all of them are equally probable, we have Pr[X|ExpNthrow] = 1

NN . Let us
now consider constellations, which are one ball move away from X. There are
exactly N2−N such constellations, because we can select any of the N balls, and
pick any of N − 1 buckets distinct from the current bucket of the selected ball.
Selecting a random ball uniformly and moving it to a random bucket yields the
original constellation with probability 1

N2 , and each of the neighbouring constel-
lations with probability 1

N2 . As all ball moves are reversible, each constellation
can be obtained from N2 −N other constellations. The probability of obtainin-
ing a constellation after a uniform selection of constellation and a single random

9

ball move is therefore equal to N2−N
N2

1
NN + 1

N
1

NN = 1
NN . The lemma follows by

induction over t and then applying the union bound.

Using this lemma it is sufficient to upper bound the probability of a bucket
overflowing in the experiment ExpNthrow and then apply the union bound over all
buckets. Let us first look at the probability of some single bucket i overflowing
by one element after ExpNthrow, i.e. the probability of a bucket containing (exactly)
z = w + 1 balls after throwing N balls into N buckets at random once. In the
analysis we assume N to be sufficiently large, i.e. N should be large enough
for our bucket size w to be at least 8, so that our inequalities work out. In the
following calculation we will use two inequalities. First, ∀x ≥ 0 it holds that(
1− 1

x

)x ≤ e−1 and, secondly, ∀0 ≤ k ≤ n it holds that
(
n
k

)k ≤ (nk) ≤ (enk)k.

Pr[Loadzi |Exp
N
throw] =

(
N

z

)(
1

N

)z (
1− 1

N

)N−z

≤
(
eN

z

)z

N−z

((
1− 1

N

)N
)1− z

N

≤
(
eN

z

)z

N−ze
z
N−1

= ezz−ze
z
N e−1

= 2z(log e−log z)+log e(z
N−1)

≤ 2z(log e−log z)

≤ 2−
1
2 z log z

We can provide an upper bound on the event of a single bucket having more
than w balls after throwing N balls into N buckets using geometric series as
follows

10

Pr[Load>w
i |Exp

N
throw] ≤

N∑
z=w+1

2−
1
2 z log z

=

N−w∑
z=1

2−
1
2 (w+z) log (w+z)

=

N−w∑
z=1

2−
1
2 (w log (w+z)+z log (w+z))

≤
N−w∑
z=1

2−
1
2 (w logw+z log z)

= 2−
1
2w logw

N−w∑
z=1

2−
1
2 z log z

≤ 2−
1
2w logw+1

Applying the union bound over all buckets and using Lemma 1 we obtain

Pr[Load>w|ExpN,t
move] ≤ 2−

1
2w logw+1tN

We want to bound this probability of a bad event happening by some cor-
rectness parameter c, i.e. we want this probability to be smaller than 2−c.

2−
1
2w logw+1tN ≤ 2−c

⇔ −1

2
w logw + 1 + log t+ logN ≤ −c

⇔ w logw ≥ 2(c+ log t+ logN + 1)

Hence, the bucket size w ∈ O
(

c+log t+logN
log (c+log t+logN)

)
and therefore the total

bandwidth cost in our construction is O
(√

N c+log t+logN
log (c+log t+logN)

)
.

4 Main Construction

In this section we are going to present our main Lookahead ORAM construction.
The first difference between our Matrix Bucket ORAM and Lookahead ORAM
is that we replace all buckets by cells that can only hold single elements. As a
first try to construct a more efficient ORAM we could do the following: Initially,
randomly shuffle the data, distribute the data elements among matrix cells,
and encrypt each cell separately. To access an element, we retrieve the column

11

corresponding to that element and a row corresponding to a uniformly random
cell. After accessing the desired element, we swap the accessed element with the
uniformly random cell, re-encrypt both row and column, and write them back
into the matrix.

On an intuitive level, one could hope for this to be a secure ORAM con-
struction, since every element will be swapped into a new uniformly random
column at every access. Unfortunately this is not the case. The problem is that
the distribution of columns into which elements are swapped is not uniformly
random when conditioned on the observed row accesses. In particular, the dif-
ference with the simple matrix construction is that, here, the accessed element
will change the position of another element, i.e the swap partner. It turns out
that the server can infer information about the positions of accessed elements
whenever we access the same row twice.

Figure 3 illustrates why the straightforward approach of directly swapping
the accessed element with an element from a uniformly random cell fails. In this
figure, the root node depicts a 2× 2 matrix holding four encrypted entries. Ini-
tially the server has no knowledge about the arrangement of data elements in the
matrix. Let us assume we access two different data elements. With probability
non-negligible in the security parameter the following events will occur. On the
first access the server observes the second column and second row being accessed.
Edges from the root to the first layer show the possible swaps that could have
happened, given the observed row and column accesses. a ↔ b means element
a was accessed and swapped with element b. On the second access the server
observes the first column and, again, the second row being accessed. The leaf
nodes of this tree represent all possible arrangements of elements in the matrix,
given the observed access pattern. Dashed boxes indicate the case, where the
first accessed element has changed its column. Solid boxes indicate that the first
accessed element is in its original column. Counting the leaf nodes it can be seen
that the first accessed element will more likely than not have switched columns
after the two accesses. Hence, from the server’s point of view, the elements are
not distributed uniformly at random and the approach does not provide the
desired obliviousness guarantees.

4.1 Intuition for Lookahead ORAM

The main issue with this first approach is that the row accesses reveal too much
information. Ideally, we would like to have a swap procedure that allows us to
directly access the desired element instead of the whole column and then swap
that accessed cell with a new cell without revealing the column or row of that
new cell. Observe, that to perform a swap, we have to perform two tasks. We
have to remove the accessed element from its cell and put it into the cell of its
swap partner. Symmetrically, we have to remove the swap partner from its cell
and put it into the cell of the accessed element.

To realize such a swap procedure, we introduce two auxiliary stashes stashacc
and stashswap, where stashacc will be storing accessed elements and stash stashswap

will store pre-selected swap partners. From a high-level perspective, these stashes

12

c1 c2
c3 c4

c1 c3
c2 c4

c2 c3
c1 c4

c4 c3
c2 c1

c1 c4
c3 c2

c3 c4
c1 c2

c2 c4
c3 c1

c1 c4
c3 c2

c1 c4
c2 c3

c1 c2
c3 c4

c3 c2
c1 c4

c4 c2
c3 c1

c1 c2
c3 c4

c1 c2
c4 c3

c1 c2
c4 c3

c4 c2
c1 c3

c3 c2
c4 c1

2↔ 3

1↔ 2 1↔ 4

2↔ 4

1↔ 3 1↔ 2 3↔ 3 3↔ 2

4↔ 4

1↔ 3 1↔ 4 3↔ 3 3↔ 4

4↔ 3

1↔ 4 1↔ 3

Fig. 3. Illustration of why the naive approach of swapping two random cells via a
column and a row access fails. The root node depicts a encrypted 2 × 2 matrix. The
leaf nodes depict all possible arrangements of data elements that are possible after
the observed access pattern. Dashed boxes indicate the case, where the first accessed
element has changed its column. Solid boxes indicate that the first accessed element is
in its original column.

will help us to pretend that we immediately swap accessed elements to an un-
known new location in the matrix. From the server’s point of view, the client will
always read both full stashes, and a uniformly random cell in the matrix, since
the client behaves as if accessed elements are immediately magically swapped to
their new locations in the matrix. In reality, accessed elements will go to stashacc
from where they will be eventually evicted into the cell of their respective swap
partner obliviously. Swap partners will be readily waiting in stashswap and upon
accessing some element in the matrix, the swap partner will be swapped from
stashswap into the accessed cell directly. As an invariant we have that each ele-
ment is either at its expected location in the matrix or in one of the stashes.

Two issues that need to be addressed are, how do we get swap partners into
stashswap before they are used and how to get accessed elements from stashacc
into their new cells in the matrix. To solve both these issues, we introduce
a (stateful) round-robin column access that will iterate through the columns.
Using the round-robin column access, we perform two “maintenance” tasks.

To empty stashacc, we evict all elements from it, whose destination is some-
where in the column of the current round-robin column access. Note that for a
matrix of size

√
N ×

√
N , the round-robin access will have accessed every cell

of the matrix in
√
N steps. This means that no element in stashacc will wait

for more than
√
N steps to be evicted. Since, we add at most one element to

13

the stash per access, this means that stashacc will never contain more than
√
N

elements.
The second task is to ensure that, whenever we use a swap partner from

stashswap, the content of the swap partner’s cell must already be available in
that stash. Observe, that the swap partner’s cell is a uniformly random cell in
the matrix, which does not depend on the access pattern and can be selected
upfront. Assume stashswap contains

√
N many preselected swap partners in a

queue. These swap partners are sufficient for the next
√
N accesses. Now upon

performing an access, one swap partner from the stash will be used, and we
pre-select a uniformly random cell that will be the swap partner once all other
swap partners from stashswap are used. At this point in time, the content of the
pre-selected swap partner is (likely) not in the stash. However, since we have√
N − 1 many more accesses before it will be used, we can be certain that the

round-robin column access will fetch it in time before it will be used. Since our
stashes accommodate accessed elements waiting to be evicted and swap partners
waiting to be used, the total stash size is 2

√
N .

One detail that we have swept under the rug so far, is the case, where the
element we want to access is not in the matrix, but somewhere in the stashes. To
get an intuitive feeling for the handling of these cases, it is helpful to keep in mind
that at every access, we are basically (virtually) swapping two cells in the matrix.
The stashes are just auxiliary data structures that make this process happen.
Let (i, j) be the cell in the matrix that is expected to contain the element we are
accessing and let the next swap partner from stashswap be some data element v
originating from some cell (a, b). If the desired data element is not at position
(i, j) in the matrix, but rather in stashacc (waiting to be evicted to cell (i, j)),
then take the swap partner from stashswap and place its value v into the matrix
at position (i, j). From now on the element in stashacc that was expected to be
at (i, j) will be waiting to be evicted to (a, b). If the accessed element, expected
at location (i, j), is in stashswap, this means that (i, j) is pre-selected as a swap
partner for some future access. Therefore the contents of (i, j) are not supposed
to be in the matrix, but rather in the stashswap. In this case, we find (i, j) in
the stashswap, put the value of (i, j) into stashacc to be evicted into (a, b), and
replace the value of (i, j) in stashswap with v.

4.2 Formal Description

Given this intuition about how our construction work, we are now ready to
formally present our construction in Figure 4. Let C be the matrix containing
the encrypted data entries and σ be the position map that maps array indices
to matrix positions in C. We implement stashswap as a queue and stashacc as an
map from positions to values. Init(A) initializes the ORAM data structure, by
permuting the elements and storing them in an encrypted matrix C. Initially,
both stashes are created empty. stashswap, is filled up with random elements
from the encrypted matrix. To write value x or just read at position ` in array
A inside the ORAM data structure, we use Access (`, x), which makes use of
the ReadVirtual, WriteVirtual, and Background subroutines. ReadVirtual (i, j) reads

14

Globals
1 C, σ
2 stash = (stashswap, stashacc)
3 indcol

Init(A)

1 C ←
initEmptyMatrix(

√
N ×

√
N)

2 (A′, σ′)← shuffle(A)
3 σ ← fillMatrix(A′, σ′, C)
4 (stashswap, stashacc)←

initStash()

5 for i = 1 . . .
√
N do

6 (i, j)← pickRandCell()

7 enqueue(((i, j) ,⊥) , stashswap)

8 indcol ← 0

9 for i = 1 . . .
√
N do

10 Background();

Access(`, x)

1 v.pos← σ (`)
2 (v.val, where)←

ReadVirtual(v.pos)
3 s← dequeue(stashswap)

4 if x 6= ⊥ then
5 v.val = x

6 SwapVirtual(v, s, where)
7 swapInPosMap((i, j) , s.pos, σ)
8 (i′, j′)← pickRandCell()

9 enqueue(((i′, j′) ,⊥) , stashswap)

10 Background()

11 return v

SwapVirtual(v, s,where)

1 switch where do
2 case matrix do
3 C [v.pos] = s.val

4 case readstash do
5 remove(v.pos, v.val, stashacc)

C [v.pos] = s.val

6 case swapstash do
7 t← find(v.pos, stashswap)

8 replaceVal(t, s.val, stashswap)

9 put(s.pos, v.val, stashacc)

Background()

1 c = readColumn(indcol, C)
2 for t ∈ stashacc do
3 if t.pos.j = indcol then
4 c [t.pos.i] == t.value
5 remove((i, j) , stashacc)

6 for t ∈ stashswap do
7 if t.pos.j == indcol then
8 if c [t.pos.i] 6= ⊥ then
9 t.value = c [t.pos.i]

10 c [t.pos.i] = ⊥

11 writeColumn(j, c, C)

12 indcol ← indcol + 1 mod
√
N

ReadVirtual((i, j))

1 if C [i, j] 6= ⊥ then
2 return (C [i, j] ,matrix)

3 v = lookup((i, j) , stashacc)
4 if v 6= ⊥ then
5 return (v, readstash)

6 v = lookup((i, j) , stashswap)

7 return (v, swapstash)

Fig. 4. Pseudocode of Lookahead ORAM

15

the stash and the matrix cell C[i, j] to find the data element that is expected
to be at position (i, j) inside the matrix C. SwapVirtual(v, s,where) simulates a
swap of accessed value v.val at position v.pos with pre-selected swap partner s
with value s.val from position s.pos. Background() implements the round-robin
column access, which takes care of flushing elements out of stashacc and fetching
elements into stashswap.

4.3 Security

Theorem 2. Let E = (gen, encrypt, decrypt) be an IND-CPA secure encryption
scheme. Then the construction in Figure 4 is a perfectly secure ORAM scheme

with O
(√

N
)

bandwidth overhead and a total storage cost of N +O
(√

N
)

data

blocks, where N is the number of data elements.

Proof. Instead of directly arguing about the security of our proposed construc-
tion, we will rather argue about the security of an idealized version, which leaks
the same amount of information about the access pattern, but is easier to an-
alyze. As previously explained, from a high-level perspective, our construction
directly accesses the desired element in the matrix and then swaps it with a ran-
dom cell. The swap is immediately applied to the position map and we always
directly access the cell in the matrix, which should contain a desired element
according to the position map. The stash and the round-robin column accesses
are there to enable us to (virtually) swap the accessed element into a new cell
without leaking anything about that new location.

IdealizedAccess1(σ, `)

1 (i, j)← σ (`)
2 (i′, j′)← pickRandCell(C)
3 v ← readCell(i, j, C)
4 C ← readMatrix(C)
5 swapInPosMap((i, j) , (i′, j′) , σ)
6 swapInPosMap((i, j) , (i′, j′) , C)
7 return v, σ

IdealizedAccess2(σ, `)

1 (i, j)← σ (`)
2 (i′, j′)← pickRandCell(C)
3 v ← readCell(i, j, C)
4 C ← readMatrix(C)
5 swapInPosMap((i, j) , (i′, j′) , σ)
6 (C, σ)← fullReshuffle(C, σ);

return v, σ

Fig. 5. Idealized access procedures

Since both the stash and the the round-robin column access are always ex-
ecuted independently of the access pattern, they leak no information. Hence,
instead of analyzing our construction directly, we can now analyze a construc-
tion with the idealized access procedure IdealizedAccess1 depicted in Figure 5
on the left. The initialization procedure corresponding to IdealizedAccess1 is a
straightforward adaption of our main construction and is not stated explicitly. In
IdealizedAccess1, we directly access the cell that contains our data element and,

16

next, we retrieve the full matrix to perform the swap operation locally. From an
efficiency point of view this is clearly a useless construction, but w.r.t. oblivi-
ousness both our main construction and this idealized version thereof leak the
same amount of information about the access pattern. More formally, the success
probability of any distinguisher D, distinguishing two data access sequences, is
the same in our main construction and in the construction with IdealizedAccess1.

Lemma 2. Let oram be the main construction from Figure 4 and oram∗1 the con-
struction using the access procedure IdealizedAccess1. Then, for any distinguisher
D, for any two data request sequences −→y and −→z we have

|Pr[D(oram(−→y)]− Pr[D(oram(−→z))]|

= |Pr[D(oram∗1(−→y))]− Pr[D(oram∗1(−→z))]|

There are two components that are observable by the server in both our real
construction and the idealized access that can leak information about the access
pattern. The first component is the swap logic that moves accessed elements
to a new position. The second component is the direct accesses to the desired
elements, i.e. we need to show that conditioned on previously observed accesses,
each new access will fetch a uniformly random cell in the matrix.

Towards showing the first part, let vk for 1 ≤ k ≤ N be some arbitrary data
elements. Let ExpN,t

swap be the experiment of, initially, distributing the N data
elements vk in a matrix C with N cells uniformly at random and then for t steps
repeatedly swapping the contents of two uniformly random cells.

Lemma 3. Let C be a matrix of size
√
N ×

√
N and let vk ∈ V for 1 ≤ k ≤ N

be arbitrary values from some value space V. Then C, after running experiment
ExpN,t

swap, is a uniformly random permutation of the data elements vk.

Proof. Initially distributing the data elements vk uniformly at random in the
matrix C corresponds to a uniformly random permutation. For ExpN,1

swap, i.e. dis-
tributing the elements and then swapping two uniformly random cells once, the
statement holds, since we apply a random permutation of two elements to a
uniformly random permutation. The statement for t > 1 follows by induction
over t.

To conclude the security proof it remains to show that even conditioned
on the previously observed accesses the distribution of data elements in C is
uniformly random. Assume the server observes an access to position (i, j) in
the matrix to fetch some data element vk. The accessed element is going to
be swapped into every position in the matrix with equal probability. Since each
element is equally likely, with a probability of 1

N , to be selected as a swap partner,
every element is equally likely to end up in (i, j). From the accessed cells, no
other information about the access pattern is leaked. Hence, from the server’s
perspective all distributions of access patterns are equally likely, no matter what
the actual data access sequence is.

17

For the sake of clarity, let us look at the slightly modified access procedure
IdealizedAccess2 depicted in Figure 5 on the right. In IdealizedAccess2 we do
not just swap two cells locally, but we fully reshuffle the whole matrix. Due
to the full reshuffle, each access is completely independent of the previously
observed access pattern. It is straightforward to see that IdealizedAccess2 is a
secure ORAM construction. Since in both IdealizedAccess1 and IdealizedAccess2
the access patterns are distributed uniformly at random, IdealizedAccess2 leaks
as much information as IdealizedAccess1.

4.4 Online Overhead

For some practical applications it may be of interest to split the total bandwidth
overhead into an online and an offline overhead. The point of this is to minimize
the online bandwidth, which represents the amount of data that needs to be
transmitted, when a client requests an element, and then do some background
work, the offline overhead, to ensure the security of the ORAM, when no data
requests are actively pending. This way we can minimize the practical latency of
user requests despite the inherent lower bound on the overhead shown in [Gol87,
GO96].

Looking at our main construction, it is straightforward to split the total
bandwidth overhead into online and offline overhead. In the online phase, as-
suming we download the stash once, we can directly access the desired elements
in the matrix on the server without any overhead. In the offline phase we need
to do the remaining work, i.e. perform the round-robin column access, fill up the
stash of pre-selected swap partners and flush out elements that need to go back
into the matrix.

While storing the stash locally can theoretically compromise data integrity
in case of a client device failure, the only part of the stash that cannot be
randomly reinitialized is the cache of recently accessed elements. If the server is
is significantly more reliable than the client device, recently accessed elements
can be written to a separate server-side buffer of size

√
N in a round-robin

manner. Each element will be stored in this buffer for
√
N operations which is

enough for the background operations to write it to its long-term server-side
storage position.

It is also possible to allow multiple online accesses in a single burst. The
simplest way to do it increases local storage requirements by twice the size of
the maximum allowed burst length. Note that our implementation faithfully
simulates the oram∗1 construction as long as the background work is performed
at least

√
N times between committing to a swap partner and its use, and

background work is also performed at least
√
N times between accessing the

element and evicting it from the recently accessed element stash. If there is
additional stash space of size b for the potential swap partners and the same
amount of space for the recently accessed elements, we only need to have at
least

√
N background work operations performed during every interval when

b +
√
N access operations are performed. Note that it is possible to perform

some part of the background work, handle an additional burst and then continue

18

the background work as long as enough background work is done to prevent
exhaustion of the swap partners or overflow of the recently accessed elements
stash.

The same analysis shows that there is a trade off between stash size and
bandwidth overhead: for example, if we have a stash twice as large as needed,
we can afford doing only half the background processing step after each access.

4.5 Trading Off Bandwidth and Storage Overhead

For our main construction, the server’s storage overhead comes from the two
auxiliary stashes that it needs to store in addition to the encrypted data elements.
For a matrix C, where the number of columns equals the number of rows, this
results in an additive storage overhead of 2

√
N . More generally, by considering

an arbitrary rectangle C with H rows and W columns, we can trade off the
concrete storage and bandwidth overhead costs of our construction. The number
of columns W affects the time it takes the round-robin column access to iterate
over the whole rectangle C and thus it also affects the stashes which have to
be of size W each. The number of rows H, affects the size of the column that
we need to download at each access. For example, by setting H = 2

√
N and

W = 1
2

√
N , we can, in comparison to a quadratically shaped matrix C, directly

reduce the additive storage overhead to
√
N and maintain a bandwidth overhead

of 3
√
N + 1. By setting H =

√
2N and W =

√
N
2 , we get a bandwidth overhead

of 2
√

2
√
N + 1 and a storage overhead of

√
2N .

5 Constant Client-Side Storage

So far we have assumed that the full position map is stored explicitly on the
client side. Following the approach of [SCSL11], we show that our construction
can be modified to only require O(1) client-side storage at the cost of O(logN)
rounds of interaction per access between the client and the server. To store
the position map on the server side, we will create a sequence of ORAM data
structures that increase in size, which represent the position map. This means
that now the server stores a sequence of position map ORAMs and an ORAM
data structure that contains the actual data. To access an element at a certain
index, the client will use the position map ORAMs to determine, which index it
should query in the ORAM data structure that stores the actual data.

Theorem 3. Consider an arbitrary ORAM construction with a client-side posi-
tion map. Assume there exist such constants K and C that for N entries with a
block size of D > 4 logN , the ORAM construction has a multiplicative bandwidth
overhead of C

√
N and total storage of (N +K

√
N)D bits.

Such an ORAM can be converted into an ORAM with a server-side position
map with a multiplicative bandwidth overhead of 2C

√
N + 4 and total storage

ND + 2KD
√
N + 2N logN bits.

19

Proof. The proof goes by induction over N . In the base case, for size N 6 4,
we use a linear ORAM, which simply reads and writes all the blocks for each
access. This ORAM has a bandwidth overhead of 4 and no storage overhead.

For an arbitrary N , we use the induction hypothesis to replace an ORAM
with client-side position map with an ORAM that stores the position map on the
server-side. We encode 4 blocks addresses in the position map into one storage
block inside the ORAM data structure. Using a block size of 4 logN results in
an ORAM data structure that stores N

4 blocks, storing 4 addresses each. Now
we apply the induction hypothesis.

Since we want to store N
4 blocks with 4 logN bits per block, by induc-

tion hypothesis our position map ORAM has a total storage cost of N logN +

2K(4 logN)
√

N
4 + 2N

4 logN bits. Adding the storage costs of our main ORAM,

the total storage cost in bits will be

N logN + 2K(4 logN)

√
N

4
+ 2

N

4
logN +ND +KD

√
N

= ND +K(4 logN)
√
N +KD

√
N +

3

2
N logN

< ND + 2KD
√
N + 2N logN

In our construction, every access to the main ORAM requires one access to
the position map. Note that we do not need any additional position map accesses
for the background work that moves data out of the stash. The position map

access adds its bandwidth cost of 2C
√

N
4 + 4 to the main ORAM bandwidth

cost of C
√
N . The total overhead is C

√
N + 2C

√
N
4 + 4 = 2C

√
N + 4.

This completes the proof of the inductive step.

By setting the parameters as described in Section 4.5, we get

Corollary 1. Lookahead ORAM with a client-side position map, block size D =

4 logN , multiplicative bandwidth overhead O
(√

N
)

, and total storage of (N +
√

2N)4 logN bits can be converted into an ORAM with server-side position map

and multiplicative bandwidth overhead O
(√

N
)

and total storage of logN(6N+

12
√
N) bits.

5.1 Constant Client-Side Temporary Storage

Using a recursive position map, we reduce the persistent client-side storage to
O (1). However, during any operation on the ORAM data structure, the client

still needs to temporarily store O
(√

N
)

data blocks. If desired, this can be

reduced to O (1) data blocks at the cost of increasing the bandwidth overhead

20

by a multiplicative factor of O
(

log
√
N
)

. We outline our solution here and leave

the details to the interested reader.
Recall that during each ORAM operation, we have to access one matrix cell,

one matrix column j, and the two stashes. For the sake of simplicity lets assume
that the data matrix has height and width

√
N . Upon each ORAM operation we

first process the stashes stashacc and stashswap into a temporary stashes stashaccfinal

and stashswap
final, which have the following property: If either stashswap or stashacc

contains a cell (i, j′) with j′ = j, then this cell will be in the i-th position of
stashswap

final or stashaccfinal respectively. For example, if stashswap contains a cell that
is associated with the second cell from the top in the current column j, then it
will be in the second position in stashswap

final. Once we have such stashes, we can
iterate over the current column j and both final stashes one cell each at a time
and perform the necessary operations. We explain the generation of stashaccfinal.
The generation of stashswap

final is completely analogous:

1. Create an empty stash stashaccfinal

2. Iterate over stashacc one cell at a time. If the current cell (i, j) is associated
with the current column, we append it to stashaccfinal with a priority i. If it is
not relevant for the current column, then we append it to stashaccfinal with a
priority of ∞.

3. We append
√
N dummy elements to stashaccfinal, where dummy element i has

priority i+ 1
2 . At this point stashaccfinal contains 2

√
N cells.

4. We use an oblivious sorting algorithm [Bat68, AKS83] to sort stashaccfinal

according to its priorities from smallest to largest.
5. We iterate over stashaccfinal one data element at a time. Whenever we read a

real cell i, we set the priority of the dummy cell right after it to ∞.
6. We again obliviously sort stashaccfinal.

A visual illustration of this final stash generation is depicted in Figure 6.
The post-processing of the two final stashes is straightforward. Again we only

explain the post-processing of stashaccfinal, since the post-processing of stashswap
final

is completely analogous. We iterate over stashaccfinal and assign real each data cell

(c)

(b)

(a)

1.5 2 3 4.5 ∞ ∞ ∞ ∞

1.5 2 2.5 3 3.5 4.5 ∞ ∞

∞ 3 ∞ 2 1.5 2.5 3.5 4.5

Fig. 6. Illustration of the generation of stashaccfinal with
√
N = 4. Each row represents

stashaccfinal at a certain stage in the stash generation algorithm. The squares represent
data cells and their labels represent their assigned priorities. Shaded rectangles repre-
sent dummy elements. (a) depicts stashaccfinal at the end of step 3. (b) depicts the stash
at the end of step 4. (c) depicts it after step 5.

21

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 500000 1x106 1.5x106 2x106 2.5x106 3x106 3.5x106 4x106

M
iB

N

Plain storage
Parallel Buffers

Path-ORAM
Square-root ORAM
Lookahead ORAM

Fig. 7. Comparison of the storage overheads of different ORAM constructions. The x-
axis shows different amounts of data blocks. The data block size is fixed to 1024 bytes.
The y-axis plots the total required storage on the server-side in MiB. For Lookahead
ORAM, the values are taken from empirical measurements of our implementation.
For the other schemes, the values are computed based on the concrete formulas and
constants that are reported in the respective papers.

priority −∞ and each dummy element priority ∞. We use oblivious sort to sort
stashaccfinal from small to large. We interpret the first

√
N as stashacc and delete

the remaining last
√
N (dummy) elements.

Regarding the efficiency of our procedure we observe that we perform a con-
stant amount of oblivious sorts of

√
N elements per ORAM operation. This can

be done with bandwidth overhead of O
(√

N log
√
N
)

data elements with O(1)

temporary storage on the client side [AKS83].

6 Evaluation

To provide a rough idea of the practical performance of our Lookahead ORAM
construction, we implemented a prototype with a client-side position map and
evaluated it in terms of concrete bandwidth and server-side storage overhead.

We assume that each encrypted block has an extra 40-byte encryption/MAC
overhead, and every stash entry has an additional status 20-byte header with sta-
tus and position information. We assume 4-byte words are also used for denoting
the request types.

22

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000

K
iB

N

Path-ORAM
Tree-ORAM

Lookahead ORAM

Fig. 8. Comparison of the bandwidth overhead of Lookahead ORAM and Path-
ORAM. The x-axis shows different amounts of data blocks. The data block size is
fixed to 1024 bytes. The y-axis shows the total amount of transmitted data per access
in MiB.

When encrypting N data blocks of size B each, the server’s total storage is
N × (B + 40). The corresponding position map is 8N , and the stash 2

√
N ×

(B + 20) bytes large. Whenever the client performs an operation on the ORAM
data structure, it needs to download 40 + (B + 40) × (

√
N + 1) and upload

80 + (B + 40)× (
√
N + 1) bytes.

During initialization of our ORAM, we fill the storage with zeros and then fill
the stash with pre-selected swap partners. During this initalization, we upload
44 + (B + 40)×N bytes to the server.

All of the above formulas have been calculated based on our theoretical con-
struction and validated empirically using our prototype implementation. In the
following, the data block size is fixed to 1024 bytes.

Storage overhead We compare our storage overhead on the server-side to the
overheads of the most storage efficient related works with sublinear worst-case
bandwidth overheads. For our comparison, we measure the total storage require-
ments on the server-side for varying N . The data points for Lookahead ORAM
were obtained through experiments. For the schemes we compare ourselves to,
we computed the data points based on the formulas (including constants) given
in the respective papers. It should be noted that in [SvS+13] the authors obtain
provable security for Path-ORAM with a storage overhead of 20N , but evaluate
their scheme on smaller parameter settings. Since we are interested in provable

23

security and correctness guarantees, we compare our scheme to theirs with a
storage overhead of 20N . The results are depicted in Figure 7. As expected,
assuming a client-side position map, Lookahead ORAM has the smallest stor-
age overhead among all for the tested setting. Storing the position map on the
server-side would increase the storage overhead of Lookahead ORAM by a factor
of roughly 6.

Bandwidth overhead We compare ourselves to Path-ORAM (with a client-
side position map), which is known to be the most efficient construction in terms
of asymptotic and practical worst-case bandwidth overhead. For our comparison
we use their self-reported bandwidth overhead of 10 logN . The results of our
comparison are depicted in Figure 8. As expected from the asymptotic behaviour
of Path-ORAM and Lookahead ORAM, we can see that Path-ORAM becomes
more efficient for large values of N . However, for values of N < 3000, Lookahead
ORAM is more efficient in terms of concrete bandwidth overhead.

References

AKL+18. Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Pe-
serico, and Elaine Shi. Optorama: Optimal oblivious ram. Cryptology
ePrint Archive, Report 2018/892, 2018. https://eprint.iacr.org/2018/

892.

AKS83. M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n log n) sorting network. In
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Com-
puting, STOC ’83, pages 1–9, New York, NY, USA, 1983. ACM.

AKST14. Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam.
Verifiable oblivious storage. pages 131–148, 2014.

Bat68. K. E. Batcher. Sorting networks and their applications. In Proceedings of
the April 30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68
(Spring), pages 307–314, New York, NY, USA, 1968. ACM.

BLS12. Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact
of a new cryptographic library. pages 159–176, 2012.

BMP11. Dan Boneh, David Mazieres, and Raluca Ada Popa. Remote oblivious
storage: Making oblivious ram practical. 2011.

BN16. Elette Boyle and Moni Naor. Is there an oblivious RAM lower bound?
pages 357–368, 2016.

CKN+18. T.-H. Hubert Chan, Jonathan Katz, Kartik Nayak, Antigoni Polychroni-
adou, and Elaine Shi. More is less: Perfectly secure oblivious algorithms in
the multi-server setting. pages 158–188, 2018.

CNS18. T.-H. Hubert Chan, Kartik Nayak, and Elaine Shi. Perfectly secure obliv-
ious parallel RAM. pages 636–668, 2018.

DDF+16. Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren,
Elaine Shi, and Daniel Wichs. Onion ORAM: A constant bandwidth blowup
oblivious RAM. pages 145–174, 2016.

DMN11. Ivan Damg̊ard, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly se-
cure oblivious RAM without random oracles. pages 144–163, 2011.

24

https://eprint.iacr.org/2018/892
https://eprint.iacr.org/2018/892

DPP18. Ioannis Demertzis, Dimitrios Papadopoulos, and Charalampos Papaman-
thou. Searchable encryption with optimal locality: Achieving sublogarith-
mic read efficiency. pages 371–406, 2018.

DSS14. Jonathan Dautrich, Emil Stefanov, and Elaine Shi. Burst oram: Minimizing
oram response times for bursty access patterns. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 749–764, 2014.

GMOT11. Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto
Tamassia. Oblivious ram simulation with efficient worst-case access over-
head. In Proceedings of the 3rd ACM workshop on Cloud computing security
workshop, pages 95–100. ACM, 2011.

GMSS16. Steven Gordon, Atsuko Miyaji, Chunhua Su, and Karin Sumongkayothin.
M-ORAM: A matrix ORAM with log N bandwidth cost. pages 3–15, 2016.

GO96. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation
on oblivious rams. Journal of the ACM (JACM), 43(3):431–473, 1996.

Gol87. Oded Goldreich. Towards a theory of software protection and simulation
by oblivious RAMs. pages 182–194, 1987.

IKK12. Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Ac-
cess pattern disclosure on searchable encryption: Ramification, attack and
mitigation. 2012.

LN18. Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious
RAM lower bound! pages 523–542, 2018.

MBC14. Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. Efficient private
file retrieval by combining ORAM and PIR. 2014.

OS97. Rafail Ostrovsky and Victor Shoup. Private information storage (extended
abstract). pages 294–303, 1997.

PPRY18. Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo.
PanORAMa: Oblivious RAM with logarithmic overhead. pages 871–882,
2018.

RFK+15. Ling Ren, Christopher Fletcher, Albert Kwon, Emil Stefanov, Elaine
Shi, Marten van Dijk, and Srinivas Devadas. Constants count: Practi-
cal improvements to oblivious ram. In 24th USENIX Security Symposium
(USENIX Security 15), pages 415–430, Washington, D.C., 2015. USENIX
Association.

SCSL11. Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious
RAM with O((logN)3) worst-case cost. pages 197–214, 2011.

SSS12. Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. Towards practical
oblivious RAM. 2012.

SvS+13. Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple
oblivious RAM protocol. pages 299–310, 2013.

A Attack on [GMSS16]

In a work by Gordon et al. [GMSS16] the authors present an ORAM, called
M-ORAM. Their construction has a flaw and does not provide obliviousness. In
the following, we give a high-level overview of their scheme and sketch our attack
that breaks their obliviousness claims.

The construction partitions the server-side storage into a fixed number of
rows and a number of columns that depends on the dataset’s size. Every cell in

25

their rectangular storage layout holds one data element. Additionally, every row
has its own separate constant-sized stash.

Initially, all data elements are present in the storage rectangle in a randomly
permuted order and the stashes are empty. Simply speaking an access is per-
formed by accessing one element in each row of their data structure. In one of
the rows the desired element is accessed and in all other rows a uniformly random
cell is selected. More precisely, the authors claim that to achieve obliviousness
not all ”dummy” cells are selected uniformly at random, instead some of them
are random cells from the previous access. After retrieving one cell from each
row, the client shuffles the cells and puts one cell into each stash. The client
picks one random block from each stash and sends it back to the server as the
new content of the retrieved cells.

Let x1, . . . , xN be some data elements stored in the ORAM data structure,
the access sequences (read(x1), read(x2), read(x1)) and (read(x1), read(x2), read(x3))
can be distinguished with a success probability that is non-negligible in the se-
curity parameter. From a high-level perspective, every access selects a subset
of cells from the data structure and every two subsets corresponding to two
consecutive accesses intersect at some random cells. For three accesses the pro-
posed approach breaks down. Looking at our first access sequence, the proposed
construction has a slightly higher bias of the first and third access subset inter-
secting, since we are accessing the same element.

We have contacted the authors and they have acknowledge our attack.

26

	Perfectly Secure Oblivious RAM with Sublinear Bandwidth Overhead

